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1. Motivation

Statistical models which impose restrictions on marginal
distributions of categorical data have received considerable
attention especially in social and economic science.
AIM: To develop a fully automatic, efficient MCMC strategy
for quantitative learning for graphical log-linear marginal
models.

WHY:
(a) Not many Bayesian methods;
(b) No conjugate analysis is available.
(c) The likelihood cannot be analytically expressed as a
function of the marginal log-linear interactions.
⇒ Difficulties on the implementation of MCMC
⇒ At each MCMC iteration, an iterative procedure is ap-
plied to calculate the cell probabilities
(d) Construct algorithm which generates parameter values
with compatible marginals.

Extension of our previous related work served as basis
•Ntzoufras and Tarantola (2013) → implemented in prob-

ability based parameters

2. General framework

We consider the log-linear marginal models introduced by
Bergsma and Rudas (2002):

λ = C log
(
MP

)
with P = vec(p)

where p is the table of joint probabilities and P is the vec-
torized version of p.
• Estimation using the frequencies of appropriate marginal

contingency tables, and expressed in terms of log-odds
ratios.
• Important in cases where information is available for spe-

cific marginal associations via odds ratios or when partial
information (i.e. marginals) is available.

• It is defined by imposing zero constraints on specific log-
linear interactions (Lupparelli et al., 2009).
• The model can be represented by a bi-directed graph

like the one besides;
where a missing edge indicates that the
corresponding variables are marginal inde-
pendent.
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3. Main Problems in Bayesian Analysis of Graphical
Log-Linear Marginal Models

•Graphical log-linear marginal models belong to curved
exponential families that are difficult to handle from a
Bayesian perspective.
• The likelihood cannot be analytically expressed as a func-

tion of the marginal log-linear interactions.
• Posterior distributions cannot be directly obtained, and

MCMC methods are needed.
• A well-defined model requires parameter values that lead

to compatible marginal probabilities.

4. A novel MCMC strategy

•New fully automatic and efficient MCMC strategy.
• It handles the problems previously discussed.
• Prior: is expressed in terms of the marginal log-linear in-

teractions
• Proposal: is defined on the probability parameter space.

Advantages
• The joint distribution factorises under certain conditional

independence models, and the likelihood can be directly
expressed in terms of probability parameters.
• Efficient proposal distributions: by exploiting a conditional

conjugate approach of Ntzoufras and Tarantola (2013).
•Working on the Probability space ⇒ Always compatible

marginals & contraints on marginal log-odds (i.e. interac-
tions) are imposed automatically.

5. Prior Specification

Let ~λ be the set of elements of λ not restricted to zero by
the graphical structure.

1. Approach 1: Assign relatively flat normal priors on each
element of ~λ.

2. Approach 2: Bases on the Dellaportas and Forster
(1999) prior for standard log-linear models.
•We work separately on each single set λMm obtained

from marginal Mm

•λMm

S : parameter vector for the saturated model S that
can be estimated from marginal Mm. By construction,
it coincides with the parameter vector of the saturated
standard log-linear model obtained from this marginal.
•We implement the DF prior on the saturated model of

each marginal, ending up to the prior

λMm ∼ N
(
θ − log(N)X−1Mm

1, 2|IMm
|
(
XT
Mm
XMm

)−1 )
where θ = (logn, 0, . . . , 0)T is the prior mean of DF;
XM= sum to zero design matrix for the marginal table
M , and N is the total sample size (sum of all frequen-
cies).

6. Augmented DAG Representation

Graphical log-linear marginal models ⇒ compatible (in
terms of independencies), with a certain augmented DAG;
see e.g. Cox and Wermuth (1993).

Construction of Augmented DAG:
•We consider the skeleton G of G
•Constructing the sink orientation of G: Assign arrows
vı −→ v←− vk to each ∨ configuration of G.
• For every bi-directed edge, we introduce a latent node `:
v1←→ v2⇒ v1←− ` −→ v2

l

(a) Bi-directed graph (b) Augmented DAG representation

• Augmented DAG ⇒ standard factorisation of condi-
tional probability parameters Π ⇒ (Conditional) conju-
gate Bayesian approach.

7. The Proposed General MCMC Algorithm

For t = 1, . . . , T , repeat the following steps:
1. Propose a new vector Π′ from q(Π′|Π(t)).
2. From Π′, calculate the proposed joint probabilities p′ (for the ob-

served table).
3. From p′, calculate λ′ and the non-zero elements ~λ′.
4. Set ξ′ = Π′ξ; where Π′ξ is a pre-specified subset of Π′ of dimension

dim(Π)− dim(~λ).
5. Accept the proposed move with probability α = min(1, A) with

A =
f (n|Π′)f

(
~λ′
)
f (ξ′)q(Π(t)|Π′)

f (n|Π(t))f
(
~λ(t)
)
f (ξ)q(Π′|Π(t))

× abs

J
(
Π(t), ~λ(t), ξ(t)

)
J
(
Π′, ~λ′, ξ′

)
 ,(1)

Πξ = ξ, and J = J (Π, ~λ, ξ) is the determinant of the jacobian matrix
of the transformation Π = g(~λ, ξ).

Probability Based Independence Sampler (PBIS)
Efficient proposal:

q(Π′|Π(t)) = fq
(
Π′|nA

)
f
(
nA|Π(t),n

)
,

where nA is an augmented table.
We exploit the conditional conjugate approach of Ntzoufras and Taran-
tola (2013).
We consider as a “prior” fq(Π) a product of Dirichlet distributions ob-
taining a conjugate “posterior” distribution fq(Π′|n′A).
The acceptance rate in (1) becomes equal to

A =
f
(
nA(t)|Π′

)
f
(
~λ′
)
fq
(
Π(t)|nA(t)

)
f
(
n′A|Π(t)

)
f
(
~λ(t)
)
fq
(
Π′|n′A

) × abs

(
J
(
Π(t), ~λ(t), ξ(t)

)
J
(
Π′, ~λ′, ξ′

) )
.

Prior Adjustment Algorithm (PAA)
We simplify PBIS as follows:

Step 1: Run the Gibbs sampler of Ntzoufras and Tarantola (2013) to
obtain a sample from the joint probability distribution of the observed
variables .
Step 2: Use the sample of step 1 (or sub-sample of it) as a proposal
in the general Metropolis-Hastings algorithm ).

The acceptance rate becomes

A =
f (~λ′)fq(Π

(t))

f (~λ(t))fq(Π
′)
× abs

J
(
Π(t), ~λ(t), ξ(t)

)
J
(
Π′, ~λ′, ξ′

)
 .

8. Simulation Study

Model: Same as in Graph of Section 2.

We present results for
• A specific single dataset &
• 100 Simulated datasets.

Simulation Plan: True Values

Marginal Active interactions

AC λAC∅ = −1.40, λACA (2) = −0.15, λACC (2) = 0.10

AD λADB (2) = 0.12,

BD λBDD (2) = −0.09,
ACD λACDCD (2, 2) = 0.20,

ABD λABDAB (2, 2) = −0.15,
ABCD λABCDBC (2, 2) = −0.30, λABCDABC (2, 2, 2) = 0.15,

λABCDBCD (2, 2, 2) = −0.10, λABCDABCD(2, 2, 2) = 0.07.

Zero interactions: λACAC = λADAD(2, 2) = λBDBD(2, 2) =

λACDACD(2, 2, 2) = λABDABD(2, 2, 2) = 0

Figure 1: ESS per second of CPU time for the single simu-
lated dataset
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Figure 2: MCEs for posterior Mean adjusted for CPU time
for the 100 datasets of the simulation study
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9. Conclusions

•We proposed two MCMC methods for estimating graphi-
cal log-linear marginal models.
• PBIS is exact but more demanding.
• PAA is approximate but efficient (faster) with similar re-

sutls to other methods.
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