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1 Model Selection and the paradox

A Bayesian approach to inference under model uncertainty proceeds as follows.

Suppose

– response data y generated by a model Mℓ ∈ M.

– Each model specifies the distribution of y.

– βℓ is the parameter vector for model Mℓ.

– f(Mℓ) is the prior probability of model Mℓ.

Then posterior inference is based on posterior model probabilities

f(Mℓ|y) =
f(y|Mℓ)f(Mℓ)∑

mk∈M
f(y|Mk)f(Mk)

,

where f(y|Mℓ) is the marginal likelihood under model m and f(Mℓ) is the prior

probability of model Mℓ.
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Posterior odds and Bayes factors

Pairwise comparisons of any two models, mk and mℓ , are based on the Posterior

Odds (PO)

POk,ℓ ≡
f(Mk|y)

f(Mℓ|y)
=

f(y|Mk)

f(y|Mℓ)
×

f(Mk)

f(Mℓ)
= Bk,ℓ × Ok,ℓ

which is a function of the Bayes Factor Bk,ℓ and the Prior Odds Ok,ℓ.
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The Lindley-Bartlett-Jeffreys Paradox (1)

For a single model inference ⇒ a highly diffuse prior on the model

parameters is often used (to represent ignorance).

⇒ Posterior density takes the shape of the likelihood and is insensitive to the exact

value of the prior density function.

For multiple models inference ⇒ BFs (and POs) are quite sensitive to the

choice of the prior variance of model parameters.

⇒ For nested models, we support the simplest model with the evidence increasing

as the variance of the parameters increase ending up to support of more

parsimonious model no matter what data we have.

⇒ Under this approach, the procedure is quite informative since the data do not

contribute to the inference.

⇒ Improper priors cannot be used since the BFs depend on the undefined

normalizing constants of the priors.
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2 Prior Specification

Prior on the model space

• Uniform prior on the model space

f(Mℓ) =
1

|M|
.

In variable selection → it is equivalent of assuming that each covariate has prior

inclusion probability πj = 0.5 to enter in the model.

• Beta-Binomial hierarchical prior on the model size dℓ

dℓ ∼ Binomial(π, p) and π ∼ Beta(α, β),

where π is the probability of including one covariate in the model and p is the total

number of covariates under consideration.

If α = β = 1 then we have a uniform prior on the model size.
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Prior on model parameters

• Proper prior distributions (conjugate if available).

– For example in the case of the Gaussian regression models a popular choice

is the Zellner’s g-prior (Zellner, 1986).

– Main issue: Specification of hyperparameter g that controls the prior

variance.

– Large values of g → Bartlett’s paradox (e.g., Bartlett, 1957 Biometrika).

– For g = n ⇒ unit information prior (Kass & Wasserman, 1995, JASA).

– Beta prior on g
g+1 → Hyper-g prior (e.g. Liang et al. , 2008, JASA).

• Non-local priors (e.g. Johnson and Rossell, 2010, RSSS B).

– They have zero mass for values of the parameter under the null hypothesis.

– Products of independent normal moment priors.
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Prior on model parameters (cont.)

• Shrinkage priors.

– E.g. Bayesian Lasso (Park and Casella, 2008, JASA), horseshoe prior

(Carvalho et al. , 2010, Biometrika), etc.

• Improper (reference) priors (defined up to arbitrary constants).

– Objectivity.

– Jeffreys prior.

– Bayes factors cannot be determined.

• Priors defined via imaginary data.

– Power prior (Ibrahim & Chen, 2000, Statistical Science).

– Expected-Posterior prior (Pérez & Berger, 2002, Biometrika).

• Intrinsic priors.
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3 Expected-Posterior Priors (EPP)

Pérez & Berger (2002, Biometrika) developed expected-posterior prior (EPP).

Suitable for model comparison, using imaginary training samples.

The EPP is the posterior distribution of a parameter vector for a given model,

averaged over all possible imaginary samples y∗ coming from a “suitable”

predictive distribution m∗(y∗).

πE
ℓ (θℓ) =

∫
πN

ℓ (θℓ|y
∗) m∗(y∗) dy∗ , (1)

where πN
ℓ (θℓ|y

∗) is the posterior of θℓ for model Mℓ using a baseline prior πN
ℓ (θℓ)

and data y∗.
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Specification of the predictive distribution

Select m∗ to be the predictive distribution mN
0 (y∗) of a “reference” model M0

under the baseline prior πN
0 (θ0).

In the variable-selection the constant model is clearly a good reference model

since it is nested in all the models under consideration.

– It supports a-priori the parsimony principle assuming no causal structure for

the data.

– Simplifies calculations.

– Makes EPP approach equivalent to the arithmetic intrinsic Bayes factor

approach of Berger and Pericchi (1996, JASA).
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An attractive property

EPPs can avoid the impropriety of the baseline priors which cause problems in

Bayesian inference.

Impropriety in m∗ also does not cause indeterminacy, because m∗ is common to

the EPPs for all models.

[nevertheless EPP looses its nice interpretation as an average over all imaginary

samples coming from the predictive distribution.]
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3.1 EPPs for variable selection in Gaussian linear models

We consider models Mℓ (for ℓ = 0, 1) with

Parameters: θℓ = (βℓ , σ2
ℓ )

Likelihood:

(Y |Xℓ, βℓ, σ
2
ℓ , Mℓ) ∼ Nn(Xℓ βℓ , σ2

ℓ In) , (2)

Y = (Y1, . . . , Yn) is a vector of the responses,

Xℓ is an n × dℓ data/design matrix of the explanatory variables

In is the n × n identity matrix,

βℓ is a vector of length dℓ of the model coefficients and

σ2
ℓ is the error variance for model Mℓ.

Additionally, suppose we an imaginary/training data set y∗, of size n∗, and

design matrix X∗.
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Training sample

Generally, EPP does not depend on the training sample y∗ of the response

variable Y since this is averaged over all possible samples coming from the

reference predictive distribution.

Nevertheless, in variable selection, EPP depends on the training sample

X∗ of the explanatory variables ⇒ creates additional computational difficulties.

EPP also depends on the size of the training sample n∗.

Proposed solutions/approaches: Selection of a minimal training sample

⇒ makes the information induced by the prior as small as possible.
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Minimal training sample

Selection of a minimal training sample ⇒ makes the information induced by

the prior as small as possible.

We select a sample sufficiently large to specify all the estimated parameters of the

models under consideration.

• Specification in terms of the largest model in every pairwise comparison

⇒ the prior changes in every comparison

⇒ overall variable-selection procedure incoherent.

• Specification in terms of the full model for all pairwise comparisons,

⇒ Inference within the current data set is coherent.

⇒ Prior should change if additional covariates are included later in the

study(?)

⇒ Influential prior for cases with n close to p.
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• The problem of choosing a training sample still remains. Possible solutions:

⇒ The arithmetic mean of the Bayes factors over all possible training samples

⇒ This approach can be computationally infeasible for large dataset.

⇒ Calculate BFs for a random sample minimal training samples ⇒ This adds

an extraneous layer of Monte-Carlo noise to the model-comparison process
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Training sample (cont.)

A solution was proposed by researchers working with intrinsic priors (e.g. Giròn

et al. 2006, Scandinavian Journal of Statistics).

1. They proved that the intrinsic prior depends on X∗
k only through the

expression W−1
k = (X∗

T

k X∗
k)−1;

where X∗
k is the imaginary design matrix of dimension (dk + 1) × dk for a minimal

training sample of size (dk + 1).

2. They propose to replace W−1
k with its average over all possible training

samples of minimal size. This idea is driven by the use of the arithmetic intrinsic

Bayes factor.

3. This average is equal to n
dk+1

(
XT

k Xk

)−1
. Here Xk refers to the design matrix

of the largest model in each pairwise comparison.
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Training sample (cont.)

The solution proposed by researchers working with intrinsic priors (e.g. Giròn

et al. 2006, Scandinavian Journal of Statistics).

• Seems intuitively sensible and dispenses with the extraction of the submatrices

from Xk.

• It is unclear if the procedure retains its intrinsic interpretation, i.e., whether it

is equivalent to the arithmetic intrinsic Bayes factor.

• The resulting prior can be influential when n is not much larger than p (in

contrast to the prior we propose here, which has a unit-information

interpretation).
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4 Motivation

AIM

1. Produce a less influential EPP . This will extremely helpful

especially in cases when n is not much larger than p.

2. Diminish the effect of training samples.
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Ingredients

We combine ideas from the power prior approach and unit information prior

approach.

Characteristics

• The likelihood involved in the EPP is raised to the power of 1/δ.

• For δ = n∗ → prior with information equivalent to one data point.

• The method is sufficiently insensitive to the size of n∗.

⇒ We consider n∗ = n (and therefore X∗ = X) and dispense with training

samples altogether.

⇒ This both removes the instability arising from the random choice of training

samples and greatly reduces computing time.
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Baseline prior choices

1. The independence Jeffreys prior (improper).

Usual choice of improper prior among researchers developing objective

variable-selection methods.

2. The g-prior (proper).

Usual choice of proper prior among researchers developing variable-selection

methods.

Further comments

1. The BFs of the first baseline-prior choice can be considered as a limiting case

of the BFs using the second prior.

2. Due to its (conditional) conjugacy, the second approach is easier to calculate.

Hence using the 2nd approach to estimate the BFs of the 1st, considerably

decreases the computational time.
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5 Power-Expected-Posterior Prior

We denote by πN
ℓ (βℓ, σ

2
ℓ |X

∗
ℓ ) the baseline prior for model parameters βℓ and σ2

ℓ , for any

model Mℓ ∈ M.

The power-expected-posterior (PEP) prior is defined as:

π
PEP
ℓ (βℓ, σ

2
ℓ |X

∗
ℓ , δ) =

∫
f(βℓ , σ

2
ℓ |y

∗
, Mℓ ; X∗

ℓ , δ)mN
0 (y∗|X∗

0 , δ) dy
∗
, (3)

where

f(βℓ , σ
2
ℓ |y

∗
, Mℓ ; X∗

ℓ , δ) =
f(y∗|βℓ , σ2

ℓ , Mℓ ; X∗
ℓ , δ)πN

ℓ (βℓ, σ
2
ℓ |X

∗
ℓ )

mN
ℓ (y∗|X∗

ℓ , δ)

can be considered as a posterior with likelihood equal to the original likelihood raised to

the power of 1
δ

and density-normalized, i.e.,

f(y∗|βℓ , σ
2
ℓ , Mℓ ; X∗

ℓ , δ)=
f(y∗|βℓ, σ

2
ℓ , Mℓ ; X∗

ℓ )
1

δ

∫
f(y∗|βℓ, σ

2
ℓ , Mℓ ; X∗

ℓ )
1

δ dy∗
= fNn∗

(y∗ ; X∗
ℓβℓ , δ σ

2
ℓ In∗) . (4)
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5 Power-Expected-Posterior Prior

We denote by πN
ℓ (βℓ, σ

2
ℓ |X

∗
ℓ ) the baseline prior for model parameters βℓ and σ2

ℓ , for any

model Mℓ ∈ M.

The power-expected-posterior (PEP) prior is defined as:

π
PEP
ℓ (βℓ, σ

2
ℓ |X

∗
ℓ , δ) =

∫
f(βℓ , σ

2
ℓ |y

∗
, Mℓ ; X∗

ℓ , δ)mN
0 (y∗|X∗

0 , δ) dy
∗
, (5)

The distribution mN
ℓ (y∗|X∗

ℓ , δ) appearing in (5) is the prior predictive distribution,

evaluated at y∗, of model Mℓ with the power likelihood defined in (4) under the baseline

prior πN
ℓ (βℓ, σ

2
ℓ |X

∗
ℓ ), i.e.,

m
N
ℓ (y∗|X∗

ℓ , δ) =

∫ ∫
fNn∗

(y∗ ; X∗
ℓβℓ , δ σ

2
ℓ In∗) π

N
ℓ (βℓ , σ

2
ℓ |X

∗
ℓ ) dβℓ dσ

2
ℓ . (6)
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An alternative expression of PEP prior

This expression is closer to the intrinsic variable selection approach:

πPEP
ℓ (βℓ, σ

2
ℓ |X

∗
ℓ , δ) = πN

ℓ (βℓ, σ
2
ℓ |X

∗
ℓ )

∫
mN

0 (y∗|X∗
0 , δ)

mN
ℓ (y∗|X∗

ℓ , δ)
f(y∗|βℓ , σ2

ℓ , Mℓ ; X∗
ℓ , δ) dy∗ ,

(7)
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The posterior distribution

Under the PEP prior distribution (5), the posterior distribution of the model

parameters (βℓ , σ2
ℓ ) is

πPEP
ℓ (βℓ, σ

2
ℓ |y; Xℓ, X

∗
ℓ , δ) ∝

∫
πN

ℓ (βℓ, σ
2
ℓ |y, y∗; Xℓ, X

∗
ℓ , δ) ×

mN
ℓ (y|y∗; Xℓ, X

∗
ℓ , δ) mN

0 (y∗|X∗
0 , δ) dy∗, (8)
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5.1 J-PEP: PEP-prior using the Jeffreys prior as baseline

Baseline prior:

πN
ℓ (βℓ , σ2 |X∗

ℓ ) =
cℓ

σ2
ℓ

, (9)

– cℓ is an unknown normalizing constant.
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5.1 J-PEP: PEP-prior using the Jeffreys prior as baseline

Baseline prior:

πN
ℓ (βℓ , σ2 |X∗

ℓ ) =
cℓ

σ2
ℓ

, (9)

– cℓ is an unknown normalizing constant.

J-PEP prior:

πJ-PEP

ℓ (βℓ, σ
2
ℓ |X

∗
ℓ , δ) =

∫
fNdℓ

[
βℓ ; β̂

∗
ℓ , δ (X∗T

ℓ X∗
ℓ )−1σ2

ℓ

]
×

fIG

(
σ2

ℓ ;
n∗ − dℓ

2
,
RSS∗

ℓ

2δ

)
mN

0 (y∗|X∗
0 , δ) dy∗ , (10)
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5.1 J-PEP: PEP-prior using the Jeffreys prior as baseline

Baseline prior:

πN
ℓ (βℓ , σ2 |X∗

ℓ ) =
cℓ

σ2
ℓ

, (9)

– cℓ is an unknown normalizing constant.

J-PEP prior:

πJ-PEP

ℓ (βℓ, σ
2
ℓ |X

∗
ℓ , δ) =

∫
fNdℓ

[
βℓ ; β̂

∗
ℓ , δ (X∗T

ℓ X∗
ℓ )−1σ2

ℓ

]
×

fIG

(
σ2

ℓ ;
n∗ − dℓ

2
,
RSS∗

ℓ

2δ

)
mN

0 (y∗|X∗
0 , δ) dy∗ , (10)

– β̂
∗
ℓ = (X∗T

ℓ
X∗

ℓ
)−1X∗T

ℓ
y∗: is the MLE of βℓ with response y∗ and design matrix X∗

ℓ
,

– RSS∗
ℓ

is the residual sum of squares using (y∗, X∗
ℓ
) as data.
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5.1 J-PEP: PEP-prior using the Jeffreys prior as baseline

Baseline prior:

πN
ℓ (βℓ , σ2 |X∗

ℓ ) =
cℓ

σ2
ℓ

, (9)

– cℓ is an unknown normalizing constant.

J-PEP prior:

πJ-PEP

ℓ (βℓ, σ
2
ℓ |X

∗
ℓ , δ) =

∫
fNdℓ

[
βℓ ; β̂

∗
ℓ , δ (X∗T

ℓ X∗
ℓ )−1σ2

ℓ

]
×

fIG

(
σ2

ℓ ;
n∗ − dℓ

2
,
RSS∗

ℓ

2δ

)
mN

0 (y∗|X∗
0 , δ) dy∗ , (10)

– β̂
∗
ℓ = (X∗T

ℓ
X∗

ℓ
)−1X∗T

ℓ
y∗: is the MLE of βℓ with response y∗ and design matrix X∗

ℓ
,

– RSS∗
ℓ

is the residual sum of squares using (y∗, X∗
ℓ
) as data.

Prior predictive density: The prior predictive distribution of a model Mℓ with power

likelihood defined in (4) under the baseline prior (9) is given by

mN
ℓ (y∗ |X∗

ℓ , δ) = cℓ π
1

2
(dℓ−n∗) |X∗T

ℓ X∗
ℓ |

− 1

2 Γ

(
n∗ − dℓ

2

)
RSS∗

−

(
n∗−dℓ

2

)

ℓ . (11)
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Posterior distribution using J-PEP:

πJ-PEP

ℓ (βℓ, σ
2
ℓ |y; Xℓ, X

∗
ℓ , δ) ∝

∫
fNdℓ

(
βℓ ; β̃

N
, Σ̃Nσ2

ℓ

)
fIG(σ2

ℓ ; ãN
ℓ , b̃N

ℓ ) ×

mN
ℓ (y|y∗; Xℓ, X

∗
ℓ , δ) mN

0 (y∗|X∗
0 , δ) dy∗ . (12)
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Posterior distribution using J-PEP:

πJ-PEP

ℓ (βℓ, σ
2
ℓ |y; Xℓ, X

∗
ℓ , δ) ∝

∫
fNdℓ

(
βℓ ; β̃

N
, Σ̃Nσ2

ℓ

)
fIG(σ2

ℓ ; ãN
ℓ , b̃N

ℓ ) ×

mN
ℓ (y|y∗; Xℓ, X

∗
ℓ , δ) mN

0 (y∗|X∗
0 , δ) dy∗ . (12)

– πN
ℓ

(βℓ|σ
2
ℓ
, y, y∗; Xℓ, X

∗
ℓ
, δ) = fNdℓ

(
βℓ ; β̃

N
, Σ̃Nσ2

ℓ

)
is the conditional posterior of βℓ|σ

2
ℓ

under the actual likelihood (and data), the power likelihood (and the imaginary data) and

the Jeffreys baseline prior.
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Posterior distribution using J-PEP:

πJ-PEP

ℓ (βℓ, σ
2
ℓ |y; Xℓ, X

∗
ℓ , δ) ∝

∫
fNdℓ

(
βℓ ; β̃

N
, Σ̃Nσ2

ℓ

)
fIG(σ2

ℓ ; ãN
ℓ , b̃N

ℓ ) ×

mN
ℓ (y|y∗; Xℓ, X

∗
ℓ , δ) mN

0 (y∗|X∗
0 , δ) dy∗ . (12)

– πN
ℓ

(βℓ|σ
2
ℓ
, y, y∗; Xℓ, X

∗
ℓ
, δ) = fNdℓ

(
βℓ ; β̃

N
, Σ̃Nσ2

ℓ

)
is the conditional posterior of βℓ|σ

2
ℓ

under the actual likelihood (and data), the power likelihood (and the imaginary data) and

the Jeffreys baseline prior.

Posterior mean: β̃
N

= Σ̃N (XT
ℓ

y + δ−1X∗T

ℓ
y∗).

Posterior variance: Σ̃N =
[
XT

ℓ
Xℓ + δ−1X∗T

ℓ
X∗

ℓ

]−1
.



Fouskakis, Ntzoufras & Draper: Power-Expected-Posterior Priors for Variable Selection 26-c

Posterior distribution using J-PEP:

πJ-PEP

ℓ (βℓ, σ
2
ℓ |y; Xℓ, X

∗
ℓ , δ) ∝

∫
fNdℓ

(
βℓ ; β̃

N
, Σ̃Nσ2

ℓ

)
fIG(σ2

ℓ ; ãN
ℓ , b̃N

ℓ ) ×

mN
ℓ (y|y∗; Xℓ, X

∗
ℓ , δ) mN

0 (y∗|X∗
0 , δ) dy∗ . (12)

– πN
ℓ

(βℓ|σ
2
ℓ
, y, y∗; Xℓ, X

∗
ℓ
, δ) = fNdℓ

(
βℓ ; β̃

N
, Σ̃Nσ2

ℓ

)
is the conditional posterior of βℓ|σ

2
ℓ

under the actual likelihood (and data), the power likelihood (and the imaginary data) and

the Jeffreys baseline prior.

Posterior mean: β̃
N

= Σ̃N (XT
ℓ

y + δ−1X∗T

ℓ
y∗).

Posterior variance: Σ̃N =
[
XT

ℓ
Xℓ + δ−1X∗T

ℓ
X∗

ℓ

]−1
.

– Similarly, πN
ℓ

(σ2
ℓ
|y, y∗; Xℓ, X

∗
ℓ
, δ) = fIG(σ2

ℓ
; ãN

ℓ
, b̃N

ℓ
) is the corresponding posterior of σ2

ℓ

under the actual and power likelihood and the Jeffreys baseline prior.
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Posterior distribution using J-PEP:

πJ-PEP

ℓ (βℓ, σ
2
ℓ |y; Xℓ, X

∗
ℓ , δ) ∝

∫
fNdℓ

(
βℓ ; β̃

N
, Σ̃Nσ2

ℓ

)
fIG(σ2

ℓ ; ãN
ℓ , b̃N

ℓ ) ×

mN
ℓ (y|y∗; Xℓ, X

∗
ℓ , δ) mN

0 (y∗|X∗
0 , δ) dy∗ . (12)

– πN
ℓ

(βℓ|σ
2
ℓ
, y, y∗; Xℓ, X

∗
ℓ
, δ) = fNdℓ

(
βℓ ; β̃

N
, Σ̃Nσ2

ℓ

)
is the conditional posterior of βℓ|σ

2
ℓ

under the actual likelihood (and data), the power likelihood (and the imaginary data) and

the Jeffreys baseline prior.

Posterior mean: β̃
N

= Σ̃N (XT
ℓ

y + δ−1X∗T

ℓ
y∗).

Posterior variance: Σ̃N =
[
XT

ℓ
Xℓ + δ−1X∗T

ℓ
X∗

ℓ

]−1
.

– Similarly, πN
ℓ

(σ2
ℓ
|y, y∗; Xℓ, X

∗
ℓ
, δ) = fIG(σ2

ℓ
; ãN

ℓ
, b̃N

ℓ
) is the corresponding posterior of σ2

ℓ

under the actual and power likelihood and the Jeffreys baseline prior.

Posterior parameters: ãN
ℓ

= 1
2
(n + n∗ − dℓ) , b̃N

ℓ
= 1

2
(SSN

ℓ
+ δ−1RSS∗

ℓ
) and

SSN
ℓ =

(
y − Xℓ β̂

∗
ℓ )T

[
In + δ Xℓ(X

∗T

ℓ X∗
ℓ )−1XT

ℓ

]−1 (
y − Xℓ β̂

∗
ℓ ).
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Posterior distribution using J-PEP:

πJ-PEP

ℓ (βℓ, σ
2
ℓ |y; Xℓ, X

∗
ℓ , δ) ∝

∫
fNdℓ

(
βℓ ; β̃

N
, Σ̃Nσ2

ℓ

)
fIG(σ2

ℓ ; ãN
ℓ , b̃N

ℓ ) ×

mN
ℓ (y|y∗; Xℓ, X

∗
ℓ , δ) mN

0 (y∗|X∗
0 , δ) dy∗ . (12)

– πN
ℓ

(βℓ|σ
2
ℓ
, y, y∗; Xℓ, X

∗
ℓ
, δ) = fNdℓ

(
βℓ ; β̃

N
, Σ̃Nσ2

ℓ

)
is the conditional posterior of βℓ|σ

2
ℓ

under the actual likelihood (and data), the power likelihood (and the imaginary data) and

the Jeffreys baseline prior.

Posterior mean: β̃
N

= Σ̃N (XT
ℓ

y + δ−1X∗T

ℓ
y∗).

Posterior variance: Σ̃N =
[
XT

ℓ
Xℓ + δ−1X∗T

ℓ
X∗

ℓ

]−1
.

– Similarly, πN
ℓ

(σ2
ℓ
|y, y∗; Xℓ, X

∗
ℓ
, δ) = fIG(σ2

ℓ
; ãN

ℓ
, b̃N

ℓ
) is the corresponding posterior of σ2

ℓ

under the actual and power likelihood and the Jeffreys baseline prior.

Posterior parameters: ãN
ℓ

= 1
2
(n + n∗ − dℓ) , b̃N

ℓ
= 1

2
(SSN

ℓ
+ δ−1RSS∗

ℓ
) and

SSN
ℓ =

(
y − Xℓ β̂

∗
ℓ )T

[
In + δ Xℓ(X

∗T

ℓ X∗
ℓ )−1XT

ℓ

]−1 (
y − Xℓ β̂

∗
ℓ ).

– mN
ℓ

(y|y∗; Xℓ, X
∗
ℓ

, δ) = fStn

{
y ; n∗ − dℓ, Xℓβ̂

∗
ℓ ,

RSS∗

ℓ
δ(n∗−dℓ)

[
In + δ Xℓ(X

∗T

ℓ
X∗

ℓ
)−1XT

ℓ

]}
.
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5.2 Z-PEP: PEP Prior using the Zellner’s g-prior as baseline

Baseline prior:

πN
ℓ (βℓ|σ

2
ℓ ; X∗

ℓ ) = fNdℓ

[
βℓ ; 0, g (X∗T

ℓ X∗
ℓ )−1σ2

ℓ

]
and πN

ℓ (σ2
ℓ ) = fIG

(
σ2

ℓ ; aℓ, bℓ

)
. (13)
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5.2 Z-PEP: PEP Prior using the Zellner’s g-prior as baseline

Baseline prior:

πN
ℓ (βℓ|σ

2
ℓ ; X∗

ℓ ) = fNdℓ

[
βℓ ; 0, g (X∗T

ℓ X∗
ℓ )−1σ2

ℓ

]
and πN

ℓ (σ2
ℓ ) = fIG

(
σ2

ℓ ; aℓ, bℓ

)
. (13)

Z-PEP prior:

πZ-PEP

ℓ (βℓ, σ
2
ℓ |X

∗
ℓ , δ) =

∫
fNdℓ

[
βℓ ; w β̂

∗
ℓ , w δ (X∗T

ℓ X∗
ℓ )−1σ2

ℓ

]
×

fIG

(
σ2

ℓ ; aℓ +
n∗

2
, bℓ +

SS∗
ℓ

2

)
mN

0 (y∗|X∗
0 , δ) dy∗ , (14)
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5.2 Z-PEP: PEP Prior using the Zellner’s g-prior as baseline

Baseline prior:

πN
ℓ (βℓ|σ

2
ℓ ; X∗

ℓ ) = fNdℓ

[
βℓ ; 0, g (X∗T

ℓ X∗
ℓ )−1σ2

ℓ

]
and πN

ℓ (σ2
ℓ ) = fIG

(
σ2

ℓ ; aℓ, bℓ

)
. (13)

Z-PEP prior:

πZ-PEP

ℓ (βℓ, σ
2
ℓ |X

∗
ℓ , δ) =

∫
fNdℓ

[
βℓ ; w β̂

∗
ℓ , w δ (X∗T

ℓ X∗
ℓ )−1σ2

ℓ

]
×

fIG

(
σ2

ℓ ; aℓ +
n∗

2
, bℓ +

SS∗
ℓ

2

)
mN

0 (y∗|X∗
0 , δ) dy∗ , (14)

– w = g
g+δ

is a shrinkage weight, β̂
∗
ℓ is the MLE of βℓ with response y∗ and design matrix X∗

ℓ
,

– SS∗
ℓ

= y∗T
Λ∗

ℓ
y∗ is a posterior sum of squares,

– Λ∗
ℓ
−1 = δ

[
In∗ − g

g+δ
X∗

ℓ

(
X∗

ℓ
T X∗

ℓ

)−1
X∗

ℓ
T

]−1
= δ In∗ + g X∗

ℓ

(
X∗

ℓ
T X∗

ℓ

)−1
X∗

ℓ
T .
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5.2 Z-PEP: PEP Prior using the Zellner’s g-prior as baseline

Baseline prior:

πN
ℓ (βℓ|σ

2
ℓ ; X∗

ℓ ) = fNdℓ

[
βℓ ; 0, g (X∗T

ℓ X∗
ℓ )−1σ2

ℓ

]
and πN

ℓ (σ2
ℓ ) = fIG

(
σ2

ℓ ; aℓ, bℓ

)
. (13)

Z-PEP prior:

πZ-PEP

ℓ (βℓ, σ
2
ℓ |X

∗
ℓ , δ) =

∫
fNdℓ

[
βℓ ; w β̂

∗
ℓ , w δ (X∗T

ℓ X∗
ℓ )−1σ2

ℓ

]
×

fIG

(
σ2

ℓ ; aℓ +
n∗

2
, bℓ +

SS∗
ℓ

2

)
mN

0 (y∗|X∗
0 , δ) dy∗ , (14)

– w = g
g+δ

is a shrinkage weight, β̂
∗
ℓ is the MLE of βℓ with response y∗ and design matrix X∗

ℓ
,

– SS∗
ℓ

= y∗T
Λ∗

ℓ
y∗ is a posterior sum of squares,

– Λ∗
ℓ
−1 = δ

[
In∗ − g

g+δ
X∗

ℓ

(
X∗

ℓ
T X∗

ℓ

)−1
X∗

ℓ
T

]−1
= δ In∗ + g X∗

ℓ

(
X∗

ℓ
T X∗

ℓ

)−1
X∗

ℓ
T .

The prior predictive density: The prior predictive distribution under the baseline prior is

mN
ℓ (y∗ |X∗

ℓ , δ) = fStn∗

(
y∗ ; 2 aℓ,0,

bℓ

aℓ

Λ∗
ℓ
−1

)
. (15)
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The prior mean vector and covariance matrix of βℓ, and the prior mean and

variance of σ2
ℓ , can be calculated analytically.
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Posterior distribution using Z-PEP:

πZ-PEP

ℓ (βℓ, σ
2
ℓ |y; Xℓ, X

∗
ℓ , δ) ∝

∫
fNdℓ

(
βℓ ; β̃

N
, Σ̃Nσ2

ℓ

)
fIG(σ2

ℓ ; ãN
ℓ , b̃N

ℓ ) ×

mN
ℓ (y|y∗; Xℓ, X

∗
ℓ , δ) mN

0 (y∗|X∗
0 , δ) dy∗ (16)
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Posterior distribution using Z-PEP:

πZ-PEP

ℓ (βℓ, σ
2
ℓ |y; Xℓ, X

∗
ℓ , δ) ∝

∫
fNdℓ

(
βℓ ; β̃

N
, Σ̃Nσ2

ℓ

)
fIG(σ2

ℓ ; ãN
ℓ , b̃N

ℓ ) ×

mN
ℓ (y|y∗; Xℓ, X

∗
ℓ , δ) mN

0 (y∗|X∗
0 , δ) dy∗ (16)

– Parameters of the normal posterior of βℓ given σ2
ℓ
:

β̃
N

= Σ̃N (XT
ℓ y + δ−1X∗T

ℓ y∗), Σ̃N =
[
XT

ℓ Xℓ + (w δ)−1X∗T

ℓ X∗
ℓ

]−1
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Posterior distribution using Z-PEP:

πZ-PEP

ℓ (βℓ, σ
2
ℓ |y; Xℓ, X

∗
ℓ , δ) ∝

∫
fNdℓ

(
βℓ ; β̃

N
, Σ̃Nσ2

ℓ

)
fIG(σ2

ℓ ; ãN
ℓ , b̃N

ℓ ) ×

mN
ℓ (y|y∗; Xℓ, X

∗
ℓ , δ) mN

0 (y∗|X∗
0 , δ) dy∗ (16)

– Parameters of the normal posterior of βℓ given σ2
ℓ
:

β̃
N

= Σ̃N (XT
ℓ y + δ−1X∗T

ℓ y∗), Σ̃N =
[
XT

ℓ Xℓ + (w δ)−1X∗T

ℓ X∗
ℓ

]−1

– Parameters of the inverse gamma posterior of σ2
ℓ
:

ãN
ℓ =

n + n∗

2
+ aℓ , b̃N

ℓ =
SSN

ℓ
+ SS∗

ℓ

2
+ bℓ . (17)

with SSN
ℓ

=
(
y − w Xℓ β̂

∗
ℓ )T

[
In + δ w Xℓ(X

∗T

ℓ
X∗

ℓ
)−1XT

ℓ

]−1 (
y − w Xℓ β̂

∗
ℓ ) being a posterior

sum of squares.
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Posterior distribution using Z-PEP:

πZ-PEP

ℓ (βℓ, σ
2
ℓ |y; Xℓ, X

∗
ℓ , δ) ∝

∫
fNdℓ

(
βℓ ; β̃

N
, Σ̃Nσ2

ℓ

)
fIG(σ2

ℓ ; ãN
ℓ , b̃N

ℓ ) ×

mN
ℓ (y|y∗; Xℓ, X

∗
ℓ , δ) mN

0 (y∗|X∗
0 , δ) dy∗ (16)

– Parameters of the normal posterior of βℓ given σ2
ℓ
:

β̃
N

= Σ̃N (XT
ℓ y + δ−1X∗T

ℓ y∗), Σ̃N =
[
XT

ℓ Xℓ + (w δ)−1X∗T

ℓ X∗
ℓ

]−1

– Parameters of the inverse gamma posterior of σ2
ℓ
:

ãN
ℓ =

n + n∗

2
+ aℓ , b̃N

ℓ =
SSN

ℓ
+ SS∗

ℓ

2
+ bℓ . (17)

with SSN
ℓ

=
(
y − w Xℓ β̂

∗
ℓ )T

[
In + δ w Xℓ(X

∗T

ℓ
X∗

ℓ
)−1XT

ℓ

]−1 (
y − w Xℓ β̂

∗
ℓ ) being a posterior

sum of squares.

– mN
ℓ

(y|y∗; Xℓ, X
∗
ℓ

, δ) = fStn

{
y ; 2 aℓ + n∗, w Xℓβ̂

∗
ℓ ,

2bℓ+SS∗

ℓ
2 aℓ+n∗

[
In + w δ Xℓ(X

∗T

ℓ
X∗

ℓ
)−1XT

ℓ

]}
.
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Specification of hyper-parameters

– The normal baseline prior parameter g is set equal to δ n∗. If

δ = n∗ ⇒ g = (n∗)2.

– This choice makes the contribution of g-prior to be equal to approximately

equal to one data point within the posterior πN
ℓ (βℓ , σ2

ℓ |y
∗; X∗

ℓ , δ).

– The entire Z-PEP prior contribution is equal to
(
1 + 1

δ

)
data points.

– We set aℓ = bℓ = 0.01 in the Inverse-Gamma baseline prior (prior mean of 1

and variance of 100).
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Connection between the J-PEP and Z-PEP distributions

The two approaches coincide in terms of posterior inference for:

– large g (and therefore w ≈ 1),

– aℓ = −dℓ

2 and bℓ = 0.

Therefore, the posterior results using the Jeffreys prior as baseline can be obtained

as a special (limiting) case of the results using the g-prior as baseline.

This is beneficial for the computation of the posterior distribution.
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5.3 Marginal-likelihood computation

It is straightforward to show that the marginal likelihood of any model Mℓ ∈ M

can be re-written as

mPEP
ℓ (y|Xℓ , X∗

ℓ , δ) = mN
ℓ (y|Xℓ , X∗

ℓ )

∫
mN

ℓ (y∗|y, Xℓ, X
∗
ℓ , δ)

mN
ℓ (y∗|X∗

ℓ , δ)
mN

0 (y∗|X∗
0 , δ) dy∗ .

(18)
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5.3 Marginal-likelihood computation

It is straightforward to show that the marginal likelihood of any model Mℓ ∈ M

can be re-written as

mPEP
ℓ (y|Xℓ , X∗

ℓ , δ) = mN
ℓ (y|Xℓ , X∗

ℓ )

∫
mN

ℓ (y∗|y, Xℓ, X
∗
ℓ , δ)

mN
ℓ (y∗|X∗

ℓ , δ)
mN

0 (y∗|X∗
0 , δ) dy∗ .

(18)

mN
ℓ (y|Xℓ , X∗

ℓ ) is the marginal likelihood of Mℓ for the actual data under the

baseline prior.
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5.3 Marginal-likelihood computation

It is straightforward to show that the marginal likelihood of any model Mℓ ∈ M

can be re-written as

mPEP
ℓ (y|Xℓ , X∗

ℓ , δ) = mN
ℓ (y|Xℓ , X∗

ℓ )

∫
mN

ℓ (y∗|y, Xℓ, X
∗
ℓ , δ)

mN
ℓ (y∗|X∗

ℓ , δ)
mN

0 (y∗|X∗
0 , δ) dy∗ .

(18)

mN
ℓ (y|Xℓ , X∗

ℓ ) is the marginal likelihood of Mℓ for the actual data under the

baseline prior.

– Under the baseline g-prior (13), is given by

mN
ℓ (y|Xℓ , X∗

ℓ ) = fStn

{
y ; 2 aℓ,0,

bℓ

aℓ

[
In + g Xℓ

(
X∗

T

ℓ X∗
ℓ

)−1

Xℓ
T

]}
. (19)
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5.3 Marginal-likelihood computation

It is straightforward to show that the marginal likelihood of any model Mℓ ∈ M

can be re-written as

mPEP
ℓ (y|Xℓ , X∗

ℓ , δ) = mN
ℓ (y|Xℓ , X∗

ℓ )

∫
mN

ℓ (y∗|y, Xℓ, X
∗
ℓ , δ)

mN
ℓ (y∗|X∗

ℓ , δ)
mN

0 (y∗|X∗
0 , δ) dy∗ .

(18)

mN
ℓ (y|Xℓ , X∗

ℓ ) is the marginal likelihood of Mℓ for the actual data under the

baseline prior.

– Under the baseline g-prior (13), is given by

mN
ℓ (y|Xℓ , X∗

ℓ ) = fStn

{
y ; 2 aℓ,0,

bℓ

aℓ

[
In + g Xℓ

(
X∗

T

ℓ X∗
ℓ

)−1

Xℓ
T

]}
. (19)

– Under the Jeffreys baseline prior (9), mN
ℓ (y|Xℓ , X∗

ℓ ) is given by (11) with data

(y, Xℓ) (it is improper).



Fouskakis, Ntzoufras & Draper: Power-Expected-Posterior Priors for Variable Selection 33

Estimation of the marginal likelihood

Two possible Monte-Carlo estimates.

(1) Generate y∗(t) (t = 1, . . . , T ) from mN
ℓ (y∗|y, Xℓ, X

∗
ℓ , δ) and estimate the

marginal likelihood by

m̂PEP
ℓ (y|Xℓ , X∗

ℓ , δ) = mN
ℓ (y|Xℓ, X

∗
ℓ )

[
1

T

T∑

t=1

mN
0 (y∗(t)|X∗

0 , δ)

mN
ℓ (y∗(t)|X∗

ℓ , δ)

]
. (20)
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Estimation of the marginal likelihood

Two possible Monte-Carlo estimates.

(1) Generate y∗(t) (t = 1, . . . , T ) from mN
ℓ (y∗|y, Xℓ, X

∗
ℓ , δ) and estimate the

marginal likelihood by

m̂PEP
ℓ (y|Xℓ , X∗

ℓ , δ) = mN
ℓ (y|Xℓ, X

∗
ℓ )

[
1

T

T∑

t=1

mN
0 (y∗(t)|X∗

0 , δ)

mN
ℓ (y∗(t)|X∗

ℓ , δ)

]
. (20)

(2) Generate y∗(t) (t = 1, . . . , T ) from mN
ℓ (y∗|y; Xℓ , X∗

ℓ , δ) and estimate the

marginal likelihood by

m̂PEP
ℓ (y|Xℓ , X∗

ℓ , δ) =

= mN
0 (y|X0, X

∗
0)

[
1

T

T∑

t=1

mN
ℓ (y|y∗(t); Xℓ, X

∗
ℓ , δ)

mN
0 (y|y∗(t); X0, X∗

0 , δ)

mN
0 (y∗(t)|y; X0, X

∗
0 , δ)

mN
ℓ (y∗(t)|y; Xℓ, X∗

ℓ , δ)

]
.

(21)
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Some Comments for the MC schemes
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Some Comments for the MC schemes

– Monte-Carlo schemes (1) and (2) generate imaginary data from the posterior

predictive distribution of the model under consideration.
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Some Comments for the MC schemes

– Monte-Carlo schemes (1) and (2) generate imaginary data from the posterior

predictive distribution of the model under consideration.

– Thus we expect them to be relatively accurate.
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Some Comments for the MC schemes

– Monte-Carlo schemes (1) and (2) generate imaginary data from the posterior

predictive distribution of the model under consideration.

– Thus we expect them to be relatively accurate.

– For Monte-Carlo scheme 2, we only need to evaluate posterior predictive

distributions when we estimate Bayes factors. These are available even in the

case of improper baseline priors such as the Jeffrey baseline used in J=PEP.
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Some Comments for the MC schemes

– Monte-Carlo schemes (1) and (2) generate imaginary data from the posterior

predictive distribution of the model under consideration.

– Thus we expect them to be relatively accurate.

– For Monte-Carlo scheme 2, we only need to evaluate posterior predictive

distributions when we estimate Bayes factors. These are available even in the

case of improper baseline priors such as the Jeffrey baseline used in J=PEP.

– The marginal likelihoods for J-PEP and Z-PEP result in the same posterior

odds and model probabilities for g → ∞, aℓ = −dℓ

2 and bℓ = 0.
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6 Consistency of the J-PEP Bayes factor

Theorem 1. For any two models Mℓ, Mk ∈ M \ {M0} and for large n, we have

that

−2 log BF J-PEP

ℓ k ≈ n log
RSSℓ

RSSk

+ (dℓ − dk) log n = BICℓ − BICk . (22)

Therefore the J-PEP approach has the same asymptotic behavior as the BIC-based

variable-selection procedure.
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6 Consistency of the J-PEP Bayes factor

Theorem 1. For any two models Mℓ, Mk ∈ M \ {M0} and for large n, we have

that

−2 log BF J-PEP

ℓ k ≈ n log
RSSℓ

RSSk

+ (dℓ − dk) log n = BICℓ − BICk . (22)

Therefore the J-PEP approach has the same asymptotic behavior as the BIC-based

variable-selection procedure.

Lemma 1. Let Mℓ ∈ M be a normal regression model of type (2) such that

lim
n→∞

XT

(
In − Xℓ(X

T
ℓ Xℓ)

−1XT
ℓ

)
XT

n
is a positive semidefinite matrix,

with XT being the design matrix of the true data generating regression model

MT 6= Mj. Then, the variable selection procedure based on J-PEP Bayes factor is

consistent since BF J−PEP
jT → 0 as n → ∞.
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7 Simulated Example

– We use the simulation scheme used in Nott & Kohn (2005, Biometrika).

– We generate data-sets of size n = 50 observations and p = 15 covariates.

– For i = 1, . . . , n, We generate covariates using the following scheme:

Xij ∼ N(µij , 1) with

µij = 0 for j = 1, . . . , 10 and

µij = 0.3Xi1 + 0.5Xi2 + 0.7Xi3 + 0.9Xi4 + 1.1Xi5 for j = 11, . . . , 15;

while the response is generated from

Yi ∼ N
(

4 + 2Xi1 − Xi5 + 1.5Xi7 + Xi11 + 0.5Xi13, 2.52
)
.

– Full enumeration is feasible for all 215 = 32, 768 models.
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PEP prior results

Table 1: Posterior model probabilities for the best models, together with Bayes factors for the

Z-PEP MAP model (M1) against Mj , j = 2, . . . , 7, for the Z-PEP and J-PEP prior methodologies.

Z-PEP J-PEP

Posterior Model Bayes Posterior Model Bayes

Mj Predictors Probability Factor Rank Probability Factor

1 X1 + X5 + X7 + X11 0.0783 1.00 (2) 0.0952 1.00

2 X1 + X7 + X11 0.0636 1.23 (1) 0.1054 0.90

3 X1 + X5 + X6 + X7 + X11 0.0595 1.32 (3) 0.0505 1.88

4 X1 + X6 + X7 + X11 0.0242 3.23 (4) 0.0308 3.09

5 X1 + X7 + X10 + X11 0.0175 4.46 (5) 0.0227 4.19

6 X1 + X5 + X7 + X10 + X11 0.0170 4.60 (9) 0.0146 6.53

7 X1 + X5 + X7 + X11 + X13 0.0163 4.78 (10) 0.0139 6.87
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Sensitivity analysis on imaginary sample size

Figure 1: Posterior marginal inclusion probabilities, for n∗ values from 17 to n = 50, with the

Z-PEP prior methodology.
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Sensitivity analysis on imaginary sample size (cont.)

Figure 2: Boxplots of the posterior distributions of the regression coefficients. For each coefficient,

the left-hand boxplot summarizes the EPP results and the right-hand boxplot displays the Z-PEP

posteriors; solid lines in both posteriors identify the MLEs. We used the first 20 observations from

the simulated data-set and a randomly selected training sample of size n∗ = 17.
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Comparisons with IBF and J-EPP approaches

– We compare the Bayes factors between the two best models

(X1 + X5 + X7 + X11 versus X1 + X5 + X7) for J-PEP, ZPEP, J-EPP and IBF.

– For IBF and J-EPP ⇒ 100 randomly selected training samples of size:

• n∗ = 6 (minimal training samples for these two models) and

• n∗ = 17 (minimal training sample for the full model with p = 15 covariates),

– For PEP we randomly select 100 training samples of sizes

n∗ = 6, 17, 20, 25, 30, 35, 40, 45, 50.

– Each marginal likelihood estimate is obtained with 1000 iterations.
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Comparisons with IBF and J-EPP approaches (cont.)
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8 Real Life Example: Ozone data

– Source: Breinman & Friedman (1985, JASA).

– Response: The logarithm of the ozone concentration variable of the original data set.

– 56 covariates: 9 main effects, 9 quadratic terms, 2 cubic terms, and 36 two-way interactions.

• The main effects we considered are the following:

X1 Day of Year

X2 Wind speed (mph) at LAX

X3 500 mb pressure height (m) at VAFB

X4 Humidity (%) at LAX

X5 Temperature (◦F) at Sandburg

X6 Inversion base height (feet) at LAX

X7 Pressure gradient (mm Hg) from LAX to Daggett

X8 Inversion base temperature (◦F) at LAX

X9 Visibility (miles) at LAX

– All main effects and the response where standardised.
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Searching the model space

(1) Large model space with 256 = 7.205761016 models

– Run MC3 to approximate posterior marginal inclusion probabilities

P (γj = 1|y).

– We created a reduced model space with covariates having marginal

inclusion probabilities ≥ 0.3.

(2) Reduced model space: Run again MC3 to accurately estimate:

– posterior marginal inclusion probabilities.

– posterior model probabilities and odds ratios.
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MCMC details

– 100,000 iterations for MC3 for Z-PER and EIBF (arithmetic mean of IBFs

over different minimal training samples).

– 30 randomly-selected minimal training samples for size n∗ = 58 for EIBF

– For the threshold posterior inclusion probability value of 0.3,

p: 56 → 22 covariates and

the number of models under consideration: 7.205761016 → 4, 194, 304.
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Reduced space

Variables common in all three analyses were: X1 + X2 + X8 + X9 + X10 + X15 + X16 + X18 + X43

J-PEP

J-PEP Z-PEP EIBF Additional Variables # of Covariates PO1k

1 (>5) (>5) 9 1.00

2 (1) (5) X7 + X12 + X13+X20 13 1.29

3 (>5) (>5) X7 + X13+X20 12 1.46

Z-PEP

Z-PEP J-PEP EIBF Additional Variables # of Covariates PO1k

1 (2) (5) X7 + X12 + X13+X20 13 1.00

2 (>5) (>5) X5+X7 + X12 + X13+X20 14 1.19

3 (>5) (3) X5+X7 + X12 + X13+X20 +X42 15 1.77

EIBF

EIBF J-PEP Z-PEP Additional Variables # of Covariates PO1k

1 (>5) (4) X7 + X12 + X13+X20 +X42 14 1.00

2 (>5) (>5) X5+X7 + X12 + X13+X20+X26 + X42 16 1.17

3 (>5) (3) X5+X7 + X12 + X13+X20 +X42 15 1.30
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Comparison of the predictive performance

– We evaluate the out-of-sample predictive performance of the two highest a-posteriori models.

– We consider 50 randomly selected half-splits.

– For each split, we generate an MCMC sample of T iterations from the model of interest Mℓ

and then calculate the average root mean square error by

ARMSEℓ =
1

T

T∑

t=1

RMSE
(t)
ℓ

with RMSE
(t)
ℓ

=

√
1

nV

∑

i∈V

(
yi − ŷ

(t)
i|Mℓ

)2
.

• RMSE
(t)
ℓ

⇒ root mean square error for the validation dataset V of size nV calculated

for the t-iteration of the MCMC

• ŷ
(t)
i|Mℓ

= Xℓ(i)β
(t)
ℓ

are the expected values of yi under model Mℓ for iteration t

• β
(t)
ℓ

is the vector of the model parameters for iteration t and

• Xℓ(i) is the i-th row of matrix Xℓ of model Mℓ.
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Comparison of the predictive performance (cont.)

RMSE∗

Model dℓ R2 R2

adj J-PEP Z-PEP J-EPP Jeffreys Prior

Full 22 0.8500 0.8392 0.5988 0.5935 0.6194 0.5972

(0.0087) (0.0097) (0.0169) (0.0104)

J-PEP MAP 9 0.8070 0.8016 0.5975 0.6161 0.7524 0.6165

(0.0063) (0.0051) (0.0626) (0.0052)

Z-PEP MAP 13 0.8370 0.8303 0.5994 0.5999 0.6982 0.5994

(0.0071) (0.0060) (0.0734) (0.0049)

EIBF MAP 14 0.8398 0.8326 0.6182 0.5961 0.6726 0.5958

(0.0066) (0.0072) (0.0800) (0.0061)

Comparison with the full model (percentage changes)

RMSE

Model dℓ R2 R2

adj J-PEP Z-PEP J-EPP Jeffreys Prior

J-PEP MAP −59% −5.06% −4.48% −0.22% +3.81% +21.5% +3.23%

Z-PEP MAP −41% −1.50% −1.06% +0.10% +1.01% +12.7% +0.37%

EIBF MAP −36% −1.20% −0.78% +3.24% +0.44% +10.9% −0.23%

Note:
∗Mean (standard deviation) over 50 different split-half out-of-sample evaluations.
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9 Discussion

Major contribution:

Simultaneously produce a minimally-informative prior and sharply diminish the effect of

training samples on previously-studied expected-posterior-prior (EPP) methodology.

(a) • Generally, in the EPP approach the training data y∗ are generated directly from

the prior predictive distribution of a reference model.

• Nevertheless, the choice of the training sub-samples for the covariates remains

open in the regression set-up.

• Using our approach, we can work with training-samples of size equal to the size of

the full data set. Hence, we avoid the selection of such subsamples by choosing

X∗ = X.

(b) • The full model is usually specifies the size of the minimal training sample.

• Thus, for large p → n, the effect of the minimal training sample will be large ⇒

informative priors.
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Some further conclusions based on empirical evidence

• is systematically more parsimonious (under either baseline prior choice) than

the J-EPP approach;

• is robust to the size of the training sample, thus supporting the use of the

entire data set as a “training sample” and thereby promoting stability and fast

computation;

• good out-of-sample predictive performance for the selected maximum

a-posteriori model;

• has low impact on the posterior distribution even when n is not much larger

than p.
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