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1 Introduction: Model Selection and Expected-Posterior Pr iors

Within the Bayesian framework the comparison between models M0 and M1 is evaluated via the

Posterior Odds (PO)

PO01 ≡
π(M0|y)

π(M1|y)
=

m0(y)

m1(y)
×

π(M0)

π(M1)
= BF01 × O01 (1)

which is a function of the Bayes Factor (BF01) and the Prior Odds (O01).

In the above mℓ(y) is the marginal likelihood under model Mℓ and π(Mℓ) is the prior probability of

model Mℓ.

The marginal likelihood of model Mℓ is given by

mℓ(y) =

∫

fℓ(y|θℓ)πℓ(θℓ)dθℓ, (2)

where fℓ(y|θℓ) is the likelihood under model Mℓ with parameters θℓ and πℓ(θℓ) is the prior distribution

of model parameters given model Mℓ.
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The Lindley-Bartlett-Jeffreys Paradox

For a single model inference ⇒ a highly diffuse prior on the model parameters is often used (to

represent ignorance).

⇒ Posterior density takes the shape of the likelihood and is insensitive to the exact value of the prior

density function.

For multiple models inference ⇒ BFs (and POs) are quite sensitive to the choice of the prior variance

of model parameters.

⇒ For nested models, we support the simplest model with the evidence increasing as the variance of the

parameters increase ending up to support of more parsimonious model no matter what data we have.

⇒ Under this approach, the procedure is quite informative since the data do not contribute to the inference.

⇒ Improper priors cannot be used since the BFs depend on the undefined normalizing constants of the

priors.
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Model Formulation

PEP methodology is general but here we work within the generalized linear models (GLM) setup.

• Response distribution: member of the exponential family (normal regression, binomial logistic

regression, Poisson log-linear models)

• Linear predictor of the form
ηγ(i) = Xγ(i)βγ

– p: total number of covariates under consideration

– γ covariate inclusion indicators (indicating active covariates)

– pγ =
∑p

j=1: number of active covariates

– βγ vector of covariate coefficients for the active covariates

– φ dispersion parameter

– Xγ design/data matrix of dimension of n × dm (dm = pγ + 1 if the constant is included)

– Index i indicates i observation i = 1, . . . , n.
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From EP to PEP

Expected-Posterior priors (EP; Pérez and Berger, 2002, Bka)

⇒ Power-Expected-Posterior Priors (PEP; Fouskakis, Ntzoufras and Draper, 2015, BA).

πEPP
ℓ (θℓ)

︸ ︷︷ ︸
w
w
Ä

=

∫

πN
ℓ (θℓ|y

∗)
︸ ︷︷ ︸

w
w
Ä

mN
0 (y∗)

︸ ︷︷ ︸
w
w
Ä

dy∗

πPEP
ℓ (θℓ; δ) =

∫

πN
ℓ (θℓ|y

∗, δ)
︸ ︷︷ ︸

w
w
Ä

mN
0 (y∗|δ)

︸ ︷︷ ︸
w
w
Ä

dy∗

we substitute the likelihood terms with powered-versions of the likeli-

hoods

(i.e. they are raised to the power of 1/δ).
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Features of PEP

PEP priors method amalgamates ideas from Intrinsic Priors, EPPs, Unit Information Priors and Power

Priors, to unify ideas of Non-Data Objective Priors.

PEP priors solve the following problems:

• Dependence of training sample size.

• Lack of robustness with respect to the sample irregularities.

• Excessive weight of the prior when the number of parameters is close to the number of data.

At the same time the PEP prior is a fully objective method and shares the advantages of Intrinsic Priors

and EPPs.

• We choose δ = n∗, n∗ = n and therefore X∗
ℓ = Xℓ; by this way we dispense with the selection of

the training samples.
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2 Power-Expected-Posterior (PEP) Priors

Following Fouskakis and Ntzoufras (2016b, JCGS), the conditional PEP (PCEP) prior in the GLM setup,

under the null-reference model M0, is defined as follows

πPEP
γ (βγ , φ|δ) = πPEP

γ (βγ |φ, δ)πN
γ (φ), (3)

where δ = (δ1, δ2) and

πPEP
γ (βγ |φ, δ) =

∫

πN
γ (βγ |y

∗, φ, δ1)m
N
0 (y∗|φ, δ0)dy∗, (4)

πN
γ (βγ |y

∗, φ, δ) =
fγ(y∗|βγ , φ, δ)πN

γ (βγ |φ)

mN
γ (y∗|φ, δ)

, (5)

mN
γ (y∗|φ, δ) =

∫

fγ(y∗|βγ , φ, δ)πN
γ (βγ |φ)dβγ , (6)

fγ(y∗|βγ , φ, δ) =
fγ(y∗|βγ , φ)1/δ

kγ(βγ , φ, δ)
, (7)
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Original PEP prior of Fouskakis et al. (2015, BA) for normal regression models:

kγ(βγ, φ, δ) =

∫

fγ(y∗|βγ, φ)1/δdy∗ and δ1 = δ0 = δ

for all models γ ∈ M.

• This choice results corresponds to the density normalized likelihood used in the

original PEP prior setup for normal regression models (Perrakis, Fouskakis and

Ntzoufras, 2017, BA).

• For normal models, density normalized power likelihood ⇒ N(0, δσ2).

• This nice property (obtaining sampling distribution of the same type) is not generally

applicable.

• Hence, the selection of kγ(βγ, φ, δ) and k0(β0, φ, δ) was revised on our work by

Perrakis et al. (2017, BA, min.rev.) for GLMs.
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2.1 Variations of PEP for GLM

• To work on GLM we have introduced (Perrakis et al., 2017, BA, min.rev.) new variations of PEP

depending on the selection of kγ and k0 and δ1, δ0.

• Two alternative definitions

– DR-PEP: kγ = k0 = 1 (unnormalized likelihoods) and δ1 = δ0 = δ.

– CR-PEP: δ1 and kγ = 1 (unnormalized likelihoods) and δ0 = 1 ⇒ k0 = 1 (original likelihood).

• For the density-normalized version in regression: Full PEP (method on βγ and φ = σ2 ) and PCEP

(method on βγ conditionally on φ = σ2 )

• For CR/DR-PEP: We have worked the conditional version.

• Placing a hyper-prior is an option explored in Perrakis et al. (2017, BA, min.rev.).



Slide 11/29

3 Properties of PEP priors

Connections with g-priors and hyper-g priors and Parsimony in Norm al Regression

1. Full PEP (Fouskakis, Ntzoufras and Pericchi, 2017, submitted)

⇒ Mixture of g-prior placing a beta hyper-prior on t = δ/g.

⇒ Information consistency is achieved (Fouskakis and Ntzoufras, 2017,

Metron).

2. Density Normalized Conditional PEP (PCEP) (Fouskakis et al., 2015,

BA) and DR-PEP coincide.
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3. PCEP, DR-PEP and CR-PEP:

• They are similar to g-priors (with more complicated covariance structure).

• The prior variance volume is given by φ(δ, n∗)|X∗T
γ X∗

γ|
−1.

• For the default choices δ = n∗ = n and Xγ = Xγ, they are more parsimonious

than the g-priors (for finite n) but asymptotically the same.

• They suffer from the information paradox in normal regression.

4. Hyper-δ versions of PEP conditional priors are similar to hyper-g priors.

Details for point 3 can be found in Fouskakis, Ntzoufras and Perrakis (2016, arXiv).
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Figure 1: Log-variance multipliers of the DR-PEP, CR-PEP and g-priors versus sample size for dℓ =

5, 10, 50.
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Predictive Matching

Null and Dimension Predictive matching is valid for DR and CR-PEP priors under certain

structural assumptions about the baseline priors (Perrakis et al., 2017, BA, Propositions

5.1–5.4).

• Structure for null predictive matching: πN
γ (βγ|φ) = ψ(ηγ)Ψγ(β\0,γ) .

• Structure for dimension predictive matching: πN
γ (βγ|φ) = ψ(ηγ)

• Both of these are restrictions are valid for the flat improper and the Jeffreys prior.

• Also valid for the g-prior but not for independent priors.
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Model Selection Consistency

Mathematical proofs for consistency:

• Original PEP in Regression using the Jeffreys baseline prior (Fouskakis and

Ntzoufras, 2016a, Braz.JPS).

• PCEP ⇒ in Regression (Fouskakis and Ntzoufras, 2016b, JCGS).

• DR/CR-PEP ⇒ in Regression (Fouskakis et al., 2016, arXiv:1609.06926v2).

Empirically based evidence:

• DR/CR-PEP for GLMs (Perrakis et al., 2017, BA, min.rev.).

• Hyper-δ versions (Perrakis et al., 2017, BA, min.rev.).
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4 Illustration 1 (Normal Regression)

• 100 simulated data-sets

• p = 10 N(0, 1) covariates

• The response is generated from

Yi ∼ N(0.3Xi3 + 0.5Xi4 + Xi5, σ
2), for i = 1, . . . , n. (8)

1. σ = 2.5 and n = 30, 50, 100, 500, 1000

2. n = 50 and σ = 2.5, 1.5, 0.5, 0.01 ⇒

R2 ∈ {[0.15, 0.66], [0.26, 0.71], [0.73, 0.94], [0.99, 1]}.
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Figure 2: Posterior probability of the true (per 100 simulated datasets of different sample sizes).
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Figure 3: Bayes factor of the null model (only the intercept) versus the true model (per 100 simulated

datasets with different coefficients of determination of the true model).
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5 Illustration 2 (Poisson & Binomial Models)

• Also presented in Chen et al. (2008) and Li and Clyde (2015).

• n = 100, p = 5 and p = 3 predictors for logistic and Poisson scenarios respectively.

• Each simulation is repeated 100 times.

• Each predictor is drawn from a standard normal distribution with pairwise correlation given by

corr(Xi, Xj) = r|i−j|, 1 ≤ i < j ≤ p.

with (i) independent predictors (r = 0) and (ii) correlated predictors (r = 0.75).

• n ∈ {25, 100, 500, 1000, 10000}.
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Scenario
Binomial Logistic Regression (n = 100) Poisson (n = 100)

β0 β1 β2 β3 β4 β5 β0 β1 β2 β3

null 0.1 0 0 0 0 0 -0.3 0 0 0

sparse 0.1 0.7 0 0 0 0 -0.3 0.3 0 0

medium 0.1 1.6 0.8 -1.5 0 0 -0.3 0.3 0.2 0

full 0.1 1.75 1.5 -1.1 -1.4 0.5 -0.3 0.3 0.2 -0.15

Table 1: Simulation Binomial and Poisson regression scenarios.
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Figure 4: Posterior probabilities of the true model vs. sample size for the dense Poisson regression scenario.
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6 General Framework and Concluding Remarks

πG(θγ , ω, δ0, δ1) = πG(θγ |ω, δ0, δ1)π(ω)π(δ0)π(δ1),

πG(θγ |ω, δ0, δ1) =
πN

γ (θγ |ω)

kγ(θγ , ω, δ1)C0

∫
mN

0 (y∗|ω, δ0)

mN
γ (y∗|ω, δ1)

fγ(y∗|θγ , ω)1/δ1dy∗, (9)

where

mN
γ (y∗|ω, δ) =

∫

kγ(θγ , ω, δ1)
−1

fγ(y∗|θγ , ω)1/δπN
γ (θγ |ω)dθγ
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Table 2: Schematic presentation of all priors in P

Prior (G) θγ ω δ0 δ1 Hyper-prior π(δ) k0(θ0, ω, δ0) kγ (θγ , ω, δ1) C0

EP βγ , φγ ∅ 1 1 1 1 1

PEP βγ , φγ ∅ n∗ n∗ κ0 κ1 1

PCEP βγ φ n∗ n∗ κ0 κ1 1

CR-PEP βγ φ 1 n∗ 1 1 1

DR-PEP βγ φ n∗ n∗ 1 1 c0

CR-PEP hyper-δ βγ φ 1 δ a−2

2
(1 + δ)−a/2 1 1 1

DR-PEP hyper-δ βγ φ δ δ a−2

2
(1 + δ)−a/2 1 1 c0

CR-PEP hyper-δ/n βγ φ 1 δ a−2

2n
(1 + δ

n
)−a/2 1 1 1

DR-PEP hyper-δ/n βγ φ δ δ a−2

2n
(1 + δ

n
)−a/2 1 1 c0

κ0 =
∫

f0(y
∗|θ0, ω)1/δ0dy∗ ; κ1 =

∫
fγ(y∗|θγ , ω)1/δ1dy∗ ; c0 =

∫ ∫
f0(y

∗|θ0, ω)1/δ0πN
0

(θ0|ω)dθ0dy∗ .
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Table 3: Issues and solutions of all priors in P

Prior Issues Solutions

EP

– Selection of imaginary sample size n∗

– Sub-sampling of X∗
γ

– Informative when using minimal training

sample and p is close to n

– Issues are solved using PEP with

δ = n∗ = n and X∗
γ = Xγ

PEP

– Cumbersome normalized power likeli-

hood in GLMs

– Monte Carlo is needed for the marginal

likelihood even in the normal model

– Selection of δ

– Use of unnormalized power likelihoods that

lead to the CR/DR-PEP priors

– Use PCEP that (conjugate for the normal

model) or mixture-t expression

– Set δ = n∗ for unit interpretation or con-

sider random δ

PCEP – Not information consistent – Use PEP which is information consistent
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Table 3 (cont’d): Issues and solutions of all priors in P

Prior Issues Solutions

DR-PEP

– No clear definition of mN
0 under the un-

normalized power likelihood

– Selection of δ

– Use the density normalized mZ
0 under

the unnormalized power likelihood

– Set δ = n∗ for unit interpretation or

consider random δ

CR-PEP
– Selection of δ – Set δ = n∗ for unit interpretation or

consider random δ

hyper-δ

– Demanding computation

– Prior of δ is not centered to unit-

information

– Use fixed-δ CR/DR-PEP versions

– Use the hyper-δ/n prior

hyper-δ/n – Demanding computation – Use fixed-δ CR/DR-PEP versions
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