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1. Motivation

AIM: To develop an objective and fully automatic Bayesian
variable selection procedure without the need of specifying
any tuning parameters.

WHY:
(a) Information about the regression coefficients is usually
not available;
(b) We wish to avoid Jeffreys-Lindley-Bartlett paradox.

Previous related work served as basis
• Intrinsic priors (Berger and Pericchi, 1996)
• Expected-posterior (EP) priors (Pérez and Berger, 2002)

Some characteristics
Are implemented in normal regression and probit models.
The implementation in GLMs is challenging.
Large sample approximations can not be applied due to
the use of minimal training samples.

2. Expected Posterior Priors (EPP)

• Expected-posterior prior (EPP) is the posterior distri-
bution of the parameter vector θ` for model M`, averaged
over all possible imaginary samples y∗ = (y∗1 , . . . , y

∗
n∗)

T

coming from the predictive distribution m0(y
∗) of a refer-

ence model M0.
• The EPP is given by

πEPP` (θ`) =

∫
πN` (θ`|y∗)m0(y

∗) dy∗ , (1)

where
πN` (θ`|y∗) =

f`(y
∗|θ`)πN` (θ`)

m`(y
∗)

m0(y
∗) =

∫
f0(y

∗|θ0)πN0 (θ0)dθ0 . (2)

–M0: reference model; M`: current model;
– θκ: parameter vector of model Mκ for κ ∈ {`, 0};
– πN` (θ`): baseline prior of M`;
– πN` (θ`|y∗): posterior of θ` under M` with prior πN` (θ`);
–mκ(y

∗): marginal likelihood of Mκ; κ ∈ {`, 0}.
•M0: set to the constant model.

3. Power-Expected-Posterior (PEP) Priors

Fouskakis et al. (2015):

πEPP` (θ`)︸ ︷︷ ︸w� =

∫
πN` (θ`|y∗)︸ ︷︷ ︸w� mN

0 (y∗)︸ ︷︷ ︸w� dy∗

πPEP` (θ`; δ) =

∫
πN` (θ`|y∗, δ)︸ ︷︷ ︸w� mN

0 (y∗|δ)︸ ︷︷ ︸w� dy∗ (3)

we substitute the likelihood terms with
powered-versions of the likelihoods (i.e.
they are raised to the power of 1/δ).

PEP priors solve the following problems:
•Dependence of training sample size.
• Sensitivity to the selection of specific sub-samples.
• The prior is informative for models with p→ n.

Features of PEP
• At the same time the PEP prior is a fully objective method

and shares the advantages of Intrinsic Priors and EPPs.
•We choose δ = n∗, n∗ = n and X∗` = X`; by this way we

dispense with the selection of the training samples.
For Normal models
• The PEP prior (Fouskakis et al., 2015)

– is robust with respect to the training sample size
– is not informative when d` is close to n.
• The PEP prior can be expressed as a mixture of g-priors

(Fouskakis, Ntzoufras and Pericchi, 2016).
• The Power-conditional-expected-posterior (PCEP) prior

(Fouskakis and Ntzoufras, 2016) is similar to the g-prior
with (i) more complicated variance structure, (ii) more dis-
persed and (iii) more parsimonious than the g-prior.
• PEP and PCEP⇒ consistent variable selection methods.

4. Extension to Generalized Linear Models

4.1 Definitions of the power-likelihood

Density-normalized power likelihood
For the Normal case, the definition of the power-likelihood
seems quite clear via the normalization of the power likeli-
hood:

f (y|µ, σ2, δ) = f (y|µ, σ2)1/δ∫
f (y|µ, σ2)1/δdy

since

f (y|µ, σ2) ∼ N(µ, σ2)⇒ f (y|µ, σ2, δ) = N(µ, δ σ2).

This is not the case for all distributions in the exponential
family and hence for GLMs.

Alternative definitions of the power-likelihood
In the PEP representation (3), consider the unormalized
power-likelihood and then normalize the posterior (which
is also the approach in Ibrahim and Chen (2000). Hence

πN` (θ`|y∗, δ) =
f`(y

∗|θ`)1/δπN` (θ`)∫
f`(y

∗|θ`)1/δπN` (θ`)dθ`

What about mN
0 (y∗|δ)? ⇒ Two alternatives:

(a) Diffuse Reference PEP (DR-PEP)
Consider the unormalized power-likelihood and then
normalize mN

0 :

mN
0 (y∗ | δ) =

∫
f0(y

∗|θ0)1/δπN0 (θ0)dθ0∫ ∫
f0(y∗|θ0)1/δπN0 (θ0)dθ0dy∗

.

(b) Concentrated Reference PEP (CR-PEP)
Consider the original likelihood (without introducing any
further uncertainty) with the marginal likelihood m0(y

∗ | δ)
given by (2).

The expected-posterior interpretation is retained with the
first prior being more diffuse than the second.

4.2 Comparisons in the normal case
•DR-PEP prior is the same with the original PEP prior.
• Both DR and CR-PEP priors are consistent.
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Figure 1: Log-variance multipliers of the DR-PEP, CR-PEP
and g-priors versus sample size for d` = 5, 10, 50.

4.3 A Gibbs based Variable Selection Sampler
We use an MCMC scheme with a full data augmentation:
• For each model γ, we introduce a complement of βγ de-

noted by β\γ for all coefficients not included in the model.

• A pseudoprior πγ(β\γ) is used as a proposal.

• Linear predictor: ηi =

p∑
j=0

Xijγjbγ,j;

bγ,j is the element of bγ = (βγ,β\γ) for each Xj.
• A latent variable β0 to represent the parameter(s) of

model M0.
• A latent vector of imaginary data y∗.
• A Gibbs based variable selection algorithm is built on the

augmented posterior

πDRPEPγ (βγ,β\γγ,y
∗, β0|y) ∝

∝ fγ(y|βγ)

[
fγ(y

∗|βγ)f0(y∗|β0)
]1/δ∫

fγ(y∗|βγ)1/δπNγ (βγ)dβγ
πNγ (βγ)π

N
γ (β\γ)π

N
0 (β0)π(γ)

•We use Laplace approximation to evaluate the integral in
the denominator.
• Jeffreys prior as a baseline: πNγ (βγ) ∝ |XT

γW (βγ)Xγ|1/2 .

5. Hyper-delta PEP priors

Similarly to the hyper-g (Liang et al., 2008), the hyper-delta
prior which introduces the prior

δ

1 + δ
∼ Beta

(
1,
a

2
− 1
)
.

•We use a = 3 as suggested by Liang et al. (2008, JASA).
• δ
1+δ has an interpretation similar to a shrinkage parame-
ter since it accounts for the proportion of information (in
data-points) coming from the actual data when n = n∗.
• Another alternative option would be a hyper-δ/n prior.
•One additional step in the MCMC for δ. Use Metropolis-

Hastings with proposal δ′ from q(δ′|δ) = Gamma(δ, 1).

The hyper-δ DR-PEP prior can be approximated by

πDRPEPγ (βγ) ≈ (4)∫ ∫
fNdγ

(
βγ; β̂∗γ, δ

(
X∗Tγ W ∗γX

∗
γ

)−1)
mN

0 (y
∗|δ)π(δ)dy∗dδ,

where β̂∗γ is the MLE for y∗ and W ∗γ = Wγ(β̂
∗
γ).

This approximation cannot be applied when using
EPPs with minimal training samples.

6. Simulation study

Scenario Logistic (n = 100) Poisson (n = 100)
β0 β1 β2 β3 β4 β5 β0 β1 β2 β3

null 0.1 0 0 0 0 0 -0.3 0 0 0
sparse 0.1 0.7 0 0 0 0 -0.3 0.3 0 0
medium 0.1 1.6 0.8 -1.5 0 0 -0.3 0.3 0.2 0
full 0.1 1.75 1.5 -1.1 -1.4 0.5 -0.3 0.3 0.2 -0.15
Table 1: Logistic and Poisson regression scenarios for Sim-
ulation Study 1 using independent (r = 0) and correlated
predictors (r = 0.75).

Figure 2: Posterior inclusion probabilities for Simulation
Study 1 from 100 replicated samples of the null, sparse,
medium and full logistic regression model scenarios with
correlated predictors (r = 0.75).

Table 2: Number of simulated samples (over 100 replica-
tions) that the MAP model coincides with the true model for
the Poisson case in Simulation Study 1 (row-wise largest
value in bold).

7. Conclusions

•We extended the PEP prior formulation through the use
of unnormalized power-likelihoods.
• They retain the features of the original PEP formulation.
•Hyper-δ and δ/n analogues of hyper-g priors do not suf-

fer from the inflation of inclusion probabilities for non-
important effects.
•DR-PEP seems that it is rather robust with respect to the

fixed vs. random specification.

Acknowledgements – Funding Details

This work was supported by the Research Centre of the Athens University of Eco-
nomics and Business (Funding program Action 2 for the support of basic research).

References

Berger, J. O. and Pericchi, L. R. (1996), ‘The intrinsic Bayes factor for model selection
and prediction’, Journal of the American Statistical Association 91, 109–122.

Fouskakis, D. and Ntzoufras, I. (2016), ‘Power-conditional-expected priors: Using g-
priors with random imaginary data for variable selection’, Journal of Computational
and Graphical Statistics (forthcoming); arXiv:1307.2449 [stat.CO] .

Fouskakis, D., Ntzoufras, I. and Draper, D. (2015), ‘Power-expected-posterior priors
for variable selection in Gaussian linear models’, Bayesian Analysis 10, 75–107.

Fouskakis, D., Ntzoufras, I. and Pericchi, L. R. (2016), ‘On using sufficient statis-
tics in (power) expected-posterior-priors for Bayesian model comparison’, (work
in progress); early presentation is available at http://www.math.ntua.gr/
˜fouskakis/Conferences/Cancun/Presentation_Cancun.pdf .

Fouskakis, D., Ntzoufras, I. and Perrakis, K. (2016), ‘Power-Expected-Posterior Priors
for Generalized Linear Models’, available at http://stat-athens.aueb.
gr/˜jbn/papers/files/42_Fouskakis_Ntzoufras_Perrakis_2016_
GLMPEP_v3.pdf .

Ibrahim, J. G. and Chen, M.-H. (2000), ‘Power prior distributions for regression mod-
els’, Statistical Science 15, 46–60.

Liang, F., Paulo, R., Molina, G., Clyde, M. A. and Berger, J. O. (2008), ‘Mixtures of
g-priors for Bayesian variable selection’, Journal of the American Statistical Asso-
ciation 103, 410–423.
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