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Example 9.4. Analysis of odds ratios from various studiesSuppose the odds
ratios measuring the effect of smoking on lung cancer ptesen Table 9.6. Inthe
seven studies listed in Table 9.6, only ¥i®% confidence intervals are available.
For three additional studies, the fallx 2 contingency tables were also available
given in Table 9.7. The aim in this illustrative example isototain an overall
estimate of the odds ratio using information available fedhiO studies of Tables
9.6 and 9.7.

Table 9.6 Odds ratios of lung cancer for smokers versus nonsmokers faestlid7

Study Oddsratio 95% CI

3.89 0.92 -16.30
3.97 2.20- 7.16
3.88 2.47 - 6.08
17.47 14.24 —21.43
5.35 244 -11.74
9.10 5.57 -14.86
3.41 2.94 - 3.96
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Table 9.7 2 x 2 contingency tables of lung cancer and smoking for studies 8—10

Study Odds Ratio Cases Controls
8 3.48 Smokers 49 29958
Nonsmokers 33 70186
9 33.10 Smokers 12 0
Nonsmokers 89 118
10 3.43 Smokers 29 4

Nonsmokers 171 81

Bear in mind that the sample estimates of the log-odds ratmasymptotically normal,
we may use the normal distribution to model the availablermfation of Table 9.6. Hence
we may use the following simple hierarchical model

logOR,  ~ N(0x,63)
O ~ N(0,03) for k=1,2,...,7, i=1,2,

where(SFQ,c are the estimated odds ratio for #hth study as provided in Table 9.7, whitg is
the standard error of the correspondiag OR;, calculated bys;, = log(U/L)/(2 % 1.96),
with U and L, respectively, denoting the upper and the lower limits efX5% confidence
interval of the odds ratio of Table 9.6. The first equationragpnates the likelihood of
each study since the original data of the corresponding2 contingency tables are not
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available. For the last three studies the full data are @bk and therefore the following
model can be used

Yie ~ binomialmix, Yiik + Yiow),

( Tilk >
log | ————
1—mk

0 ~ N(0,03) for k=8,9,10, i =1,2,

ag +9k1(l = 1)

whereY;;;, refers to the number of observations in #th study with smoking and cancer
statusi (1=smokers, 2=nonsmokers) affll=case, 2=control), respectively. Paraméjer
is the corresponding odds ratio, whilés the odds of the disease for the nonsmoking group.
Usual noninformative prior distributions can be useddpré, ando?.
The code for the first part (seven studies) of the hierarthicalel can be specified in
WinBUGS using the following syntax
for (k in 1:K1){
logor [k] <- log(orl[k])
selogor [k] <- log(U[k]/L[k])/(2%1.96)
precision.logor[k] <- 1/pow( selogor[k], 2)
logor [k] ~ dnorm( thetalk], precision.logor[k] )
theta[k] “dnorm( mu.theta, tau.theta )
OR[k] <- exp(thetalk])
}

while for the second part (studies 8—10) the model is spéaifsing the following syntax:

for (k in 1:K2){
for (i in 1:2){
N[i,k] <- Y[i,1,kl+Y[i,2,k]
Y[i,1,k] ~ dbin( pl[i,k], N[i,k] )
logit(pl[i,k]) <- alk] + thetal[Ki+k] * equals(i,1)
¥
theta[K1+k] ~ dnorm( mu.theta, tau.theta )
OR[K1+k] <- exp(thetal[K1+k])
}

Finally, the prior distributions are defined as usual by

for( k in 1:3) { alk] ~ dnorm( 0.0, 0.001) }
mu.theta ~ dnorm( 0.0, 0.001)
tau.theta ~ dgamma( 0.001, 0.001)

while estimated odds ratios for each study using the pragadbdel are given by’+. The
overall estimate of the odds ratio is given &y

The posterior mean of the overall odds ratio is found equal.99, with 95% of the
posterior values ranging frof55 to 9.44. Error bars of the estimated odds ratios of each
study using the hierarchical model presented above areteen Figure 9.6.

Additional details concerning hierarchical models andaratalysis can be found in
Woodworth (2004, chap. 11).

9.3 THE GENERALIZED LINEAR MIXED MODEL FORMULATION

A popular hierarchical model formulation is that for the sdiedgeneralized linear mixed
models which is based on the GLM formulation also having a hieraalhstructure by
including random coefficients/effects in the usual linedictor.
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caterpilar plot: OR

Figure 9.6 95% posterior intervals of adjusted odds ratios of lung cancer for smolesus
nonsmokers for each study in Example 9.4.

Hence the model can be formulated as

Y ~ D) (9.2)
E(Y) = XB+Zb (9.3)
b ~ N(0,G), (9.4)

whereY is a random response vector that may include repeated nesasfithe same
variable or measurements of correlated variablesXnd are the data or design matrices
for fixed and random effecy8 andb, respectively.

The assumption of normal random effects [Eq. (9.4) in thenfdation above] can be
easily substituted by another distribution without anyidifity within Bayesian inference,
resulting in a different marginal sampling distributiom 3 assumed by the adopted model.

The normal model is a special case of the preceding fornaudtr D =normal and
6 = (p, X). Note that some structure must be imposed®bm order to avoid an over-
parametrized model. The simplest case is t®3et ¢21. Variance components in normal
models are calculated using logic similar to that follome&ection 9.2.1.1. The total vari-
ability is calculated via VdfY;; ), while partial variances are provided by the corresponding
random effects variances. Correlations within each lef/géierarchy also provide useful
decomposition and interpretation concerning the sourcaieébility and the necessity of
the corresponding random effects and levels of hierarchy.

9.3.1 A hierarchical normal model: A simple crossover trial

A frequent implementation of hierarchical models is witthie context of crossover trials,
in which different treatments are given with different seqces in groups of patients. Here
we illustrate a simple two treatment two-period crossonialih which patients are divided
into two groups. The first group receives treatment A for thst fieriod and treatment B
for the second period of the study, while the other groupivesethe same treatments in
the reverse order. Random effects are used to capture tredatmm that results from the



