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Introduction

Motivation

Lasso (least absolute shrinkage and selection operator)

The Lasso (Tibshirani, 1996) performs variable selection and
shrinkage on the linear regression problems by imposing the L1

norm.

β̂lasso = argminβ { var(Y − Xβ) + λ||β||1}

I The L1 norm properties shrink the coefficients towards zero
and exactly to zero if λ is large enough.

I The Lasso estimates can be considered as the posterior modes
under independent double exponential priors.
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Introduction

Motivation

Motivation

Due to the Lasso’s advantages and its apparent Bayesian
perspective, there are various methods for the Bayesian Lasso
regression in the literature, such as

I Yuan and Lin (2005)

I Park and Casella (2008)

I Hans (2009a, 2009b)

However, some of the proposed methods

I perform shrinkage and lack of direct variable selection,

I fail to propose an effective method to specify the shrinkage
parameter.
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Bayesian variable selection and Lasso

Bayesian Lasso

Bayesian Lasso
We use the following formulation

Y |β, τ, γ ∼ Nn(XDγβ, τ−1In), where Dγ = diag(γ1, . . . , γp),

βj ∼ DE
(

0,
1

τλ

)
, for j = 1, . . . , p, (1)

γj ∼ Bernoulli(πj),

τ ∼ Gamma(a, d),

where λ is the shrinkage parameter which controls the prior
variance given by 2/(λτ)2.

I We estimate f (β|Y , ·) and f (γ|Y , ·) with Kuo and Mallick (1998) gibbs
sampler for variable selection.

I Any equivalent such as GVS (Dellaportas et al , 2002) or RJMCMC
(Green, 1995) will provide similar results.

I Inference is based on the posterior medians of β∗
j = γjβj for j = 1, . . . , p.
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Bayesian variable selection and Lasso

Gibbs sampler

A Gibbs Sampler for Bayesian Lasso

If γj = 1, then

f (βj |Y , σ2, β\j , γ\j , γj = 1)

= wj fTN(βj ;m
−
j , s2

j , βj < 0) + (1− wj) fTN(βj ;m
+
j , s2

j , βj ≥ 0)

with

I fTN(x ; µ, σ2, A) is the density distribution evaluated at x of the usual
normal distribution truncated in the subset A ⊂ <

I wj =
Φ(−m−

j /sj)/fN(0 ;m−
j , s2

j )

Φ(−m−
j /sj)/fN(0 ;m−

j , s2
j ) + Φ(m+

j /sj)/fN(0 ;m+
j , s2

j )
.

I m−
j =

cj + λ

||Xj ||2
, m+

j =
cj − λ

||Xj ||2
, cj = XT

j (e + βjXj), s2
j =

1

τ ||Xj ||2
.

I Xj is the jth column of matrix X and e = Y − η is the vector of residuals.
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Bayesian variable selection and Lasso

Gibbs sampler

A Gibbs Sampler for Bayesian Lasso (cont.)

I If γj = 1,

– Generate ωj from Bernoulli(wj)

– Generate βj from

{
TN(m−

j , s2
j , βj < 0), if ωj = 1

TN(m+
j , s2

j , βj ≥ 0), if ωj = 0

I If γj = 0, generate βj from its prior, that is

βj |Y , σ2, β\j , γ\j , γj = 0 ∼ DE
(

0,
1

τλ

)
I Generate σ2 from IG

(
n
2

+ p + α,
||Y − XDγβ||2

2
+ λ||β||+ d

)
.

I Generate γj from Bernoulli with probability Oj/(1 + Oj) with

Oj =
f (Y |β, τ 2, γ\j , γj = 1)

f (Y |β, τ 2, γ\j , γj = 0)

π(γ\j , γj = 1)

π(γ\j , γj = 0)
.
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Bayesian variable selection and Lasso

Toy example

Example
A simulated dataset of Dellaportas et al. (2002), consists of
n = 50 observations and p = 15 covariates generated from a
standardised normal distribution and the response from

Yi ∼ N(Xi4 + Xi5, 2.52), for i = 1, . . . , 50.
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Figure: Posterior medians of β∗j = γjβj and usual Lasso estimates against
λ.
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Bayes factors for simple Lasso Regression

Bayes factors for simple Lasso Regression
The Bayes factors for the comparison between two simple models:

mj : Y |β, τ,mj ∼ Nn(Xjβj , τ
−1In), m0 : Y |β, τ,m0 ∼ Nn(0, τ−1In).

Assuming standardized data, BFj 0 can be expressed

BFj 0 =
λ

n − 1
c

{(
1 +

t2
−

df

) df
2

Ftdf
(t−) +

(
1 +

t2
+

df

) df
2

Ftdf
(t+)

}
where Ftdf

is the cdf of a Student’s t random variable and

c =
√

π
Γ

(
df
2

)
Γ

(
df−1

2

) , t− = − Mj−
√

df√
1−M2

j−

, t+ =
Mj+

√
df√

1−M2
j+

, (2)

Mj− = ρj +
λ

n − 1
, Mj+ = ρj −

λ

n − 1
, df = n + 2a + 1,

where ρj is the sample Pearson correlation between Y and Xj and
without loss of generality we assume that is positive.
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Feasible values of λ

Feasible values of λ

From Equation (2) quantities 1−M2
j− and 1−M2

j+ must be
positive and therefore a range of feasible values for λ is specified.

0 < λ < (n − 1)(1− ρj).
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Active area

Active values of λ

I We examine the sensitivity of the Bayes factors (BF) on
different values of λ.

I We focus on the shrinkage values that provide sufficient
evidence in favour of either of the two competing models.

I We use the Kass and Raftery (1995) interpretation tables to
discard

a) extremely low values of BF that fully support the null model
(due to Bartlett-Lindley’s paradox) and

b) BF values which cannot separate between the two competing
models (i.e. when BF provides weak evidence in favour of the
supported model).

I We therefore define as active values of λ the following area

Λact =
{
λ : log (BF ) > 1

}
∪

{
λ : −5 < log (BF ) < −1

}
.
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Active area

Graphical representation
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Figure: Bayes factor BFj 0 of model mj versus model m0 against the
values of λ, ρ; sample size is fixed to n = 50.
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Active area

Graphical representation (cont.)
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Figure: Bayes factor BFj 0 of model mj versus model m0 against the
values of λ, ρ; sample size is fixed to n = 50.
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Active area

Specification of λ

Figure 1a shows that

I There is a range of values of ρ where the BF cannot separate
between the two competing models:

BF < 3 for all the values of λ.

I For n = 50, the BF never provides evidence in favour of the
simple regression model for Xj which are associated with Y
with ρ ≤ 0.31.

I For any given sample size n, there is a range of sample
correlations which can be considered as “non-important” for
all values of λ.

We use the upper limit of this range as the benchmark to tune
the shrinkage parameter.
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Active area

Specification of λ (cont.)
In order to define the prior shrinkage parameter λ, we set a threshold value ρt

for the correlation ρ and we select the corresponding BF value for this
threshold value.

For example, for n = 50, we select that any covariate Xj which is correlated
with Y with ρt = 0.4 must have BF=1 ⇒ λ = 0.067.

This procedure provides with a value of λ (here 0.067) that gives 50% posterior
probability to the simple regression model with covariate Xj and 50% to the
constant model for a selected level of correlation ρt (here 0.4).

n 50 100 500
ρb 0.31 0.22 0.10
BF = 1 ρt = 0.35, λ = 0.218 ρt = 0.25, λ = 0.335 ρt = 0.15, λ = 0.060
BF = 1 ρt = 0.40, λ = 0.067 ρt = 0.30, λ = 0.069 ρt = 0.20, λ = 7× 10−4

BF = 1 ρt = 0.50, λ = 0.004 ρt = 0.40, λ = 0.001 ρt = 0.30, λ = 5× 10−6

BF = 1
150

ρt = 0.01, λ = 0.038 ρt = 0.01 λ = 0.053 ρt = 0.01 λ = 0.116

Table: Shrinkage levels that correspond to BF=1 for various values of rhot and n, ρb

denotes the upper limit of the non-important correlations.
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Bayes Factor for multiple Lasso regression
To understand and interpret the behavior of our procedure we also
facilitate comparisons involving multiple regression setups including
or not a specific covariate.

Hence, we compare the full model mf with the model mf \j , where
the jth variable is excluded.

We use the Laplace approximation to derive the corresponding BF.

BFm ≈ kc
[
1− pr 2

j

]−df /2 1√(
1− R2

Xj |Xγ

)(
1− R

(lasso)2
Y |Xγ

) .

where

I k = λ/(n − 1)

I prj = corr(lasso)(Y , Xj |Xγ) is the LASSO version of the partial correlation,

I R2
Xj |Xγ

is the multiple correlation coefficient when regressing Xj on Xγ ,

I R
(lasso)2
Y |Xγ

is the LASSO version of the multiple correlation coefficient when

regressing Y on Xγ .
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Bayes Factor for multiple Lasso regression

Relation between the partial correlation and Pearson
correlation

To complete the interpretation of our selected λ, we identify the
threshold value prj ,t of prj which provides the same BF as the
corresponding one for simple LASSO regression model.

Using the above specification, we find that

(1− pr2
j ,t)

[
(1− R2

Xj |Xγ
)(1− R

(lasso)2
Y |Xγ

)
]1/(n+2a+1)

= 1− (ρt − k)2.

From the above it is deduced that
I the threshold value for the LASSO partial correlation is upper

bounded by a penalized expression of the corresponding
threshold value of the Pearson correlation.

pr2
j ,t ≤ (ρt − k)2,

I the two thresholds are approximately equal as n →∞ (i.e. for
large sample sizes).

pr2
j ,t

n→∞−−−→ ρ2
t .



On Bayesian Variable Selection Using Lasso

Illustration

Simulation study 1

We perform the Bayesian Lasso on the simulated data from
Dellaportas et. al. (2002) for specific values of λ that have been
chosen through the univariate Bayes factor.

Var. incl. Post. Incl. Prob Prob. of model
ρt BF λ X4, X5, X12 MAP true

0.35 1 0.217 X4, X5 0.96, 1.00, 0.38 26.22%
0.40 1 0.067 X4, X5 0.85, 1.00, 0.15 55.49%
0.50 1 0.004 X5 0.45, 0.96, 0.01 50.45% 43.33%
0.01 1

150
0.038 X4, X5 0.78, 1.00, 0.09 61.39%

Table: Posterior summaries for various choices of λ.

The absolute values of the lasso partial correlations of the variables
X4,X5,X12 in this data set are: (0.51, 0.68, 0.34).
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Illustration

Simulation study 2
I A simulated study from Nott and Kohn (2005).
I Consists of 15 covariates and 50 observations.
I The first 10 variables follow independent N(0, 1).
I The last 5 are generated using the following scheme

(X11, . . . , X15) = (X1, . . . , X5)× (0.3, 0.5, 0.7, 0.9, 1.1)T × (1, 1, 1, 1, 1) + E,

where E consists of 5 independent N(0, 1).
I The response is generated as

Y = 2X1 − X5 + 1.5X7 + X11 + 0.5X13 + ε, where ε ∼ N(0, 2.52I ).

Var. incl. Post. Incl. Prob Prob. of model
ρt BF λ X1, X5, X7, X11, X13 MAP true
0.35 1 0.217 X1, X7, X11 1.00, (0.24), 1.00, 0.97, (0.19) 20.07% 1.47%
0.40 1 0.067 X1, X7, X11 1.00, (0.09), 1.00, 0.96, (0.08) 57.38% 0.45%
0.50 1 0.004 X1, X7, X11 1.00, (0.01), 0.99, 0.91, (0.04) 88.50% 0%
0.01 1

150
0.038 X1, X7, X11 1.00, (0.05), 1.00, 0.95, (0.07) 70.65% 0.19%

The absolute values of the lasso partial correlations of the important variables

are:(0.50, 0.27, 0.67, 0.49, 0.18)
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Illustration

Simulation study 2 (cont.)
We have simulated 100 samples and we perform the Bayesian Lasso
regression for the chosen levels of shrinkage.

The average posterior inclusion probabilities for each variable are:

Post. Incl. Prob
ρt BF λ X1, X5, X7, X11, X13

ρ = 0.35 1 0.218 0.99, 0.37, 0.91, 0.83, 0.40
ρ = 0.40 1 0.067 0.98, 0.24, 0.84, 0.78, 0.27
ρ = 0.50 1 0.004 0.83, 0.07, 0.51, 0.57, 0.18
ρ = 0.01 1

150
0.038 0.97, 0.18, 0.79, 0.75, 0.23

The following Table shows the frequency that three selected models are
the MAP model in our Bayesian LASSO procedure.

ρt BF λ X1, X7, X11 X1, X5, X7, X11 X1, X5, X7, X11, X13

0.35 1 0.218 27% 11% 6%
0.40 1 0.067 43% 9% 4%
0.50 1 0.004 30% 3% 0%
0.01 1

150
0.038 43% 9% 2%



On Bayesian Variable Selection Using Lasso

Conclusion

Conclusions

I We propose an approach to select the prior (shrinkage)
parameter λ based on its effect on Bayes factors.

I No specific data are utilized in this specification so the
approach is purely Bayesian.

I We can interpret the behaviour of our Bayesian LASSO based
on levels of practical significance of correlations and partial
correlations which are widely understood.

I We have also specified an active area for λ, which truncates
the range of λ in order to avoid the Bartlet-Lindley paradox
and over-shrinkage.

I We managed to identify non-important covariates in reference
to sample correlations that will be never supported by BF for
all values of λ. This benchmark correlation can be calculated
with simple iterative approaches while an lower bound of it is
also available.
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Further work

Further work

I Extend to hierarchical model, where a hyperprior is imposed
on the shrinkage parameter.

I Allow different shrinkage parameters for each covariate
(Adaptive Lasso).

I Perform the proposed ideas on the Bayesian Ridge regression

I Extend them for GLMs and categorical regressors.

I Examine the Bayesian implementation of other related
methods such as Elastic net.
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