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Synopsis

1. From the expected-posterior prior (EPP) to the power-expected-posterior

(PEP) prior

2. Alternative definitions of the power likelihood in PEP-priors

3. Implementing the method in GLMs (MCMC algorithm)

4. Illustrations

5. Using Mixtures of PEP priors

6. Illustrations (continued)

7. Discussion
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1 Introduction: Model Selection and

Expected-Posterior Priors

Within the Bayesian framework the comparison between models M0 and M1 is

evaluated via the Posterior Odds (PO)

PO01 ≡
π(M0|y)

π(M1|y)
=

m0(y)

m1(y)
×

π(M0)

π(M1)
= BF01 × O01 (1)

which is a function of the Bayes Factor (BF01) and the Prior Odds (O01).

In the above mℓ(y) is the marginal likelihood under model Mℓ and π(Mℓ) is the

prior probability of model Mℓ.

The marginal likelihood of model Mℓ is given by

mℓ(y) =

∫
fℓ(y|θℓ)πℓ(θℓ)dθℓ, (2)

where fℓ(y|θℓ) is the likelihood under model Mℓ with parameters θℓ and πℓ(θℓ) is

the prior distribution of model parameters given model Mℓ.
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Expected-Posterior Priors (EPP)

• Pérez & Berger (2002, Biometrika) developed priors for use in model

comparison, through utilization of the device of imaginary training samples.

• They defined the expected-posterior prior (EPP) as the posterior

distribution of a parameter vector for the model under consideration, averaged

over all possible imaginary samples y∗ = (y∗
1 , . . . , y∗

n∗)T coming from a

“suitable” predictive distribution m∗(y∗).

Hence the EPP for the parameters of any model Mℓ is

πEPP
ℓ (θℓ) =

∫
πN

ℓ (θℓ|y
∗) m∗(y∗) dy∗ , (3)

where πN
ℓ (θℓ|y

∗) is the posterior of θℓ for model Mℓ using a baseline prior

πN
ℓ (θℓ) and data y∗.
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Features of EPP

• Impropriety of baseline priors causes no indeterminacy. Impropriety in m∗ also

does not cause indeterminacy, because it is common to the EPPs for all models.

• It makes priors compatible across models, through their dependence on a

common data distribution.

• Usually we consider as m∗ the marginal likelihood of a reference model.

– Usual choices in regression models are the null and full model.

– Here we consider the null, i.e. m∗(y∗) = mN
0 (y∗).

• In nested cases usually the reference model is the simplest model. In this case

EPP is the same as the Intrinsic Prior.

• We choose the smallest n∗ for which the posterior is proper: minimal training

sample size.

• Main Issue: In variable selection problems specification of X∗
ℓ .
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Power-Expected-Posterior (PEP) Priors

Fouskakis, Ntzoufras and Draper (2015, Bayesian Analysis).

πEPP
ℓ (θℓ)︸ ︷︷ ︸wwÄ

=

∫
πN

ℓ (θℓ|y
∗)︸ ︷︷ ︸wwÄ

mN
0 (y∗)︸ ︷︷ ︸wwÄ

dy∗

πPEP
ℓ (θℓ; δ) =

∫
πN

ℓ (θℓ|y
∗, δ)︸ ︷︷ ︸wwÄ

mN
0 (y∗|δ)︸ ︷︷ ︸wwÄ

dy∗

we substitute the likelihood terms with powered-

versions of the likelihoods

(i.e. they are raised to the power of 1/δ).
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Features of PEP

PEP priors method amalgamates ideas from Intrinsic Priors, EPPs, Unit

Information Priors and Power Priors, to unify ideas of Non-Data Objective Priors.

PEP priors solve the following problems:

• Dependence of training sample size.

• Lack of robustness with respect to the sample irregularities.

• Excessive weight of the prior when the number of parameters is close to the

number of data.

At the same time the PEP prior is a fully objective method and shares the

advantages of Intrinsic Priors and EPPs.

• We choose δ = n∗, n∗ = n and therefore X∗
ℓ = Xℓ; by this way we dispense

with the selection of the training samples.
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Sensitivity analysis on imaginary sample size

Figure 1: Posterior marginal inclusion probabilities, for n∗ values from 17 to n = 50, with the PEP

prior methodology (simulated example for a variable selection problem in normal linear model).
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Features of PEP (cont.)

For Normal models

• In Fouskakis, Ntzoufras & Draper, 2015 (Bayesian Analysis) we illustrated the

the PEP prior approach

– is robust with respect to the training sample size

– is not informative when dℓ is close to n.

• The PEP prior can be expressed as a mixture of g-priors (Fouskakis, Ntzoufras

& Pericchi, unpublished work, presented in ISBA2014).

• The Power-conditional-expected-posterior (PCEP) prior (Fouskakis &

Ntzoufras, 2015, to appear in JCGS) is similar to the g-prior with (i) more

complicated variance structure, (ii) more dispersed and (iii) more parsimonious

than the g-prior

• Both PEP and PCEP are leading to consistent variable selection methods.
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2 Extension to Generalized Linear Models

Definitions of the power-likelihood

Normal regression models: the definition of the power-likelihood seems quite

clear.

We have worked with the density-normalized power likelihood since for any normal

distribution with mean µ and variance σ2 it holds that

f(y|µ, σ2, δ) =
f(y|µ, σ2)1/δ

∫
f(y|µ, σ2)1/δdy

= N(µ, δ σ2)

This is not the case for all distributions in the exponential family and hence for

GLMs.
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Definitions of the power-likelihood

Density-normalized power likelihoods in GLMs: May end up to a

distribution which is not the same as the one in the original model formulation.

• In binary logistic regression ⇒ power likelihood is still Bernoulli with success

probability

π1/δ

π1/δ + (1 − π)1/δ
.

• This is not the case for the Binomial and the Poisson models resulting is some

cumbersome distributions which increase computational complexity (without

any obvious gain).
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Alternative definitions of the power-likelihood

We consider the PEP representation

πPEP
ℓ (θℓ; δ) =

∫
πN

ℓ (θℓ|y
∗, δ)mN

0 (y∗|δ)dy∗

with δ controlling the amount of prior-information accounted in the final posterior

(and the dispersion of the prior distribution).

We now consider the unormalized power-likelihood and then normalize the

posterior (which is also the approach in Ibrahim and Chen, 2000, Stat.Science).

Hence

πN
ℓ (θℓ|y

∗, δ) =
fℓ(y

∗|θℓ)
1/δπN

ℓ (θℓ)∫
fℓ(y∗|θℓ)1/δπN

ℓ (θℓ)dθℓ

What about mN
0 (y∗|δ)?
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Two alternatives for the marginal distribution

• Consider the unormalized power-likelihood and then normalize mN
0 :

mN
0 (y∗, δ) =

∫
f0(y

∗|θ0)
1/δπN

0 (θ0)dθ0∫ ∫
f0(y∗|θ0)1/δπN

0 (θ0)dθ0dy∗
.

This will be noted as the Diffuse Reference PEP (DR-PEP).

• Consider the original likelihood (without introducing any further

uncertainty) i.e.

mN
0 (y∗, δ) = m0(y

∗) =

∫
f0(y

∗|θ0)π
N
0 (θ0)dθ0 .

This will be noted as the Concentrated Reference PEP (CR-PEP).

In both cases the expected-posterior interpretation is retained with the first prior

being more diffuse than the second.
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Features of the diffuse-reference PEP

• Still has the interpretation of a posterior density given some imaginary data y∗

“weighted” by n∗/δ data-points and averaged over a data distribution.

• The same type of uncertainty is introduced both in the “posterior” and the

predictive (averaged) part.

• In normal regression models

– Equivalent to using the the density-normalized power likelihood.

– It is equivalent to PEP and PCEP.

– It leads to a consistent model selection method.

– It is more dispersed (and parsimonious) than the g-prior.
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Features of the concentrated-reference PEP

• Still has the interpretation of a posterior density given some imaginary data y∗

“weighted” by n∗/δ data-points averaged over the predictive distribution of

the actual reference model.

• Different type of uncertainty is introduced both in the “posterior” and the

predictive (averaged) part.

• Less dispersed than the diffuse version of PEP.

• In normal regression models

– It is less dispersed (and parsimonious) than PEP (and DR-PEP) and more

dispersed (and parsimonious) than the g-prior.

– It leads to a consistent model selection method.
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Comparison of the two approaches in normal regression

Volume variance multipliers in normal regression models

The volume of the variance-covariance matrix in the g-prior and in the two PEP

approaches is given by
∣∣∣Var(βℓ|Mℓ)

∣∣∣ = ϕ(n, dℓ) × |XT
ℓ Xℓ|

−1

• G-prior with g = n ⇒ ϕ(n, dℓ) = ndℓ

• DR-PEP prior ⇒ ϕ(n, dℓ) = n2dℓ

[
2n+1

(n+1)2

]dℓ−d0

• CR-PEP prior ⇒ ϕ(n, dℓ) = ndℓ

[
n2+2n

n2+2n+1

]dℓ
[

n2+n+2
n+2

]d0

.
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Figure 2: Log-variance multipliers of the DR-PEP, CR-PEP and g-priors versus

sample size for dℓ = 5, 10, 50.
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Formulation in GLMs

• Mℓ → γ: Binary variable inclusion indicators (γ) in order to search the model

space using Gibbs sampling (George and McCulloch, 1993, JASA)

• Yi ∼ a distribution member of the exponential family.

The parameters of the distribution are associated with the linear predictor via

a link function.

• p covariates.

• X is the n × (p + 1) data matrix with the first column to be the constant and

rest containing the data of each covariate.

• Xγ is the n × dγ data matrix for model γ with dγ =
∑p

j=0 γj covariates.

• βγ is the parameter vector of length dγ with the effects of each covariate

• The linear predictor vector is given by ηγ = Xγβγ
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We focus our presentation on the DR-PEP (computation is similar for the

CR-PEP)

The prior

πDRPEP
γ (βγ) ∝

∫ ∫ {
fγ(y∗|βγ)1/δπN

γ (βγ)∫
fγ(y∗|βγ)1/δπN

γ (βγ)dβγ

}
f0(y

∗|β0)
1/δπN

0 (β0)dβ0dy∗

Two possible approaches to simplify the above expression

• The posterior part can be well approximated by a normal distribution (Chen

and Ibrahim, 2003, Stat.Sinica)

• Integral in the denominator can be well approximated using Laplace

approximation
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The posterior

πDRPEP
γ (βγ |y) ∝ fγ (y|βγ )

∫ ∫
fγ (y∗|βγ )1/δπN

γ (βγ )∫
fγ (y∗|βγ )1/δπN

γ (βγ )dβγ

f0(y
∗|β0)

1/δπN
0 (β0)dβ0dy

∗

The marginal likelihood

mDRPEP
γ (y) ∝

∫ ∫ ∫
fγ (y|βγ )

fγ (y∗|βγ )1/δπN
γ (βγ )∫

fγ (y∗|βγ )1/δπN
γ (βγ )dβγ

f0(y
∗|β0)

1/δπN
0 (β0)dβγ dβ0dy

∗
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In order to estimate the posterior model probabilities, we use an MCMC scheme

with full data augmentation by introducing

• For each model γ, we introduce a complement of βγ denoted by β\γ for all

coefficients not included in the model.

• A pseudoprior πγ(β\γ) is defined to play the role of a proposal and the linear

predictor can be rewritten as ηi =
∑p

j=0 Xijγjbγ,j where bγ,j is the element of

bγ = (βγ , β\γ) which corresponds to covariate Xj .

• A latent parameter β0 for the parameter of the reference model

• A latent vector of imaginary data y∗
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• We build a Gibbs based variable selection algorithm providing samples from

the augmented posterior

πDRPEP
γ (βγ , β\γ γ, y∗, β0|y)

∝
fγ (y|βγ )

[
fγ (y∗|βγ )f0(y

∗|β0)
]1/δ

∫
fγ (y∗|βγ )1/δπN

γ (βγ )dβγ

πN
γ (βγ )πN

γ (β\γ )πN
0 (β0)π(γ)

• We use Laplace approximation to evaluate the integral in the denominator.

• In this work, we use the Jeffreys prior as a baseline prior.
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The MCMC algorithm - Gibbs variable selection for PEP

For each iteration t (t = 1, 2, ..., N),

Step 1: For j = 1, . . . , p, we update γj ∼ Bernoulli
(

Oj

1+Oj

)
, with

Step 2: We update βγ from the full conditional posterior (given the current

values of γ and y∗) using a Metropolis step and proposals build using MLEs

from a model with response (y, y∗) and weights w = (1n, δ−11n∗)

Step 3: Update β\γ from the pseudo-prior πγ(β\γ) = Nd\γ

(
β̂\γ , Id\γ

σ̂2
β\γ

)
.

Step 4: Sample β0 from the full conditional posterior (given y∗) using a

Metropolis step with a normal proposal with mean the MLE with response y∗

and variance equal to δσ̂2
β̂∗
0

with the latter being the corresponding variance of

the MLE.
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Step 5: Sample y∗ from the full conditional posterior (given βγ , β0 and γ) using a

Metropolis step.

• The proposal depends on the model likelihood i.e. the stochastic part of the

model; for details see next slide.

• In the acceptance probabilities we need to evaluate the marginal likelihoods

mN
γ (y∗|δ) and mN

γ (y∗′

|δ) which are computed by using Laplace

approximation.
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Details about the proposal for y∗
i

For y∗ we construct proposals depending on the likelihood of the model.

Binomial response: A product binomial proposal distribution is used with

probability of success equal to

πi =
(πD

0,i πγ,i)
1/δ

(πD
0,i πγ,i)1/δ + [(1 − π0,i)D(1 − πγ,i)]1/δ

with D = 1 for DR-PEP and D = δ for CR-PEP, π0,i =
[
1 + exp(−β0)

]−1
and

πγ,i =
[
1 + exp(−ηγ,i)

]−1
; where ηγ,i is the i-th element of ηγ = Xγβγ .

Poisson regression:

CR-PEP: A product Poisson proposal distribution is used with mean equal

to λi = λ0,iλ
1/δ
γ,i , with λ0,i = exp(β0) and λγ,i = exp(ηγ,i).

DR-PEP: The same strategy for DR-PEP failed and we have used a simple

Poisson proposal with mean λi = y∗
i .
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Further Remarks about the MCMC

• Metropolis-Hastings steps are not needed for β\γ and γ

– β\γ is sampled directly from the pseudo-prior distribution.

– γ is sampled directly from the full conditional Bernoulli distribution.

• The pseudo-prior of β\γ serves the role of the proposal and it does not influence

the posterior but it does influence the efficiency of the MCMC algorithm.

• No specific fine tuning is required for the proposal distributions of βγ and β0

(normal proposals based on MLEs).
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Illustrative example 1: Simulated Binomial data

n = 200 binary responses with p = 10 potential covariates.

For i = 1, . . . , n

Xij ∼ N(0, 1) for j = 1, . . . , 5

Xij ∼ N(0.3Xi1 + 0.5Xi2 + 0.7Xi3 + 0.9Xi4 + 1.1Xi5, 1) for j = 6, . . . , 10

Yi ∼ Bernoulli(pi)

Three scenarios:

Null: logit(pi)=0.1

Sparse: logit(pi)=0.1 −0.9Xi3 +1.2Xi7 +0.4Xi10

Dense: logit(pi)=0.1 + 0.6Xi1−0.9Xi3 + Xi5 + 0.9Xi6+1.2Xi7 − 1.2Xi8 − 0.5Xi9
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Scenario 1 (Null): True model = null

1 2 3 4 5 6 7 8 9 1 00.00.1
0.20.3

0.40.5
0.60.7

0.80.9
1.0

g  pr i o rh y pe r  g  pr i o rh y pe r  g n  pr i o rM G h y pe r  g  pr i o rC R− P E P p r i o rD R− P E P p r i o r

Figure 3: Posterior inclusion probabilities from 100 samples.

MG hyper-g prior: Maruyama & George (2011, Annals of Statistics) prior.
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Scenario 2 (Sparse): True model = 0.1 − 0.9X3 + 1.2X7 + 0.4X10

1 2 3 4 5 6 7 8 9 1 00.00.1
0.20.3

0.40.5
0.60.7

0.80.9
1.0

g  pr i o rh y pe r  g  pr i o rh y pe r  g n  pr i o rM G h y pe r  g  pr i o rC R− P E P p r i o rD R− P E P p r i o r

Figure 4: Posterior inclusion probabilities from 100 samples.

MG hyper-g prior: Maruyama & George (2011, Annals of Statistics) prior.
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Scenario 3 (Dense)

True model = 0.1 + 0.6X1 − 0.9X3 + X5 + 0.9X6 + 1.2X7 − 1.2X8 − 0.5X9
1 2 3 4 5 6 7 8 9 1 00.00.1

0.20.3
0.40.5

0.60.7
0.80.9

1.0

g  pr i o rh y pe r  g  pr i o rh y pe r  g n  pr i o rM G h y pe r  g  pr i o rC R− P E P p r i o rD R− P E P p r i o r

Figure 5: Posterior inclusion probabilities from 100 samples.

MG hyper-g prior: Maruyama & George (2011, Annals of Statistics) prior.
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3 Hyper-delta PEP priors

PEP priors with fixed δ are similar in notion and behaviour as the g-priors.

We extend our approach by using hyper-priors for δ in a similar manner as hyper-g

priors do.

Under this setting, the hyper-δ PEP prior can be approximated by

πPEP
γ (βγ) ≈

∫ ∫
fNdγ

(
βγ ; β̂∗

γ , δ
(
X∗T

γ H∗
γX

∗
γ

)−1
)
mN

0 (y∗|δ)π(δ)dy∗dδ, (4)

where β̂∗
γ is the MLE given the imaginary data.

This approximation cannot be applied when using EPPs with minimal training

samples.
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Similarly to the hyper-g (Liang et al. , 2008, JASA), the hyper-delta prior is given

by

π(δ) =
a − 2

2
(1 + δ)−a/2,

which introduces the following prior for δ/(1 + δ)

δ

1 + δ
∼ Beta

(
1,

a

2
− 1

)

• We use a = 3 as suggested by Liang et al. (2008, JASA).

• δ
1+δ has an interpretation similar to a shrinkage parameter since it accounts for

the proportion of information (in data-points) coming from the actual data

when n = n∗ — in the general case this will be given by n/(n + n∗/δ).

• Another alternative option would be a hyper-δ/n prior of the form

π(δ) =
a − 2

2n

(
1 +

δ

n

)−a/2

.
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Additional MCMC step for δ

Step 6: Sample of δ from the full conditional posterior (given the current values of

βγ , β0, y∗ and γ).

(a) Propose δ′ from q(δ′|δ) = Gamma(δ, 1).

(b) Compute the Laplace approximations m̂N
γ (y∗|δ) and m̂N

γ (y∗|δ′).

(c) Accept the proposed move with probability αδ = min{1, Aδ}, where Aδ is

given by

Aδ =
{

fγ(y∗|βγ)f0(y
∗|β0)

}∆δ

×
π(δ′)

π(δ)
×

m̂N
γ (y∗|δ)

m̂N
γ (y∗|δ′)

×
q(δ|δ′)

q(δ′|δ)
.

where ∆δ = 1/δ′ − 1/δ
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4 Illustrative examples

• A real life example

• A Poisson simulated study
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Illustrative example 2: Pima Indians dataset

• Pima Indians diabetes data set (Ripley, 1996).

• n = 532 binary responses on diabetes presence (present=1, not present=0)

according to the WHO criteria for signs of diabetes.

• p = 7 potential covariates which are listed in Table 1 (see next slide).

• The data also used by Holmes and Held (2006, Bayesian Analysis) and Bové

and Held (2011, Bayesian Analysis).

• Beta-binomial prior on model space.
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Covariate Description

X1 Number of pregnancies

X2 Plasma glucose concentration (mg/dl)

X3 Diastolic blood pressure (mm Hg)

X4 Triceps skin fold thickness (mm)

X5 Body mass index (kg/m2)

X6 Diabetes pedigree function

X7 Age

Table 1: Potential predictors in the Pima Indians diabetes data set.
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Pima indians dataset
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 δ
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Figure 6: Boxplots of batched estimates of the posterior inclusion probabilities (40 batches

of size 1000).
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Pima indians dataset

Figure 7: MCMC plots for the shrinkage factor δ/(1 + δ) for the CR-PEP and DR-PEP

hyper-δ priors (40000 iterations).
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Illustrative example 3: Poisson Simulated data

• Also presented in Chen et al. (2008) and Li and Clyde (2015).

• n = 100, p = 3 predictors. Each simulation is repeated 100 times.

• Each predictor is drawn from a standard normal distribution with pairwise

correlation given by

corr(Xi, Xj) = r|i−j|, 1 ≤ i < j ≤ p.

with (i) independent predictors (r = 0) and (ii) correlated predictors

(r = 0.75).
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Scenario
Poisson (n = 100)

β0 β1 β2 β3

null -0.3 0 0 0

sparse -0.3 0.3 0 0

medium -0.3 0.3 0.2 0

full -0.3 0.3 0.2 -0.15

Table 2: Four simulation scenarios for Poisson regression assuming independent and

correlated predictors.
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Null Sparse Medium Full

Prior 0 0.75 0 0.75 0 0.75 0 0.75

g-prior 87 93 74 36 29 0 5 0

hyper g-prior 59 71 72 41 45 3 21 2

hyper g/n-prior 81 83 72 42 38 1 13 1

MG hyper g-prior∗ 84 90 72 37 32 0 10 0

CR PEP 88 95 76 35 27 0 5 0

CR PEP hyper-δ 71 75 68 44 44 4 18 3

CR PEP hyper-δ/n 83 91 80 40 30 0 11 0

DR PEP 90 95 73 32 28 0 5 0

DR PEP hyper-δ 91 97 68 30 25 0 4 0

DR PEP hyper-δ/n 94 95 69 28 20 0 3 0

Table 3: Number of times that the MAP model corresponds to the true model for 100

simulated datasets; column-wise largest value is in red.
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Comments on the rates of identifying the true model

i) Variable selection methods using PEP priors perform well; 6 out of the 8 best

MAP success patterns are observed in one of the PEP priors.

ii) Variable selection methods using PEP priors support more parsimonious

models than the competing methods.

iii) For the null and the sparse scenarios, PEP priors perform overall better than

the competing methods.

iv) For the medium model scenario, the PEP priors perform more or less equally

well to the other methods.

v) When the true model is the full model

– All methods generally fail in the correlated scenario

– The CR-PEP hyper-δ and δ/n priors are performing generally well in

comparison the the competing methods.

– The rest of the PEP priors have lower MAP success rates than the

competing methods using hyper-g priors.
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Current directions of research

• We are working to extend the consistency results for the GLMs setup

• Main direction: To extend the methodology in large p, small n problems.

• Use double exponential as baseline prior

– g-prior type of behaviour when dγ is smaller than n

– LASSO type of shrinkage and behaviour when dγ is bigger than n or we

have extreme collinearities

• What about computation?

EMVS (Rockova and George, 2014, JASA) or other fast alternatives should be

explored.
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Concuding remarks

• We have extended PEP-variable selection for GLMs

• Main problems

– Definition of the power-likelihood - we have presented two alternatives

– Computation - we have used an augmented Gibbs variable selection sampler

• CR-PEP and DR-PEP are more parsimonious than g-priors with similar

properties.

• Work must be done to prove consistency in the general setup and extend

methodology for large p, small n problems.



Fouskakis, Ntzoufras & Perrakis: Power-Expected-Posterior Priors in GLMs 45



Fouskakis, Ntzoufras & Perrakis: Power-Expected-Posterior Priors in GLMs 46

Appendix A: Detailed description of the MCMC algorithm

Step 1: For j = 1, . . . , p, update γj ∼ Bernoulli
(

Oj

1+Oj

)
, with

Oj =
fγ1

j
(y|βγ1

j
)

fγ0

j
(y|βγ0

j
)
×

[
fγ1

j
(y∗|βγ1

j
)

fγ0

j
(y∗|βγ0

j
)

]1/δ

×
πN

γ1

j
(βγ1

j
)

πN
γ0

j

(βγ0

j
)
×

πγ1

j
(β\γ1

j
)

πγ0

j
(β\γ0

j
)
×

m̂N
γ0

j
(y∗|δ)

m̂N
γ1

j

(y∗|δ)
×

π(γ1
j )

π(γ0
j )

.

where

• γ1
j = (γj = 1, γ\j)

• γ0
j = (γj = 0, γ\j)

• γ\j is γ without element j
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Step 2: Update βγ from the full conditional posterior (given the current values of

γ and y∗) using a Metropolis step.

(a) Propose β
′

γ from the proposal distribution q(βγ) = Ndγ
(β̃γ , Σ̃βγ

);

– β̃γ is the MLE with response (y, y∗) and weights w = (1n, δ−11n∗)

– Σ̃βγ
the corresponding estimated variance-covariance matrix of β̃γ .

(b) Accept the proposed values with probability αβγ
= min{1, Aβγ

}; where

Aβγ
is given by

Aβγ
=

fγ

(
y|β

′

γ

)

fγ

(
y|βγ

) ×

[
fγ

(
y∗|β

′

γ

)

fγ

(
y∗|βγ

)
]1/δ

×
πN

γ

(
β

′

γ

)

πN
γ

(
βγ

) ×
q
(
βγ

)

q
(
β

′

γ

) .

Step 3: Update β\γ from the pseudo-prior πγ(β\γ) = Nd\γ

(
β̂\γ , Id\γ

σ̂2
β\γ

)
.

Step 4: Sample β0 from the full conditional posterior (given the current values of

y∗) using a Metropolis step.

(a) Propose β
′

0 from q(β0) = N(β̂∗
0 , δσ̂2

β̂∗
0

);

– β̂∗
0 is the MLE with response y∗
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– σ̂β̂∗
0

is corrsponding standard error of β̂∗
0 .

(b) Accept the proposed move with probability

αβ0
= min



1,

[
f0

(
y∗|β

′

0

)

f0

(
y∗|β0

)
]1/δ

×
πN

0

(
β

′

0

)

πN
0

(
β0

) ×
q
(
β0

)

q
(
β

′

0

)



 .

Step 5: Sample y∗ from the full conditional posterior (given βγ , β0 and γ) using a

Metropolis step.

(a) Propose y∗′

from q(y∗); see Slide 25 for details.

(b) Compute m̂N
γ (y∗|δ) and m̂N

γ (y∗′

|δ) using Laplace approximation.

(c) Accept the proposed values with probability αy∗ = min{1, Ay∗}; where Ay∗

is given by

Ay∗ =

[
fγ(y∗′

|βγ)

fγ(y∗|βγ)
×

f0(y
∗′

|β0)

f0(y∗|β0)

]1/δ

×
m̂N

γ (y∗|δ)

m̂N
γ (y∗′ |δ)

×
q(y∗)

q(y∗′)
.



Fouskakis, Ntzoufras & Perrakis: Power-Expected-Posterior Priors in GLMs 49

Illustrative example 1: Simulated Binomial data (continued)

The following plots also include comparisons with hyper-delta PEP priors for

example 1.
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Scenario 1 (Null): True model = null

1 2 3 4 5 6 7 8 9 1 00.00.1
0.20.3

0.40.5
0.60.7

0.80.9
1.0

g  pr i o rh y pe r  gh y pe r  g nM G h y pe r  gC R− P E PC R− P E P h y pe r  δC R− P E P h y pe r  δ nD R− P E PD R− P E P h y pe r  δD R− P E P h y pe r  δ n

Figure 8: Posterior inclusion probabilities from 100 samples.

MG hyper-g prior: Maruyama & George (2011, Annals of Statistics) prior.
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Scenario 2 (Sparse): True model = 0.1 − 0.9X3 + 1.2X7 + 0.4X10

1 2 3 4 5 6 7 8 9 1 00.00.1
0.20.3

0.40.5
0.60.7

0.80.9
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g  pr i o rh y pe r  gh y pe r  g nM G h y pe r  gC R− P E PC R− P E P h y pe r  δC R− P E P h y pe r  δ nD R− P E PD R− P E P h y pe r  δD R− P E P h y pe r  δ n

Figure 9: Posterior inclusion probabilities from 100 samples.

MG hyper-g prior: Maruyama & George (2011, Annals of Statistics) prior.
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Scenario 3 (Dense)

True model = 0.1 + 0.6X1 − 0.9X3 + X5 + 0.9X6 + 1.2X7 − 1.2X8 − 0.5X9
1 2 3 4 5 6 7 8 9 1 00.00.1

0.20.3
0.40.5

0.60.7
0.80.9

1.0

g  pr i o rh y pe r  gh y pe r  g nM G h y pe r  gC R− P E PC R− P E P h y pe r  δC R− P E P h y pe r  δ nD R− P E PD R− P E P h y pe r  δD R− P E P h y pe r  δ n

Figure 10: Posterior inclusion probabilities from 100 samples.

MG hyper-g prior: Maruyama & George (2011, Annals of Statistics) prior.
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Illustrative example 3: Poisson Simulated data (continued)

Here, we will also find plots of posterior inclusion probabilities for each scenario of

simulated example 3.
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Independent CovariatesN u l l m o d e l
V a r i a b l e sPosteriorinclusionprobabil

ity
X 1 X 2 X 30.00.20.40.60

.81.0 g  pr i o rh y pe r  gh y pe r  gnM G h y pe r  gC R− P E PC R− P E P h y pe r  δC R− P E P h y pe r  δ nD R− P E PD R− P E P h y pe r  δD R− P E P h y pe r  δ nS pa r s e m o d e l :  X 1
V a r i a b l e sPosteriorinclusionprobabi

lity
X 1 X 2 X 30.00.20.40.6

0.81.0 g  pr i o rh y pe r  gh y pe r  gnM G h y pe r  gC R− P E PC R− P E P h y pe r  δC R− P E P h y pe r  δ nD R− P E PD R− P E P h y pe r  δD R− P E P h y pe r  δ nM e d i u m m o d e l :  X 1 + X 2
V a r i a b l e sPosteriorinclusionprobabi

lity
X 1 X 2 X 30.00.20.40.6

0.81.0 g  pr i o rh y pe r  gh y pe r  gnM G h y pe r  gC R− P E PC R− P E P h y pe r  δC R− P E P h y pe r  δ nD R− P E PD R− P E P h y pe r  δD R− P E P h y pe r  δ nF u l l m o d e l :  X 1 + X 2 + X 3
V a r i a b l e sPosteriorinclusionprobabi

lity
X 1 X 2 X 30.00.20.40.6

0.81.0 g  pr i o rh y pe r  gh y pe r  gnM G h y pe r  gC R− P E PC R− P E P h y pe r  δC R− P E P h y pe r  δ nD R− P E PD R− P E P h y pe r  δD R− P E P h y pe r  δ n

P o i s s o n r e g r e s s i o n s i m u l a t i o n : i n d e p e n d e n t p r e d i c t o r s
Figure 11: Posterior inclusion probabilities from 100 samples.
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Correlated CovariatesN u l l m o d e l
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P o i s s o n r e g r e s s i o n s i m u l a t i o n : c o r r e l a t e d p r e d i c t o r s
Figure 12: Posterior inclusion probabilities from 100 samples.
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