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1. An Obsession
Model selection and the Paradox

A Bayesian approach to inference under model uncertainty proceeds 
as follows.  

Suppose 

• data y generated by a model m  M  

• Each model specifies the distribution of y,

• βm is the parameter vector for model  m. 
• f(m) is the prior probability of model m
Then posterior inference is based on posterior model probabilities
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1. An Obsession
Model selection and the Paradox

or on posterior model odds 

Usually inference is based on Bayes factors (BF) since a natural (?) 
choice is to assume that the two models under consideration are a-
priori equal. 

Prior model 
odds

Bayes factor 
(BF12)

Posterior 
model odds 

(PO12)
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1. An Obsession
Model selection and the Paradox

The Lindley-Bartlett-Jeffreys Paradox (1)

For a single model inference, 

a highly diffuse prior on the model parameters is often used (to
represent ignorance).  

Then the posterior density takes the shape of the likelihood and is 
insensitive to the exact value of the prior density function, 
provided that the prior is relatively flat over the range of 
parameter values with non-negligible likelihood. 
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1. An Obsession
Model selection and the Paradox

The Lindley-Bartlett-Jeffreys Paradox (2)

For multiple models inference:
The use of such a prior creates an apparent difficulty. 
For illustration, let us consider the simple case where  model m1 is 

completely specified (no unknown parameters) and model m2 has 
parameter 

• Then, for any observed  data y, BF12 can be  made arbitrarily large 
by choosing a sufficiently diffuse prior distribution for 

• Hence,  under model uncertainty,  two different diffuse prior 
distributions for model parameters might lead to essentially the
same posterior distributions for those parameters,  but very 
different BFs.
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1. An Obsession
Model selection and the Paradox

The Lindley-Bartlett-Jeffreys Paradox (3)

Therefore
BF12  

when the Prior variance of 
whatever data y we have…
Fully supporting the simpler model and 
making the procedure informative (?)
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1. An Obsession
Model selection and the Paradox

The Lindley-Bartlett-Jeffreys Paradox (4)

Discussed by 
• Lindley (1957, Bka) ; referred to as `Lindley's paradox' 

he actually noted the sensitivity of BF on the sample size and not on the 
prior

• it is also variously attributed to Bartlett (1957, Bka) and 
he also added the sensitivity on the prior variance in a note complementary 
to the publication of Lindley (1957); published in the next issue of Bka. 

• Also discussed by Jeffreys in his book

As you can understand this became my obsession (and of many 
others). The aim was to overcome this paradoxical behavior…



Blackboard 10

1. An Obsession
Model selection and the Paradox

The Lindley-Bartlett-Jeffreys Paradox (5)

Dawid (2011)  
==> the Bayes factor is only one of the two elements on the posterior 

model odds. 
==> The prior model probabilities are of equal significance.  

By focusing on the impact of the prior distributions for model 
parameters on the Bayes factor,  there is an implicit 
understanding that the prior model probabilities are specified 
independently of these prior distributions.  

This is often the case in practice,  where a uniform prior 
distribution over models is commonly adopted,  as a reference 
position. 
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1. An Obsession
Model selection and the Paradox

Priors on model space
Non-uniform priors have been suggested  (but not widely used)
• Chipman (1996, Canad.J.Stat.),  based on interaction structure and 

associations between covariates
• Laud and Ibrahim (1996, Bka) & Chen, Ibrahim & Yiannoutsons (1999, 

RSSB): based on prior information and elicitation
• Brown, Vannuci & Fearn (1998, J.Chemometrics): Beta-Binomial for 

variable inclusion probabilities
• Chipman , George & McCulloch (2001): Beta-Binomial prior (and 

generalization) and dilution probabilities 
• George and Forster (2001, Bka): Empirical Bayes
• Yuan & Lin (2005, JASA); model probs adjusted by XTX
• Beta-Binomial becomes more and more dominant  => Clyde and George 

(2004, Stat.Sci.), Nott and Kohn (2005,Bka), Cui and George (2008, 
JSPI), Ley and Steel (2009, J.App.Econ.), Wilson etal (2010, 
Ann.appl.Stat). 

• Scott & Berger (2010, Annals); Empirical Bayes and Beta-Binomial
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2. An Idea: 
Avoiding (?) the paradox

Joint Prior on parameters and model space 

We propose a different approach 

The two elements of the prior distribution (on model space and 
within each model) might be jointly specified so that perceived 
problems with Bayesian model comparison can be avoided. 

This leads to a non-uniform specification for the prior distribution 
over models,  depending directly on the prior distributions for 
model parameters.
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2. An Idea: 
Avoiding (?) the paradox

We focus on models in which 
• the parameters can be a-priori expressed by a multivariate normal 

prior density with mean and variance-covariance matrix Vm

• the likelihood is sufficiently regular for standard asymptotic 
results to apply. 

Linear regression models and GLMs are such models. 
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2. An Idea: 
Avoiding (?) the paradox

We rewrite the prior variance matrix as 
where 
• cm is the scale of the prior dispersion
• Σm is a semi-positive matrix with a fixed volume |Σm|   
Τhen, the posterior is given by

[dm stands for the dimension of βm]
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2. An Idea: 
Avoiding (?) the paradox

[dm stands for the dimension of βm]

Hence,  as cm gets larger,  f(m|y) gets smaller, assuming everything 
else remains fixed.  

Therefore,  for two models of different dimension and equal cm=c,  
the posterior odds in favor of the more complex model tends to 
zero as cm gets larger.

This is essentially the Lindley-Bartlett-Jeffreys paradox.

and for suitably large cm
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2. An Idea: 
Avoiding (?) the paradox

Using Laplace approximation, we can write

where 

• C  is a normalizing constant;    

• is the maximum likelihood estimate and 

• is the second derivative matrix of the log-posterior 
density
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2. An Idea: 
Avoiding (?) the paradox

Using Laplace approximation, we can write

where 

• C is a normalizing constant; n is the sample size  

• is the maximum likelihood estimate 
•

is the Fisher information matrix for a unit observation 
• is the second derivative matrix of the log-posterior 

density
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2. An Idea: 
Avoiding (?) the paradox

The idea –Step 1 [rewrite the prior variance]
Any prior variance matrix Vm can be rewritten as 

resulting in

where cm defined as
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2. An Idea: 
Avoiding (?) the paradox

The idea – Step 2 [express posterior probs as BIC and 
additional penalties]

BIC
Additional 
dimension 
penalty (1)

Additional penalty 2 
(Shrinkage/Ridge type penalty)

Additional 
penalty 3 

(from prior model 
probs)

.
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2. An Idea: 
Avoiding (?) the paradox

The idea –Step 2 [express posterior probs as BIC and additional 
penalties]

BIC can be obtained if
• cm=1
• Prior mean of βm is set equal to its MLEs
• Prior model probabilities are assummed equal for all models. 
Similar to Kass and Wasserman (1995)
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2. An Idea: 
Avoiding (?) the paradox

The idea – Step 2 [express posterior probs as BIC and 
additional penalties]

This is eliminated for large prior 
variances

This still 
remains 

unspecified
And it can be used to effectively 

eliminate the prior penalty 1 which 
causes the paradoxical behavior

This term causes the Lindleys paradox 
since it explodes for large prior variances
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2. An Idea: 
Avoiding (?) the paradox

The idea –Step 3 [eliminating additional penalty 1]

We suggest choosing the cm freely to express  the desired amount
of shrinkage (to the prior mean), and  choose prior model 
probabilities to adjust for the resulting effect this will have on 
the posterior model probabilities.  

where p(m) are some baseline model probabilities.
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2. An Idea: 
Avoiding (?) the paradox

The idea – Step 3 [eliminating additional penalty 1]

Under this prior set-up

Log p(m) can be also interpreted as an additional dimension penalty 
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2. An Idea: 
Avoiding (?) the paradox

For normal models 
Using Normal-inverse-gamma prior set-up results become exact.
Here we present results using a multivariate normal prior for βm with mean           

.         and variance Vm σ2 and f(σ2)  11/σ2

Using the prior model probabilities of type

Results in posterior model probabilities
Residual sum 
of squares

Shrinkage penalty

Dimension penalty
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2. An Idea: 
Avoiding (?) the paradox

What do we achieve

• Separate the prior effect within each model  from the posterior 
inference on model space

• The prior of the parameters contributes on the model evaluation 
through a shrinkage term measuring the difference between data 
and the prior

• The posterior (dimension) penalty on model space is solely 
controlled by p(m)

• Setting all p(m) equal leads to a model determination based on a 
modified BIC involving penalized maximum likelihood. 
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2. An Idea: 
Avoiding (?) the paradox

What is p(m)? 
p(m) can be based on a model complexity penalty which is a-priori 

seems to be appropriate.  
Default option => Setting all p(m) equal leading to a  modified BIC 

procedure
Hence,  the impact of the prior distribution of the model 

parameters is through the shrinkage factor (additional penalty 2) 
and it is straightforward to assess,  and any undesirable side 
effects of large prior variances are eliminated. 
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2. An Idea: 
Avoiding (?) the paradox

What is p(m)? 
To chose p(m) such that it corresponds to a particular complexity penalty, we 

need to evaluate cm
-2 (i.e. the number of units of information introduced by 

the prior of βm).
Except in certain cases,  e.g. normal linear models,  this quantity depends on 

the unknown model parameters βm . 
This is not appropriate as a specification for the marginal prior distribution 

over model space.
One possibility is to use a sample-based estimate in the Fisher information 

matrix  to determine the `prior' model probability (not fully Bayesian).
Alternatively we may substitute βm by its prior  mean into the Fisher 

information matrix. This has a unit information interpretation but the model 
comparison is not asymptotically based the procedure described above (a 
correction term is required)
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2. An Idea: 
Avoiding (?) the paradox

Some arguments in favor of this approach
ARGUMENT 1: Constant probability in a neighborhood of the prior 

mean
Let us consider the prior probability of the event

Then, for any ε>0, 
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2. An Idea: 
Avoiding (?) the paradox

Some arguments in favor of this approach
ARGUMENT 1: Constant probability in a neighborhood of the prior 

mean

Therefore,  if the joint prior probability of model m in conjunction 
with βm being in some specified neighborhood of its prior mean is 
to be uniform across models then we require 



Blackboard 30

2. An Idea: 
Avoiding (?) the paradox

Some arguments in favor of this approach
ARGUMENT 2: Flattening prior densities 
Assume a baseline prior: 

We can raise this prior to the power of 1/c2 to make it flatter (and 
renormalize to make it again density); for c2>1

The larger the c2 the flatter the resulted prior. 
For the above normal baseline prior, the new, heated, prior is
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2. An Idea: 
Avoiding (?) the paradox

Some arguments in favor of this approach
ARGUMENT 2: Flattening prior densities 
Doing the same procedure for the joint prior on parameter and model 

space we end up to

Where C0 = (2π)-1/2 |Σm|-1/2 is the normalizing constant of the 
baseline prior

for large cm
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2. An Idea: 
Avoiding (?) the paradox

Some arguments in favor of this approach
ARGUMENT 2: Flattening prior densities 
Hence the heated prior model probabilities are equivalent to our

proposal with

Implementing a procedure similar to Fisher Information Criterion
(FIC, Wei, 1992, Annals of Statistics)

The above choice of p(m) does not requires to evaluate the Fisher 
information matrix
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Even the BMA estimates 
are affected by the 
Lindley’s paradox and 
the proposed 
adjustment avoids the 
incoherent behavior

Comparison of two 
simple models differing 
by one coefficient  β
with MLE value equal to 
one

Some arguments in favor of this approach
ARGUMENT 3: Bayesian model averaging and shrinkage

2. An Idea: 
Avoiding (?) the paradox

Uniform prior on model space

BMA estimate shrinks towards zero 
for non-informative priors 

Adjusted prior

BMA estimate shrinks towards the 
MLE value for non-informative priors
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3. Illustrations and comparisons: 

Example 1: A simple linear regression example

Data from 
Montgomery, Peck 

and Vining (2001)   
with n=25

MLE for β1=1.417
ρ= 0.98g-prior with 

g=0.04n (RIC)

g-prior with 
g=0.256n (AIC)

Intrinsic   
with n*=20

g-prior with 
c2=1 (g=n, BIC)
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3. Illustrations and comparisons: 

Example 1: A simple linear regression example
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Example 2: Simulated regressions

3. Illustrations and comparisons: 

g-prior with c2=1 
(g=n, BIC or unit 
information prior)

Posterior model probabilities Posterior variable inclusion 
probabilities

Black Solid line: constant model; Red short dashed line: X4+X5 model; 
Blue long dashed line: X4+X5+X12 model.
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Example 2: Simulated regressions

3. Illustrations and comparisons: 

Posterior variable inclusion 
probabilities

Obtained by equating the shrinkage g/(g+1) with the prior 
expected value under the hyper-g prior

Posterior model probabilities
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Example 2: Simulated regressions

3. Illustrations and comparisons: 

1) Extremely robust for a 
wide range of values

2) Low posterior model 
probabilities=> Increased 
posterior model uncertainty

3) Nonsense covariates have 
(inflated?) posterior inclusion 
probabilities in 0.2-0.4 
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Example 2: Simulated regressions

3. Illustrations and comparisons: 

4) The Lindley-Bartlett 
paradox is still here But for values a -> 2 
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Example 2: Simulated regressions

3. Illustrations and comparisons: 

5) There is also a shrinkage paradox (more 
evident in shrinkage methods such as 

lasso); Lykou and Ntzoufras (2012) for 
similar illustrations
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Example 2: Simulated regressions

3. Illustrations and comparisons: 

Posterior variable inclusion 
probabilities

Posterior model probabilities
1) They are robust

2) They do give reasonably high 
posterior model probabilities to 
best models

3) Inclusion probabilities of non-
sense covariates are low < 0.2

4) They do not suffer from 
Lindleys paradox

5) No shrinkage paradox
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3. Illustrations and comparisons: 

Example 3: A 3x2x4 contingency table example with available prior 
information

DF=Dellaportas & Forster prior (non-informative for model comparison); 
KS=Knuiman and Speeed prior (informative within each model)
IND=Independence prior 
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4. Conclusion
What we do argue is: 

1) there is nothing sacred about a uniform prior distribution over models. 

2) It is reasonable to consider specifying jointly f(βm, m) and hence f(m) in a 
way which takes account of the prior distributions for the model
parameters for individual models. 

We propose priors of type                                       as a possible choice 
which 

a) Separates (in a reasonable way) inference within and across models

β) Avoids Lindley-Bartlett paradox

γ) Implements a desired complexity/dimensionality penalty and a 
shrinkage penalty (on the same time)

δ) Can be used even when the prior is informative for some parameters 
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5. Coffee time

At last …


