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Synopsis

1. Introduction: Bayesian Model Selection and Power-Expected-Posterior (PEP) Priors

2. Alternative definitions of the power likelihood in PEP-priors

3. Implementing the method in GLMs (MCMC algorithm)

4. Additional results

5. Illustrations

6. Discussion
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Introduction: Model Selection and Expected-Posterior Pri ors

Within the Bayesian framework the comparison between models M0 and M1 is evaluated via the

Posterior Odds (PO)

PO01 ≡
π(M0|y)

π(M1|y)
=

m0(y)

m1(y)
×

π(M0)

π(M1)
= BF01 × O01 (1)

which is a function of the Bayes Factor (BF01) and the Prior Odds (O01).

In the above mℓ(y) is the marginal likelihood under model Mℓ and π(Mℓ) is the prior probability of

model Mℓ.

The marginal likelihood of model Mℓ is given by

mℓ(y) =

∫

fℓ(y|θℓ)πℓ(θℓ)dθℓ, (2)

where fℓ(y|θℓ) is the likelihood under model Mℓ with parameters θℓ and πℓ(θℓ) is the prior distribution

of model parameters given model Mℓ.
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The Lindley-Bartlett-Jeffreys Paradox

For a single model inference ⇒ a highly diffuse prior on the model parameters is often used (to

represent ignorance).

⇒ Posterior density takes the shape of the likelihood and is insensitive to the exact value of the prior

density function.

For multiple models inference ⇒ BFs (and POs) are quite sensitive to the choice of the prior variance

of model parameters.

⇒ For nested models, we support the simplest model with the evidence increasing as the variance of the

parameters increase ending up to support of more parsimonious model no matter what data we have.

⇒ Under this approach, the procedure is quite informative since the data do not contribute to the inference.

⇒ Improper priors cannot be used since the BFs depend on the undefined normalizing constants of the

priors.



Fouskakis, Ntzoufras & Perrakis: Bayesian Variable Selection Using Power-Expected-Posterior Priors in GLMs 4

Power-Expected-Posterior (PEP) Priors

Expected-Posterior priors (EPP; Perez and Berger, 2002, Biometrika)

⇓

Power-Expected-Posterior Priors (PEP; Fouskakis, Ntzoufras and Draper, 2015, Bayesian Analysis).

πEPP
ℓ (θℓ)

︸ ︷︷ ︸
w
w
Ä

=

∫

πN
ℓ (θℓ|y

∗)
︸ ︷︷ ︸

w
w
Ä

mN
0 (y∗)

︸ ︷︷ ︸
w
w
Ä

dy∗

πPEP
ℓ (θℓ; δ) =

∫

πN
ℓ (θℓ|y

∗, δ)
︸ ︷︷ ︸

w
w
Ä

mN
0 (y∗|δ)

︸ ︷︷ ︸
w
w
Ä

dy∗

we substitute the likelihood terms with powered-versions of the likeli-

hoods

(i.e. they are raised to the power of 1/δ).
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Features of PEP

PEP priors method amalgamates ideas from Intrinsic Priors, EPPs, Unit Information Priors and Power

Priors, to unify ideas of Non-Data Objective Priors.

PEP priors solve the following problems:

• Dependence of training sample size.

• Lack of robustness with respect to the sample irregularities.

• Excessive weight of the prior when the number of parameters is close to the number of data.

At the same time the PEP prior is a fully objective method and shares the advantages of Intrinsic Priors

and EPPs.

• We choose δ = n∗, n∗ = n and therefore X∗
ℓ = Xℓ; by this way we dispense with the selection of

the training samples.
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Sensitivity analysis on imaginary sample size

Figure 1: Posterior marginal inclusion probabilities, for n∗ values from 17 to n = 50, with the PEP prior methodology (simulated

example for a variable selection problem in normal linear model).
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Features of PEP (cont.)

For Normal models

• In Fouskakis, Ntzoufras & Draper, 2015 (Bayesian Analysis) we illustrated the the PEP prior approach

– is robust with respect to the training sample size

– is not informative when dℓ is close to n.

• The PEP prior can be expressed as a mixture of g-priors (Fouskakis, Ntzoufras & Pericchi, submitted).

• The Power-conditional-expected-posterior (PCEP) prior (Fouskakis & Ntzoufras, 2016, JCGS) is similar

to the g-prior with (i) more complicated variance structure, (ii) more dispersed and (iii) more

parsimonious than the g-prior

• Both PEP and PCEP are leading to consistent variable selection methods.
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Extension to Generalized Linear Models

Definitions of the power-likelihood

Normal regression models : the definition of the power-likelihood seems quite clear.

We have worked with the density-normalized power likelihood since for any normal distribution with mean

µ and variance σ2 it holds that

f(y|µ, σ2, δ) =
f(y|µ, σ2)1/δ

∫
f(y|µ, σ2)1/δdy

= N(µ, δ σ2)

This is not the case for all distributions in the exponential family and hence for GLMs. May end up to a

distribution which is not the same as the one in the original model formulation. For example

• In binary logistic regression ⇒ it is still Bernoulli with success probability π1/δ

π1/δ+(1−π)1/δ .

• For the Binomial and the Poisson models, it results is some cumbersome distributions which increase

computational complexity (without any obvious gain).
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Alternative definitions of the power-likelihood

We consider the PEP representation

πPEP
ℓ (θℓ; δ) =

∫

πN
ℓ (θℓ|y

∗, δ)mN
0 (y∗|δ)dy∗

with δ controlling the amount of prior-information accounted in the final posterior (and the dispersion of the

prior distribution).

We now consider the unormalized power-likelihood and then normalize the posterior (which is also the

approach in Ibrahim and Chen, 2000, Stat.Science). Hence

πN
ℓ (θℓ|y

∗, δ) =
fℓ(y

∗|θℓ)
1/δπN

ℓ (θℓ)
∫

fℓ(y∗|θℓ)1/δπN
ℓ (θℓ)dθℓ

What about mN
0 (y∗|δ)?
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Two alternatives for the marginal distribution

• Consider the unormalized power-likelihood and then normalize mN
0 :

mN
0 (y∗, δ) =

∫
f0(y

∗|θ0)
1/δπN

0 (θ0)dθ0
∫ ∫

f0(y∗|θ0)1/δπN
0 (θ0)dθ0dy∗

.

This will be noted as the Diffuse Reference PEP (DR-PEP).

• Consider the original likelihood (without introducing any further uncertainty) i.e.

mN
0 (y∗, δ) = m0(y

∗) =

∫

f0(y
∗|θ0)π

N
0 (θ0)dθ0 .

This will be noted as the Concentrated Reference PEP (CR-PEP).

In both cases the expected-posterior interpretation is retained with the first prior being more diffuse than

the second.
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Comparison of the two approaches in normal regression

Volume variance multipliers in normal regression models

The volume of the variance-covariance matrix in the g-prior and in the two PEP approaches is given by
∣
∣
∣Var(βℓ|Mℓ)

∣
∣
∣ = ϕ(n, dℓ) × |XT

ℓ Xℓ|
−1

• G-prior with g = n ⇒ ϕ(n, dℓ) = ndℓ

• DR-PEP prior ⇒ ϕ(n, dℓ) = n2dℓ

[
2n+1

(n+1)2

]dℓ−d0

• CR-PEP prior ⇒ ϕ(n, dℓ) = ndℓ

[
n2+2n

n2+2n+1

]dℓ
[

n2+n+2
n+2

]d0

.
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Figure 2: Log-variance multipliers of the DR-PEP, CR-PEP and g-priors versus sample size for dℓ =

5, 10, 50.



Fouskakis, Ntzoufras & Perrakis: Bayesian Variable Selection Using Power-Expected-Posterior Priors in GLMs 13

The Final Formulation of the DR-PEP Prior

(Formulation and computation is similar for the CR-PEP prior)

The prior

πDRPEP
γ

(β
γ
) ∝

∫ ∫
{

fγ(y∗|β
γ
)1/δπN

γ
(β

γ
)

∫
fγ(y∗|β

γ
)1/δπN

γ
(β

γ
)dβ

γ

}

f0(y
∗|β0)

1/δπN
0 (β0)dβ0dy∗

Two possible approaches to simplify the above expression

• In GLMs, the posterior part can be well approximated by a normal distribution (Chen and Ibrahim,

2003, Stat.Sinica)

• Integral in the denominator can be well approximated using Laplace approximation
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Constructing a Gibbs based Variable Selection Sampler

In order to estimate the posterior model probabilities, we use an MCMC scheme with full data

augmentation by introducing

• For each model γ, we introduce a complement of β
γ

denoted by β\γ
for all coefficients not included

in the model.

• A pseudoprior πγ(β\γ
) is defined to play the role of a proposal and the linear predictor can be

rewritten as ηi =
∑p

j=0 Xijγjbγ,j where bγ,j is the element of bγ = (β
γ
, β\γ

) which

corresponds to covariate Xj .

• A latent parameter β0 for the parameter of the reference model

• A latent vector of imaginary data y∗
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• We build a Gibbs based variable selection algorithm providing samples from the augmented posterior

π
DRPEP
γ (β

γ
, β\γ

γ, y
∗
, β0|y)

∝
fγ (y|β

γ
)
[

fγ (y∗|β
γ
)f0(y

∗|β
0
)
]
1/δ

∫
fγ (y∗|β

γ
)1/δπN

γ (β
γ
)dβ

γ

π
N
γ (β

γ
)πN

γ (β\γ
)πN

0 (β
0
)π(γ)

• We use Laplace approximation to evaluate the integral in the denominator.

• In this work, we use the Jeffreys prior as a baseline prior.
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Some additional results

• We have extended our approach by using hyper-priors for δ in a similar manner as hyper-g priors do.

• The hyper-δ extensions can be easily implemented by adding an additional step for δ in the Gibbs

variable selection algorithm.

• The method is consistent for normal models. Simulations in Binomial and Poisson data indicate the

same.

• Prediction matching holds for both PEP and hyper-pep versions.

• The DR-PEP coincides with the conditional version of PEP using density normalized likelihood for

normal models.
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Illustrative example 1: Pima Indians dataset

• Pima Indians diabetes data set (Ripley, 1996).

• n = 532 binary responses on diabetes presence (present=1, not present=0) according to the WHO

criteria for signs of diabetes.

• p = 7 potential covariates which are listed in Table 1 (see next slide).

• The data also used by Holmes and Held (2006, Bayesian Analysis) and Bové and Held (2011,

Bayesian Analysis).

• Beta-binomial prior on model space.
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Covariate Description

X1 Number of pregnancies

X2 Plasma glucose concentration (mg/dl)

X3 Diastolic blood pressure (mm Hg)

X4 Triceps skin fold thickness (mm)

X5 Body mass index (kg/m2)

X6 Diabetes pedigree function

X7 Age

Table 1: Potential predictors in the Pima Indians diabetes data set.
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Illustrative example 2: Web-analytics Popularity Dataset

The dataset of this illustration refer to characteristics of the popular website of Mashable

(www.mashable.com).

• The original content be publicly accessed and retrieved using the provided urls.

• All sites and related data were downloaded on January 8, 2015.

• Main variable: the number of shares which measures the popularity of the site/post.

• We are interested to identify the ingredients of a successful post and what it takes to for a post to

become a viral.

Source UCI Machine Learning Repository http://archive.ics.uci.edu/ml/; see Fernandes et al. (2015) for more

details.
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Illustrative example 2: Web-analytics Popularity Dataset

Data used

Subset of 1000 observations.

47 Covariates (reduced from 60 after some initial exploratory analysis).

Response : Is a post a viral? (binary: one for posts with ≥ 1400 shares and zero otherwise).

Some covariates :

• Dummies for category type of the post

(Lifestyle/Entertainment/Business/Social

Media/Tech/World).

• Day of the week the post was published.

• Number of days on the air.

• Title and text length (in number of words).

• Rate of unique words in the content.

• Number of link, images, videos.

• Keyword statistics (number of shares).

• Positivity and negativity rates of words.

• Polarity indexes of text and title.

• Subjectivity of text and titles.
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Web-analytics Popularity Dataset
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Figure 4: Comparison of Important Determinants of a Viral Post (40 batches).
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Web-analytics Popularity Dataset
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Figure 5: Posterior inclusion probabilities for hyper-g and DR-PEP (40 batches).
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Web-analytics Popularity Dataset
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Figure 6: Posterior inclusion probabilities for hyper-g and DR-PEP (40 batches of size 200 iterations).
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Illustrative example 3: Small Scale Data Simulation

• Also presented in Chen et al. (2008) and Li and Clyde (2015).

• n = 100, p = 3 predictors. Each simulation is repeated 100 times.

• Each predictor is drawn from a standard normal distribution with pairwise correlation given by

corr(Xi, Xj) = r|i−j|, 1 ≤ i < j ≤ p.

with (i) independent predictors (r = 0) and (ii) correlated predictors (r = 0.75).
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Scenario
Poisson (n = 100)

β0 β1 β2 β3

null -0.3 0 0 0

sparse -0.3 0.3 0 0

medium -0.3 0.3 0.2 0

full -0.3 0.3 0.2 -0.15

Table 2: Four simulation scenarios for Poisson regression assuming independent and correlated predictors.



Fouskakis, Ntzoufras & Perrakis: Bayesian Variable Selection Using Power-Expected-Posterior Priors in GLMs 27

Null Sparse Medium Full

Prior 0 0.75 0 0.75 0 0.75 0 0.75

g-prior 87 93 74 36 29 0 5 0

hyper g-prior 59 71 72 41 45 3 21 2

hyper g/n-prior 81 83 72 42 38 1 13 1

MG hyper g-prior∗ 84 90 72 37 32 0 10 0

CR PEP 88 95 76 35 27 0 5 0

CR PEP hyper-δ 71 75 68 44 44 4 18 3

CR PEP hyper-δ/n 83 91 80 40 30 0 11 0

DR PEP 90 95 73 32 28 0 5 0

DR PEP hyper-δ 91 97 68 30 25 0 4 0

DR PEP hyper-δ/n 94 95 69 28 20 0 3 0

Table 3: Number of times that the MAP model corresponds to the true model for 100 simulated datasets; column-wise

largest value is in red.
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Concluding remarks

• We have extended PEP-variable selection for GLMs

• Main problems

– Definition of the power-likelihood - we have presented two alternatives

– Computation - we have used an augmented Gibbs variable selection sampler

• CR-PEP and DR-PEP are more parsimonious than g-priors with similar properties.

• Work must be done to prove consistency in the general setup and extend methodology for large p,

small n problems.

• Efficient computation for large scale data:

EMVS (Rockova and George, 2014, JASA) or other fast alternatives should be explored.
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