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1 Introduction.

• Let y = (yij) be the frequencies and

• Π = (πij) is the corresponding probability table

of an I × J contingency table of two ordinal variables X and Y with I and J levels
respectively.

Saturated log-linear model:

log πij = λ + λX
i + λY

j + λXY
ij i = 1, . . . , I, j = 1, . . . , J.

⇓
log πij = λ + λX

i + λY
j + φµiνj (Goodman, 1985)

Let µ = (µ1, µ2, . . . µI) and ν = (ν1, ν2, . . . νJ) be the scores assigned to the levels
of X (rows) and Y (columns) respectively.
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2 Modeling Details

• Usual imposed constraints on the scores’ parameters of the RC model:

I∑
i=1

µi =
J∑

j=1

νj = 0 and
I∑

i=1

µ2
i =

J∑
j=1

ν2
j = 1.

• We focus on the order restricted version of the RC association model.

• X and Y ordinal ⇒ natural to assume that the ordinal structure for scores

µ1 < µ2 < · · · < µI and ν1 < ν2 < · · · < νJ

• Which successive scores (µi, µi+1) and (νj , νj+1) are equal?

• In all models we assume that at least two row and two column scores are
different.
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Proposed Constraints

• We propose to use an alternative set of constraints:

µ1 = µmin < µI = µmax and ν1 = νmin < νJ = νmax

• Row and column scores take values in the intervals [µmin, µmax] and
[νmin, νmax] respectively.

• Sensible choices:

� µmin = νmin = −1 and µmax = νmax = 1 [range similar to the parameters
under constraints (2)]

� We use: µmin = νmin = 0 and µmax = νmax = 1
∗ simplifies computations
∗ φ = log

(
π11πIJ

π1JπI1

)
• Posterior distributions of scores under (2) can be obtained by transforming

MCMC output of the proposed parametrization.
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Model Formulation

log πij = λ + λX
i + λY

j + φµiνj , i = 1, . . . , I, j = 1, . . . , J

• We introduce latent binary indicators

γ = (1, γ2, . . . , γI) and δ = (1, δ2, . . . , δJ) and

which are equal to

γi = 1 when µi > µi−1 (or δj = 1 when νj > νj−1)

γi = 0 when µi = µi−1 (or δj = 0 when νj = νj−1)

• The vectors γ and δ :

– specify which scores are equal

– are used instead of the usual model indicator m
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Let us now define

Γi =
i∑

k=1

γk and ∆j =
j∑

k=1

δk

are the distinct different scores under estimation until row i or column j

respectively.

Moreover the actual distinct unequal row and column scores will be denoted by the
vectors µγ and νδ of dimension ΓI and ∆J of respectively given by

µγ =
(
{µi : γi = 1; i = 1, 2, . . . , I}

)
=

(
µγ(1), µγ(2), . . . , µγ(ΓI)

)T

and

νδ =
(
{νj : δj = 1; j = 1, 2, . . . , J}

)
=

(
νδ(1), νδ(2), . . . , νδ(∆J)

)T

.

Then the original scores are given by

µi = µγ(Γi) and νj = νδ(∆j)
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Prior Distributions on Scores

Equivalently, the scores are a priori distributed as ordered iid uniform random
variables

f(µ) =
(ΓI − 2)!

(µmax − µmin)ΓI−2
I(µmin < ordered different µ’s < µmax)

Similarly, for the column scores

f(ν) =
(∆J − 2)!

(νmax − νmin)∆J−2
I(νmin < ordered different ν’s < νmax)

Prior Distributions on the rest of parameters

Normal with large variances for the rest of the parameters.

Bernoulli for γi and δj with prior probabilities equal to 1/2.
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3 RJMCMC algorithm

1. Update model structure: Sample (γ, δ) using successive RJMCMC moves:

• For i = 2, . . . , I, propose γ′: γ′
i = 1 − γi, γ′

k = γk for k �= i.
– Split: if (γi = 0) → (γ′

i = 1) then propose (µi−1 = µi) → (µ′
i−1 < µ′

i).
(a) Generate u from q(u|µ, γ, γ′).
(b) Set µ′

γ′ = g(µγ , u).
(c) Obtain µ′ from µ′

γ′ via µi = µγ(Γi).
– Merge: if (γi = 1) → (γ′

i = 0) then propose (µi−1 < µi) → (µ′
i−1 = µ′

i).
(a) Set (µ′

γ′ , u) = g−1(µγ).
(b) Obtain µ′ from µ′

γ′ via µi = µγ(Γi).

• Similar is scheme for updating the components of δ.

2. Generate model parameters (λX , λY , φ, µ, ν), given the model structure (γ, δ):

• Sample row and column effects.

• Sample φ using a simple random walk Metropolis.

• Use random walk on logits of column and row scores’ differences.
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The probability of acceptance of the proposed move (γ, µ) → (γ′, µ′) in each
RJMCMC step equals α = min(1, A), where

A =
f(y|λX , λY , φ, µ′, ν)
f(y|λX , λY , φ, µ, ν)

f(µ′
γ′ |γ′)f(γ′)

f(µγ |γ)f(γ)
q(u|µ′

γ′ , γ′, γ)γi

q(u|µγ , γ, γ′)1−γi
|J |1−2γi ,

|J | is the absolute value of the RJMCMC Jacobian used in the split move and is
given by

|J | =
∣∣∣∣∂g(µγ , u)

∂(µγ , u)

∣∣∣∣ .
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Merge Central Scores

(γi = 1 → γ′
i = 0, i : 2 < Γi = � < ΓI)

(
. . . ≤ µγ(� − 2) < µγ(� − 1) < µγ(�)︸ ︷︷ ︸ < µγ(� + 1) ≤ . . .

)
⇓ ⇓ ⇓(

. . . ≤ µ′
γ′(� − 2) < µ′

γ′(� − 1) < µ′
γ′(�) ≤ . . .

)
⇓

Usual transformation: µ′
γ′(� − 1) = µγ(�−1)+µγ(�)

2

and leave the rest of the scores unchanged

µ′
γ′(k) =

⎧⎨
⎩ µγ(k) for k < � − 1

µγ(k + 1) for k > � − 1
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Split Central Scores (inverse move)

(γi = 0 → γ′
i = 1, i : 2 ≤ Γi = � < ΓI)

(
. . . ≤ µγ(� − 1) < µγ(�) < µγ(� + 1) ≤ . . .

)
⇓ ⇓ ⇓(

. . . ≤ µ′
γ′(� − 1) <

︷ ︸︸ ︷
µ′

γ′(�) < µ′
γ′(� + 1) < µ′

γ′(� + 2) ≤ . . .
)

↓ ↓
µγ(�) − u µγ(�) + u

• Generate u ∈
(
0, min

{
µγ(�) − µγ(� − 1), µγ(� + 1) − µγ(�)

})
• Set µ′

γ′(�) = µγ(�) − u and µ′
γ′(� + 1) = µγ(�) + u.
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• Leave the rest of the scores unchanged, i.e. set

µ′
γ′(k) =

⎧⎨
⎩ µγ(k) for k < �

µγ(k − 1) for k > � + 1

From the above we have

• |J | = 2 and u =
µ′

γ′ (�+1)−µ′
γ′(�)

2

• Hence in MERGE MOVE → |J | =
1
2

and u =
1
2

{
µγ(�) − µγ(� − 1)

}
.
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PROBLEM

The above transformation cannot be applied for merging/spliting the lowest or
the highest scores.

Merge the Lowest Scores µγ(1) and µγ(2)

(γi = 1 → γ′
i = 0, i : Γi = 2)

µmin = µγ(1) < µγ(2)︸ ︷︷ ︸ < µγ(3) < . . .

⇓ ⇓
µmin = µ′

γ′(1) < µ′
γ′(2) < . . .

⇓ ⇓
Usual Transformation

µmin+µγ(2)
2 < µγ(3) < . . .

Not Valid Since �= µmin

(VIOLATES THE CONSTRAINT µ′
γ′(1) = µmin)
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Using similar logic we apply the following transformations

µmin = µγ(1)<µγ(2)︸ ︷︷ ︸ < µγ(3) < . . . < µγ(ΓI) = µmax

⇓ ⇓ ⇓
µmin+µγ(2)

2
< µγ(3) < . . . < µγ(ΓI) = µmax

⇓ ⇓ ⇓
0 < µγ(3) − µmin+µγ(2)

2
< . . . < µmax − µmin+µγ(2)

2

⇓ ⇓ ⇓
0 <

µγ (3)− µmin+µγ (2)
2

µmax− µmin+µγ (2)
2

< . . . < 1

⇓ ⇓ ⇓
µmin < µmin +

2µγ(3)−µmin−µγ (2)

2µmax−µmin−µγ (2)
(µmax − µmin) < . . . < µmax

↓ ↓ ↓
µ′

γ′(1) < µ′
γ′(2) < . . . < µ′

γ′(Γ ′
I)
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Merge the Lowest Scores µγ(1) and µγ(2)

(γi = 1 → γ′
i = 0, i : Γi = 2)

Final transformation

µ′
γ′(k) =

⎧⎪⎨
⎪⎩

µmin, k = 1,

µmin + (µmax − µmin)
2µγ(k + 1) − µmin − µγ(2)

2µmax − µmin − µγ(2)
, k > 1.

(2)
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Split the Lowest Score µγ(1) (reverse move)

(γi = 0 → γ′
i = 1, i : Γi = 1)

(
µmin = µγ(1) < µγ(2) < . . .

)
⇓ ⇓( ︷ ︸︸ ︷

µmin = µ′
γ′(1) < µ′

γ′(2) < µ′
γ′(3) < . . .

)

Transformation

µ′
γ′(k) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

µmin, k = 1,

u, k = 2,

1
2

{
µmin + u + (2µmax − µmin − u)

µγ(k − 1) − µmin

µmax − µmin

}
, k > 2.

(3)
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• In Split Move → Generate u in the interval

u ∈
(

µmin, µγ(2) +
(µγ(2) − µmin)[µmax − µγ(2)]

µγ(2) + µmax − 2µmin

)

• Calculate |J | =
(
1 − 1

2
u−µmin

µmax−µmin

)ΓI−2

•
• In Megre Move → u = µγ(2) and

|J | =

[(
1 − 1

2
u − µmin

µmax − µmin

)Γ ′
I−2

]−1

=
(

1 − 1
2

µγ(2) − µmin

µmax − µmin

)3−ΓI

.

Reminder:

• ΓI is the number of scores of the current model (In split “smaller”, In merge:
“larger” model)

• Γ ′
I is the number of scores of the proposed model (In split “larger”, In merge:

“smaller” model)
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Merge the Highest Scores µγ(ΓI − 1) and µγ(ΓI)

(γi = 1 → γ′
i = 0, i : Γi = ΓI )

µmin = µγ(1) < . . . < µγ(ΓI − 2) < µγ(ΓI − 1) < µγ(ΓI) = µmax︸ ︷︷ ︸
⇓ ⇓ ⇓

µmin = µ′
γ′(1) < . . . < µ′

γ′(ΓI − 2) < µ′
γ′(ΓI − 1) = µmax

Final transformation

µ′
γ′(k) =

⎧⎪⎨
⎪⎩

µmin + 2(µmax − µmin)
µγ(k) − µmin

µγ(ΓI − 1) + µmax − 2µmin
, k � Γ ′

I − 1 = ΓI − 2,

µmax, k = Γ ′
I = ΓI − 1.

(4)

Note: Γ ′
I = ΓI − 1 since we merge two scores into one.
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Split the Highest Score µγ(ΓI) (reverse move)

(γi = 0 → γ′
i = 1, i : Γi = ΓI )

µmin = µγ(1) < . . . < µγ(ΓI − 1) < µγ(ΓI) = µmax

⇓ ⇓ ⇓

µmin = µ′
γ′(1) < . . . < µ′

γ′(ΓI − 1) <
︷ ︸︸ ︷
µ′

γ′(ΓI) < µ′
γ′(ΓI + 1) = µmax

Final transformation

µ′
γ′(k) =

⎧⎪⎪⎨
⎪⎪⎩

µγ(k) − u
2

µγ(k)−µmin
µmax−µmin

, k � Γ ′
I − 2 = ΓI − 1

µmax − u, k = Γ ′
I − 1 = ΓI

µmax, k = Γ ′
I = ΓI + 1.

(5)
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• In Split move

– Generate u in the interval

u ∈
⎛
⎝0, 2

(
µmax − µmin

)(
µmax − µγ(ΓI − 1)

)
(
µmax − µmin

)
+

(
µmax − µγ(ΓI − 1)

)
⎞
⎠

– Determinant of the Jacobian: |J | =
(
1 − 1

2
u

µmax−µmin

)ΓI−2

– ΓI is the number of scores in the smaller (current) model.

• In Merge move

– u = µmax − µγ(ΓI − 1) and

– Det. of Jacobian:

|J | =
(
1 − 1

2
u

µmax−µmin

)2−Γ ′
I

=
(
1 − 1

2
µmax−µγ(ΓI−1)

µmax−µmin

)3−ΓI

– Here:

∗ ΓI is the number of scores in the “bigger” (current) model.
∗ Γ ′

I is the number of scores in the “smaller” (proposed) model.
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Additional Details

• In practice we have used µmin = νmin = 0 and µmax = νmax = 1.

• When ΓI = 1 then two scores are different and set equal to µmin and µmax. No
further splitting is allowed. Similar is the case for column scores νj .

• Rescaled Beta proposals can be used for u.

• In practice we have used Uniform proposal which proved sufficient for two
dataset we have implemented the methodology.

• Further investigation is needed in order to construct proposals leading to more
efficient RJMCMC schemes.
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4 Illustrative Example.

Classical dataset of Maxwell (1961) concerning the severity of dreams’ disturbance
of 223 boys aged from 5 to 15 years.

Disturbance

(from low to high)

Age Group 1 2 3 4 Total

5– 7 7 4 3 7 21
8– 9 10 15 11 13 49

10–11 23 9 11 7 50
12–13 28 9 12 10 59
14–15 32 5 4 3 44
Total 100 42 41 40 223
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Results: Most frequently visited models

k Model (scores) Post. prob. PO1k AIC BIC DIC pm dm

1 µ1 = µ2 < µ3 = µ4 < µ5 0.1620 1.00 1265.0 1295.7 1265.0 9.0 9

ν1 < ν2 = ν3 = ν4

2 µ1 = µ2 < µ3 = µ4 < µ5 0.1540 1.05 1265.9 1300.0 1265.1 9.6 10

ν1 < ν2 = ν3 < ν4

3 µ1 = µ2 < µ3 < µ4 < µ5 0.0877 1.85 1267.6 1301.6 1266.3 9.4 10

ν1 < ν2 = ν3 = ν4

4 µ1 = µ2 < µ3 < µ4 < µ5 0.0725 2.23 1268.6 1306.1 1266.4 9.9 11

ν1 < ν2 = ν3 < ν4

5 µ1 = µ2 < µ3 = µ4 < µ5 0.0609 2.66 1269.0 1306.5 1266.4 9.7 11

ν1 < ν2 < ν3 < ν4

6 µ1 = µ2 < µ3 = µ4 < µ5 0.0579 2.80 1267.6 1301.7 1266.5 9.4 10

ν1 < ν2 < ν3 = ν4

7 µ1 < µ2 < µ3 = µ4 < µ5 0.0541 2.99 1269.0 1306.5 1266.7 9.9 11

ν1 < ν2 = ν3 < ν4

8 µ1 < µ2 < µ3 = µ4 < µ5 0.0522 3.10 1268.3 1302.4 1266.8 9.2 10

ν1 < ν2 = ν3 = ν4

Single RJMCMC (R RESULTS): 100,000 iterations + additional burn-in of 10,000 iterations.
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Results: Marginal Probabilities f(γi = 1|y) and f(δj = 1|y)

Posterior Posterior
Row Scores Probability Column Scores Probability
f(γ2 = 1|y) = 0.285 f(δ2 = 1|y) = 0.996
f(γ3 = 1|y) = 0.940 f(δ3 = 1|y) = 0.286
f(γ4 = 1|y) = 0.391 f(δ4 = 1|y) = 0.484
f(γ5 = 1|y) = 0.964

Single RJMCMC (R RESULTS): 100,000 iterations + additional burn-in of 10,000 iterations.



20th Panhellenic Statistics Conference: Iliopoulos, Kateri & Ntzoufras 32

Some Comments on the Results

• Negative association between age and severity of dreams’ distrurbance (φ < 0).

• Age: the first two categories as well as the third and the fourth are indistinguishable

in terms of the association for the severity of dreams’ distrurbance (marginal

posterior probabilities = 0.71 and 0.63 respectively).

• Severity of dreams’ distrurbance: More uncertainty is involved in their

categories:

� It is clear that the first one differs than the rest [f(δ2 = 1|y) = 0.996].

� Model with the highest posterior probability ⇒ all the other three scores equal

(ν2 = ν3 = ν4).

� Model with the 2nd highest posterior probability ⇒ ν2 = ν3 < ν4.

• The algorithm was highly mobile visiting 69, 86 and all 105 models in 10, 100

iterations 400 thousand iterations respectively.

• RJMCMC indicated a more parsimonious model (according to highest posterior

probability) than the one (2nd in rank) indicated by our previous analysis (see

Iliopoulos et al. 2006).
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5 Work in progress and future work

1. Incorporate selection between order restricted Row and Column association
models

2. Comparison of the above models with the Uniform association, Independence
and Saturated models [use different prior for φ].

3. Incorporate selection between unrestricted RC, Row, Column association
models (can we use similar parametrization?)

4. Use similar approach in unrestricted RC model for merging/grouping scores

5. Expand methodology to high dimensional tables

6. Use different priors for scores; for example power prior and imaginary data.
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