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Synopsis

1. Motivation - Presentation of the Problem and the Data.

2. Model Specification.

3. Cost - Benefit Analysis.

4. Cost Restriction - Benefit Analysis.

5. Discussion.
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1 Motivation - Presentation of the Problem and

the Data.

How to measure hospital quality of care?

• Indirect method: input-output approach (also called league table quality

assessment) — hospital outcomes (e.g., death within 30 days of admission)

compared after adjusting for differences in inputs (sickness at admission).

• Cost-effective measurement of admission sickness crucial to this approach.
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Data

• Available inputs to sickness scale: 80–100 variables (e.g., blood urea nitrogen,

coma score).

• Outcome = 30-day death (binary).

Usual method of Analysis

Logistic regression using frequentist variable-selection methods to find

parsimonious and clinically reasonable subset.

Data in this study

• Quality of hospital care US study by conducted RAND Corporation.

• Sample: n = 2532 pneumonia patients in the late 1980s (Kahn, et al. , 1990)

• Logistic regression was used to reduce the initial list of p = 83 available sickness

indicators for pneumonia down to a 14 predictors (Keeler, et al. , 1990).
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• This approach is sub-optimal: it does not consider differences in cost of

data collection among available predictors.

• Cost is measured in data collection time ranging from 30 seconds to 10 minutes

of abstraction time per variable; Data collectors payment is roughly at

20$/hour.

• Weighing data-collection cost against accuracy of prediction → large variable

selection problem (when p = 83 we need to compare 2p ≈ 9.7 · 1024 subsets

of sickness variables).

• For a decision theoretic approach of the same problem see Fouskakis and

Draper (2007).
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The 14-Variable Rand Pneumonia Scale

Admission sickness scale created by Rand for pneumonia patients contained p = 14 variables, chosen

to optimize predictive accuracy subject to informal parsimony constraint (CHF = congestive heart

failure).

Variable Cost cj (minutes) Variable Cost cj (minutes)

Total APACHE II score 10.00 Age 0.50

Systolic blood pressure 0.50 Chest X-ray CHF score 2.50

score (2-point scale) (3-point scale)

Blood urea nitrogen 1.50 APACHE II coma score 2.50

(BUN) (3-point scale)

Serum albumin 1.50 Shortness of breath 1.00

(3-point scale) (yes, no)

Respiratory distress 1.00 Septic complications 3.00

(yes, no) (yes, no)

Prior respiratory failure 2.00 Recently hospitalized 2.00

(yes, no) (yes, no)

Ambulatory score 2.50 Temperature 0.50

(3-point scale)
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2 Model Specification

• Logistic regression model with Yi = 1 if patient i dies.

• Xij : j sickness predictor variable for the i patient.

• m → γ = (γ1, . . . , γp)
T .

• γj : Binary indicators of the inclusion of the variable Xj in the model.

• Model space M = {0, 1}p; p = total number of variables considered.

Hence the model formulation can be summarized as

(Yi | γ)
indep
∼ Bernoulli(pi(γ)), (1)

ηi(γ) = log

(

pi(γ)

1 − pi(γ)

)

=

p
∑

j=0

βjγjXij , (2)

(3)
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Two different approaches

1. Cost-benefit analysis (incorporate cost in the analysis)

2. Cost Restricted benefit analysis (impose a cost limit on the use of variables)
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3 Cost-Benefit Analysis

The aim is to identify well fitted models after taking into account the cost of each

variable (Fouskakis, et al. , 2007).

Therefore we need to estimate the posterior model probability

f(γ|y) =
f(γ)

∫

f(y|βγ , γ)f(βγ |γ)dβγ
∑

γ ′∈{0,1}p

f(γ′)
∫

f(y|βγ′ , γ′)f(βγ′ |γ′)dβγ′

after introducing a prior on model space f(γ) depending on the cost.
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Prior Distributions

Prior on model parameters (see Ntzoufras et al. , 2003)

f(βγ |γ) = Normal

(

0, 4n
(

XT
γXγ

)−1
)

(4)

Use a cost penalized prior for variable inclusion indicators

f(γj) ∝ exp

(

γj

2

c0 − cj

c0
log n

)

for j = 1, . . . , p . (5)

When comparing models γ(k) and γ(ℓ) ⇒ penalty imposed to the log-likelihood
ratio:

−2 log
f(γ(k))

f(γ(ℓ))
=

p
∑

j=1

(

γ
(k)
j − γ

(ℓ)
j

) cj − c0

c0
log n .

• cj : cost per observation for Xj variable.

• c0 : baseline cost (default choice: c0 = min{cj} ∀ j = 1, . . . , p).

• Indifference concerning the cost ⇒ cj = c0 for j = 1, . . . , p ⇒ uniform prior on
model space (f(γ) ∝ 1) ⇒ Posterior model odds = Bayes factor.
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Implementation and Results

• Run RJMCMC (Green, 1995) for 100K iterations in the full model space.

• Eliminate unimportant variables (with marginal probabilities < 0.30) forming

a new reduced model space.

• Run RJMCMC for 100K iterations in the reduced model space to estimate

posterior model odds and best models.

• Two setups:

1. Benefit only analysis (uniform prior on model space).

2. Cost - Benefit Analysis (cost penalized prior on model space).
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Preliminary Results: Marginal Probabilities f(γj = 1|y)

Variable Variable Costs Benefit Cost-Benefit
Index Name (minutes) Analysis Analysis
1 Systolic Blood Pressure Score 0.50 0.99 0.99
2 Age 0.50 0.99 0.99
3 Blood Urea Nitrogen 1.50 1.00 0.99
4 Apache II Coma score 2.50 1.00
5 Shortness of Breath 1.00 0.97 0.79
8 Septic Complications 3.00 0.88
12 Temperature 0.50 0.98 0.96
13 Heart Rate 0.50 0.34
14 Chest Pain 0.50 0.39
15 Cardiomegaly Score 1.50 0.71
27 Hematologic History Score 1.50 0.45
37 Apache Respiratory Rate Score 1.00 0.95 0.32
46 Admission SBP 0.50 0.68 0.90
49 Respiratory Rate 0.50 0.81
51 Confusion 0.50 0.95
70 Apache PH Score 1.00 0.98 0.98
73 Morbid + Comorbid 7.50 0.96
78 Musculoskeletal Score 1.00 0.54
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Reduced Model Space: Marginal Probabilities f(γj = 1|y)

Variable Variable Costs Benefit Cost-Benefit
Index Name (minutes) Analysis Analysis
1 Systolic Blood Pressure Score 0.50 1.00 0.99
2 Age 0.50 1.00 1.00
3 Blood Urea Nitrogen 1.50 1.00 1.00
4 Apache II Coma score 2.50 1.00
5 Shortness of Breath 1.00 0.97 0.89
8 Septic Complications 3.00 0.89
12 Temperature 0.50 0.99 0.95
13 Heart Rate 0.50 0.37
14 Chest Pain 0.50 0.45
15 Cardiomegaly Score 1.50 0.90
27 Hematologic History Score 1.50 0.66
37 Apache Respiratory Rate Score 1.00 1.00 0.28
46 Admission SBP 0.50 0.63 0.94
49 Respiratory Rate 0.50 0.84
51 Confusion 0.50 1.00
70 Apache PH Score 1.00 0.99 1.00
73 Morbid + Comorbid 7.50 1.00
78 Musculoskeletal Score 1.00 0.71
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Reduced Model Space: Posterior Model Probabilities/Odds

Common Variables Additional Post.

Set-up k in all set-ups within set-up Variables Prob. P O∗

1k
Benefit 1 X1+X2+X3+X5+X12+X70 +X4+X15+X37+X73 +X8 +X27+X46 0.3066 1.00

Analysis 2 +X8 +X27 0.1969 1.56

3 +X8 0.1833 1.67

4 +X27+X46 0.0763 4.02

5 0.0383 8.00

Cost 1 X1+X2+X3+X5+X12+X70 +X46+X51 +X49+X78 0.1460 1.00

Benefit 2 +X14 +X49+X78 0.1168 1.27

Analysis 3 +X13 +X49+X78 0.0866 1.69

4 +X13+X14 +X49+X78 0.0665 2.20

5 +X14 +X49 0.0461 3.17

6 +X49 0.0409 3.57

7 +X37 +X78 0.0382 3.82

8 +X13+X14 +X49 0.0369 3.96

9 +X13 0.0344 4.25
∗ Posterior odds of the best model within each set-up versus the current model k
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Reduced Model Space: Comparisons

Comparison of measures of fit, cost and dimensionality between the visited models

in the reduced model space of the benefit-only and cost-benefit analysis; percentage

difference is in relation to benefit-only.

Analysis Difference

Benefit-Only Cost-Benefit (%)

Min Deviance 1553.2 1616.1 +4.1

Median Deviance 1572.0 1643.8 +4.6

Median Cost 22.0 7.5 –65.9

Median Dimension 13 11 –15.4
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4 Cost Restriction - Benefit Analysis

• Usually, a cost limit is imposed by the project budget.

• Hence, the search should be conducted only among models whose cost does not

exceed the budgetary restriction C.

• Therefore, we should a-priori exclude models γ with total cost larger than C,

resulting to a significantly reduced model space,

M = {γ ∈ {0, 1}p :

p
∑

i=1

ciγi ≤ C}.

• AIM: estimate posterior model probabilities in the cost restricted model space.

• PROBLEM: due to the cost limit, model space areas of local maximum may

exist.

• SOLUTION: Intelligent trans-dimension MCMC methods that allow to move

across areas of local maximum even if these are distinct.
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Proposed Algorithm

• We have developed a population based trans-dimensional reversible-jump

Markov chain Monte Carlo algorithm (population RJMCMC).

• We have combined ideas from the population-based MCMC (Jasra, et al. ,

2007) and simulated tempering algorithms (Geyer and Thompson, 1995)).
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Population based MCMC

• Use 3 chains: The actual one and two auxiliary ones.

– Auxiliary chains are equal to the posterior distributions raised in a power tk

called temperature.

– 1st auxiliary chain: tk > 1 increasing differences between the posterior

probabilities (makes the distribution steeper allowing by this way the

MCMC to move closser to locally best models).

– 2nd auxiliary chain: 0 < tk < 1 reducing differences between the posterior

probabilities (makes the distribution flatter allowing by this way the

MCMC to move easily across different models).

• Temperatures tk change stochastically.

• By this way the extensive number of chains is avoided.
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Prior Distributions

Same prior on model parameters as before

f(βγ |γ) = N

[

0, 4n
(

XT
γXγ

)−1
]

(6)

and a uniform prior on cost restricted model space, i.e.

f(γ) ∝ I(γ ∈ M : c(γ) =

p
∑

j=1

γjcj ≤ C), (7)

where cj is the differential cost per observation for variable Xj and C is the

budgetary restriction.
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Implementation and Results

• COST LIMIT: C = 10 minutes of abstraction time.

• Run Population RJMCMC for 100K iterations twice in the full model space.

• Eliminate unimportant variables (with marginal probabilities < 0.30 in any

run) forming a new reduced model space.

• Run population RJMCMC in the reduced space (twice).

• Compare results and performance of population RJMCMC with simple

RJMCMC.
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Preliminary Results: Marginal Probabilities f(γj = 1|y)

Variables with marginal posterior probabilities f(γj = 1|y) above 0.30 in at least
one run; costs are expressed in minutes of abstraction time.

Marginal Posterior Probabilities
Variable First Run Second Run

Index Name Cost Analysis Analysis
1 Systolic Blood Pressure Score 0.50 0.98 0.99
2 Age 0.50 0.97 0.95
3 Blood Urea Nitrogen 1.50 0.99 0.91
4 Apache II Coma Score 2.50 0.55 1.00
5 Shortness of Breath 1.00 0.92 0.80
6 Serum Albumin Score 1.50 0.40 0.55

12 Temperature 0.50 0.91 0.93
37 Apache Respiratory Rate Score 1.00 0.72 0.79
46 Admission SBP 0.50 0.45 0.25
49 Respiratory Rate 0.50 0.35 0.25
51 Confusion 0.50 0.44 0.01
62 Body System Count 2.50 0.55 0.33
70 Apache PH Score 1.00 0.81 0.73
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Reduced Model Space: Posterior Model Probabilities/Odds

Population RJMCMC - 500K iterations
First Run Second Run

Common Additional Model Post. Model Post.
k m Variables Variables Prob. PO1k Prob. PO1k

1 m1 X1 + X12 + X37 +X3+X5 +X62 0.4872 1.00 0.4879 1.00
2 m2 +X5 +X46 +X62 +X70 0.1202 4.05 0.1052 4.63
3 m3 +X3 +X62 +X70 0.0894 5.45 0.0982 4.97
4 m4 +X3+X5+X6 +X70 0.0344 14.16 0.0498 9.80

Simple RJMCMC - 500K iterations
1st Run 2nd Run

Com. Additional Model Post. Model Post.
k m Vars Variables Prob. PO1k Prob. PO1k

1 m1 X62 +X1+X3+X5+X12+X37 0.6129 1.00 0.5952 1.00
2 m3 +X1+X3 +X12+X37 +X70 0.0828 7.40 0.1214 4.90
3 m2 +X1 +X5+X12+X37+X46 +X70 0.0762 8.04 0.1074 5.54
4 m5 +X3+X5 +X46 +X49 +X70 0.0457 13.41 < 0.03 > 19.9
5 m6 +X1+X3+X5 +X49 +X70 0.0337 18.19 < 0.03 > 19.9

Common variables in all analyses: X2 + X4 All models appearing in the table have total cost 10

min (cost limit).
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Reduced Model Space: Monte Carlo Errors

Monte Carlo Errors (%)
RJMCMC
Type Run Iterations m1 m2 m3 m4

POP. 1 500K 1.2 0.5 0.9 0.7
POP. 2 500K 1.5 0.4 1.0 0.7
POP. 1 200K 1.9 0.8 1.1 1.2
POP. 2 200K 1.6 1.0 1.1 0.9
POP. 1 100K 2.5 1.2 1.7 1.5
POP. 2 100K 2.7 0.9 1.6 1.2
SIMPLE 1 500K 4.2 1.3 3.2 0.0
SIMPLE 2 500K 4.2 1.7 3.6 0.0

Relative Comparisons
SIMPLE vs. POP. 500K 3.5 2.8 3.6 0.0

(First Run) 200K 2.2 1.8 2.9 0.0
100K 1.7 1.2 1.9 0.0

SIMPLE vs. POP. 500K 2.8 3.4 3.6 0.0
(Second Run) 200K 2.6 1.7 3.3 0.0

100K 1.6 1.9 2.3 0.0
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5 Discussion

• Cost - Benefit Analysis:

The resulting models achieve dramatic gains in cost and noticeable

improvement in model simplicity at the price of a small loss in predictive

accuracy, when compared to the results of a more traditional benefit-only

analysis.

Bayesian model averaging (accounting also for the cost) is feasible.

• Cost Restriction - Benefit Analysis:

Population RJMCMC algorithm explores the model space efficiently and

converges faster than simple RJMCMC (having lower Monte Carlo errors).
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