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Ioannis Ntzoufras: Basic Information

Studies

1. 1990–1994: B.Sc. in Statistics and Insurance Science, University of Piraeus, Greece.

2. 1994–1995: M.Sc. in Statistics with Applications in Medicine, Southampton University, UK.

3. 1995–1999: Ph.D. in Statistics (supervised by Professor Petros Dellaportas), Athens University of

Economics and Business, Greece

Work Experience

1. 2004–today: Department of Statistics, Athens University of Economics and Business (Professor in

Statistics from 22/12/2015).

2. 2000–2004: Lecturer in Quantitative Methods, Department of Business Administration, University of

the Aegean.

3. February-June 2000: Temporary Lecturer in Statistics, Department of Statistics and Actuarial Science,

University of the Aegean.
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Ioannis Ntzoufras: Teaching Experience

List of taught courses (selection)

1. Programming with R: B.Sc. in Statistics, AUEB (2006–2016).

2. Multivariate Statistics : B.Sc. in Statistics, AUEB (2006–2016).

3. Data Analysis : B.Sc. in Statistics, AUEB (2006–2015).

4. Biostatistics and Epidemiology : B.Sc. in Statistics, AUEB (2006–2014).

5. Advanced Data Analysis with R: M.Sc. in Statistics; M.Sc. in Business Analytics, AUEB

(2014–2016).

6. Bayesian Modelling Using WinBUGS : M.Sc. in Biostatistics, University of Athens (2002, 2004,

2006); M.Sc. in Statistics, AUEB (2010–2015); University of Pavia (2010, 2015; short courses); Msc

Course in Statistics, La Sapienza University (2013); M.Sc. in Economics, Universita Cattolica del Sacro

Cuore (2015); Ph.D. course in Statistics, University of Milano-Biccoca (2015).

7. Short courses on Bayesian Variable Selection : Herriot–Watt University (2009) University College

Dublin (2011); AUEB (2015; 2nd Spring School on R).
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Ioannis Ntzoufras: Areas of Expertise

• Feature/Variable Selection (model search algorithms, marginal likelihood estimates and objective

priors) - 14 publications (in journals such that Statistical Science, Bayesian Analysis, JRSSC, Annals of

Applied Statistics, JCGS, Statistics and Computing etc.).

• Sport Analytics (Predictive models for football, Measures of Competitive Balance, Performance

Analysis in Voleyball) - 7 publications (in journals: JRSSD, Journal of Quantitative Analysis in Sports,

IMA Management Mathematics).

• Categorical data analysis and Graphical Models – 6 publications (in journals: Psychometrika,

JCGS, CSDA, Soc.Methodology).

• Applied psychometric analysis – 5 publications (in journals: European Psychiatry, Psychiatry

Research, Personality and Individual Differences, Schizophrenia research, Schizophrenia Bulletin).

• Bayesian methods for latent variable models (model selection and estimation) – 3 publications (in

journals: Statistics and Computing, British J. of Math. and Stat. Psychology, J. Stat. Comp. Sim.).

• Other – 8 publications (In journals: Statistics in Medicine, J. of Stat. Software, Canadian J. of

Statistics, North American Actuarial J. etc.)
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Personal view on the field of ”data science”

The fast development of computing facilities and of the web applications (mainly via e-shops and social

media) emerged access to an increased amount of data leading to the problem of BIG DATA .

The need to make sense from massive data (sometimes instantly) has lead us to the necessity to redefine

and unify sciences related to data to a new field called data science.

Data science includes

• Informatics and programming.

• Data mining and computer intelligence techniques.

• Statistics and Data Analysis.

• Data extraction, storage, handling and cleaning.

• Other Quantitative and Operational research techniques.

• Visualization and (written and oral) communication techniques.
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Data Science

• Data science is the study of extraction of knowledge from data with the goal of obtaining meaning from

data and creating easy-to-access data products.

• Key word is science.
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Why data science is considered to be only for big data?

• The access to web analytics data has lead to the need of scientists having skills from different areas of

science. Being a statistician or programmer is not enough any more.

• We need new computational tools to extract information fast and apply meaningful statistical analysis.

• We need new statistical tools and methods to handle big-data problems.
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But data science is not only for Big data! .

“There are a lot of small data problems that

occur in big data. They dont disappear be-

cause youve got lots of the stuff. They get

worse.”

Professor David Spiegelhalter

Some other problems with Big-Data .

• Web-analytics data are usually biased since not all people (yet) use internet and mobile services.

• The problem of no insight/inference/understanding what is actually going on.

• False positives.

• Multiplicity and spurious correlations (big problem in feature selection in genetics)
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Personal contributions to the field of Data Science

Feature Selection (main expertise): Prominent problem in the new era of Science. In Data Science it is

called as the problem of spurious correlations.

Important Contributions in Feature Selection

• MCMC model search algorithms (Gibbs Variable Selection, RJMCMC)

• Objective Bayes techniques for selecting optimal number of predictors and models.

• Bayesian Lasso ⇒ Specification of shrinkage parameter (without cross-validation).

• Avoiding the Bartlett-Lindley paradox by jointly defining priors on both model and parameter space.

• Variable selection accounting for data collection costs or cost restrictions.
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Personal contributions to the field of Data Science

Current and Future Considerations for Feature Selection on Big-Data

• n << p problems are also very important problem in this area.

Current related research:

– Adaptive model search algorithm for large model spaces (with C. Staerk and M. Kateri from Aachen

University).

– Extensions of PEP variable selection methodology by using LASSO type specifications (with K.

Perrakis and D. Fouskakis).

– Extending the EM variable selection method for general variable selection problems (future plans).

• Large n small p we are working to develop several techniques to handle such data which will directly

applicable on sequential collection of data from web based applications.
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Personal contributions to the field of Data Science

Contributions in Sport Analytics

• Building prediction models for football games using Poisson

regression models.

• Analysing measures of competitive balance.

• Measuring the efficiency of each move in Voleyball (Perfor-

mance analysis).

Contributions in Bayesian Latent Variable Models

• Studied the effect of data augmentation and latent variables on MCMC techniques.

• Developed methods for the efficient estimation of the marginal likelihood.
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Postgraduate Teaching related with Data Science

• Teaching Advanced Data Analysis with R (36 hours course)

– M.Sc. of Business Analytics, AUEB (2014–2015)

– M.Sc. of Statistics, AUEB (2014–2015)

• Short Introduction to Statistics and R in the M.Sc. in Data Science, AUEB (2015).
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The future of data science

1. Clear picture of the skills required by a Data Scientist.

2. New sources of data ⇒ new problems.

3. New computing tools for analysing data.

4. New Statistical methods and models for big data which

will help us interpret reality and causality and provide us answers replying to WHYs.

5. Sequential updating and incorporation of information coming from multiple sources.

6. More interaction between informatics and statistics leading to new areas of expertise and a unified data

language.

7. Automation of procedures ⇒ Making Data Science Useless?? (large discussion on the web)
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How the IDIDS can contribute to the future of data Science

• Build solid statistical methods and theory for big data.

• Develop solid methodology for network analysis.

• New, modern, flexible M.Sc. in Data Science.

• Analysing large panel datasets of time series in Economics where dimensionality considerably grows.

• Combine global stock market data in network analysis.

• Develop pioneering methods for medical problems (with collaboration with the Center for

Computational Medicine in Cardiology, CCMC, the Institute for Research in Biomedicine, IRB and the

University Center for Statistics in the Biomedical Sciences, CUSSB, in Milan).

• Develop novel software for personalized services such as shopping or medicine.
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How can I contribute to IDIDS

1. Develop powerful research team on Feature Selection methods in several fields.

2. Build a Sports Analytic research team with emphasis given in football data, performance analytics and

on-line big data with ultimate aim the collaboration with professional teams and sport leagues.

3. To be involved in new areas of intriguing research such as network analysis.
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Introduction: Model Selection and Expected-Posterior Pri ors

Within the Bayesian framework the comparison between models M0 and M1 is evaluated via the

Posterior Odds (PO)

PO01 ≡
π(M0|y)

π(M1|y)
=

m0(y)

m1(y)
×

π(M0)

π(M1)
= BF01 × O01 (1)

which is a function of the Bayes Factor (BF01) and the Prior Odds (O01).

In the above mℓ(y) is the marginal likelihood under model Mℓ and π(Mℓ) is the prior probability of

model Mℓ.

The marginal likelihood of model Mℓ is given by

mℓ(y) =

∫
fℓ(y|θℓ)πℓ(θℓ)dθℓ, (2)

where fℓ(y|θℓ) is the likelihood under model Mℓ with parameters θℓ and πℓ(θℓ) is the prior distribution

of model parameters given model Mℓ.
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The Lindley-Bartlett-Jeffreys Paradox

For a single model inference ⇒ a highly diffuse prior on the model parameters is often used (to

represent ignorance).

⇒ Posterior density takes the shape of the likelihood and is insensitive to the exact value of the prior

density function.

For multiple models inference ⇒ BFs (and POs) are quite sensitive to the choice of the prior variance

of model parameters.

⇒ For nested models, we support the simplest model with the evidence increasing as the variance of the

parameters increase ending up to support of more parsimonious model no matter what data we have.

⇒ Under this approach, the procedure is quite informative since the data do not contribute to the inference.

⇒ Improper priors cannot be used since the BFs depend on the undefined normalizing constants of the

priors.
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Power-Expected-Posterior (PEP) Priors

Fouskakis, Ntzoufras and Draper (2015, Bayesian Analysis).

πEPP
ℓ (θℓ)︸ ︷︷ ︸wwÄ

=

∫
πN

ℓ (θℓ|y
∗)︸ ︷︷ ︸wwÄ

mN
0 (y∗)︸ ︷︷ ︸wwÄ

dy∗

πPEP
ℓ (θℓ; δ) =

∫
πN

ℓ (θℓ|y
∗, δ)︸ ︷︷ ︸wwÄ

mN
0 (y∗|δ)︸ ︷︷ ︸wwÄ

dy∗

we substitute the likelihood terms with powered-versions of the likeli-

hoods

(i.e. they are raised to the power of 1/δ).
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Features of PEP

PEP priors method amalgamates ideas from Intrinsic Priors, EPPs, Unit Information Priors and Power

Priors, to unify ideas of Non-Data Objective Priors.

PEP priors solve the following problems:

• Dependence of training sample size.

• Lack of robustness with respect to the sample irregularities.

• Excessive weight of the prior when the number of parameters is close to the number of data.

At the same time the PEP prior is a fully objective method and shares the advantages of Intrinsic Priors

and EPPs.

• We choose δ = n∗, n∗ = n and therefore X∗
ℓ = Xℓ; by this way we dispense with the selection of

the training samples.
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Sensitivity analysis on imaginary sample size

Figure 1: Posterior marginal inclusion probabilities, for n∗ values from 17 to n = 50, with the PEP prior methodology (simulated

example for a variable selection problem in normal linear model).
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Features of PEP (cont.)

For Normal models

• In Fouskakis, Ntzoufras & Draper, 2015 (Bayesian Analysis) we illustrated the the PEP prior approach

– is robust with respect to the training sample size

– is not informative when dℓ is close to n.

• The PEP prior can be expressed as a mixture of g-priors (Fouskakis, Ntzoufras & Pericchi,

unpublished work, presented in ISBA2014).

• The Power-conditional-expected-posterior (PCEP) prior (Fouskakis & Ntzoufras, 2015, to appear in

JCGS) is similar to the g-prior with (i) more complicated variance structure, (ii) more dispersed and (iii)

more parsimonious than the g-prior

• Both PEP and PCEP are leading to consistent variable selection methods.
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1 Extension to Generalized Linear Models

Definitions of the power-likelihood

Normal regression models : the definition of the power-likelihood seems quite clear.

We have worked with the density-normalized power likelihood since for any normal distribution with mean

µ and variance σ2 it holds that

f(y|µ, σ2, δ) =
f(y|µ, σ2)1/δ

∫
f(y|µ, σ2)1/δdy

= N(µ, δ σ2)

This is not the case for all distributions in the exponential family and hence for GLMs. May end up to a

distribution which is not the same as the one in the original model formulation. For example

• In binary logistic regression ⇒ it is still Bernoulli with success probability π1/δ

π1/δ+(1−π)1/δ .

• For the Binomial and the Poisson models, it results is some cumbersome distributions which increase

computational complexity (without any obvious gain).
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Alternative definitions of the power-likelihood

We consider the PEP representation

πPEP
ℓ (θℓ; δ) =

∫
πN

ℓ (θℓ|y
∗, δ)mN

0 (y∗|δ)dy∗

with δ controlling the amount of prior-information accounted in the final posterior (and the dispersion of the

prior distribution).

We now consider the unormalized power-likelihood and then normalize the posterior (which is also the

approach in Ibrahim and Chen, 2000, Stat.Science). Hence

πN
ℓ (θℓ|y

∗, δ) =
fℓ(y

∗|θℓ)
1/δπN

ℓ (θℓ)∫
fℓ(y∗|θℓ)1/δπN

ℓ (θℓ)dθℓ

What about mN
0 (y∗|δ)?
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Two alternatives for the marginal distribution

• Consider the unormalized power-likelihood and then normalize mN
0 :

mN
0 (y∗, δ) =

∫
f0(y

∗|θ0)
1/δπN

0 (θ0)dθ0∫ ∫
f0(y∗|θ0)1/δπN

0 (θ0)dθ0dy∗
.

This will be noted as the Diffuse Reference PEP (DR-PEP).

• Consider the original likelihood (without introducing any further uncertainty) i.e.

mN
0 (y∗, δ) = m0(y

∗) =

∫
f0(y

∗|θ0)π
N
0 (θ0)dθ0 .

This will be noted as the Concentrated Reference PEP (CR-PEP).

In both cases the expected-posterior interpretation is retained with the first prior being more diffuse than

the second.
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Comparison of the two approaches in normal regression

Volume variance multipliers in normal regression models

The volume of the variance-covariance matrix in the g-prior and in the two PEP approaches is given by
∣∣∣Var(βℓ|Mℓ)

∣∣∣ = ϕ(n, dℓ) × |XT
ℓ Xℓ|

−1

• G-prior with g = n ⇒ ϕ(n, dℓ) = ndℓ

• DR-PEP prior ⇒ ϕ(n, dℓ) = n2dℓ

[
2n+1

(n+1)2

]dℓ−d0

• CR-PEP prior ⇒ ϕ(n, dℓ) = ndℓ

[
n2+2n

n2+2n+1

]dℓ
[

n2+n+2
n+2

]d0

.
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Figure 2: Log-variance multipliers of the DR-PEP, CR-PEP and g-priors versus sample size for dℓ =

5, 10, 50.
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The Final Formulation of the DR-PEP Prior

(Formulation and computation is similar for the CR-PEP prior)

The prior

πDRPEP
γ

(β
γ
) ∝

∫ ∫ {
fγ(y∗|β

γ
)1/δπN

γ
(β

γ
)∫

fγ(y∗|β
γ
)1/δπN

γ
(β

γ
)dβ

γ

}
f0(y

∗|β0)
1/δπN

0 (β0)dβ0dy∗

Two possible approaches to simplify the above expression

• In GLMs, the posterior part can be well approximated by a normal distribution (Chen and Ibrahim,

2003, Stat.Sinica)

• Integral in the denominator can be well approximated using Laplace approximation
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Constructing a Gibbs based Variable Selection Sampler

In order to estimate the posterior model probabilities, we use an MCMC scheme with full data

augmentation by introducing

• For each model γ, we introduce a complement of β
γ

denoted by β\γ
for all coefficients not included

in the model.

• A pseudoprior πγ(β\γ
) is defined to play the role of a proposal and the linear predictor can be

rewritten as ηi =
∑p

j=0 Xijγjbγ,j where bγ,j is the element of bγ = (β
γ
, β\γ

) which

corresponds to covariate Xj .

• A latent parameter β0 for the parameter of the reference model

• A latent vector of imaginary data y∗
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• We build a Gibbs based variable selection algorithm providing samples from the augmented posterior

π
DRPEP
γ (β

γ
, β\γ

γ, y
∗
, β0|y)

∝
fγ (y|β

γ
)
[
fγ (y∗|β

γ
)f0(y

∗|β
0
)
]
1/δ

∫
fγ (y∗|β

γ
)1/δπN

γ (β
γ
)dβ

γ

π
N
γ (β

γ
)πN

γ (β\γ
)πN

0 (β
0
)π(γ)

• We use Laplace approximation to evaluate the integral in the denominator.

• In this work, we use the Jeffreys prior as a baseline prior.
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2 Hyper-delta PEP priors

PEP priors with fixed δ are similar in notion and behaviour as the g-priors.

We extend our approach by using hyper-priors for δ in a similar manner as hyper-g priors do.

Under this setting, the hyper-δ PEP prior can be approximated by

πPEP
γ (βγ) ≈

∫ ∫
fNdγ

(
βγ ; β̂∗

γ , δ
(
X

∗T
γ H

∗
γX

∗
γ

)−1
)
mN

0 (y∗|δ)π(δ)dy∗dδ, (3)

where β̂∗
γ is the MLE given the imaginary data.

This approximation cannot be applied when using EPPs with minimal training samples.
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Similarly to the hyper-g (Liang et al. , 2008, JASA), the hyper-delta prior is given by

π(δ) =
a − 2

2
(1 + δ)−a/2,

which introduces the following prior for δ/(1 + δ)

δ

1 + δ
∼ Beta

(
1,

a

2
− 1

)

• We use a = 3 as suggested by Liang et al. (2008, JASA).

• δ
1+δ has an interpretation similar to a shrinkage parameter since it accounts for the proportion of

information (in data-points) coming from the actual data when n = n∗ — in the general case this will

be given by n/(n + n∗/δ).

• Another alternative option would be a hyper-δ/n prior of the form

π(δ) =
a − 2

2n

(
1 +

δ

n

)−a/2

.
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Additional MCMC step for δ

Step 6: Sample of δ from the full conditional posterior (given the current values of βγ , β0, y∗ and γ).

(a) Propose δ′ from q(δ′|δ) = Gamma(δ, 1).

(b) Compute the Laplace approximations m̂N
γ
(y∗|δ) and m̂N

γ
(y∗|δ′).

(c) Accept the proposed move with probability αδ = min{1, Aδ}, where Aδ is given by

Aδ =
{

fγ(y∗|βγ)f0(y
∗|β0)

}∆δ

×
π(δ′)

π(δ)
×

m̂N
γ
(y∗|δ)

m̂N
γ
(y∗|δ′)

×
q(δ|δ′)

q(δ′|δ)
.

where ∆δ = 1/δ′ − 1/δ



Fouskakis, Ntzoufras & Perrakis: Bayesian Variable Selection Using Power-Expected-Posterior Priors in GLMs 19

Illustrative example 1: Web-analytics Popularity Dataset

The dataset of this illustration refer to characteristics of the popular website of Mashable

(www.mashable.com).

• The original content be publicly accessed and retrieved using the provided urls.

• All sites and related data were downloaded on January 8, 2015.

• Main variable: the number of shares which measures the popularity of the site/post.

• We are interested to identify the ingredients of a successful post and what it takes to for a post to

become a viral.

Source UCI Machine Learning Repository http://archive.ics.uci.edu/ml/ ; see Fernandes et al. (2015) for more

details.
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Illustrative example 1: Web-analytics Popularity Dataset

Data used

Subset of 1000 observations.

47 Covariates (reduced from 60 after some initial exploratory analysis).

Response : Is a post a viral? (binary: one for posts with ≥ 1400 shares and zero otherwise).

Some covariates :

• Dummies for category type of the post

(Lifestyle/Entertainment/Business/Social

Media/Tech/World).

• Day of the week the post was published.

• Number of days on the air.

• Title and text length (in number of words).

• Rate of unique words in the content.

• Number of link, images, videos.

• Keyword statistics (number of shares).

• Positivity and negativity rates of words.

• Polarity indexes of text and title.

• Subjectivity of text and titles.
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Web-analytics Popularity Dataset
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Figure 3: Comparison of Important Determinants of a Viral Post (40 batches).
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Web-analytics Popularity Dataset
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Figure 4: Posterior inclusion probabilities for hyper-g and DR-PEP (40 batches).
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Web-analytics Popularity Dataset
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Figure 5: Posterior inclusion probabilities for hyper-g and DR-PEP (40 batches of size 200 iterations).
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Illustrative example 2: Small Scale Data Simulation

• Also presented in Chen et al. (2008) and Li and Clyde (2015).

• n = 100, p = 3 predictors. Each simulation is repeated 100 times.

• Each predictor is drawn from a standard normal distribution with pairwise correlation given by

corr(Xi, Xj) = r|i−j|, 1 ≤ i < j ≤ p.

with (i) independent predictors (r = 0) and (ii) correlated predictors (r = 0.75).
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Scenario
Poisson (n = 100)

β0 β1 β2 β3

null -0.3 0 0 0

sparse -0.3 0.3 0 0

medium -0.3 0.3 0.2 0

full -0.3 0.3 0.2 -0.15

Table 1: Four simulation scenarios for Poisson regression assuming independent and correlated predictors.
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Null Sparse Medium Full

Prior 0 0.75 0 0.75 0 0.75 0 0.75

g-prior 87 93 74 36 29 0 5 0

hyper g-prior 59 71 72 41 45 3 21 2

hyper g/n-prior 81 83 72 42 38 1 13 1

MG hyper g-prior∗ 84 90 72 37 32 0 10 0

CR PEP 88 95 76 35 27 0 5 0

CR PEP hyper-δ 71 75 68 44 44 4 18 3

CR PEP hyper-δ/n 83 91 80 40 30 0 11 0

DR PEP 90 95 73 32 28 0 5 0

DR PEP hyper-δ 91 97 68 30 25 0 4 0

DR PEP hyper-δ/n 94 95 69 28 20 0 3 0

Table 2: Number of times that the MAP model corresponds to the true model for 100 simulated datasets; column-wise

largest value is in red.
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Concluding remarks

• We have extended PEP-variable selection for GLMs

• Main problems

– Definition of the power-likelihood - we have presented two alternatives

– Computation - we have used an augmented Gibbs variable selection sampler

• CR-PEP and DR-PEP are more parsimonious than g-priors with similar properties.

• Work must be done to prove consistency in the general setup and extend methodology for large p,

small n problems.

• Computation should be improved to be implemented in big data:

EMVS (Rockova and George, 2014, JASA) or other fast alternatives should be explored.
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Future plans: Moving towards really Big datasets

Ideas for Large p – small n problems

• In PEP, use LASSO baseline to result in a combination of LASSO-g-prior properties.

• Implement EM variable selection for PEP and general type of priors.

• Use population based MCMCs ideas and approaches partitioning the model space.

Ideas for Large n – reasonable p problems

• Use sequential updating of variable selection techniques to enable the application in sequentially

collected data (common in web-analytics).

• Borrow ideas from meta-analysis for splitting the analysis in sub-samples and then combining

information.
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Illustrative example 3: Pima Indians dataset

• Pima Indians diabetes data set (Ripley, 1996).

• n = 532 binary responses on diabetes presence (present=1, not present=0) according to the WHO

criteria for signs of diabetes.

• p = 7 potential covariates which are listed in Table 3 (see next slide).

• The data also used by Holmes and Held (2006, Bayesian Analysis) and Bové and Held (2011,

Bayesian Analysis).

• Beta-binomial prior on model space.
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Covariate Description

X1 Number of pregnancies

X2 Plasma glucose concentration (mg/dl)

X3 Diastolic blood pressure (mm Hg)

X4 Triceps skin fold thickness (mm)

X5 Body mass index (kg/m2)

X6 Diabetes pedigree function

X7 Age

Table 3: Potential predictors in the Pima Indians diabetes data set.
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Pima indians dataset
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Figure 6: Boxplots of batched estimates of the posterior inclusion probabilities (40 batches of size 1000).


