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Synopsis

1. Introduction: Model Selection and Expected-Posterior Priors

2. Alternative definitions of the power likelihood in PEP-priors

3. Implementing the method in GLMs (MCMC algorithm)

4. Using Mixtures of PEP priors

5. Illustrations

6. Discussion
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Introduction: Model Selection and Expected-Posterior Pri ors

Within the Bayesian framework the comparison between models M0 and M1 is evaluated via the

Posterior Odds (PO)

PO01 ≡
π(M0|y)

π(M1|y)
=

m0(y)

m1(y)
×

π(M0)

π(M1)
= BF01 × O01 (1)

which is a function of the Bayes Factor (BF01) and the Prior Odds (O01).

In the above mℓ(y) is the marginal likelihood under model Mℓ and π(Mℓ) is the prior probability of

model Mℓ.

The marginal likelihood of model Mℓ is given by

mℓ(y) =

∫
fℓ(y|θℓ)πℓ(θℓ)dθℓ, (2)

where fℓ(y|θℓ) is the likelihood under model Mℓ with parameters θℓ and πℓ(θℓ) is the prior distribution

of model parameters given model Mℓ.
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The Lindley-Bartlett-Jeffreys Paradox

For a single model inference ⇒ a highly diffuse prior on the model parameters is often used (to

represent ignorance).

⇒ Posterior density takes the shape of the likelihood and is insensitive to the exact value of the prior

density function.

For multiple models inference ⇒ BFs (and POs) are quite sensitive to the choice of the prior variance

of model parameters.

⇒ For nested models, we support the simplest model with the evidence increasing as the variance of the

parameters increase ending up to support of more parsimonious model no matter what data we have.

⇒ Under this approach, the procedure is quite informative since the data do not contribute to the inference.

⇒ Improper priors cannot be used since the BFs depend on the undefined normalizing constants of the

priors.
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Expected-Posterior Priors (EPP)

• Pérez & Berger (2002, Biometrika) developed priors for use in model comparison, through utilization of

the device of imaginary training samples.

• They defined the expected-posterior prior (EPP) as the posterior distribution of a parameter vector

for the model under consideration, averaged over all possible imaginary samples

y∗ = (y∗
1 , . . . , y∗

n∗)T coming from a “suitable” predictive distribution m∗(y∗).

Hence the EPP for the parameters of any model Mℓ is

πEPP
ℓ (θℓ) =

∫
πN

ℓ (θℓ|y
∗) m∗(y∗) dy∗ , (3)

where πN
ℓ (θℓ|y

∗) is the posterior of θℓ for model Mℓ using a baseline prior πN
ℓ (θℓ) and data y∗.
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Features of EPP

• Impropriety of baseline priors causes no indeterminacy. Impropriety in m∗ also does not cause

indeterminacy, because it is common to the EPPs for all models.

• It makes priors compatible across models, through their dependence on a common data distribution.

• Usually we consider as m∗ the marginal likelihood of a reference model.

– Usual choices in regression models are the null and full model.

– Here we consider the null, i.e. m∗(y∗) = mN
0 (y∗).

• In nested cases usually the reference model is the simplest model. In this case EPP is the same as the

Intrinsic Prior .

• We choose the smallest n∗ for which the posterior is proper: minimal training sample size.

• Main Issue: In variable selection problems specification of X∗
ℓ .
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Power-Expected-Posterior (PEP) Priors

Fouskakis, Ntzoufras and Draper (2015, Bayesian Analysis).

πEPP
ℓ (θℓ)︸ ︷︷ ︸wwÄ

=

∫
πN

ℓ (θℓ|y
∗)︸ ︷︷ ︸wwÄ

mN
0 (y∗)︸ ︷︷ ︸wwÄ

dy∗

πPEP
ℓ (θℓ; δ) =

∫
πN

ℓ (θℓ|y
∗, δ)︸ ︷︷ ︸wwÄ

mN
0 (y∗|δ)︸ ︷︷ ︸wwÄ

dy∗

we substitute the likelihood terms with powered-versions of the likeli-

hoods

(i.e. they are raised to the power of 1/δ).
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Features of PEP

PEP priors method amalgamates ideas from Intrinsic Priors, EPPs, Unit Information Priors and Power

Priors, to unify ideas of Non-Data Objective Priors.

PEP priors solve the following problems:

• Dependence of training sample size.

• Lack of robustness with respect to the sample irregularities.

• Excessive weight of the prior when the number of parameters is close to the number of data.

At the same time the PEP prior is a fully objective method and shares the advantages of Intrinsic Priors

and EPPs.

• We choose δ = n∗, n∗ = n and therefore X∗
ℓ = Xℓ; by this way we dispense with the selection of

the training samples.
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Sensitivity analysis on imaginary sample size

Figure 1: Posterior marginal inclusion probabilities, for n∗ values from 17 to n = 50, with the PEP prior methodology (simulated

example for a variable selection problem in normal linear model).
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Features of PEP (cont.)

For Normal models

• In Fouskakis, Ntzoufras & Draper (2015, Bayesian Analysis) we illustrated the the PEP prior approach

– is robust with respect to the training sample size

– is not informative when dℓ is close to n.

• The PEP prior can be expressed as a mixture of g-priors (Fouskakis, Ntzoufras & Pericchi,

unpublished work, presented in ISBA2014).

• The Power-conditional-expected-posterior (PCEP) prior (Fouskakis & Ntzoufras, 2016, to appear in

JCGS) is similar to the g-prior with (i) more complicated variance structure, (ii) more dispersed and (iii)

more parsimonious than the g-prior

• Both PEP and PCEP are leading to consistent variable selection methods.
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1 Extension to Generalized Linear Models

Definitions of the power-likelihood

Normal regression models : the definition of the power-likelihood seems quite clear.

We have worked with the density-normalized power likelihood since for any normal distribution with mean

µ and variance σ2 it holds that

f(y|µ, σ2, δ) =
f(y|µ, σ2)1/δ

∫
f(y|µ, σ2)1/δdy

= N(µ, δ σ2)

This is not the case for all distributions in the exponential family and hence for GLMs. May end up to a

distribution which is not the same as the one in the original model formulation. For example

• In binary logistic regression ⇒ it is still Bernoulli with success probability π1/δ

π1/δ+(1−π)1/δ .

• For the Binomial and the Poisson models, it results is some cumbersome distributions which increase

computational complexity (without any obvious gain).
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Alternative definitions of the power-likelihood

We consider the PEP representation

πPEP
ℓ (θℓ; δ) =

∫
πN

ℓ (θℓ|y
∗, δ)mN

0 (y∗|δ)dy∗

with δ controlling the amount of prior-information accounted in the final posterior (and the dispersion of the

prior distribution).

We now consider the unormalized power-likelihood and then normalize the posterior (which is also the

approach in Ibrahim and Chen, 2000, Stat.Science). Hence

πN
ℓ (θℓ|y

∗, δ) =
fℓ(y

∗|θℓ)
1/δπN

ℓ (θℓ)∫
fℓ(y∗|θℓ)1/δπN

ℓ (θℓ)dθℓ

What about mN
0 (y∗|δ)?
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Two alternatives for the marginal distribution

• Consider the unormalized power-likelihood and then normalize mN
0 :

mN
0 (y∗, δ) =

∫
f0(y

∗|θ0)
1/δπN

0 (θ0)dθ0∫ ∫
f0(y∗|θ0)1/δπN

0 (θ0)dθ0dy∗
.

This will be noted as the Diffuse Reference PEP (DR-PEP).

• Consider the original likelihood (without introducing any further uncertainty) i.e.

mN
0 (y∗, δ) = m0(y

∗) =

∫
f0(y

∗|θ0)π
N
0 (θ0)dθ0 .

This will be noted as the Concentrated Reference PEP (CR-PEP).

In both cases the expected-posterior interpretation is retained with the first prior being more diffuse than

the second.
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Features of the diffuse-reference PEP

• Still has the interpretation of a posterior density given some imaginary data y∗ “weighted” by n∗/δ

data-points and averaged over a data distribution.

• The same type of uncertainty is introduced both in the “posterior” and the predictive (averaged) part.

• In normal regression models

– Equivalent to using the the density-normalized power likelihood.

– It is equivalent to PEP and PCEP.

– It leads to a consistent model selection method.

– It is more dispersed (and parsimonious) than the g-prior.
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Features of the concentrated-reference PEP

• Still has the interpretation of a posterior density given some imaginary data y∗ “weighted” by n∗/δ

data-points averaged over the predictive distribution of the actual reference model .

• Different type of uncertainty is introduced both in the “posterior” and the predictive (averaged) part.

• Less dispersed than the diffuse version of PEP.

• In normal regression models

– It is less dispersed (and parsimonious) than PEP (and DR-PEP) and more dispersed (and

parsimonious) than the g-prior.

– It leads to a consistent model selection method.
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Comparison of the two approaches in normal regression

Volume variance multipliers in normal regression models

The volume of the variance-covariance matrix in the g-prior and in the two PEP approaches is given by
∣∣∣Var(βℓ|Mℓ)

∣∣∣ = ϕ(n, dℓ) × |XT
ℓ Xℓ|

−1

• G-prior with g = n ⇒ ϕ(n, dℓ) = ndℓ

• DR-PEP prior ⇒ ϕ(n, dℓ) = n2dℓ

[
2n+1

(n+1)2

]dℓ−d0

• CR-PEP prior ⇒ ϕ(n, dℓ) = ndℓ

[
n2+2n

n2+2n+1

]dℓ
[

n2+n+2
n+2

]d0

.
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Figure 2: Log-variance multipliers of the DR-PEP, CR-PEP and g-priors versus sample size for dℓ =

5, 10, 50.
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Formulation in GLMs

• Mℓ → γ: Binary variable inclusion indicators (γ) in order to search the model space using Gibbs

sampling (George and McCulloch, 1993, JASA)

• Yi ∼ a distribution member of the exponential family.

The parameters of the distribution are associated with the linear predictor via a link function.

• p covariates.

• X is the n × (p + 1) data matrix with the first column to be the constant and rest containing the data

of each covariate.

• Xγ is the n × dγ data matrix for model γ with dγ =
∑p

j=0 γj covariates.

• βγ is the parameter vector of length dγ with the effects of each covariate

• The linear predictor vector is given by ηγ = Xγβγ
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The Final Formulation of the DR-PEP Prior

(Formulation and computation is similar for the CR-PEP prior)

The prior

πDRPEP
γ (βγ) ∝

∫ ∫ {
fγ(y∗|βγ)1/δπN

γ (βγ)∫
fγ(y∗|βγ)1/δπN

γ (βγ)dβγ

}
f0(y

∗|β0)
1/δπN

0 (β0)dβ0dy∗

Two possible approaches to simplify the above expression

• In GLMs, the posterior part can be well approximated by a normal distribution (Chen and Ibrahim,

2003, Stat.Sinica)

• Integral in the denominator can be well approximated using Laplace approximation
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Constructing a Gibbs based Variable Selection Sampler

In order to estimate the posterior model probabilities, we use an MCMC scheme with full data

augmentation by introducing

• For each model γ, we introduce a complement of βγ denoted by β\γ for all coefficients not included

in the model.

– βγ ⇒ active parameters

– β\γ ⇒ inactive parameters

• The linear predictor can be rewritten as ηi =
∑p

j=0 Xijγjbγ,j where bγ,j is the element of

bγ = (βγ , β\γ) which corresponds to covariate Xj .

• A pseudoprior πγ(β\γ) is defined to play the role of a proposal.

• A latent parameter β0 for the parameter of the reference model.

• A latent vector of imaginary data y∗.
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• We build a Gibbs based variable selection algorithm providing samples from the augmented posterior

π
DRPEP
γ (βγ , β\γ γ, y

∗
, β0|y)

∝
fγ (y|βγ )

[
fγ (y∗|βγ )f0(y

∗|β
0
)
]
1/δ

∫
fγ (y∗|βγ )1/δπN

γ (βγ )dβγ

π
N
γ (βγ )πN

γ (β\γ )πN
0 (β

0
)π(γ)

• We use Laplace approximation to evaluate the integral in the denominator.

• In this work, we use the Jeffreys prior as a baseline prior.
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The MCMC algorithm - Gibbs variable selection for PEP

For each iteration t (t = 1, 2, ..., N ),

Step 1: For j = 1, . . . , p, we update γj ∼ Bernoulli
(

Oj

1+Oj

)
, with

Step 2: We update βγ from the full conditional posterior (given the current values of γ and y∗) using a

Metropolis step and proposals build using MLEs from a model with response (y, y∗) and weights

w = (1n, δ−1
1n∗)

Step 3: Update β\γ from the pseudo-prior πγ(β\γ) = Nd\γ

(
β̂\γ , Id\γ

σ̂2
β\γ

)
.

Step 4: Sample β0 from the full conditional posterior (given y∗) using a Metropolis step with a normal

proposal with mean the MLE with response y∗ and variance equal to δσ̂2
β̂∗
0

with the latter being the

corresponding variance of the MLE.
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Step 5: Sample y∗ from the full conditional posterior (given βγ , β0 and γ) using a Metropolis step.

• The proposal depends on the model likelihood i.e. the stochastic part of the model; for details see

next slide.

• In the acceptance probabilities we need to evaluate the marginal likelihoods mN
γ (y∗|δ) and

mN
γ (y∗′

|δ) which are computed by using Laplace approximation.
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Details about the proposal for y∗
i

For y∗ we construct proposals depending on the likelihood of the model.

Binomial response: Propose y∗′

i ∼ Bernoulli(πi) with

πi =
(πD

0,i πγ,i)
1/δ

(πD
0,i πγ,i)1/δ + [(1 − π0,i)D(1 − πγ,i)]1/δ

with D = 1 for DR-PEP and D = δ for CR-PEP, π0,i =
[
1 + exp(−β0)

]−1
and

πγ,i =
[
1 + exp(−ηγ,i)

]−1
; where ηγ,i is the i-th element of ηγ = Xγβγ .

Poisson regression:

CR-PEP: Propose y∗′

i ∼ Poisson(λi) with log λi = β0 + ηγ,i/δ.

DR-PEP: Propose y∗′

i ∼ Poisson(y∗
i ).
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Further Remarks about the MCMC

• Exact distributions are used for β\γ and γ

– β\γ is sampled directly from the pseudo-prior distribution.

– γ is sampled directly from the full conditional Bernoulli distribution.

• The pseudo-prior of β\γ serves the role of the proposal and it does not influence the posterior but it

does influence the efficiency of the MCMC algorithm.

• No specific fine tuning is required for the proposal distributions of βγ and β0 (normal proposals based

on MLEs).
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2 Hyper-delta PEP priors

PEP priors with fixed δ are similar in notion and behaviour as the g-priors.

We extend our approach by using hyper-priors for δ in a similar manner as hyper-g priors do.

Under this setting, the hyper-δ PEP prior can be approximated by

πPEP
γ (βγ) ≈

∫ ∫
fNdγ

(
βγ ; β̂∗

γ , δ
(
X

∗T
γ H

∗
γX

∗
γ

)−1
)
mN

0 (y∗|δ)π(δ)dy∗dδ, (4)

where β̂∗
γ is the MLE given the imaginary data.

This approximation cannot be applied when using EPPs with minimal training samples.
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Similarly to the hyper-g (Liang et al. , 2008, JASA), the hyper-delta prior is given by

π(δ) =
a − 2

2
(1 + δ)−a/2,

which introduces the following prior for δ/(1 + δ)

δ

1 + δ
∼ Beta

(
1,

a

2
− 1

)

• We use a = 3 as suggested by Liang et al. (2008, JASA).

• δ
1+δ has an interpretation similar to a shrinkage parameter since it accounts for the proportion of

information (in data-points) coming from the actual data when n = n∗ — in the general case this will

be given by n/(n + n∗/δ).

• Another alternative option would be a hyper-δ/n prior of the form

π(δ) =
a − 2

2n

(
1 +

δ

n

)−a/2

.
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Additional MCMC step for δ

Step 6: Sample of δ from the full conditional posterior (given the current values of βγ , β0, y∗ and γ).

(a) Propose δ′ from q(δ′|δ) = Gamma(δ, 1).

(b) Compute the Laplace approximations m̂N
γ (y∗|δ) and m̂N

γ (y∗|δ′).

(c) Accept the proposed move with probability αδ = min{1, Aδ}, where Aδ is given by

Aδ =
{

fγ(y∗|βγ)f0(y
∗|β0)

}∆δ

×
π(δ′)

π(δ)
×

m̂N
γ (y∗|δ)

m̂N
γ (y∗|δ′)

×
q(δ|δ′)

q(δ′|δ)
.

where ∆δ = 1/δ′ − 1/δ
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Illustrative example 1: Web-analytics Popularity Dataset

The dataset of this illustration refer to characteristics of the popular website of Mashable

(www.mashable.com).

• The original content be publicly accessed and retrieved using the provided urls.

• All sites and related data were downloaded on January 8, 2015.

• Main variable: the number of shares which measures the popularity of the site/post.

• We are interested to identify the ingredients of a successful post and what it takes to for a post to

become a viral.

Source UCI Machine Learning Repository http://archive.ics.uci.edu/ml/; see Fernandes et al. (2015) for more

details.
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Illustrative example 1: Web-analytics Popularity Dataset

Data used

Subset of 1000 observations.

47 Covariates (reduced from 60 after some initial exploratory analysis).

Response : Is a post a viral? (binary: one for posts with ≥ 1400 shares and zero otherwise).

Some covariates :

• Dummies for category type of the post

(Lifestyle/Entertainment/Business/Social

Media/Tech/World).

• Day of the week the post was published.

• Number of days on the air.

• Title and text length (in number of words).

• Rate of unique words in the content.

• Number of link, images, videos.

• Keyword statistics (number of shares).

• Positivity and negativity rates of words.

• Polarity indexes of text and title.

• Subjectivity of text and titles.
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Web-analytics Popularity Dataset

X 5X 3 0X 1 2X 3 9X 1 3X 2 5X 4X 1 0X 2 6X 2 3X 9 X 2X 3 1X 3 3X 7X 3 4X 8 X 1X 3 2X 2 2X 3 5X 1 5X 4 2X 3 6X 3X 2 8X 2 9X 6X 4 4X 1 7X 1 6X 2 4X 1 1X 4 1X 4 3X 4 7X 3 8X 2 7X 1 9X 1 4X 2 1X 4 0X 4 5X 3 7X 1 8X 2 0X 4 60.20.4
0.60.8

1.0 P o s t e r i o r i n c l u s i o n p r o b a b i l i t i e s f r o m h y p e r− g p r i o r
P r e d i c t o r

Posteriorinclusion
probality

P r e d i c t o r s o f i n t e r e s tX 5  : D a t a c h a n n e l r e l a t e s t o t e c h n o l o g yX 3 0  : A v e r a g e k e yw o r d (i n a v e r a g e s h a r e s )X 1 2  : A r t i c l e pu b l i s h e d o n a S a tu r d a yX 3 9  : M i n i m u m po l a r i t y o f p o s i t i v e w o r d sX 1 3  : D a ys b e t w e e n a r t i c l e pu b l i c a t i o n a n d d a t a s e t a c q u is i t i o nM o d e ls o f i n t e r e s tX 5 + X 1 2 + X 1 3 + X 3 0 + X 3 9  : M a x i m u m a po s t e r io r i p ro b a b i l i t y m o d e lX 5 + X 1 2 + X 1 3 + X 3 0 + X 3 9  : M e d i a n pr o b a b i l i t ym o d e l

X 5X 3 0X 1 2X 3 9X 1 3X 2 3X 2 6X 4X 1 0X 2 5X 3 3X 3 1X 3 2X 1X 2X 3 5X 2 2X 3 6X 9X 3 4X 1 5X 2 8X 2 7X 3X 7X 1 7X 1 6X 8X 4 2X 4 3X 1 4X 6X 2 4X 3 8X 1 9X 4 1X 3 7X 4 4X 4 5X 4 0X 1 8X 2 0X 2 1X 1 1X 4 7X 2 9X 4 60.00.2
0.40.6

0.81.0

P o s t e r i o r i n c l u s i o n p r o b a b i l i t i e s f r o m t h e D R− P E P p r i o r
P r e d i c t o r

Posteriorinclusion
probality

P r e d i c t o r s o f i n t e r e s tX 5  : D a t a c h a n n e l r e l a t e s t o t e c h n o l o g yX 3 0  : A v e r a g e k e yw o r d (i n a v e r a g e s h a r e s )X 1 2  : A r t i c l e pu b l i s h e d o n a S a tu r d a yX 3 9  : M i n i m u m po l a r i t y o f p o s i t i v e w o r d sX 1 3  : D a ys b e t w e e n a r t i c l e pu b l i c a t i o n a n d d a t a s e t a c q u is i t i o nM o d e ls o f i n t e r e s tX 5 + X 1 2 + X 1 3 + X 3 0 + X 3 9  : M a x i m u m a po s t e r io r i p ro b a b i l i t y m o d e lX 5 + X 1 2 + X 1 3 + X 3 0 + X 3 9  : M e d i a n pr o b a b i l i t ym o d e l
Figure 3: Posterior inclusion probabilities for hyper-g and DR-PEP (40 batches).
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Web-analytics Popularity Dataset
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Figure 4: Posterior inclusion probabilities for hyper-g and DR-PEP (40 batches of size 200 iterations).
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Illustrative example 2: Small Scale Data Simulation

• Also presented in Chen et al. (2008) and Li and Clyde (2015).

• n = 100, p = 3 predictors. Each simulation is repeated 100 times.

• Each predictor is drawn from a standard normal distribution with pairwise correlation given by

corr(Xi, Xj) = r|i−j|, 1 ≤ i < j ≤ p.

with (i) independent predictors (r = 0) and (ii) correlated predictors (r = 0.75).
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Scenario
Poisson (n = 100)

β0 β1 β2 β3

null -0.3 0 0 0

sparse -0.3 0.3 0 0

medium -0.3 0.3 0.2 0

full -0.3 0.3 0.2 -0.15

Table 1: Four simulation scenarios for Poisson regression assuming independent and correlated predictors.



Fouskakis, Ntzoufras & Perrakis: Bayesian Variable Selection Using Power-Expected-Posterior Priors in GLMs 35

Null Sparse Medium Full

Prior 0 0.75 0 0.75 0 0.75 0 0.75

g-prior 87 93 74 36 29 0 5 0

hyper g-prior 59 71 72 41 45 3 21 2

hyper g/n-prior 81 83 72 42 38 1 13 1

MG hyper g-prior∗ 84 90 72 37 32 0 10 0

CR PEP 88 95 76 35 27 0 5 0

CR PEP hyper-δ 71 75 68 44 44 4 18 3

CR PEP hyper-δ/n 83 91 80 40 30 0 11 0

DR PEP 90 95 73 32 28 0 5 0

DR PEP hyper-δ 91 97 68 30 25 0 4 0

DR PEP hyper-δ/n 94 95 69 28 20 0 3 0

Table 2: Number of times that the MAP model corresponds to the true model for 100 simulated datasets; column-wise

largest value is in red.
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Concluding remarks

• We have extended PEP-variable selection for GLMs

• Main problems

– Definition of the power-likelihood - we have presented two alternatives

– Computation - we have used an augmented Gibbs variable selection sampler

• CR-PEP and DR-PEP are more parsimonious than g-priors with similar properties.

• Work must be done to prove consistency in the general setup and extend methodology for large p,

small n problems.

• Computation should be improved to be implemented in big data:

EMVS (Rockova and George, 2014, JASA) or other fast alternatives should be explored.
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Future plans: Moving towards really Big datasets

Ideas for Large p – small n problems

• In PEP, use LASSO baseline to result in a combination of LASSO-g-prior properties.

• Implement EM variable selection for PEP and general type of priors.

• Use population based MCMCs ideas and approaches partitioning the model space.

Ideas for Large n – reasonable p problems

• Use sequential updating of variable selection techniques to enable the application in sequentially

collected data (common in web-analytics).

• Borrow ideas from meta-analysis for splitting the analysis in sub-samples and then combining

information.
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