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Introduction

Motivation

Lasso (least absolute shrinkage and selection operator)
The Lasso (Tibshirani, 1996) performs variable selection and
shrinkage on the linear regression problems by imposing the L1

norm.

argmin β { var(y− Xβ)} subject to

p∑
j=1

|βj | ≤ t.

I The L1 constraint shrinks the coefficients towards zero and
sets some of them to zero if t is small enough.

I The shrinkage parameter takes values between 0 and
t0 =

∑
|βols |.

I The shrinkage level is usually controlled through s = t
t0

.

I Generalized cross validation methods or the Cp criterion are
used to tune the shrinkage parameter s.
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Introduction

Motivation

Geometry of the Lasso
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Introduction

Motivation

Geometry of the Ridge Regression
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Introduction

Motivation

Lasso (cont.)
Lasso is treated as an optimization problem

β̂lasso = argminβ { var(y − Xβ) + λ||β||1} ,

I one to one correspondence between λ and t (or s),

I for λ = 0 ⇒ β̂ols,

I the coefficients shrink as λ increases.

I Lasso is intensively used in the literature as a variable
selection method,

I extensions and improvements of the method; (Efron et al.,

2004, Zou and Hastie, 2005, Zou, 2006, Meier et al., 2008, Lykou

and Whittaker, 2010).
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Introduction

Motivation
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Figure: Lasso estimates against λ for a simulated data set of 15
covariates and n = 50. 7 / 37
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Introduction

Motivation

Bayesian perspective

The Lasso estimates can be considered as the posterior modes
under independent double-exponential priors.

y|β ∼ Nn(Xβ, τ−1In),

βj ∼ DE
(

0,
1

τλ

)
, for j = 1, . . . , p,

The posterior mode is

β̂lasso = (XTX)−1(XTY − λs),

where s is the sign of β̂lasso.
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Introduction

Motivation

The Double Exponential Distribution

f (y |µ, λ) =
1

2λ
exp

(
−|y − µ|

λ

)

E (Y ) = µ

V (Y ) = 2λ2
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Introduction

Motivation

Background

The double-exponential prior distribution can be represented as a
mixture of normal distributions (Andrews and Mallows, 1974).

I Park and Casella (2008): the method lacks of direct variable
selection.

I Balakrishnan and Madigan (2009): propose the demi-Bayesian
Lasso, where the mixing parameter is found by maximizing the
marginal data likelihood and its zero values control the
variables excluded from the model.

I Griffin and Brown (2010): adopt the Normal-Gamma prior and
shrink the posterior expectation to values very close to zero.
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Introduction

Motivation

Background (cont.)

Other prior distributions for the Bayesian Lasso.

I Hans (2009) describes also the Bayesian Lasso regression by
imposing directly the double-exponential prior. He focuses on
the problem of predicting future observations rather than the
variable selection problem.

I Hans (2010) addresses model uncertainty for the Bayesian
Lasso regression by computing the marginal posterior
probabilities for small model space. He handles the cases of
large model space by imposing the prior as a mixture of a
mass at zero and of the double-exponential and sample the
posterior inclusion probabilities by a Gibbs sampler.

I Yuan and Lin (2005) prove that the model with the highest
posterior probability is the Lasso solution.
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Introduction

Motivation

Background (cont.)

Other prior distributions for the Bayesian shrinkage and sparsity.

I Carvalho, Polson and Scott (2010), Biometrika. Horseshoe
Estimator (Half Cauchy Hyper Prior for normal s.d.)

I Armagan, Dunson and Lee (2010). Double Generalized Pareto
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Introduction

Motivation

Choice of the shrinkage parameter

The choice of the shrinkage parameter is always crucial in sparse
methods.

Most publications in Bayesian versions of Lasso impose a
hyperprior on the shrinkage parameter or use empirical methods.

Lack of interpretation of the chosen values of λ.

The range of values of λ for each data set is not known.
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Introduction

Motivation

Our contribution

I We use the variable selection method that introduces an
indicator parameter, which identifies the variables included in
the model formulation.

Quantify model uncertainty by deriving the posterior model
probabilities.

I Propose a method that controls the shrinkage levels using
simple arguments based on traditional correlation coefficients
that are widely understood.

Examine the sensitivity of the variable selection problem on
the various shrinkage values.

Propose values for the shrinkage parameter that we can
interpret.
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Bayesian variable selection and Lasso

Bayesian Lasso using Gibbs Sampling

Bayesian Lasso
We use the following formulation

y|β, τ, γ ∼ Nn(XDγβ, τ−1In), where Dγ = diag(γ1, . . . , γp),

βj ∼ DE
(

0,
1

τλ

)
, for j = 1, . . . , p, (1)

γj ∼ Bernoulli(πj),

τ ∼ Gamma(a, d),

where λ is the shrinkage parameter which controls the prior
variance given by 2/(λτ)2.

I Inference is based on the posterior medians of β∗j = γjβj for j = 1, . . . , p.

I We estimate f (β|y, ·) and f (γ|y, ·) with Kuo and Mallick (1998) Gibbs
sampler for variable selection.

I Any equivalent such as GVS (Dellaportas et al , 2002) or RJMCMC
(Green, 1995) will provide similar results.
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Bayesian variable selection and Lasso

Bayesian Lasso using Gibbs Sampling

A Gibbs Sampler for Bayesian Lasso

I If γj = 1,

– Generate ωj from Bernoulli(wj)

– Generate βj from

{
TN(m−

j , s2
j , βj < 0), if ωj = 1

TN(m+
j , s2

j , βj ≥ 0), if ωj = 0
,

where
TN(µ, σ2, A) is the normal distribution truncated in the subset A ⊂ <,

ωj is binary parameter specifying whether βj is less than 0 or not with
probability of success

wj =
Φ(−m−

j /sj)/fN(0 ;m−
j , s2

j )

Φ(−m−
j /sj)/fN(0 ;m−

j , s2
j ) + Φ(m+

j /sj)/fN(0 ;m+
j , s2

j )
,

m−j =
cj + λ

||Xj ||2
, m+

j =
cj − λ

||Xj ||2
, cj = XT

j (e + βjXj ), s2
j =

1

τ ||Xj ||2
and Xj is the jth column of matrix X and e = y − η is the vector of residuals.
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Bayesian variable selection and Lasso

Bayesian Lasso using Gibbs Sampling

A Gibbs Sampler for Bayesian Lasso (cont.)

I If γj = 0, generate βj from its prior, that is

βj |y, τ, β\j ,γ\j , γj = 0 ∼ DE
(

0,
1

τλ

)

I Generate τ from G
“

n
2

+ p + α,
||Y−XDγβ||2

2
+ λ||β||+ d

”
.

I Generate γj from Bernoulli with probability Oj/(1 + Oj) with

Oj =
f (y|β, τ , γ\j , γj = 1)

f (y|β, τ , γ\j , γj = 0)

π(γ\j , γj = 1)

π(γ\j , γj = 0)
.
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Bayesian variable selection and Lasso

Toy example

Example
A simulated dataset of Dellaportas et al. (2002), consists of
n = 50 observations and p = 15 covariates generated from a
standardised normal distribution and the response from

yi ∼ N(Xi4 + Xi5, 2.52), for i = 1, . . . , 50.
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Figure: Posterior medians of β∗
j = γjβj and usual Lasso estimates against

λ.
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Bayes factors in relation to shrinkage parameter

Bayes factors for simple Lasso Regression

Bayes factors for simple Lasso Regression

The Bayes factors for the comparison between two simple models:

mj : y|β, τ, mj ∼ Nn(Xjβj , τ
−1In), m0 : y|β, τ, m0 ∼ Nn(0, τ−1In).

Assuming standardized data, BFun can be expressed

BFun =
f (y|mj)

f (y|m0)
=

λc

n − 1
{h1(n, λ, ρ) + h2(n, λ, ρ)}

I h1, h2 are function of n, λ, ρ.

I ρj is the sample Pearson correlation between y and Xj .
Without loss of generality we assume that is positive.

For fixed sample size, the BFun is a function of ρ and λ.
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Bayes factors in relation to shrinkage parameter

Interpretation of BF

Interpretation of BF
According to the Kass and Raftery (1995) interpretation tables
BF Evidence against H0

1 to 3 Not worth more than a bare mention
3 to 20 Substantial
> 20 More than strong

I As ρ increases, we expect that BFun will become stronger.

I As shown in the Bayesian regularization path, there are
variables never included in the model.

I There are values of ρ that correspond to BFun < 3 for all the
values of λ.

I Variables with such correlations will not be supported in the
simple regression model.
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Bayes factors in relation to shrinkage parameter

Interpretation of BF

Graphical representation
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Figure: Bayes factor BFun against the values of λ, ρ; sample size is fixed to

n = 50. 21 / 37
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Bayes factors in relation to shrinkage parameter

Interpretation of BF

Graphical interpretation (cont.)

I For n = 50, the BFun never provides strong evidence against
the H0 for Xj which is associated with Y with ρ ≤ 0.31.

The choice of λ will not affect the variable selection process
when ρ ≤ 0.31.

I As ρ increases, there are values of λ that correspond to
BFun > 3.
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Bayes factors in relation to shrinkage parameter

Interpretation of BF

Graphical interpretation (cont.)

I For any given sample size n, there is a range of sample
correlations that make BFun < 3.

We call this set of values of ρ as ”non-important” set and it is
defined as

ρ ∈ {BFun(ρ, λ) < 3}, for all the values of λ.

I An iterative algorithm derives the non-important set of ρ, for
a given sample size n.
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Bayes factors in relation to shrinkage parameter

Specifying the shrinkage parameter using the Bayes factors

Specification of λ

We choose some values for the correlations higher than this set
and identify for which λ the BFun = 1. We call these values
threshold correlations.

For example, for n = 50, we select the threshold correlation to be
ρt = 0.4 and find the λ that makes the corresponding BFun = 1.

This procedure provides with a value of λ that gives 50% posterior
probability to the model with a covariate of such correlation and
50% to the constant model.

n 50 100 500
ρ : BFun < 3 (0,0.31) (0,0.22) (0,0.10)
BF = 1 ρt = 0.35, λ = 0.218 ρt = 0.25, λ = 0.335 ρt = 0.15, λ = 0.060
BF = 1 ρt = 0.40, λ = 0.067 ρt = 0.30, λ = 0.069 ρt = 0.20, λ = 7× 10−4

BF = 1 ρt = 0.50, λ = 0.004 ρt = 0.40, λ = 0.001 ρt = 0.30, λ = 5× 10−6
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Bayes factors in relation to shrinkage parameter

Specifying the shrinkage parameter using the Bayes factors

Specification of λ (cont.)

The advantages of the chosen values of λ are

I We know how these values affect the BFun.

I The chosen λ is easily interpreted through the sample
correlation between the candidate variable and the response.

I We control how strict we want to be while choosing the
threshold values.

However, we have seen the interpretation of the chosen shrinkage
values on the simple Lasso regression.

We check what happens when these shrinkage levels are imposed
on the multiple Lasso regression.
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Bayes factors in relation to shrinkage parameter

Bayes Factor for multiple Lasso regression

Bayes Factor for multiple Lasso regression

We compare the model mA, where A is the set of the variables
included in the model with the model mA\j , where the jth variable
is excluded.

We use the Laplace approximation to derive the corresponding BF.

BFm ≈ λc

n − 1

[
1− corr(lasso)2(y,Xj |XA\j)

]−df /2 1√
(1− R2

Xj |XA\j
)(1− R

(lasso)2
y|XA\j

)
.

where

I corr(lasso)2(y,Xj |XA\j) is the Lasso version of the partial correlation,

I R2
Xj |XA\j

is the multiple correlation coefficient when regressing Xj on

XA\j ,

I R
(lasso)2
y|XA\j

is the Lasso version of the multiple correlation coefficient

when regressing y on XA\j .
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Bayes factors in relation to shrinkage parameter

Bayes Factor for multiple Lasso regression

Shrinkage parameter and partial correlation
We interpret the chosen shrinkage values with respect to the
partial correlation coefficient.

I We perform multiple Lasso regression using the shrinkage
parameter derived from the BFun for a given threshold ρt .

I We find the partial correlation that corresponds to BFm = 1
for the chosen λ.

I We identify the threshold value of the partial correlation that
is actually used when imposing the chosen λ.

Thus,

(1− pr2
j ,t)

[
(1− R2

Xj |XA\j
)(1− R

(lasso)2
y|XA\j

)
]1/df

= 1−
(

ρt −
λ

n − 1
sg

)2

,

where pr2
j ,t is the threshold for corr(lasso)2(y,Xj |XA\j) and sg is the

sign of the β̂j on the simple linear model.
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Bayes factors in relation to shrinkage parameter

Bayes Factor for multiple Lasso regression

Shrinkage parameter and partial correlation (cont.)

From the above it is deduced that

I the threshold value for the Lasso partial correlation is upper
bounded by a penalized expression of the corresponding
threshold value of the Pearson correlation.

pr2
j ,t ≤

(
ρt −

λ

n − 1
sg

)2

,

I the two thresholds are approximately equal as n →∞ (i.e. for
large sample sizes)

pr2
j ,t

n→∞−−−→ ρ2
t .
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Bayes factors in relation to shrinkage parameter

Bayes Factor for multiple Lasso regression

What is next?

I Perform multiple Lasso regression by imposing the chosen
values for the shrinkage parameters.

I Define areas for the shrinkage levels around the chosen values
and impose hyperiors on these areas.

I Impose different shrinkage levels for each variable (Adaptive
Lasso).
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Illustration

Simulation study 1
We perform the Bayesian Lasso on the simulated data from
Dellaportas et. al. (2002) for specific values of λ that have been
chosen through the univariate Bayes factor.

Var. incl. Post. Incl. Prob Prob. of model
ρt BF λ X4, X5, X12 MAP true

0.35 1 0.217 X4,X5 0.96, 1.00, 0.38 26.22%
0.40 1 0.067 X4,X5 0.85, 1.00, 0.15 55.49%
0.50 1 0.004 X5 0.45, 0.96, 0.01 50.45% 43.33%

The observed Pearson and partial correlation coefficients for this
data set (in absolute value)

X2 X4 X5 X6 X8 X9 X10 X11 X12 X15
corr(y, Xj ) 0.03 0.38 0.58 0.01 0.08 0.06 0.02 0.03 0.22 0.10

corr(lasso)(y, Xj |X\j ) 0.11 0.51 0.68 0.18 0.16 0.22 0.13 0.16 0.34 0.28
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Illustration

Simulation study 2
I Consists of 15 covariates and 50 observations (Nott and Kohn, 2005).
I The first 10 variables follow independent N(0, 1).
I The last 5 are generated using the following scheme

(X11, . . . ,X15) = (X1, . . . ,X5)× (0.3, 0.5, 0.7, 0.9, 1.1)T × (1, 1, 1, 1, 1) + E,

where E consists of 5 independent N(0, 1).
I The response is generated as

y = 2X1 − X5 + 1.5X7 + X11 + 0.5X13 + ε, where ε ∼ N(0, 2.52I ).

Var. incl. Post. Incl. Prob Prob. of model
ρt BF λ X1, X5, X7, X11, X13 MAP true
0.35 1 0.217 X1, X7, X11 1.00, (0.24), 1.00, 0.97, (0.19) 20.07% 1.47%
0.40 1 0.067 X1, X7, X11 1.00, (0.09), 1.00, 0.96, (0.08) 57.38% 0.45%
0.50 1 0.004 X1, X7, X11 1.00, (0.01), 0.99, 0.91, (0.04) 88.50% 0.00%

The observed Pearson and partial correlation coefficients for this data set

X1 X5 X7 X11 X13

corr(y, Xj ) 0.56 0.15 0.34 0.56 0.50

corr(lasso)(y, Xj |X\j ) 0.50 0.27 0.67 0.49 0.18
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Illustration

Simulation study 2 (cont.)
We have simulated 100 samples and we perform the Bayesian Lasso
regression for the chosen levels of shrinkage.

The average posterior inclusion probabilities for each variable are:

Post. Incl. Prob
ρt BF λ X1, X5, X7, X11, X13

ρ = 0.35 1 0.218 0.99, 0.37, 0.91, 0.83, 0.40
ρ = 0.40 1 0.067 0.98, 0.24, 0.84, 0.78, 0.27
ρ = 0.50 1 0.004 0.83, 0.07, 0.51, 0.57, 0.18

The following Table shows the frequency that three selected models are
the MAP model in our Bayesian Lasso procedure.

ρt BF λ X1, X7, X11 X1, X5, X7, X11 X1, X5, X7, X11, X13

0.35 1 0.218 27% 11% 6%
0.40 1 0.067 43% 9% 4%
0.50 1 0.004 30% 3% 0%
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Illustration

Diabetes example
I Contains 10 baseline variables, age, sex, body mass index,

average blood pressure and six blood serum measurements.
I The response is a one year measure of disease progression for

442 diabetes patients.
I For n = 442, the non-important set of the ρ is (0, 0.11).

Bayesian Lasso regression for various choices of λ.
ρt BF λ age sex bmi bp tc ldl hdl tch ltg glu
0.15 1 0.110 0.01 0.89 1.00 1.00 0.45 0.31 0.59 0.10 1.00 0.02
0.16 1 0.067 0.01 0.78 1.00 0.99 0.26 0.09 0.71 0.08 1.00 0.01
0.20 1 0.002 0.00 0.00 1.00 0.62 0.03 0.00 0.02 0.00 1.00 0.00

0.30 1 4.41 × 10−6 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00

*The variables in red are the ones included in the MAP model.

The sample Pearson and partial correlations are given below.
age sex bmi bp tc ldl hdl tch ltg glu

corr(Y y, Xj ) 0.19 0.04 0.59 0.44 0.21 0.17 0.40 0.43 0.57 0.38

corr(lasso)(y, Xj |X\j ) 0.01 0.19 0.35 0.23 0.09 0.07 0.02 0.05 0.21 0.05

corr(lasso)(y, Xj |XA\j ) 0.18 0.36 0.24 0.21 0.33
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Conclusion

Conclusions

I We perform both shrinkage and variable selection using the
Bayesian version of the Lasso.

I We can interpret the behaviour of our Bayesian Lasso based
on levels of practical significance of correlations and partial
correlations.

I We propose an approach to select the prior (shrinkage)
parameter λ based on its effect on Bayes factors.

I We specify shrinkage values that we can interpret.

I We can select shrinkage values that do not depend on the
sample size.
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Further work

Further work

I We have specified an active area for λ, which truncates the
range of λ in order to avoid the Bartlet-Lindley paradox and
over-shrinkage.

I Extend to hierarchical model, where a hyperprior is imposed
on the shrinkage parameter using its active area.

I Allow different shrinkage parameters for each covariate
(Adaptive Lasso).

I Perform the proposed ideas on the Bayesian ridge regression.

I Extend them for GLMs.

I Examine the Bayesian implementation of other related
methods such as Elastic net.
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Appendix

Specification of λ (cont.)
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Figure: Benchmark and threshold correlations against the sample size.
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