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3. Cost - Benefit Analysis.

4. Cost - Restriction - Benefit Analysis.
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1 Motivation

Health care quality measurements

Indirect method: input-output approach.

• Construct a model on hospital outcomes (e.g., mortality within 30 days of

admission) after adjusting for differences in inputs (sickness at admission).

• Compare observed and expected outcomes to infer for the health care quality.

• Data collection costs are available for each variable (measured in minutes or

monetary units).

• We wish to incorporate cost in our analysis in order to reduce data collection

costs but also have a well-fitted model.
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Available data

• Data come form a major U.S. study constructed by RAND Corporation, with

n = 2, 532 pneumonia patients (Keeler, et al. , 1990).

• Response variable: mortality within 30 days of admission

• Covariates: p = 83 sickness indicators

• Construct a sickness scale using a logistic regression model.

• Benefit - Only Analysis (no costs): Classical variable selection techniques to

find an “optimal” subset of 10-20 indicators. The initial list of p = 83 sickness

indicators was reduced to 14 “significant” predictors (Keeler, et al. , 1990).
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The 14-Variable Rand Pneumonia Scale

The RAND admission sickness scale for pneumonia (p = 14 variables), with the marginal data collection

costs per patient for each variable (in minutes of abstraction time).

Variable Cost Variable Cost

(Minutes) (Minutes)

1 Systolic Blood Pressure Score

(2-point scale)

0.5 8 Septic Complications

(yes, no)

3.0

2 Age 0.5 9 Prior Respiratory Failure

(yes, no)

2.0

3 Blood Urea Nitrogen 1.5 10 Recently Hospitalized (yes, no) 2.0

4 APACHE II Coma Score

(3-point scale)

2.5 12 Initial Temperature 0.5

5 Shortness of Breath Day 1

(yes, no)

1.0 17 Chest X-ray Congestive Heart

Failure Score (3-point scale)

2.5

6 Serum Albumin Score

(3-point scale)

1.5 18 Ambulatory Score

(3-point scale)

2.5

7 Respiratory Distress

(yes, no)

1.0 48 Total APACHE II Score

(36-point scale)

10.0
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Two different approaches for incorporating cost

into the analysis

Two desirable but opposite criteria must be accounted in our analysis:

1. the fit of the model

2. the cost of the model

Thus, we wish to find a model with the lower possible cost but having an

“acceptable fit” to the observed data.

So two different cases for handling cost may appear

Case 1: Decrease the cost as much as possible but without losing much from the

predictive ability of the model. No overall budgetary restrictions exist.

Case 2: An overall budgetary bound is implemented. We select the “best” model

under the restricted model space.
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Three methods for solving this problem

(1) Bayesian decision theoretic solution proposed by Draper and Fouskakis (2000)

and Fouskakis and Draper (2002, 2008).

They used stochastic optimization methods to find (near-) optimal subsets of

predictor variables that maximize an expected utility function which trades off data

collection cost against predictive accuracy [case 1].

(2) Model specification using a cost–adjusted prior. As an alternative to (1), we

propose a prior distribution that accounts for the cost of each variable and results in

a set of posterior model probabilities. This approach leads to a generalized

cost-adjusted version of the Bayesian Information Criterion (Fouskakis,

Ntzoufras and Draper, 2009a) [case 1].

(3) Cost–restriction benefit analysis. The model search is conducted only among

models whose cost does not exceed a budgetary restriction (Fouskakis, Ntzoufras

and Draper, 2009b), by the usage of a population–based trans–dimensional

RJMCMC method [case 2].

Here we present results from methods (2) and (3).
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2 Model Specification

• Logistic regression model with Yi = 1 if patient i dies after 30 days of

admission.

• Xij : j sickness predictor variable for the i patient.

• m → γ = (γ1, . . . , γp)
T .

• γj : Binary indicators of the inclusion of the variable Xj in the model.

• Model space M = {0, 1}p; p = total number of variables considered.

Hence the model formulation can be summarized as

(Yi | γ)
indep
∼ Bernoulli(pi(γ)),

ηi(γ) = log

(
pi(γ)

1 − pi(γ)

)
=

p∑

j=0

βjγjXij ,

η(γ) = X diag(γ) β = Xγ βγ .
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3 Bayesian Cost-Benefit Analysis

The aim is to identify well fitted models after taking into account the cost of each

variable.

Therefore we need to estimate the posterior model probability

f(γ|y) =
f(γ)

∫
f(y|βγ , γ)f(βγ |γ)dβγ∑

γ ′∈{0,1}p

f(γ′)
∫

f(y|βγ′ , γ′)f(βγ′ |γ′)dβγ′

after introducing a prior on model space f(γ) depending on the cost.
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Why this approach instead of decision theoretic

• Bayesian Decision Theoretic (Draper and Fouskakis, 2000; Fouskakis and Draper,

2002, 2008).

– Demands extensive and detailed specification of the utility function.

– Stochastic optimization methods must be implemented to identify optimal or

near-optimal subsets of “good” covariates.

– We cannot account for model uncertainty.

• Proposed approach: Cost Adjusted Prior Model Specification.

– Advanced MCMC methods can be used to efficiently search the model space.

– We can account for model uncertainty via posterior model probabilities and

model averaging. A subset of “good” and economical models can be finally

accepted for further analysis.

– A prior distribution is proposed satisfying specific criteria defined a-priori.

– Resulted posterior model odds can be approximated by a generalized

cost–adjusted BIC.
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3.1 Preliminaries: Posterior model odds and penalty

functions

Information criteria (1)

Information criterion for model γ

IC(γ) = −2 log f(y|β̂γ , γ) + dγF

• f(y|β̂γ) is the maximum likelihood.

• dγ dimension of the model (number of parameters)

• F penalty for each model parameter used/estimated.

• dγF is the total penalty implemented to the maximum likelihood due to the

use of a model with dγ parameters.

Model with minimum IC is indicated as the “best”.

The above criterion is a penalized likelihood measure.
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Information criteria (2)

When comparing two models γ(k) and γ(ℓ) then

ICkℓ = IC(γ(k)) − IC(γ(ℓ)) = −2 log
f
(
y|β̂γ(k) , γ(k)

)

f
(
y|β̂γ(ℓ) , γ(ℓ)

) +
(
dγ(k) − dγ(ℓ)

)
F

= Deviancekℓ +
(
dγ(k) − dγ(ℓ)

)
F

We select model γ(k) if ICkℓ < 0, and model γ(ℓ) if ICkℓ > 0.



June 2, 2010: University of Bath 13

Posterior model probabilities and information criteria

The posterior model probability of a model γ is given by

f(γ|y) = f(y|γ)f(γ)

where

• f(y|γ) is the marginal likelihood of model γ given by
∫

f(y|βγ , γ)f(βγ |γ)dβγ

• f(γ) prior probability of model γ

It can be rewritten as

−2 log f(γ|y) = −2 log f(y|γ) + [−2 log f(γ)]

m m m

IC(γ) = −2 log f(y|β̂γ , γ) + dγF
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Posterior model odds and information criteria

Similarly if we consider the posterior odds of model γ(k) versus model γ(ℓ). Then

POkℓ =

(
f(y|γ(k))

f(y|γ(ℓ))

)
×

f(γ(k))

f(γ(ℓ))

= Bkℓ × PrOkℓ,

• Bkℓ is the Bayes factor of model γ(k) versus model γ(ℓ) (ratios of marginal

likelihoods).

• PrOkℓ is the prior odds of model γ(k) versus model γ(ℓ).

It can be rewritten as

−2 log POkℓ = −2 log Bkℓ − 2 log PrOℓk

m m m

ICkℓ = −2 log
f
(
y|β̂γ(k) , γ(k)

)

f
(
y|β̂γ(ℓ) , γ(ℓ)

) +
(
dγ(k) − dγ(ℓ)

)
F
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Uniform prior on model space

If the prior model probabilities are defined via a negative function of the model

dimension, then the prior model odds

ξkℓ = −2 log PrOkℓ = −2 log
f(γ(k))

f(γ(ℓ))

can be also interpreted as the extra penalty imposed to the Bayes factor .

If the (usual) uniform prior distribution is used then

ξkℓ = 0 and POkℓ = Bkℓ for all models γk, γℓ ∈ M

where M is the set of all models under consideration (model space).

Bayesian benefit-only analysis can be assumed using the uniform prior on model

space and hence base our variable selection procedure on Bayes factors.
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Prior model odds interpretation

Well-known rough approximation of log Bkℓ (Schwartz, 1978):

−2 log Bkℓ = BICkℓ + O(1) ⇔

−2 log POkℓ = BICkℓ + ξkℓ + O(1)

= Deviancekℓ + (dγ(k) − dγ(ℓ)) log n + ξkℓ + O(1) (1)

where BICkℓ is the Bayesian Information Criterion (e.g., Kass and Wasserman,

1996; Raftery, 1995, 1996) for choosing between models γ(k) and γ(ℓ).

BIC ⇒ penalty equal to F = log n for each parameter used.

The overall (posterior) penalty imposed to the deviance measure will be equal to

(dγ(k) − dγ(ℓ)) log n + ξkℓ.
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3.2 Prior distributions

Prior on model parameters

βγ |γ ∼ Normal

(
0, 4n

(
XT

γXγ

)−1
)

• Low information prior defined by Ntzoufras, Delaportas and Forster (2003).

• Can be derived using the power prior of Chen et al. (2000) and imaginary

data supporting the simplest model included in our model space.

• It gives weight to the prior equal to one data-point.

• It is equivalent to the Zellner’s g-prior (with g = 4n) used for normal

regression models.
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A cost-penalized prior on model space (1)

Preliminaries

• We propose to specify our prior model probabilities via cost-dependent

penalties for each variable.

• We denote by cj the cost of Xj covariate and by c = (c1, c2, . . . , cp) the vector

of the costs of all variables under consideration.

• To specify this prior we define a baseline cost c0 which is assumed to be a low

acceptable cost for the collection of the data of a covariate. The cost of each

variable Xj can be now written as cj = kjc0.

• For the Bayesian benefit only analysis we use a uniform prior on model space.
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A cost-penalized prior on model space (2)

The five criteria

We specify our prior distribution on γ to satisfy the following five criteria:

(a) The prior must be unaffected to transformations c 7→ α c with α > 0, so that

conversion between time and money or different monetary units (e.g., dollars

and euros) leaves the prior unchanged;

(b) the extra penalty ξ1 for adding a variable Xj with baseline cost c0 is zero;

(c) the extra penalty ξ2 for adding a variable Xj with cost cj = κ c0 for some

κ > 1 equals the BIC penalty of (κ − 1) variables with cost c0;

(d) the extra penalty ξ3 for adding any variable Xj is greater or equal to zero; and

(e) if all the variables have the same cost, then the prior must reduce to the

uniform prior on γ.
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A cost-penalized prior on model space (3)

The five criteria - interpretation

(a) ensures that the prior is invariant with respect to the manner in which cost is

measured.

(b) ensures that the penalty for adding a variable Xj with baseline cost c0 is the

same as in the benefit-only analysis.

(c) ensures that the posterior model odds will still have a BIC-like behavior. The

induced extra penalty will be equal to the relative difference between the cost

of Xj and a variable with cost equal to c0.

(d) ensures that the cost-benefit analysis will support more parsimonious models

than the corresponding ones supported by the benefit-only analysis.

(e) requires that our prior should reproduce the benefit-only analysis if all costs

are equal.
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A cost-penalized prior on model space (4)

The prior

The following theorem provides the only prior that meets the above five

requirements, and defines the choice of c0.

Theorem 1. If a prior distribution f(γ) satisfies requirements (a-e) above, then it

must be of the form

f(γj) ∝ exp

[
−

γj

2

(
cj

c0
− 1

)
log n

]
for j = 1, . . . , p, (2)

where cj is the marginal cost per observation for variable Xj and

c0 = min{cj , j = 1, . . . , p}.

For proof see Fouskakis, Ntzoufras and Draper (2009a, Ann. Appl. Stat.).
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3.3 Posterior model odds

Cost-adjusted generalization of BIC

Under the above prior, if we consider the BIC-based approximation (1) then

−2 log POkℓ = −2 log

(
f(y|β̂γ(k) , γ(k))

f(y|β̂γ(ℓ) , γ(ℓ))

)
+

Cγ(k) − Cγ(ℓ)

c0
log n + O(1). (3)

where Cγ =
∑p

j=1 γjcj is the cost of model γ.
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• The penalty term dγ log n of model γ used in (1) has been replaced in the

above expression by the cost-dependent penalty c−1
0 Cγ log n;

• Ignoring costs is equivalent to cj = c0 for all j, yielding c−1
0 Cγ = dγ , the

original BIC expression.

• We may interpret log n as the imposed penalty for each variable included in

the model when no costs are considered.

• This baseline penalty term is inflated proportionally to the cost ratio
cj

c0
for

each Xj ; for example, if the cost of a variable Xj is twice the minimum cost

(cj = 2 c0) then the imposed penalty is equivalent to adding two variables with

the minimum cost.

• For all these reasons, (3) can be considered as a cost-adjusted generalization of

BIC when prior model probabilities of type (2) are adopted.
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3.4 Implementation and results

Implementation details

• The procedure

1. Run RJMCMC (Green, 1995) for 100K iterations in the full model space.

2. Eliminate non-important variables (with marginal probabilities < 0.30)

forming a new reduced model space.

3. Run RJMCMC for 100K iterations in the reduced model space to estimate

posterior model odds and best models.

• Two setups:

1. Benefit only analysis (uniform prior on model space).

2. Cost - Benefit Analysis (cost penalized prior on model space).
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Preliminary Results: Marginal Probabilities f(γj = 1|y)

Variable Variable Benefit Cost-Benefit
Index Variable Name Cost Analysis Analysis

1 Systolic Blood Pressure (SBP) Score 0.50 0.99 0.99
2 Age 0.50 0.99 0.99
3 Blood Urea Nitrogen 1.50 1.00 0.99
4 Apache II Coma Score 2.50 1.00
5 Shortness of Breath Day 1 1.00 0.97 0.79
8 Septic Complications 3.00 0.88
12 Initial Temperature 0.50 0.98 0.96
13 Heart Rate Day 1 0.50 0.34
14 Chest Pain Day 1 0.50 0.39
15 Cardiomegaly Score 1.50 0.71
27 Hematologic History Score 1.50 0.45
37 Apache Respiratory Rate Score 1.00 0.95 0.32
46 Admission SBP 0.50 0.68 0.90
49 Respiratory Rate Day 1 0.50 0.81
51 Confusion Day 1 0.50 0.95
70 Apache pH Score 1.00 0.98 0.98
73 Morbid + Comorbid Score 7.50 0.96
78 Musculoskeletal Score 1.00 0.54

Number of variables 13 13
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Reduced Model Space: Posterior Model Probabilities/Odds

Common variables in both analyses: X1 + X2 + X3 + X5 + X12 + X70

Benefit-Only Analysis

Common Variables Additional Model Posterior

k Within Each Analysis Variables Cost Probabilities ∗ P O∗∗

1k

1 X4 + X15 + X37 + X73 +X8 +X27+X46 22.5 0.3066 1.00

2 +X8 +X27 22.0 0.1969 1.56

3 +X8 20.5 0.1833 1.67

4 +X27+X46 19.5 0.0763 4.02

5 17.5 0.0383 8.00

Cost-Benefit Analysis

Common Variables Additional Model Posterior

k Within Each Analysis Variables Cost Probabilities ∗ P O∗∗

1k

1 X46 + X51 +X49+X78 7.5 0.1460 1.00

2 +X14 +X49+X78 7.5 0.1168 1.27

3 +X13 +X49+X78 7.5 0.0866 1.69

4 +X13+X14 +X49+X78 8.0 0.0665 2.20

5 +X14 +X49 7.0 0.0461 3.17

6 +X49 6.5 0.0409 3.57

7 +X37 +X78 7.5 0.0382 3.82

8 +X13+X14 +X49 7.5 0.0369 3.96

9 +X13 6.5 0.0344 4.25

∗ above 3%. ∗∗posterior odds of the best model within each analysis versus the current model k.
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Reduced Model Space: Comparisons

Comparison of measures of fit, cost and dimensionality between the best models in

the reduced model space of the benefit-only and cost-benefit analysis; percentage

difference is in relation to benefit-only.

Analysis Difference

Benefit-Only Cost-Benefit (%)

Minimum Deviance 1553.2 1635.8 +5.3

Median Deviance 1564.5 1644.8 +5.1

Cost 22.5 7.5 –66.7

Dimension 13 10 –23.1
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4 Cost Restriction - Benefit Analysis

• Implement a Cost-restriction benefit analysis, in which the practical

relevance of the selected variable subsets is ensured by enforcing an overall

limit on the total data collection cost of each subset: the search is conducted

only among models whose cost does not exceed this budgetary restriction C.

• Therefore, we should a-priori exclude models γ with total cost larger than C,

resulting to a significantly reduced model space,

M =




γ ∈ {0, 1}p :

p∑

j=1

cjγj ≤ C




 .

• AIM: Estimate posterior model probabilities in the cost restricted model

space.
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PROBLEM

• Due to the cost limit, model space areas of local maximum exist.

• RJMCMC and other Gibbs based samplers for variable selection, move to local

model neighborhoods usually by adding or deleting one variable at a time.

• Thus, we need to construct more advanced proposed jumps possibly between

models of the same cost in order to avoid getting trapped into local maxima.
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Example: Variables X1, X2, X3 and X4 with costs 1, 2, 3.5, 2.5 and total cost limit

C = 5.
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SOLUTION

Intelligent trans-dimension MCMC methods that allow to move across areas of

local maximum even if these are distinct.

Proposed Algorithm

We have developed a Population Based Trans-Dimensional Reversible-Jump

Markov Chain Monte Carlo algorithm (Population RJMCMC), combining ideas

from the population-based MCMC (Jasra, Stephens and Holmes, 2007) and

Simulated Tempering (Geyer and Thompson, 1995) algorithms.
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4.1 The proposed population based algorithm

Population RJMCMC (1)

• Use 3 chains: The actual one, plus two auxiliary ones.

– In the auxiliary chains the posterior distributions are raised in a power tk

(inverse temperature), k = 1, 2.

– 1st auxiliary chain: t1 > 1 → increasing differences between the posterior

probabilities (makes the distribution steeper allowing by this way the

MCMC to move closer to locally best models).

– 2nd auxiliary chain: 0 < t2 < 1 → reducing differences between the

posterior probabilities (makes the distribution flatter allowing by this way

the MCMC to move easily across different models).

• Inverse temperatures tk change stochastically.

• By this way the extensive number of chains is avoided (usually from 5-10 in

population based samplers).
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Population RJMCMC (2)

• The incorporation of stochastic temperatures can be done using pseudo

priors gk(tk).

• The posterior distribution is expanded to

f(βγ , γ, βγ,(1), γ(1), βγ,(2), γ(2), t1, t2|y)

∝ f(y|βγ , γ)f(βγ |γ)f(γ)

×
2∏

k=1

{
f
(
y|βγ,(k), γ(k)

)
f
(
βγ,(k)|γ(k)

)
f
(
γ(k)

)}tk

gk(tk),

where γ(k) and βγ,(k) are the model indicator and parameter vector of chain k.
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Population RJMCMC (2)

• Model indicators and parameters can be updated using RJMCMC steps.

• In Gibbs sampling, the inverse temperature tk is generated by

f(tk|β, γ, βγ,(k), γ(k), t\k, y) ∝
{

f
(
y|βγ,(k), γ(k)

)
f
(
βγ,(k)|γ(k)

)
f
(
γ(k)

)}tk

gk(tk).

PROBLEM: When flat (non informative prior) for inverse temperatures is

imposed then the conditional distribution above is an increasing function of tk.

SOLUTION: The temperatures are only used to expand the space and to

make possible jumps between models of different dimension and structure. So

gk(tk) are not actual priors but pseudo-priors.

• We propose to use directly the marginal posterior distribution of the inverse

temperatures tk f(tk|y) in the sampling scheme.
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• The desired posterior marginal distribution for tk is given by

f(tk|y) ∝
∑

γ(k)∈M

∫

βγ,(k)

(
f(y|tk, βγ,(k), γ(k))f(βγ,(k)|γ(k))f(γ(k))

)tk

gk(tk)dβγ,(k)

∝ Zk(y, tk)gk(tk),

where Zk(y, tk) is the marginal likelihood over all possible models for chain k.

• Since gk(tk) are pseudo-priors, we can set

gk(tk) ∝
hk(tk)

Zk(y, tk)

where hk(tk) are convenient and easy to simulate from density functions

resulting to

f(tk|y) = hk(tk).

• For the selection of hk(tk) we propose to use

h1(t1) = Gamma(t1 − 1; a1, b1) and h2(t2) = Beta(t2; a2, b2).
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Population RJMCMC (3)

Our algorithm can be summarised as follows:

1. Select initial values for (βγ , βγ,(1), βγ,(2)) and (γ, γ(1), γ(2)).

2. For l = 1, . . . , L (where L is the number of iterations), repeat:

(a) Generate t1 and t2 from f(t1|y) = h1(t1) and f(t2|y) = h2(t2), respectively.

(b) For k = 0, 1, 2:

i. Sample βγ,(k) using Gibbs steps.

ii. Sample γ(k) using RJMCMC steps by proposing to change each

component sequentially; thus, for every j ∈ {1, . . . , p} (in a random scan):

A. With probability 1 propose γ′
(k): γ′

j,(k) = 1 − γj,(k) and γ′
ℓ,(k) = γℓ,(k)

for all ℓ 6= j.

B. If γj,(k) = 1 then propose β′
j,(k) from qj,k(β′

j,(k)) and set β′
ℓ,(k) = βℓ,(k)

for ℓ 6= j.
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C. Accept the proposed move with probability α = min{1, A}, where

A =

[
f
(
y|β′

γ,(k), γ
′
(k)

)
f
(
β′

γ,(k)|γ
′
(k)

)
f
(
γ′

(k)

)

f
(
y|βγ,(k), γ(k)

)
f
(
βγ,(k)|γ(k)

)
f
(
γ(k)

)
]tk

qj,k(βj,(k))
γj,(k)

qj,k(β′
j,(k))

1−γj,(k)
.

(4)

In the above steps, βγ,(0) and γ(0) correspond to the parameters βγ and

γ of the original chain, and t0 = 1 is the temperature of the original

chain.

(c) For k = 1, 2:

i. Propose with probability 1 to swap (βγ , γ) ↔ (β(k), γ(k)).

ii. Accept the proposed move with probability α = min{1, A}, where

A =

[
f
(
y|βγ,(k), γ(k)

)
f
(
βγ,(k)|γ

′
(k)

)
f
(
γ′

(k)

)

f
(
y|βγ , γ)f

(
βγ |γ

)
f(γ)

]1−tk

. (5)

The above sampling scheme can be enriched with additional moves used in

population MCMC (such as mutation and crossover).

In our problem: the moves described above were sufficient to achieve good mixing.
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4.2 Prior Distributions

Same prior on model parameters as in the Cost - Benefit Analysis and a uniform

prior on cost restricted model space, i.e.

f(γ) ∝ I



γ ∈ M : c(γ) =

p∑

j=1

γjcj ≤ C



 ,

where cj is the differential cost per observation for variable Xj and C is the

budgetary restriction.
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4.3 Implementation and Results

Implementation details

• COST LIMIT: C = 10 minutes of abstraction time.

• The Procedure:

1. Run Population RJMCMC for 100K iterations in the full model space,

twice, starting each time from a different model.

2. Eliminate non-important variables (with marginal probabilities < 0.30 in

both runs) forming a new reduced model space.

3. Run population RJMCMC in the reduced space, twice.

• The pseudo-parameters were tuned to achieved acceptance rates around 20%

for swapping values between chains of different temperatures, resulting in

h1(t1) = Gamma(t1 − 1; 2, 4) and h2(t2) = Beta(t2; 7, 3)

• Population vs. simple RJMCMC: Comparison of results and performance.
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Preliminary Results: Marginal Probabilities f(γj = 1|y)

Variables with marginal posterior probabilities f(γj = 1|y) above 0.30 in at least
one run.

Marginal Posterior Probabilities
Variable Variable First Run Second Run
Index Variable Name Cost Analysis Analysis

1 Systolic Blood Pressure (SBP) Score 0.50 0.98 0.99
2 Age 0.50 0.97 0.95
3 Blood Urea Nitrogen 1.50 0.99 0.91
4 Apache II Coma Score 2.50 0.55 1.00
5 Shortness of Breath Day 1 1.00 0.92 0.80
6 Serum Albumin 1.50 0.40 0.55

12 Initial Temperature 0.50 0.91 0.93
37 Apache Respiratory Rate Score 1.00 0.72 0.79
46 Admission SBP 0.50 0.45 0.25
49 Respiratory Rate Day 1 0.50 0.35 0.25
51 Confusion Day 1 0.50 0.44 0.01
62 Body System Count 2.50 0.55 0.33
70 Apache pH Score 1.00 0.81 0.73
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Reduced Model Space: Posterior Model Probabilities/Odds

Common variables in both analyses: X2 + X4

Population RJMCMC - 500K iterations

1st Run 2nd Run

Common Additional Posterior Posterior

k m Variables Variables Prob. P O∗

1k
Prob. P O∗

1k

1 m1 X1 + X12 + X37 +X3+X5 +X62 0.4872 1.00 0.4879 1.00

2 m2 +X5 +X46 +X62 +X70 0.1202 4.05 0.1052 4.63

3 m3 +X3 +X62 +X70 0.0894 5.45 0.0982 4.97

4 m4 +X3+X5 +X6 +X70 0.0344 14.16 0.0498 9.80

Simple RJMCMC - 1500K iterations

1st Run 2nd Run

Common Additional Posterior Posterior

k m Variables Variables Prob. P O∗

1k
Prob. P O∗

1k

1 m1 X62 +X1+X3+X5+X12+X37 0.6159 1.00 0.5912 1.00

2 m3 +X1+X3 +X12+X37 +X70 0.1061 5.80 0.1525 3.88

3 m2 +X1 +X5+X12+X37+X46 +X70 0.0926 6.65 0.1041 5.68

4 m5 +X3+X5 +X46 +X49 +X70 0.0403 15.28 < 0.03 > 19.9

∗posterior odds of the best model within each analysis versus the current model k.

All models appearing in the table have total cost 10 min (cost limit).
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Reduced Model Space: Monte Carlo Errors

MCSEs (%)
RJMCMC

Type Run Iterations m1 m2 m3 m4

P 1 500K 1.2 0.5 0.9 0.7
P 2 500K 1.5 0.4 1.0 0.7
P 1 200K 1.9 0.8 1.1 1.2
P 2 200K 1.6 1.0 1.1 0.9
P 1 100K 2.5 1.2 1.7 1.5
P 2 100K 2.7 0.9 1.6 1.2
S 1 500K 4.2 1.3 3.2 0.0
S 2 500K 4.2 1.7 3.6 0.0
S 1 1,500K 2.9 1.1 2.1 1.0
S 2 1,500K 3.1 0.9 3.1 0.0

Relative
P Iterations Comparisons

First 1,500K 500K 2.4 2.2 2.3 1.4
S Run 200K 1.5 1.4 1.9 0.8

versus P 100K 1.2 0.9 1.2 0.7
Second 1,500K 500K 2.1 2.3 3.1 0.0

S Run 200K 1.9 0.9 2.8 0.0
versus P 100K 1.2 1.0 1.9 0.0
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Comparison of the best models and the RAND model

Minimum Total

Model Deviance Cost Dimension

m1 1610.0 10 8

m2 1606.7 10 9

m3 1612.8 10 8

m4 1608.6 10 9

m5 1616.5 10 8

RAND 1587.3 31 14

Bayesian Benefit 1553.2 22.5 13
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Figure 1: Density and time series plots of model dimension.

Simple RJMCMC Population RJMCMC
1,500K runs 500K runs

(thinned by a factor of 3)
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Figure 2: Density and time series plots of sequential change score (the number of

variables in the model at iteration (t + 1) that are different from those in the model

at iteration t)

Simple RJMCMC Population RJMCMC
1,500K runs 500K runs

(thinned by a factor of 3)
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Figure 3: Density and time series plots of model cost

Simple RJMCMC Population RJMCMC
1,500K runs 500K runs

(thinned by a factor of 3)



June 2, 2010: University of Bath 47

5 Discussion

• Cost - Benefit Analysis:

We have specified cost adjusted prior model probabilities resulting in posterior

model odds that can be approximated by a cost adjusted BIC measure. The

prior specification was achieved via the definition of five criteria that ensure

the plausibility and consistency of our prior.

Posterior analysis using the proposed prior setup achieves dramatic gains in

cost and noticeable improvement in model simplicity at the price of a small

loss in predictive accuracy, when compared to the results of a more traditional

benefit-only analysis.

• Cost - Restriction - Benefit Analysis:

A modified Population RJMCMC algorithm is proposed to explore the

restricted model space when budgetary contstains are imposed.

The proposed algorithm explores the model space efficiently and converges

faster than simple RJMCMC (having lower Monte Carlo errors).
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