Population-Based Reversible-Jump MCMC for Bayesian Variable Selection and Evaluation Under Cost-Limit Restrictions

Ioannis Ntzoufras,

Department of Statistics, Athens University of Economics and Business, Athens, Greece; e-mail: ntzoufras@aueb.gr.

Joint work with:

Dimitris Fouskakis & David Draper

Department of Mathematics, Department of Applied Mathematics and

National Technical University of Athens, Statistics, University of California,

Athens, Greece; Santa Cruz, USA;

e-mail: fouskakis@math.ntua.gr. e-mail: draper@ams.ucsc.edu

Presentation is available at: http://stat-athens.aueb.gr/~jbn/current.htm

1 Motivation

Health care quality measurements

Indirect method: input-output approach.

- Construct a model on hospital outcomes (e.g., mortality within 30 days of admission) after adjusting for differences in inputs (sickness at admission).
- Compare observed and expected outcomes to infer for the health care quality.
- Data collection costs are available for each variable (measured in minutes or monetary units).
- We wish to incorporate cost in our analysis in order to reduce data collection costs but also have a well-fitted model.

Available data

- **Data** come form a major U.S. study constructed by RAND Corporation, with n = 2,532 pneumonia patients (Keeler, et al., 1990).
- Response variable: mortality within 30 days of admission
- Covariates: p = 83 sickness indicators
- Construct a **sickness scale** using a logistic regression model.
- Benefit Only Analysis (no costs): Classical variable selection techniques to find an "optimal" subset of 10-20 indicators. The initial list of p=83 sickness indicators was reduced to 14 "significant" predictors (Keeler, et al., 1990).

The 14-Variable Rand Pneumonia Scale

The RAND admission sickness scale for pneumonia (p = 14 variables), with the marginal data collection costs per patient for each variable (in minutes of abstraction time).

Variable	Cost	Variable	Cost
	(Minutes)		(Minutes)
1 Systolic Blood Pressure Score	0.5	8 Septic Complications	3.0
(2-point scale)		(yes, no)	
2 Age	0.5	9 Prior Respiratory Failure	2.0
		(yes, no)	
3 Blood Urea Nitrogen	1.5	10 Recently Hospitalized (yes, no)	2.0
4 APACHE II Coma Score	2.5	12 Initial Temperature	0.5
(3-point scale)			
5 Shortness of Breath Day 1	1.0	17 Chest X-ray Congestive Heart	2.5
(yes, no)		Failure Score (3-point scale)	
6 Serum Albumin Score	1.5	18 Ambulatory Score	2.5
(3-point scale)		(3-point scale)	
7 Respiratory Distress	1.0	48 Total APACHE II Score	10.0
(yes, no)		(36-point scale)	

Two different approaches for incorporating cost into the analysis

Two desirable but opposite criteria must be accounted in our analysis:

- 1. the fit of the model
- 2. the cost of the model

Thus, we wish to find a model with the lower possible cost but having an "acceptable fit" to the observed data.

So two different cases for handling cost may appear

- Case 1: Decrease the cost as much as possible but without losing much from the predictive ability of the model. No overall budgetary restrictions exist.
- Case 2: An overall budgetary bound is implemented. We select the "best" model under the restricted model space.

Three methods for solving this problem

- (1) **Bayesian decision theoretic** solution proposed by Draper and Fouskakis (2000) and Fouskakis and Draper (2002, 2008).

 They used stochastic optimization methods to find (near-) optimal subsets of predictor variables that maximize an expected utility function which trades off data collection cost against predictive accuracy [case 1].
- (2) Model specification using a cost—adjusted prior. As an alternative to (1), we propose a prior distribution that accounts for the cost of each variable and results in a set of posterior model probabilities. This approach leads to a generalized cost-adjusted version of the Bayesian Information Criterion (Fouskakis, Ntzoufras and Draper, 2009a) [case 1].
- (3) Cost—restriction benefit analysis. The model search is conducted only among models whose cost does not exceed a budgetary restriction (Fouskakis, Ntzoufras and Draper, 2009b), by the usage of a population—based trans—dimensional RJMCMC method [case 2].

2 Model Specification

- Logistic regression model with $Y_i = 1$ if patient i dies after 30 days of admission.
- X_{ij} : j sickness predictor variable for the i patient.
- $m \to \gamma = (\gamma_1, \dots, \gamma_p)^T$.
- γ_j : Binary indicators of the inclusion of the variable X_j in the model.
- Model space $\mathcal{M} = \{0,1\}^p$; p = total number of variables considered.

Hence the model formulation can be summarized as

$$(Y_i \mid \boldsymbol{\gamma}) \stackrel{indep}{\sim} Bernoulli(p_i(\boldsymbol{\gamma})),$$
 $\eta_i(\boldsymbol{\gamma}) = \log\left(\frac{p_i(\boldsymbol{\gamma})}{1 - p_i(\boldsymbol{\gamma})}\right) = \sum_{j=0}^p \beta_j \gamma_j X_{ij},$
 $\boldsymbol{\eta}(\boldsymbol{\gamma}) = \boldsymbol{X} \operatorname{diag}(\boldsymbol{\gamma}) \boldsymbol{\beta} = \boldsymbol{X} \boldsymbol{\gamma} \boldsymbol{\beta} \boldsymbol{\gamma}.$

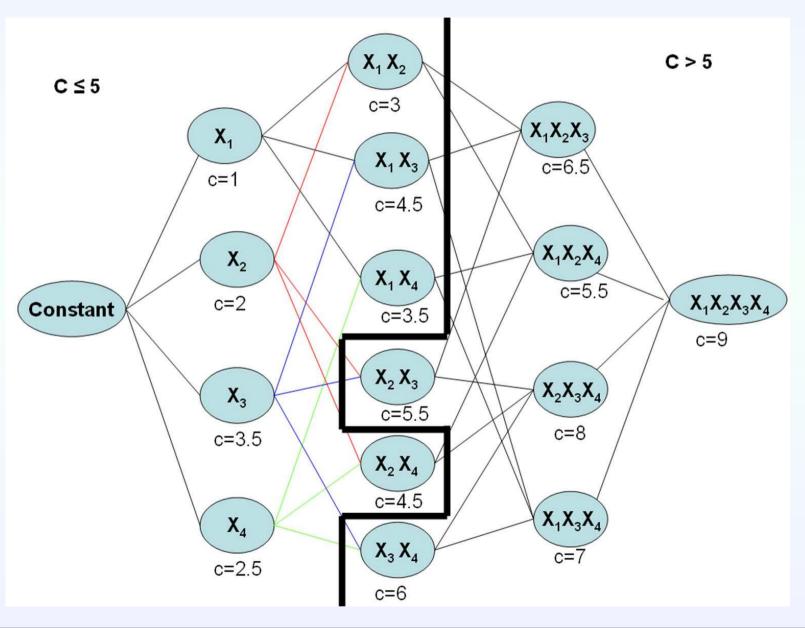
3 Cost Restriction - Benefit Analysis

• Select between models whose cost does not exceed a budgetary restriction. Therefore, we should a-priori exclude models γ with total cost larger than C, resulting to a significantly reduced model space,

$$\mathcal{M} = \left\{ \boldsymbol{\gamma} \in \{0, 1\}^p : \sum_{j=1}^p c_j \gamma_j \le C \right\}.$$

- AIM: Estimate posterior model probabilities in the cost restricted model space.
- Problem: The new truncated model space is more complicated with areas of local maximum (i.e. neighborhoods of "good" models).
- A sophisticated model search algorithm (allowing for non-local jumps in the model space) must be adopted.
- We use a population—based trans—dimensional RJMCMC method

Example: Variables X_1 , X_2 , X_3 and X_4 with costs 1, 2, 3.5, 2.5 and total cost limit C = 5.



Intelligent trans-dimension MCMC methods that allow to move across areas of local maximum even if these are distinct.

Proposed Algorithm

We have developed a Population Based Trans-Dimensional Reversible-Jump Markov Chain Monte Carlo algorithm (**Population RJMCMC**), combining ideas from the **population-based MCMC** (Jasra, Stephens and Holmes, 2007) and **Simulated Tempering** (Geyer and Thompson, 1995) algorithms.

3.1 The proposed population based algorithm

- Use 3 chains: The actual one, plus two auxiliary ones.
 - In the auxiliary chains the posterior distributions are raised in a power t_k (inverse temperature), k = 1, 2.
 - 1st auxiliary chain: $t_1 > 1 \rightarrow$ increasing differences between the posterior probabilities (makes the distribution steeper \Rightarrow move closer to locally best models).
 - 2nd auxiliary chain: $0 < t_2 < 1 \rightarrow$ reducing differences between the posterior probabilities (makes the distribution flatter \Rightarrow move easily across different models).
- Inverse temperatures t_k change stochastically.
- By this way the extensive number of chains is avoided.
- The incorporation of stochastic temperatures can be done using pseudo priors $g_k(t_k)$.

Pop-RJMCMC - The Posterior Distribution

• The posterior distribution is expanded to

$$f(\boldsymbol{\beta_{\gamma}}, \boldsymbol{\gamma}, \boldsymbol{\beta_{\gamma,(1)}}, \boldsymbol{\gamma_{(1)}}, \boldsymbol{\beta_{\gamma,(2)}}, \boldsymbol{\gamma_{(2)}}, t_1, t_2 | \boldsymbol{y})$$

$$\propto f(\boldsymbol{y}|\boldsymbol{\beta}_{\boldsymbol{\gamma}},\boldsymbol{\gamma})f(\boldsymbol{\beta}_{\boldsymbol{\gamma}}|\boldsymbol{\gamma})f(\boldsymbol{\gamma})$$

$$\times \prod_{k=1}^{2} \left\{ f(\boldsymbol{y}|\boldsymbol{\beta}_{\boldsymbol{\gamma},(k)},\boldsymbol{\gamma}_{(k)})f(\boldsymbol{\beta}_{\boldsymbol{\gamma},(k)}|\boldsymbol{\gamma}_{(k)})f(\boldsymbol{\gamma}_{(k)}) \right\}^{t_{k}} g_{k}(t_{k}),$$

where $\gamma_{(k)}$ and $\beta_{\gamma,(k)}$ are the model indicator and parameter vector of chain k.

• Model indicators and parameters can be updated using RJMCMC steps.

Pop-RJMCMC - Sampling t_k

• In Gibbs sampling, the inverse temperature t_k is generated by

$$f(t_k|\boldsymbol{\beta}, \boldsymbol{\gamma}, \boldsymbol{\beta}_{\boldsymbol{\gamma},(k)}, \boldsymbol{\gamma}_{(k)}, t_{\setminus k}, \boldsymbol{y}) \propto \left\{ f(\boldsymbol{y}|\boldsymbol{\beta}_{\boldsymbol{\gamma},(k)}, \boldsymbol{\gamma}_{(k)}) f(\boldsymbol{\beta}_{\boldsymbol{\gamma},(k)}|\boldsymbol{\gamma}_{(k)}) f(\boldsymbol{\gamma}_{(k)}) \right\}^{t_k} g_k(t_k).$$

PROBLEM: When flat (non informative prior) for inverse temperatures is imposed then the conditional distribution above is an increasing function of t_k .

SOLUTION: The temperatures are only used to expand the space and to make possible jumps between models of different dimension and structure. So $g_k(t_k)$ are not actual priors but pseudo-priors.

- We propose to use directly the marginal posterior distribution of the inverse temperatures t_k $f(t_k|\mathbf{y})$ in the sampling scheme.
- The desired posterior marginal distribution for the inverse temperatures t_k is

given by

$$egin{array}{lll} f(t_k|oldsymbol{y}) & \propto & \sum_{oldsymbol{\gamma}_{(k)} \in \mathcal{M}} \int \int \left(f(oldsymbol{y}|t_k,oldsymbol{eta}_{oldsymbol{\gamma}_{,(k)}},oldsymbol{\gamma}_{(k)}) f(oldsymbol{eta}_{oldsymbol{\gamma}_{,(k)}}) f(oldsymbol{\gamma}_{(k)}) f(oldsymbol{\gamma}_{(k)}) \int^{t_k} g_k(t_k) doldsymbol{eta}_{oldsymbol{\gamma}_{,(k)}} \\ & \propto & Z_k(oldsymbol{y},t_k) g_k(t_k), \end{array}$$

where $Z_k(\boldsymbol{y},t_k)$ is the marginal likelihood over all possible models for chain k.

• Since $g_k(t_k)$ are pseudo-priors, we can set

$$g_k(t_k) \propto rac{h_k(t_k)}{Z_k(oldsymbol{y},t_k)}$$

where $h_k(t_k)$ are convenient and easy to simulate from density functions resulting to

$$f(t_k|\boldsymbol{y}) = h_k(t_k).$$

• For the selection of $h_k(t_k)$ we propose to use

$$h_1(t_1) = Gamma(t_1 - 1; a_1, b_1)$$
 and $h_2(t_2) = Beta(t_2; a_2, b_2)$.

Population RJMCMC - The implemented algorithm

An iteration of the algorithm can be described by the following steps

- 1. Generate t_1 and t_2 from $f(t_1|\mathbf{y}) = h_1(t_1)$ and $f(t_2|\mathbf{y}) = h_2(t_2)$, respectively.
- 2. Sample $\beta_{\gamma,(k)}$ for k = 0, 1, 2 using Gibbs steps.
- 3. For k = 0, 1, 2 and $j \in \{1, \dots, p\}$ (in a random scan):
 - (a) Propose $\gamma'_{(k)}$: $\gamma'_{j,(k)} = 1 \gamma_{j,(k)}$ and $\gamma'_{\ell,(k)} = \gamma_{\ell,(k)}$ for all $\ell \neq j$ (with probability 1).
 - (b) If $\gamma_{j,(k)} = 1$ then propose $\beta'_{j,(k)}$ from $q_{j,k}(\beta'_{j,(k)})$ and set $\beta'_{\ell,(k)} = \beta_{\ell,(k)}$ for $\ell \neq j$.
 - (c) Accept the proposed move with probability $\alpha = \min\{1, O\}$, where

$$O = \left[\frac{f(\boldsymbol{y}|\boldsymbol{\beta}'_{\boldsymbol{\gamma},(k)},\boldsymbol{\gamma}'_{(k)})f(\boldsymbol{\beta}'_{\boldsymbol{\gamma},(k)}|\boldsymbol{\gamma}'_{(k)})f(\boldsymbol{\gamma}'_{(k)})}{f(\boldsymbol{y}|\boldsymbol{\beta}_{\boldsymbol{\gamma},(k)},\boldsymbol{\gamma}_{(k)})f(\boldsymbol{\beta}_{\boldsymbol{\gamma},(k)}|\boldsymbol{\gamma}_{(k)})f(\boldsymbol{\gamma}_{(k)})} \right]^{t_k} \frac{q_{j,k}(\beta_{j,(k)})^{\gamma_{j,(k)}}}{q_{j,k}(\beta'_{j,(k)})^{1-\gamma_{j,(k)}}}.$$
(1)

4. For k = 1, 2:

- (a) Propose with probability 1 to swap $(\beta_{\gamma}, \gamma) \leftrightarrow (\beta_{(k)}, \gamma_{(k)})$.
- (b) Accept the proposed move with probability $\alpha = \min\{1, O\}$, where

$$O = \left[\frac{f(\boldsymbol{y}|\boldsymbol{\beta}_{\boldsymbol{\gamma},(k)}, \boldsymbol{\gamma}_{(k)}) f(\boldsymbol{\beta}_{\boldsymbol{\gamma},(k)}|\boldsymbol{\gamma}'_{(k)}) f(\boldsymbol{\gamma}'_{(k)})}{f(\boldsymbol{y}|\boldsymbol{\beta}_{\boldsymbol{\gamma}}, \boldsymbol{\gamma}) f(\boldsymbol{\beta}_{\boldsymbol{\gamma}}|\boldsymbol{\gamma}) f(\boldsymbol{\gamma})} \right]^{1-t_k}.$$
 (2)

In the above steps, $\beta_{\gamma,(0)}$ and $\gamma_{(0)}$ correspond to the parameters β_{γ} and γ of the original chain, and $t_0 = 1$ is the (inverse) temperature of the original chain.

The above sampling scheme can be enriched with additional moves used in population MCMC (such as mutation and crossover).

In our problem: the moves described above were sufficient to achieve good mixing.

Proposal Specification

We use Gaussian independent proposals of the form

$$q_{j,k}(\beta_{j,(k)}) \sim \text{Normal}\left[\bar{\beta}_{j,(k)}, \bar{\sigma}_{j,(k)}^2\right].$$
 (3)

Specify proposal parameters $\bar{\beta}_{j,(0)}$ and $\bar{\sigma}_{j,(0)}^2$ for the original chain as in RJMCMC (from MLEs or pilot run estimates of posterior summaries of the full model, conditional maximization estimates or more sophisticated techniques - Brooks et al., 2003)

For the other two chains we set

$$\bar{\beta}_{j,(k)} = \bar{\beta}_{j,(0)}$$
 and $\bar{\sigma}_{j,(k)}^2 = \frac{\bar{\sigma}_{j,(0)}^2}{t_k}$ for $k = 1, 2$. (4)

This can be obtained using the Laplace approximation to the posterior distribution for each separate chain with different t_k .

3.2 Prior Distributions

$$|\boldsymbol{\beta_{\gamma}}| \boldsymbol{\gamma} \sim Normal\left(\boldsymbol{0}, 4n\left(\boldsymbol{X_{\gamma}^T} \boldsymbol{X_{\gamma}}\right)^{-1}\right)$$

- Low information prior defined by Ntzoufras, Delaportas and Forster (2003).
- Can be derived using the power prior of Chen et al. (2000) and imaginary data supporting the simplest model included in our model space.
- It gives weight to the prior equal to one data-point.
- It is equivalent to the Zellner's g-prior (with g=4n) used for normal regression models.

Uniform prior on cost restricted model space:

$$f(\gamma) \propto I(\gamma \in \mathcal{M} : c(\gamma) = \sum_{j=1}^{p} \gamma_j c_j \leq C),$$

where c_j is the differential cost per observation for variable X_j and C is the budgetary restriction.

3.3 Implementation and Results

Implementation details

- COST LIMIT: C = 10 minutes of abstraction time.
- The Procedure:
 - 1. Run Population RJMCMC for 100K iterations in the full model space, twice, starting each time from a different model.
 - 2. Eliminate non-important variables (with marginal probabilities < 0.30 in both runs) forming a new reduced model space.
 - 3. Run population RJMCMC in the reduced space, twice.
- The pseudo-parameters were tuned to achieved acceptance rates around 20% for swapping values between chains of different temperatures, resulting in $h_1(t_1) = \text{Gamma}(t_1 1; 2, 4)$ and $h_2(t_2) = \text{Beta}(t_2; 7, 3)$
- Population vs. simple RJMCMC: Comparison of results and performance.

Preliminary Results: Marginal Probabilities $f(\gamma_j = 1 | \boldsymbol{y})$

Variables with marginal posterior probabilities $f(\gamma_j = 1|\mathbf{y})$ above 0.30 in at least one run.

			Marginal Pos	terior Probabilities
Variable		Variable	First Run	Second Run
Index	Variable Name	Cost	Analysis	Analysis
1	Systolic Blood Pressure (SBP) Score	0.50	0.98	0.99
2	Age	0.50	0.97	0.95
3	Blood Urea Nitrogen	1.50	0.99	0.91
4	Apache II Coma Score	2.50	0.55	1.00
5	Shortness of Breath Day 1	1.00	0.92	0.80
6	Serum Albumin	1.50	0.40	0.55
12	Initial Temperature	0.50	0.91	0.93
37	Apache Respiratory Rate Score	1.00	0.72	0.79
46	Admission SBP	0.50	0.45	0.25
49	Respiratory Rate Day 1	0.50	0.35	0.25
51	Confusion Day 1	0.50	0.44	0.01
62	Body System Count	2.50	0.55	0.33
70	Apache pH Score	1.00	0.81	0.73

Reduced Model Space: Posterior Model Probabilities/Odds

Common variables in both analyses: $X_2 + X_4$

Population RJMCMC - 500K iterations

				1st Run		2nd Run	
	Common	Add	itional	Posterior		Posterior	
k - m	Variables	Var	iables	Prob.	PO_{1k}^*	Prob.	PO_{1k}^*
$1 m_1$	$X_1 + X_{12} + X_{37}$	$+X_3 + X_5$	$+X_{62}$	0.4872	1.00	0.4879	1.00
$2 m_2$		$+X_5$	$+X_{46} + X_{62} + X_{70}$	0.1202	4.05	0.1052	4.63
$3 m_3$		$+X_3$	$+X_{62} + X_{70}$	0.0894	5.45	0.0982	4.97
$4 m_4$		$+X_3+X_5+X_6$	$+X_{70}$	0.0344	14.16	0.0498	9.80

Simple RJMCMC - 1500K iterations

		1st Run		2nd F	Run		
	Common	Additional		Posterior		Posterior	
k m	Variables	Variables		Prob.	PO_{1k}^*	Prob.	PO_{1k}^*
$1 m_1$	X_{62}	$+X_1+X_3+X_5+X_{12}+X_{37}$		0.6159	1.00	0.5912	1.00
$2 m_3$		$+X_1+X_3$ $+X_{12}+X_{37}$	$+X_{70}$	0.1061	5.80	0.1525	3.88
$3 m_2$		$+X_1 + X_5 + X_{12} + X_{37} + X_{46}$	$+X_{70}$	0.0926	6.65	0.1041	5.68
$4 m_5$		$+X_3+X_5$ $+X_{46}+X_{49}$	$+X_{70}$	0.0403	15.28	< 0.03	> 19.9

^{*}posterior odds of the best model within each analysis versus the current model k.

All models appearing in the table have total cost 10 min (cost limit).

Reduced Model Space: Monte Carlo Errors

				MCSE	Es (%))
	RJMC	CMC				
Type	Run	Iterations	m_1	m_2	m_3	m_4
P	1	500K	1.2	0.5	0.9	0.7
P	2	500K	1.5	0.4	1.0	0.7
P	1	200K	1.9	0.8	1.1	1.2
P	2	200K	1.6	1.0	1.1	0.9
P	1	100K	2.5	1.2	1.7	1.5
P	2	100K	2.7	0.9	1.6	1.2
S	1	500K	4.2	1.3	3.2	0.0
S	2	500K	4.2	1.7	3.6	0.0
S	1	1,500 K	2.9	1.1	2.1	1.0
S	2	1,500K	3.1	0.9	3.1	0.0

		Relative			
	P Iterations	Comparisons			.S
First 1,500K	500K	2.4	2.2	2.3	1.4
S Run	200K	1.5	1.4	1.9	0.8
versus P	100K	1.2	0.9	1.2	0.7
Second 1,500K	500K	2.1	2.3	3.1	0.0
S Run	200K	1.9	0.9	2.8	0.0
versus P	100K	1.2	1.0	1.9	0.0

Comparison of the best models and the RAND model

	Minimum	Total	
Model	Deviance	Cost	Dimension
m_1	1610.0	10	8
m_2	1606.7	10	9
m_3	1612.8	10	8
m_4	1608.6	10	9
m_5	1616.5	10	8
RAND	1587.3	31	14
Bayesian Benefit	1553.2	22.5	13

Figure 1: Density and time series plots of model dimension.

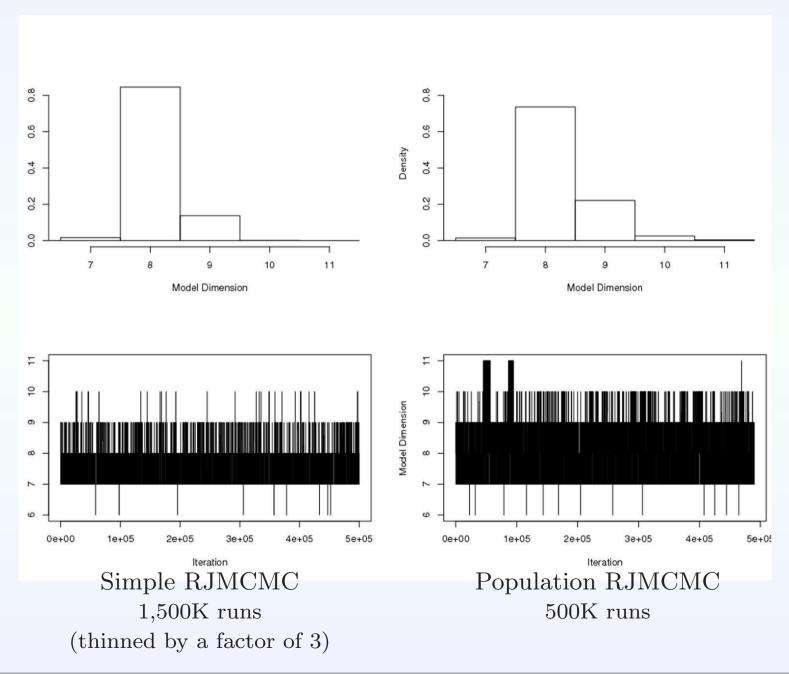


Figure 2: Density and time series plots of sequential change score (the number of variables in the model at iteration (t + 1) that are different from those in the model at iteration t)

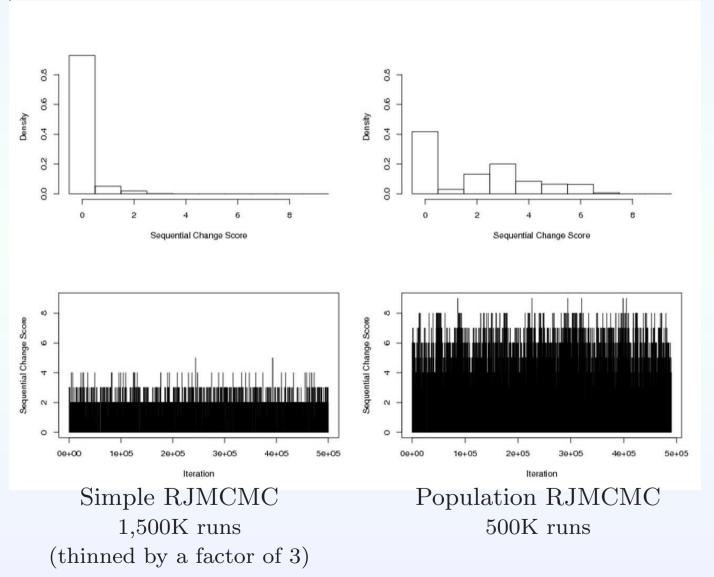
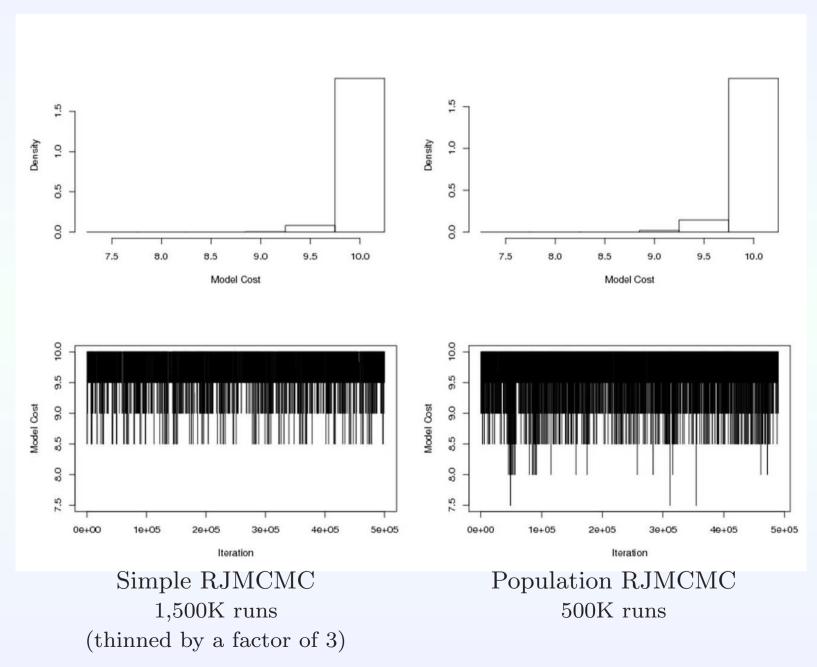


Figure 3: Density and time series plots of model cost



4 Discussion

• Cost - Restriction - Benefit Analysis:

A modified Population RJMCMC algorithm is proposed to explore the restricted model space when budgetary contstains are imposed.

The proposed algorithm explores the model space efficiently and converges faster than simple RJMCMC (having lower Monte Carlo errors).

Authors' related work

Fouskakis D, Ntzoufras I, Draper D (2009b). Population Based Reversible Jump MCMC for Bayesian Variable Selection and Evaluation Under Cost Limit Restrictions.

Journal of the Royal Statistical Society C (Applied Statistics) 58, 383–403.

Additional References

- Geyer CJ, Thomson EA (1995). Annealing Markov Chain Monte Carlo with applications to ancestral inference. *Journal of the American Statistical Association*, **90**, 909–920.
- Green P (1995). Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. *Biometrika*, **82**, 711–732.
- Jasra A, Stephens DA, Holmes CC (2007). Population-based reversible jump MCMC. Biometrika, 94, 787–807.
- Keeler E, Kahn K, Draper D, Sherwood M, Rubenstein L, Reinisch E, Kosecoff J, Brook R (1990). Changes in sickness at admission following the introduction of the Prospective Payment System. *Journal of the American Medical Association*, **264**, 1962–1968.
- Ntzoufras I, Dellaportas P, Forster JJ (2003). Bayesian variable and link determination for generalized linear models. *Journal of Statistical Planning and Inference*, **111**, 165–180.