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Abstract

The Power-Expected-Posterior (PEP) prior framework provides us a
convenient and objective method to deal with variable selection prob-
lems, under the Bayesian perspective, in regression models. The PEP
prior inherits all of the advantages of Expected-Posterior-Prior (EPP).
Furthermore, it avoids the need of selection of imaginary data and
mitigates their effect over the final posterior. Under the PEP prior
methodology, an initial (usually default) baseline prior is updated us-
ing imaginary data. In this work, focus is given in normal regression
models when the number of observations is smaller than the num-
ber of explanatory variables. We introduce the PEP prior methodology
using different baseline shrinkage priors, we present a computational
method and we perform comparisons in simulated and real life data-sets.

Keywords: Bayesian variable selection, imaginary training sample, MCMC,
objective priors, shrinkage priors, sparse datasets

1 Introduction

We consider the variable selection problem for normal regression models, where
the number of observations n is smaller than the number of explanatory vari-
ables p. Suppose the model space is consisting of all combinations of available
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covariates. Then for every model Mℓ in model space M the likelihood is given
by

y | (Xℓ,βℓ, σ
2) ∼ Nn(Xℓβℓ, σ

2In),

where y = (y1, . . . , yn)
T denotes the response data, Xℓ is the n × pℓ design

matrix; where pℓ is the number of explanatory variables under model Mℓ, βℓ

is a vector of length pℓ of the effects of each covariate on the response variable,
In is the n×n identity matrix and σ2 is the error variance. We assume that y
and the columns of the design matrix of the full model (including all available
explanatory variables) have been centred on their corresponding means, so no
intercept is used in our model formulation.

Under the Bayesian perspective, we can use posterior odds [14] in order to
compare any two models M1 and M2:

PO12 =
π(M1 | y)
π(M2 | y)

=
m1(y)

m2(y)
× π(M1)

π(M2)
, (1)

where π(Mℓ | y) is the posterior probability of model Mℓ, π(Mℓ) is the prior
probability of Mℓ, while mℓ(y) is the marginal likelihood of Mℓ given by

mℓ(y) =

∫
f(y | βℓ, σ,Mℓ)π(βℓ, σ | Mℓ)dβℓdσ.

In the last expression f(y | βℓ, σ,Mℓ) is denoting the likelihood of model Mℓ,
with model parameters (βℓ, σ), having prior distribution π(βℓ, σ | Mℓ). The
ratio of the two marginal likelihoods, of the two models, which appears in

equation (1), is called Bayes factor (BF12), i.e. BF12 = m1(y)
m2(y)

. The posterior

probability of any model Mℓ, is given by

π(Mℓ | y) =
mℓ(y)π(Mℓ)∑

Mk∈M mk(y)π(Mk)
.

The model with the highest posterior probability (maximum a-posteriori
(MAP) model) is often chosen as the optimal, under the Bayesian model
choice problem. For large model spaces, we often use MCMC methods to
estimate π(Mℓ | y). These estimates have the disadvantage that they con-
verge to the true quantities with a slow rate. As an alternative strategy, we
could use the marginal posterior inclusion probabilities [11]. For each covariate
Xj , j = 1, . . . , p, the marginal posterior inclusion probability is defined as

π(γj = 1 | y) =
∑

Mξ∈Mj

π(Mξ | y),

where γj is a binary indicator that takes the value 1 if covariate Xj belongs
to a model and 0 otherwise. In the above expression Mj = {Mℓ ∈ M : γj =
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1} ⊂ M is defined as the set containing all models with Xj . Using the poste-
rior variable inclusion probabilities we can define the median probability (MP)
model which is the model containing only the covariates with marginal poste-
rior inclusion probability above 0.5. The importance of the marginal posterior
inclusion probabilities in Bayesian variable selection can be found in [2] where
it is proven that the median probability (MP) model has better predictive
properties than the maximum a-posteriori model under certain conditions.

As it is now clear, we must set priors both for the model space and the
parameter space of each model. Regarding the prior on the model space, for
sparsity reasons, we consider the uniform prior on model size, as a special
case of the beta-binomial prior; see [23]. With respect to the prior distribution
on the coefficients in each model, since we are not confident about any given
set of regressors as explanatory variables, little prior information about their
regression coefficients should be expected. This argument alone justifies the
need for an objective model choice approach in which vague prior information
is assumed. Furthermore, we need to use a prior capable to deal with the n < p
scenario. Finally, regarding the (common across models) error variance, the
reference prior will be used, i.e. π(σ2) ∝ σ−2.

1.1 Shrinkage priors

A common way to deal with normal regression problems, when n < p, is by
using shrinkage methods. Under the Bayesian perspective this can be done
using a shrinkage prior on the model coefficients. By the term shrinkage we re-
fer to the behavior where non-important covariate effects will shrink towards
zero. Shrinkage priors share eminent theoretical properties, compelling com-
putational complexity and great empirical performance (e.g. [6], [21]).

A shrinkage prior, can often be conceived as a scale-mixture prior, which is
placed on the regression coefficients of every possible model. Something that
characterizes shrinkage priors, is their hyperparameters: the global shrinkage
hyperparameter, that determines the overall sparsity in the whole parame-
ter vector and the local shrinkage hyperparameter, where a distinct shrinkage
parameter is considered specifically for every single effect and controls the
shrinkage of this individual effect. Depending on the shrinkage prior, the global
parameter or the local parameters may be absent from the formation.

By assuming a shrinkage prior, on the vector of regression coefficients βℓ,
in most of the cases a prior with heavy mass around zero is being produced
and by so, small effects will shrink towards zero. Furthermore, the necessity of
heavy tails, is important, as it averts true non-zero effects to get shrinked. In
Table 1, we mention the most popular shrinkage priors, where by τ we refer to
local shrinkage hyperparameters and by λ to global shrinkage hyperparame-
ters. In all cases except the last two (Ridge g-prior and MG prior) independent
priors for the coefficients of model Mℓ are used, and thus j = 1, . . . , pℓ (the
vast majority of the shrinkage priors in the Bayesian literature are indepen-
dent). Under the MG prior, we can say that g takes the role of the global
shrinkage parameter λ and we have no local shrinkage parameters. This prior
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Table 1 List of shrinkage priors

# Name conditional prior of βℓ shrinkage hyparameters

1 LASSO [19] βj | τ2j , σ2 ∼ N(0, σ2τ2j )
τ2j | λ ∼ Exp(λ

2

2
)

λ ∼ HC(0, 1)∗

2 Horseshoe [3] βj | λ, τj , σ2 ∼ N(0, σ2λ2τ2j )
τj ∼ HC(0, 1)
λ ∼ HC(0, 1)

3 Ridge [13] βj | λ, σ2 ∼ N(0, σ2 1
λ
) λ ∼ HC(0, 1)

4 Local Student’s t [25] βj | τ2j , σ2 ∼ N(0, σ2τ2j )
τ2j | λ ∼ IG( k

2
, k
2λ

)∗∗

λ ∼ HC(0, 1)
k = 1

5 Elastic Net [16] βj | λ2, τj , σ
2 ∼ N(0, σ2 1

λ2+τ2
j
)

τ2j | λ1 ∼ Exp(
λ2
1
2
)

λ1, λ2 ∼ HC(0, 1)

6 Beta Prime [1] βj | τ2j , σ2 ∼ N(0, σ2τ2j )
τ2j ∼ Inv −Beta(a, b)

a, b fixed***

7 Ridge g-prior [12]
βℓ | λ, σ2 ∼ Npℓ (0, σ

2Φℓ)
Φℓ = g(XT

ℓ Xℓ + λIpℓ )
−1

g = n
λ = 0.5

8 MG prior∗∗∗∗ [18] ZT
ℓ βℓ | g, σ2 ∼ Npℓ (0, σ

2Ψℓ(g))
g ∼ Inv −Beta(a, b)

a, b fixed

∗HC(x0, γ): truncated Cauchy distribution with location parameter x0, scale parameter γ and
support (x0,∞).
∗∗IG(α, β): Inverse Gamma distribution with shape parameter α and scale parameter β.
∗∗∗a and b are estimated using a data-adaptive method based on marginal maximum likelihood;
see [1].
∗∗∗∗Maruyama and George generalised g-prior. Zℓ is an orthogonal matrix, Ψℓ(g) is a diagonal
matrix. For the construction of these matrices and the default choices for a, b, see [18].

can be considered as a generalization of the Zellner’s g-prior, which allows for
p > n, and is placed on the rotated coefficients after orthogonalization (see
[18]). To keep the notation as simple as possible, in the rest of the paper, when
referring to the MG prior, we continue calling these rotated coefficients βℓ.

1.2 Power-Expected-Posterior prior

A principal approach to define objective priors is the use of random imagi-
nary training data [5]. Power-Expected-Posterior (PEP) prior [7], [8], uses this
methodology. In particular, for the normal linear regression model, the PEP
prior is defined as

πPEP
ℓ (βℓ | σ2, δ,X∗

ℓ ) =

∫
πN
ℓ (βℓ | y∗, σ2, δ,X∗

ℓ )m
N
0 (y∗ | σ2, δ,X∗

0 )dy
∗, (2)

πPEP
ℓ (σ2) = πN (σ2) ∝ 1

σ2
,

with

πN
ℓ (βℓ | y∗, σ2, δ,X∗

ℓ ) ∝ fℓ(y
∗ | βℓ, σ

2, δ,X∗
ℓ )π

N
ℓ (βℓ | σ2, X∗

ℓ ), (3)
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fℓ(y
∗ | βℓ, σ

2, δ,X∗
ℓ ) =

fℓ(y
∗ | βℓ, σ

2, X∗
ℓ )

1/δ∫
fℓ(y∗ | βℓ, σ

2, X∗
ℓ )

1/δdy∗ (4)

and

mN
0 (y∗ | σ2, δ,X∗

0 ) =

∫
f0(y

∗ | β0, σ
2, δ,X∗

0 )π
N
0 (β0 | σ2, X∗

0 )dβ0,

with

f0(y
∗ | β0, σ

2, δ,X∗
0 ) =

f0(y
∗ | β0, σ

2, X∗
0 )

1/δ∫
f0(y∗ | β0, σ

2, X∗
0 )

1/δdy∗ .

In the above equations, we have set y∗ to be the imaginary observations
of size n∗ and X∗

ℓ the imaginary design matrix of model Mℓ. By πN
ℓ (βℓ |

y∗, σ2, δ,X∗
ℓ ) we denote the conditional on σ2 posterior of βℓ, using a baseline

prior πN
ℓ (βℓ | σ2, X∗

ℓ ) and data y∗. In equation (4) the likelihood of imaginary
observations is raised to the power of 1/δ and density normalized. By doing this
we decrease the effect of the imaginary data. For δ = 1, equation (2) results to
the Expected-Posterior-Prior (EPP) [20]. In order to have a unit information
interpretation [15], we set δ = n∗ and in order to avoid any effect of the
choice of imaginary design matrices, we set n∗ = n. In equation (2), mN

0 (y∗ |
σ2, δ,X∗

0 ), is the prior predictive distribution (or the marginal likelihood),
evaluated at y∗, of the reference modelM0, given σ2. For the calculation of this
marginal likelihood we use the normalized power likelihood of the reference
model. We denote by X0 the design matrix and by β0 the coefficients of this
reference model. As a reference model, in the rest of the paper, we consider, for
reasons of parsimony, the model with only the intercept (null model). Finally,
for every model Mℓ, the marginal likelihood under the baseline prior, given
σ2, is

mN
ℓ (y∗ | σ2, δ,X∗

ℓ ) =

∫
fℓ(y

∗ | βℓ, σ
2, δ,X∗

ℓ )π
N
ℓ (βℓ | σ2, X∗

ℓ )dβℓ. (5)

2 PEP-Shrinkage Prior Methodology

In the above formulation, by choosing as a baseline prior πN
ℓ (βℓ | σ2, X∗

ℓ ) a
shrinkage prior (see Table 1), a PEP-Shrinkage prior is created and thus we
can apply the PEP prior methodology in shrinkage problems.

PEP priors can be considered as fully automatic, objective Bayesian meth-
ods for model comparison in regression models (see for example [5] and [7]).
They are developed through the utilization of the device of “imaginary” sam-
ples, coming from the simplest model under comparison. Therefore, PEP priors
offer several advantages, among which they have an appealing interpretation
based on imaginary training data coming from a prior predictive distribution
and also provide an effective way to establish compatibility of priors among
models (see [4]), through their dependence on a common marginal data distri-
bution. Thus, the PEP methodology can be applied also with proper baseline
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Table 2 The matrix Ωℓ for every baseline prior used in PEP-Shrinkage methodology

shrinkage prior θℓ Ωℓ

LASSO (λ, τ21 , . . . , τ
2
pℓ
) diag(τ21 , . . . , τ

2
pℓ
)

Horseshoe (λ, τ1, . . . , τpℓ ) diag(λ2τ21 , . . . , λ
2τ2pℓ )

Ridge λ diag(λ−1, . . . , λ−1)
Local Student’s t (λ, τ21 , . . . , τ

2
pℓ
) diag(τ21 , . . . , τ

2
pℓ
)

Elastic Net (λ1, λ2, τ21 , . . . , τ
2
pℓ
) diag((λ2 + τ21 )

−1, . . . , (λ2 + τ2pℓ )
−1)

Beta Prime (τ21 , . . . , τ
2
pℓ
) diag(τ21 , . . . , τ

2
pℓ
)

Ridge g-prior λ g(X∗T
ℓ X∗

ℓ + λIpℓ )
−1

MG prior g Ψℓ(g)

prior distributions. Furthermore, by choosing the simplest model, as a refer-
ence model, to generate the imaginary samples, the PEP prior shares common
ideas with the skeptical-prior approach described by [24].

In the following, under any model Mℓ, the likelihood is given by

fℓ(y | Xℓ,βℓ, σ
2) = fNn

(y; Xℓ βℓ, σ
2 In),

where fNd
(y; µ,Σ) is denoting the d-dimensional normal distribution with

mean µ and covariance matrix Σ. Under (4) the likelihood of the imaginary
data y∗, under model Mℓ, is given by

fℓ(y
∗ | X∗

ℓ ,βℓ, σ
2, δ) = fNn∗ (y

∗; X∗
ℓ βℓ, δ σ2 In∗).

From Table 1 it is obvious that all shrinkage priors that will use as baseline
priors under the PEP methodology, have the following general form

πN
ℓ (βℓ | θℓ, σ

2) = fNpℓ
(βℓ; 0, σ

2Ωℓ),

where Ωℓ ≡ Ωℓ(θℓ) is a pℓ × pℓ matrix; for more details see Table 2. In the
rest of the paper, by θℓ we denote the vector containing all the shrinkage
hyperparameters (global and local) of model Mℓ, with a prior distribution
denoting by π(θℓ).

2.1 PEP-Shrinkage prior

The conditional posterior distribution πN
ℓ (βℓ | y∗, σ2, δ,X∗

ℓ ,θℓ), using the
baseline prior and the imaginary data is given by

πN
ℓ (βℓ | y∗, σ2, δ,X∗

ℓ ,θℓ) ∝ fℓ(y
∗ | X∗

ℓ ,βℓ, σ
2, δ)πN

ℓ (βℓ | θℓ, σ
2)

= fNn∗ (y
∗; X∗

ℓ βℓ, δ σ2 In∗)fNpℓ
(βℓ; 0, σ

2Ωℓ)

and so we have have that

πN
ℓ (βℓ | y∗, σ2, δ,X∗

ℓ ,θℓ) = fNpℓ
(βℓ; δ

−1WℓX
∗
ℓ
Ty∗, σ2Wℓ),
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where Wℓ = [δ−1X∗
ℓ
TX∗

ℓ +Ω−1
ℓ ]−1. Moreover, from equation (5), for any model

Mℓ, the prior predictive distribution, under the baseline prior, conditional on
σ2 and θℓ is

mN
ℓ (y∗ | σ2, δ,X∗

ℓ ,θℓ) =

∫
fℓ(y

∗ | X∗
ℓ ,βℓ, σ

2, δ)πN
ℓ (βℓ | θℓ, σ

2)dβℓ

=

∫
fNn∗ (y

∗; X∗
ℓ βℓ, δ σ2 In∗)fNpℓ

(βℓ; 0, σ
2Ωℓ)dβℓ

= fNn∗ (y
∗; 0, σ2Λℓ),

where Λℓ = X∗
ℓΩℓX

∗
ℓ
T + δIn∗ . Thus, the conditional PEP-Shrinkage prior is

πPEP
ℓ (βℓ | σ

2, δ,X∗
ℓ ,θℓ) =

∫
πN
ℓ (βℓ | y

∗, σ2, δ,X∗
ℓ ,θℓ)m

N
0 (y∗ | σ2, δ,X∗

0 )dy
∗

=

∫
fNpℓ

(βℓ; δ
−1WℓX

∗
ℓ
T
y∗, σ2Wℓ)fNn

(y∗; 0, σ2Λ0)dy
∗

= fNpℓ
(βℓ; 0, σ

2Vℓ),

where Vℓ = [W−1
ℓ − δ−2X∗

ℓ
TZℓX

∗
ℓ ]

−1 and Zℓ = [δ−2X∗
ℓWℓX

∗
ℓ
T + Λ−1

0 ]−1.
The final PEP-Shrinkage prior is then given by the following hierarchical

structure

πPEP
ℓ (βℓ,θℓ, σ

2 | δ,X∗
ℓ ) = πPEP

ℓ (βℓ | σ2, δ,X∗
ℓ ,θℓ)π(θℓ)π

N (σ2).

Example. Let y = (y1, . . . , yn)
T be a random sample of size n = 25 from

the normal distribution with mean θ and variance σ2 = 1. We consider the
hypothesis H0 : θ = 0 vs H1 : θ ̸= 0. In order to visualize how the PEP
shrinkage prior works, in Figure 1 we plot the PEP-Shrinkage prior (with
δ = n∗ = n = 25), for the parameter θ, under the alternative hypothesis, with
a Horseshoe prior as baseline (PEP-Horseshoe), together with the Horseshoe
prior (without using the PEP methodology) and the PEP-Horseshoe with δ =
1 and n∗ = n = 25. In all cases we assume that the local shrinkage parameter
is equal to 1 and the global shrinkage parameter λ ∼ C+(0, 1).

From Figure 1 it is distinct that the PEP-Horseshoe, with the recommended
values δ = n∗ = n = 25, is also unbounded at 0, as the Horseshoe prior
is, a property that yields massive shrinkage for zero effects. Higher amount
of probability density is accumulating near the origin, in comparison to the
Horseshoe prior, a property that yields more shrinkage for the true-zero effects.
In addition, PEP-Horseshoe, although it has slightly lighter tails than the
original Horseshoe prior, the tails are heavy enough to avoid any essential
influence of the posterior distribution of true non-zero effects. Finally, as δ is
getting smaller (see Figure 1 for δ = 1) we observed a much higher amount of
probability density near the origin, but also much lighter tails.

In Sections 1 and 2 of the Appendix, we have included theoretical proofs,
under the setup of this example, of the behavior of the resulting PEP-
Horseshoe prior (with δ = n∗ = n = 25), at the origin (θ → 0) and the tails
(θ → ∞).
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Figure 1 Density function of the prior distribution under the PEP-Shrinkage methodology,
with a Horseshoe prior as a baseline, in comparison with Horseshoe prior without using the
PEP methodology, for a normal mean hypothesis testing.

2.2 Conditional posterior under the PEP-Shrinkage prior

The posterior distribution, under the PEP-Shrinkage prior, conditional on the
shrinkage hyperparameters θℓ of model Mℓ, is given by

πPEP
ℓ (βℓ, σ

2 | y, δ,X∗
ℓ , Xℓ,θℓ) ∝ πPEP

ℓ (βℓ | σ
2, δ,X∗

ℓ ,θℓ)π
N (σ2)fℓ(y | Xℓ,βℓ, σ

2)

= fNpℓ
(βℓ; 0, σ

2Vℓ)π
N (σ2)fNn

(y; Xℓ βℓ, σ
2 In).

Using the reference prior for σ2 (see Section 1), this joint posterior can be
written as the product of

πPEP
ℓ (βℓ | y, σ2, δ,X∗

ℓ , Xℓ,θℓ) = fNpℓ
(βℓ; Sℓ XT

ℓ y, σ
2Sℓ)

and

πPEP
ℓ (σ2 | y, δ,X∗

ℓ , Xℓ,θℓ) = fIG(σ
2; αℓ, bℓ),

where fIG(x; α, b) is denoting the Inverse Gamma distribution, with shape
parameter α and scale parameter b. Furthermore, we have set Sℓ = (V −1

ℓ +

Xℓ
TXℓ)

−1, αℓ =
n
2 and bℓ =

yT [In+XℓVℓXℓ
T ]−1y

2 .

2.3 Marginal likelihood under the PEP-Shrinkage prior

The marginal likelihood, of model Mℓ, under the PEP-Shrinkage prior, given
the shrinkage parameter θℓ is given by

m
PEP
ℓ (y | δ,X∗

ℓ , Xℓ, θℓ) =

∫
π
PEP
ℓ (βℓ | σ2

, δ,X
∗
ℓ , θℓ)π

N
(σ

2
)fℓ(y | Xℓ,βℓ, σ

2
)dβℓ dσ

2

∝
∣∣In + XℓVℓXℓ

T ∣∣− 1
2 (y

T
[In + XℓVℓXℓ

T
]
−1

y)
−n

2 . (6)

Therefore in cases where the shrinkage parameters of the baseline prior are
fixed (e.g. Ridge g-prior), the above marginal likelihood can be calculated
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in closed form. The unknown normalizing constant, in the above expression,
comes from the improper prior of the error variance, which is common in all
compared models, and therefore we do not face any indeterminacy issues when
calculating the Bayes factor.

When the shrinkage parameters are not fixed, the marginal likelihood,
according to (6), is given by

mPEP
ℓ (y) ≡ mPEP

ℓ (y | δ,X∗
ℓ , Xℓ) =

∫
mPEP

ℓ (y | δ,X∗
ℓ , Xℓ,θℓ)π(θℓ)dθℓ

∝
∫ ∣∣In +XℓVℓXℓ

T
∣∣− 1

2 (yT [In +XℓVℓXℓ
T ]−1y)−

n
2 π(θℓ)dθℓ (7)

If θℓ is a single parameter, as in the ridge prior, the above integral can
be numerically evaluated in a straightforward manner. Furthermore, in order
to search the model space, when full-enumeration is computationally infeasi-
ble, MC3 procedures [17] can be applied. If θℓ is a multivariate vector, as in
Horseshoe prior for example, we perform an MC3 procedure, conditionally on
θℓ, as in Algorithm 3 of [10], where each component of θℓ is generated from
its full conditional posterior distribution using a Metropolis-Hastings step. A
detailed algorithmic procedure is presented in Section 3.

3 Computation

In common real life problems with n < p, it is almost sure that a full search of
the model space containing all possible 2p models, becomes computationally
infeasible. Consequently, a full-enumeration of all marginal likelihoods can not
be implemented. Alternatively, a procedure based on MC3 has to be used in-
stead, in order to search the model space for the “true” model. Furthermore,
the marginal likelihood of model Mℓ, which is given by equation (7) cannot
be expressed in closed form, for most of the baseline priors of PEP-Shrinkage
methodology. In cases where θℓ is one dimensional, an approximation of the
integral required in the marginal likelihood can be obtained with the use of
numerical methods. As the dimension of θℓ increases, the need of approximate
techniques, such as MCMC methods is substantial, in order to estimate the
marginal likelihood of a model Mℓ and derive marginal inclusion probabili-
ties. In the following, we provide a detailed description of the adopted MC3

algorithm we introduce for the computation of the relevant quantities (pos-
terior distribution and marginal posterior inclusion probabilities) under the
PEP-Shrinkage prior framework.

First of all, we introduce the usual binary vector γ = (γ1, . . . , γp), which
indicates the variables that are included in a model, where γj (for j = 1, . . . , p)
takes the value 1 if covariate Xj belongs to a model and 0 otherwise. In this
section we denote the competing models using this γ notation.
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We set δ = n∗ = n, under the PEP prior methodology. We randomly start

with model γ(0), with local shrinkage parameter τ
(0)
γ and global shrinkage pa-

rameter λ(0). We denote by θ = (λ, τ ) the set of all shrinkage parameters under
the full model formulation (i.e. the model with γj = 1 for all j = 1, . . . , p).
Under the MG baseline prior we have that θ = g. Then for any model γ, other
than the full, the local parameters τγ can be split into two vectors: the ones
for the covariates involved in γ given by τγ = (τγ1 , . . . , τ

γ
dγ
) and the ones that

are not included denoted by τ\γ of dimension p − dγ ; where dγ =
∑p

j=1 γj
is the dimension of τγ and it is equal to the number of active covariates in-

cluded in model γ. Furthermore, τγj
(t)

is the j-th local shrinkage parameter

and (τγ \ τγj )
(t)

is the vector containing all of the shrinkage parameters ex-
cept the j-th, of model γ, under the t MCMC iteration, for j = 1, ..., dγ . Local
shrinkage parameters are updated sequentially, for every model γ; we first up-
date parameter τγ1 , then τγ2 and so on. Therefore, at iteration t, when updating
τγj (after we have updated the previous j − 1 parameters) the current vector
of all the local shrinkage parameters except the j-th, for model γ, is given by

(τγ \ τγj )
(t) ≡ (τγ1

(t)
, . . . , τγj−1

(t)
, τγj+1

(t−1)
, . . . , τγdγ

(t−1)
).

We denote by q1
(
λ(t) | λ(t−1)

)
and q2

(
τγj

(t) | τγj
(t−1))

the proposal dis-
tributions for the new state of the global and for the j-th local shrinkage
parameter under model γ, respectively, given the current state, used in the
Metropolis–Hastings step of the algorithm. We use the log-normal distribution
for q2(), with median value being the current state and variance chosen such
that the acceptance rate is approximately 44%. The same proposal is used for
q1() when λ is in all cases univariate, except in Elastic Net, where λ is bivari-
ate; in this case q1() is the product of two independent log-normal distributions
of the same type as before.

Finally, we denote by fγ(λ | y, τγ) the posterior distribution of λ, given
τγ , under model γ, which is

fγ(λ | y, τγ) ∝ mPEP
γ (y | δ,X∗

γ , Xγ ,λ, τγ)π(λ),

where mPEP
γ (y | δ,X∗

γ , Xγ ,λ, τγ) is given in (6) and π(λ) is the prior
distribution of the global shrinkage parameter. Equivalently, we denote by
fγ(τ

γ
j | y,λ, (τγ \ τγj )) the full conditional posterior distribution of τγj , under

model γ. This density function is given by

fγ(τ
γ
j | y,λ, (τγ \ τγj )) ∝ mPEP

γ (y | δ,X∗
γ , Xγ ,λ, τγ)π(τ

γ
j | λ),

where π(τγj | λ) is the prior distribution of the j-th shrinkage parameter of
model γ conditional on the global parameters λ (in some methods this is
equal to π(τγj )). Algorithm 1 summarizes the computational scheme we use.

Algorithm 1 Model search using MC3 conditional on τ and λ with a
Metropolis–Hastings step
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Start with model γ(0), with local shrinkage parameter τ
(0)
γ and global shrinkage

parameter λ(0).

For iterations t = 1, ..., T :

1. Update of global shrinkage parameter λ.[∗]

• Set γ = γ(t−1) and τγ = τ
(t−1)
γ .

• Generate λ(t) from the proposal distribution q1
(
λ(t) | λ(t−1)

)
.

• Accept the move with probability

α1 = min

(
1,

fγ(λ
(t) | y, τγ)q(λ

(t−1) | λ(t))

fγ(λ
(t−1) | y, τγ)q(λ

(t) | λ(t−1))

)

else set λ(t) = λ(t−1).

2. Update of local shrinkage parameter τ .[†]

• Set γ = γ(t−1) and λ = λ(t)

• For j = 1, . . . , dγ , selected at random order, repeat

– Generate τγj
(t)

from the proposal distribution q(τγj
(t) | τγj

(t−1)
).

– Accept the move with probability

α2 = min

(
1,

fγ
(
τγj

(t) | y, (τγ \ τγj )
(t))

q
(
τγj

(t−1) | τγj
(t))

fγ
(
τγj

(t−1) | y, (τγ \ τγj )
(t))

q
(
τγj

(t) | τγj
(t−1))

)

else set τγj
(t)

= τγj
(t−1)

.

• Generate each element τ
(t)
\γ from the prior distribution f

(
τ \γ | λ(t)

)
.

• Set τ (t) =
(
τ
(t)
γ , τ

(t)
\γ
)
.

3. Bayesian Variable Selection step.

• Set γ = γ(t−1)

• For j = 1, . . . , p, selected in random order, repeat

– Set γ′ = γ and θγ =
(
λ(t), τ

(t)
γ

)
.

– Set γ′
j = 1− γj and θγ′ =

(
λ(t), τ

(t)
γ′

)
.

– Compute the marginal likelihood

mPEP
γ′ (y | θγ′) ≡ mPEP

γ′ (y | δ,X∗
γ′ , Xγ′ ,θγ′)

of model γ′, conditional on θγ′ given by equation (6).

∗For the Beta Prime prior and the Ridge g-prior this step should be skipped since there are
no global shrinkage parameters. For the Elastic Net, λ is bivariate. For the rest of the methods,
a single univariate step is required. For the MG prior we perform the same step with g instead
of λ.

†This step should be skipped for Ridge prior, the Ridge g-prior and the MG prior, since no
local shrinkage parameters exist.
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– Set γ = γ′ (i.e. accept proposed model γ′) with probability

α3 = min

(
1,

mPEP
γ′ (y | θγ′)π(γ′)

mPEP
γ (y | θγ)π(γ)

)
,

where π(γ′) is the prior probability of model γ′.
• Set γ(t) = γ.

4 Experimental Results

In this section we test the PEP-Shrinkage methodology on simulated and real-
life data. We compare the performance of all PEP-Shrinkage priors, as those
derived by using the different baseline shrinkage priors given in Table 1. Fur-
thermore, we compare the results obtained by the different PEP methods with
those obtained when using the shrinkage priors of Table 1 without applying
the PEP methodology.

Our goal is to perform variable selection. To compare the performance
of the different techniques, we follow a fully probabilistic approach and we
report marginal posterior inclusion probabilities for every predictor. The vast
majority of literature on shrinkage priors deals with estimation problems and
for the variable selection step an “indirect” approach is usually followed: a
variable is dropped if the posterior credible interval of its coefficient include
the value of zero, or if the posterior mean for the shrinkage coefficient is below
a threshold value (usually 1/2); for more details see [3]. By reporting marginal
posterior inclusion probabilities we end up having a model-averaged weight
of including a certain predictor in the model, given the observed responses.
Therefore, we end up with an variable importance indicator quantifying how
relevant a predictor is across all possible models. The median probability (MP)
model can then be reported as the “optimal” choice, following the discussion
of Section 1.

In Sections 3 and 4 of the Appendix we present results of an additional
simulation study, as well as, another real-life example, respectively.

4.1 Simulation study

Here we test the PEP-Shrinkage methodology (with δ = n = n∗, X∗
ℓ = Xℓ

and the reference model to be the null one) on simulated data. As a baseline
prior, we use the shrinkage priors listed on Table 1 and compare their results.
Moreover, we contrast these results, with the ones obtained by using those
shrinkage priors without the PEP-Shrinkage methodology.

We have simulated 100 different samples of length n = 25 with p = 50
predictors. The values of the explanatory variables have been generated from
N50(0,Σ), where a symmetric matrix Σ with elements Σi,j = (0.75)|i−j|, i, j =
1, . . . , 50. For the predictor effects, we have set (β1, β2, β10) = (2, 0.8, 1.5) and
for all of the rest, we set to be equal to zero. For the intercept, we have assumed
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that β0 = 0.6 and we have set y = β01n +Xβ + ϵ, where ϵ ∼ N25(0, σ
2I25),

for σ2 = 1.5. Finally, we centre the values of the response variable, as well as
the columns of the design matrix, on their corresponding means.

Figure 2 Boxplots of posterior inclusion probabilities, across 100 simulated datasets, for
the true effects - variables X1, X2, X10 (left) and for some of the non true effects - variables
X3, X9, X11 (right) using the PEP-Shrinkage methodology, for different baseline prior (X-
axis).

In Figure 2 (left), we present the boxplots of the marginal posterior inclu-
sion probabilities, for the true non-zero effects, of the 100 different samples,
for the seven different PEP-Shrinkage priors. Regarding the two most influ-
ential variables, X1 and X10, under every baseline prior, we obtained high
marginal posterior inclusion probabilities with the majority of the cases to
be above 0.5. Furthermore, for these two effects, PEP-Ridge seems to out-
perform every other PEP-Shrinkage prior, producing high marginal posterior
inclusion probabilities with small variability. On the contrary, PEP-Ridge g-
prior and PEP-Horseshoe prior give the least satisfactory results, with median
marginal posterior inclusion probabilities lower than the ones produced by
their competitors but still above 0.5. Also for these two methods we observe
the highest variability in the quantity of interest. For predictor X2, the median
marginal posterior inclusion probabilities are above 0.5, for all baseline priors,
except two. As before, PEP-Ridge gives the most satisfactory results, while
PEP-Ridge g-prior and PEP-MG prior produce marginal posterior inclusion
probabilities with a median value below 0.5.
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For the true-zero effects, we present results only for covariates X3, X9 and
X11 (for brevity) in Figure 2 (right). The selected covariates are the ones with
the higher correlations with the covariates with non-zero effects. For every
selection of baseline prior, the posterior inclusion probabilities are below 0.5.
Regardless the baseline prior we choose, only in a small percentage of occasions,
the true-zero effects is indicated as important for the model (with posterior
inclusion probabilities above 0.5). We notice that PEP-Ridge, followed by the
PEP-MG prior, the PEP-Ridge g-prior and the PEP-Horseshoe manage to
give, in general, very small marginal posterior inclusion probabilities. For the
rest of the zero effects, we get similar results, with the PEP-Elastic Net to
produce the highest values of the quantity of interest (but still with median
value across all samples below 0.5).

Figure 3 Boxplots of posterior inclusion probabilities, across 100 simulated datasets, for
the true effects - variables X1, X2, X10 and for one non-true effect - variable X3 using the
PEP-Shrinkage priors and the shrinkage priors without the PEP methodology.

In Figure 3, we present boxplots of the posterior inclusion probabilities of
the true non-zero effects (X1, X2 and X10), as well as, for variable X3 (true-
zero effect). We compare the performance of all of the different PEP-Shrinkage
priors mentioned so far, with the performance of the shrinkage priors with-
out applying the PEP methodology. For variable X1 we get similar results,
among all pairwise comparisons. All methods (with and without applying the
PEP methodology) correctly identify this variable as a true main effect. For
variable X2, the performance of the two approaches is again similar in most
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cases. When applying the PEP methodology we obtain slightly lower poste-
rior inclusion probabilities, under the Horseshoe, the Local Student’s t, the
Beta Prime prior and the MG prior. Under the MG prior when applying the
PEP methodology, the median value of the posterior inclusion probabilities
falls below 0.5, while at the same time the behavior of the MG prior without
applying the PEP method is much better. It is also evident that when using
the PEP-Ridge g-prior (with and without the PEP methodology) the majority
of posterior inclusion probabilities are below 0.5. Finally, regarding variable
X10, all methods correctly identify it as a true non-zero effect. Under the PEP
methodology, we obtain slightly better results under the Ridge prior and the
LASSO, and slightly worse results under the Horseshoe, the Local Student’s
t, the Beta Prime prior and the MG prior. Regarding variable X3 (zero ef-
fect), the PEP methodology outperforms its competitors under the Ridge, the
LASSO, the Horseshoe and the MG prior, producing more parsimonious an-
swers. Similar are the results, among all pairwise comparisons in the case of
the Ridge g-prior and the Elastic Net prior, while only for the Beta Prime
prior, results under the PEP methodology are slightly worse (but still with
the majority of cases to have values for the quantity of interest below 0.5).
The lowest marginal posterior inclusion probabilities are obtained under the
PEP-Ridge, the PEP-MG prior and the Ridge g-prior, with and without ap-
plying the PEP methodology. Finally under the Ridge and the MG priors we
observed the biggest improvement when applying the PEP methodology. Sim-
ilar are the results for the remaining non-important effects, which are omitted
for brevity reasons.

To conclude with, from this simulated study it seems that the best results
are produced by the PEP-Ridge prior that manages to retain high poste-
rior inclusion probabilities for the non-zero effects and low posterior inclusion
probabilities for the zero effects. The PEP-Ridge g-prior, followed by the PEP-
MG prior, are the most parsimonious methods, a property that can be very
important for sparse data-sets; see section 4.2.

4.2 Real data example

In this section we use a real data-set, concerning the study for the rela-
tion of the level of gene TRIM32, with the expression levels of other genes.
The motivation for this study is the fact that level of gene TRIM32 causes
the Bardet-Biedl syndrome, a genetic condition that affects multiple areas of
a patient’s system. The data originate from the microarray experiments of
mammalian-eye tissue samples (see [22]). The expression levels of different
genes are used as explanatory variables and the level of TRIM32 as the re-
sponse variable. The data-set we use has a sample size of n = 120 and p = 200
predictors and it is available in the R package flare. Finally, we centre the
values of the response variable, as well as the columns of the design matrix,
on their corresponding means.

In order to examine the predictive performance of the PEP-Shrinkage priors
(with δ = n = n∗,X∗

ℓ = Xℓ and the reference model to be the null one), we first
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perform variable selection, where we find the median probability (MP) model,
using each time a different baseline prior. A similar task is performed for all of
the shrinkage priors without using PEP-Shrinkage methodology. Consequently,
we randomly partition the data N = 30 times, to the modelling subsample
(M) of size nM = 90 and the validation subsample (V ) of size nV = 30. For
each partition, we generate an MCMC sample (T = 2000 iterations) from the
model of interest Mℓ, using the M subsample and compute the root mean
squares error for the data of the V subset, given by:

RMSEℓ =

√√√√ 1

T

T∑
t=1

1

nV

∑
i∈V

(yi − ŷ
(t)
i|Mℓ

)2.

In the above equation yi denotes the response data in the validation subsample

and ŷ
(t)
i|Mℓ

= Xℓ(i)β
(t)
ℓ is the predicted value of yi under model Mℓ. To calculate

this predicted value we use the j-th row of the design matrix Xℓ(i), in the

validation subsample, under model Mℓ and the vector of parameters β
(t)
ℓ ,

under model Mℓ, for the t iteration of the MCMC sample, using the modelling
subsample.

Table 3 Comparison of the predictive performance of PEP-Shrinkage and shrinkage
priors methodology, using the MP model and the full model, in the TRIM32 data set.

dℓ
∗ MP FULL

shrinkage prior PEP INIT∗∗ PEP INIT∗∗ PEP INIT∗∗

LASSO 55 90 0.0889 0.1044 0.1136 0.1135
Horseshoe 54 52 0.0900 0.0951 0.1189 0.1189
Ridge 54 55 0.0757 0.0837 0.1277 0.1277
Ridge g-prior 39 41 0.0669 0.0746 0.3108 0.2950
Local Student’s t 53 73 0.0817 0.0721 0.1632 0.1502
Elastic Net 48 44 0.0935 0.1132 0.1373 0.1392
Beta Prime 51 49 0.0997 0.0916 0.1032 0.1067
MG prior 47 51 0.1057 0.1103 0.1226 0.1217

∗dℓ: Number of the variables accepted in the MP model.
∗∗INIT: The results given from a shrinkage prior without the use of PEP-Shrinkage
methodology.

In Table 3, we present the results of the mean, across the N random data
splits, RMSE, for the MP model, as well as, for the full model (including
all 200 predictors), with and without using the PEP-Shrinkage methodology.
Regarding the MP model, in all pairwise comparisons, except one (Local Stu-
dent’s t), the PEP methodology provided better predictive performance to that
offered by the shrinkage priors without the usage of the PEP methodology.
When using the Local Student’s t shrinkage prior the PEP method produced
an MP model with higher mean value of the RMSE. But even in this case it is
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worthwhile noticing that the MP model under the PEP methodology is much
more parsimonious, containing 20 predictors less than the MP model without
the PEP approach. When using the LASSO prior, the PEP methodology pro-
duces an MP model with considerably lower dimension and predictive error.
In all other cases, the dimension of the MP model is similar in the pairwise
comparisons. Finally, the model with the best (among all comparisons) pre-
dictive performance is the MP model offered by the PEP-Ridge g-prior, both
in terms of prediction accuracy and parsimony.

Regarding the full model, results are similar in all pairwise comparisons.
This indicates that for estimation purposes, the PEP methodology works in
a similar manner as the corresponding shrinkage priors. The full model with
the best predictive performance is the one produced by the Beta prime prior
(with and without the PEP methodology), while under the Ridge g-prior we
get considerably higher prediction errors. On the other hand, as seen in the
simulation study, the PEP-Ridge g-prior is the most parsimonious method
among the competing ones. When applied as a variable selection method,
especially in sparse data-sets (like the one considered here) it manages to drop
the vast majority of the non-true effects, producing parsimonious models with
good predictive performance.

5 Discussion

In this paper we present the model formulation, computation and results on
simulated, as well as, real-life data, of an objective Bayesian prior distribution
capable of dealing with variable selection problems in normal regression models
when the number of observations is smaller than the number of explanatory
variables. The proposed PEP-Shrinkage prior combines two approaches: the
PEP prior methodology and the shrinkage priors. The resulting prior has a
nice interpretation, based on imaginary data, and is compatible across models.

Based on the simulation study, presented here and in the Appendix, the
PEP-Shrinkage priors, in the majority of cases, correctly identify the true
model. In general, the PEP methodology seems to improve the initial shrink-
age prior, by being more parsimonious, a property that is desirable on sparse
regression problems. In the two real data examples presented in the main pa-
per and in the Appendix we get slightly better predictive performance under
the PEP-Shrinkage priors in almost all of the cases, when using the median
probability model.

As a general conclusion, from the studies presented here and in the
Appendix, it seems that the PEP-Ridge prior works better than each com-
petitors, while for very sparse data-sets the PEP-Ridge g-prior manages to
produce more parsimonious models with very good predictive performance.
The PEP-Ridge g-prior is designed in a way that combines the good proper-
ties of the g-prior (via the mechanism of PEP prior and imaginary data) and
of the ridge regression approach. The latter will help the posterior distribu-
tion of the regression coefficients to stabilize in cases of collinearity or when



Springer Nature 2021 LATEX template

18 A Comparison of PEP Priors in Shrinkage Regression

facing situations with p > n. This explains why this prior generally works sat-
isfactory in very sparse data-sets. Finally, for non-sparse data-sets, PEP-Local
Student’s t, under the MP model, provides better predictive performance.

There are several directions of future extensions. The main aim is to cre-
ate a unified approach; i.e. a new class of PEP-Shrinkage priors, that includes
all the cases mentioned in this paper. To achieve this goal our aim is to write
the PEP-Shrinkage prior as a scale mixture of normal distribution, with the
mixing distribution denoting the different baseline prior distributions used.
This representation will offer several advantages: faster evaluation of poste-
rior distributions and Bayes factors, under all approaches considered, as well
as, computational tractability. The performance of this new class of shrinkage
prior distributions then have to be assessed in relation to: a) computational
efficiency, b) frequentist assessment, especially in terms of the speed of con-
centration of the posterior parameter distribution, or functional thereof, to the
true value, and in terms of coverage of credible sets, c) ease of interpretation,
d) default set of tuning hyperparameters in scientific applications. Moreover,
a very important aspect is to check mathematical properties of the new class
of prior distributions.

Another interesting topic for future research is to study the effect of the
size of the imaginary data on the posterior results. In the same manner, we
can study the sensitivity of the PEP methodology on the selection of dif-
ferent values of δ, or even set a hyper-prior distribution for this parameter,
as in [9]. Computational efficiency could be also improved, possibly with the
use of an EM algorithm. Additional future extensions of our PEP-Shrinkage
method may include the implementation in generalized linear models, where
computation is more demanding.
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1 Proof of the behavior of PEP-Horseshoe
prior at the origin, under the setup of the
Example of Section 2.1

Under the alternative hypothesis, we have that

f(y∗ | θ, δ) = fNn∗ (y
∗; θ1n∗ , δIn∗),

while under the null hypothesis

mN
0 (y∗ | δ) = fNn∗ (y

∗; 0, δIn∗).

We have also assumed, under the alternative hypothesis, that πN (θ | λ) =
fN (θ; 0, λ2) and π(λ) = 2

π
1

1+λ2 (i.e. λ ∼ C+(0, 1)). For the following we also
assume that δ = n∗ = n.

Under the alternative hypothesis, the posterior distribution of θ, condi-
tional on λ, using the imaginary data and the baseline prior is

f(θ | y∗, δ = n, λ) ∝ f(y∗ | θ, δ = n)πN (θ | λ)
= fNn(y

∗; θ1n, nIn)fN (θ; 0, λ2)

= fN

(
θ;

λ2

n(1 + λ2)
1Tny

∗,
λ2

1 + λ2

)
.

1
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Then, under the alternative hypothesis, the conditional (on λ) PEP-
Horseshoe prior is given by

πPEP (θ | δ = n, λ) =

∫
f(θ | y∗, δ = n, λ)mN

0 (y∗ | δ = n)dy∗

=

∫
fN (θ;

λ2

n(1 + λ2)
1Tny

∗,
λ2

1 + λ2
)fNn

(y∗; 0, nIn)dy
∗

= fN

(
θ; 0,

2λ4 + λ2

(λ2 + 1)2

)
.

Finally, under the alternative hypothesis, the PEP-Horseshoe prior is

πPEP (θ) ≡ π(θ | δ = n) =

∫ ∞

0

πPEP (θ | δ = n, λ)π(λ)dλ

=

∫ ∞

0

fN

(
θ; 0,

2λ4 + λ2

(λ2 + 1)2

)
π(λ)dλ

=

√
2

π3/2

∫ ∞

0

λ2 + 1

λ
√
2λ2 + 1

1

1 + λ2
exp

(
−θ2

2

(λ2 + 1)2

2λ4 + λ2

)
dλ

=

√
2

π3/2

∫ ∞

0

1

λ
√
2λ2 + 1

exp

(
−θ2

2

(λ2 + 1)2

2λ4 + λ2

)
dλ.

Let z = 1/λ2. Then

πPEP (θ) = (2π3)−1/2

∫ ∞

0

1√
z(z + 2)

exp

(
−θ2

2

(z + 1)2

z + 2

)
dz. (1)

Notice that for z > 0,

(z + 1)2 = z2 + 2z + 1 > z2 + 2z = z(z + 2) ⇒ (z + 1) >
√

z(z + 2)

⇒ 1

z + 1
<

1√
z(z + 2)

.

Furthermore,

z + 1 < z + 2 ⇒ − 1

z + 1
< − 1

z + 2
⇒ − (z + 1)2

z + 1
< − (z + 1)2

z + 2

⇒ −(z + 1) < − (z + 1)2

z + 2

⇒ exp

(
−θ2

2
(z + 1)

)
< exp

(
−θ2

2

(z + 1)2

z + 2

)
.
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By applying these inequalities to the last integral in equation (1) we have
that

πPEP (θ) > (2π3)−1/2

∫ ∞

0

1

z + 1
exp

(
−θ2

2
(z + 1)

)
dz.

Let u = 1 + z. Then

πPEP (θ) > (2π3)−1/2

∫ ∞

1

1

u
exp

(
−θ2

2
u

)
du = (2π3)−1/2E1(

θ2

2
),

where E1(·) is the exponential integral function, which satisfies that E1(t) >
exp(−t)

2 log(1 + 2
t ). So we have that

πPEP (θ) > (2π3)−1/2 exp(−θ2/2)

2
log(1 +

4

θ2
).

Notice that limθ→0 exp(−θ2/2)log(1 + 4
θ2 ) = +∞, so from the last inequality

we have that
lim
θ→0

πPEP (θ) = +∞.

2 Proof of the behavior of PEP-Horseshoe
prior at the tails, under the setup of the
Example of Section 2.1

First notice the following two inequalities, for z > 0:

(z + 1)2 > z(z + 2) ⇒ (z + 1)2

z + 2
> z ⇒ exp

(
−θ2

2

(z + 1)2

z + 2

)
< exp

(
−θ2

2
z

)
,

z + 2 > 1 ⇒ 1√
z + 2

< 1.

From applying them in equation (1), we find that

πPEP (θ) < (2π3)−1/2

∫ ∞

0

z−1/2exp

(
−θ2

2
z

)
dz. (2)

Notice now that, the p.d.f. of a generalized gamma distribution, with param-
eters a, d, p > 0 is given by

f(x) =
p/ad

Γ(d/p)
xd−1exp

(
−xp

ap

)
,
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where x > 0. For d = 1/2, p = 1 and a = 2
θ2 we have that∫ ∞

0

(θ2/2)1/2

Γ(1/2)
z1/2−1exp

(
−θ2

2
z

)
dz = 1

and thus ∫ ∞

0

z−1/2exp

(
−θ2

2
z

)
dz =

Γ(1/2)
√
2

| θ |
,

which approaches 0 as θ → ±∞. From (2) it is clear that

lim
θ→−∞

πPEP (θ) = 0 and lim
θ→+∞

πPEP (θ) = 0.

3 Second simulation study

Here we test again the PEP-Shrinkage methodology, on simulated data. The
main difference with the simulation study found in the main paper is that
in this example, the values of the explanatory variables have been generated
independently.

Figure 1 Boxplots of posterior inclusion probabilities, across 100 simulated datasets, for
the true effects - variables X1, X2, X10 (left) and for some of the non true effects - variables
X3, X9, X11 (right) using the PEP-Shrinkage methodology, for different baseline prior (X-
axis).

We have simulated 100 different samples of length n = 25 with p = 50
predictors. The values of the explanatory variables have been generated from
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N50(0,Σ), with Σ = Ip. For the predictor effects, we have set (β1, β2, β10) =
(2, 0.8, 1.5) and for all of the rest, we set to be equal to zero. For the intercept,
we have assumed that β0 = 0.6 and we have set y = β01n + Xβ + ϵ, where
ϵ ∼ N25(0, σ

2I25), for σ2 = 1.5. Finally, we centre the values of the response
variable, as well as the columns of the design matrix, on their corresponding
means.

Figure 2 Boxplots of posterior inclusion probabilities, across 100 simulated datasets, for
the true effects - variables X1, X2, X10 and for one non-true effect - variable X3 using the
PEP-Shrinkage priors and the shrinkage priors without the PEP methodology.

In Figure 1, we present the boxplots of the marginal posterior inclusion
probabilities, for the true non-zero effects and for three of the non-true effects,
of the 100 different samples, for the eight different PEP-Shrinkage priors. We
observe quite similar results regarding the behavior of the choice of a shrinkage
prior, as a baseline prior, in PEP methodology, as in the simulated study of
the main paper. Regarding the two most influential variables (X1 and X10), in
this simulated study, we get in general posterior inclusion probabilities closer
to 1 (in comparison to the simulation study in the main paper), with the two
depended shrinkage (baseline) priors (Ridge g-prior and MG) producing the
least satisfactory results. For the variable X2, all methods produces median
marginal posterior inclusion probabilities above 0.5, in contrast with the first
simulation study in the main paper, that under the PEP-Ridge g-prior and
the PEP-MG prior the median marginal posterior inclusion probabilities were
below 0.5.
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For the non-true effects, presented in Figure 1, we observe, very similar re-
sults regarding the behavior of the choice of a shrinkage prior, as the ones in
the simulation study presented in the main paper. The PEP-Ridge again pro-
duces the lowest values and shows an even better behavior compared to the
one showed in the first simulation study. The two depended shrinkage (base-
line) priors (Ridge g-prior and MG) produces also low values and outperform
the other competitors.

In Figure 2, we compare PEP Shrinkage priors with the initial priors with-
out the use of PEP methodology. We detect similar results regarding the
behavior of the priors under investigation, as the simulated example in the
main paper. For X2, in this simulation study, the PEP-Ridge g-prior gives
median values above 0.5, while the same prior without applying the PEP
methodology produces median values below 0.5. For the non-true effect (vari-
able X3) under the PEP methodology we get less variability in general, and
only under the Ridge g-prior and the Local Student’s t we get slightly higher
median values, but always below 0.5.

4 Second real data example

In this second real data-set example, we are interested in the disease progres-
sion for 442 diabetes patients. The explanatory variables used are the age, the
sex, the body mass index, the average blood pressure and six blood serum
measurements collected from every patient. The diabetes data-set [1] has a
sample size is n = 442 and p = 10 predictors; thus we are facing a non-sparse
regression problem with p < n. The data are available in the R package care,
under the name efron2004, and have been standardized such that the means
of all variables are zero, and all variances are equal to one.

In order to examine the predictive performance of the PEP-Shrinkage priors
(with δ = n = n∗, X∗

ℓ = Xℓ and the reference model to be the null one), we use
same techniques as the ones under the real data example in the main paper.
We first perform variable selection, where we find the median probability (MP)
model, using each time a different baseline prior and perform the same task
also for all of the shrinkage priors without using PEP methodology. Then, we
randomly partition the data N = 30 times, to the modeling subsample (M) of
size nM = 300 and the validation subsample (V ) of size nV = 142. For each
partition, we generate an MCMC sample (T = 2000 iterations) from the model
of interest Mℓ, using the M subsample and compute the root mean squares
error (RMSE) for the data of the V subset.

In Table 1, we present the results of the mean RMSE, across theN random
data splits, for the MP model, as well as, for the full model, with and without
using the PEP-Shrinkage methodology. Under the MP model, we get lower
values when applying the PEP methodology in all pairwise comparisons, except
the Horseshoe and the Beta Prime prior. Regarding the full model, results are
similar in all pairwise comparisons and thus, like in the real life example of the
main paper, this indicates that for estimation purposes, the PEP methodology
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Table 1 Comparison of the predictive performance of PEP-Shrinkage and shrinkage
priors methodology, using the MP model and the Full model, in the diabetes data set.

dℓ
∗ MP FULL

shrinkage prior PEP INIT∗∗ PEP INIT∗∗ PEP INIT∗∗

LASSO 6 5 0.7144 0.7459 0.7513 0.7527
Horseshoe 6 7 0.7291 0.7023 0.7171 0.7088
Ridge 4 5 0.7137 0.7169 0.7368 0.7303
Ridge g-prior 6 6 0.7028 0.7232 0.7102 0.7238
Local Student’s t 5 3 0.6985 0.7331 0.7204 0.7368
Elastic Net 4 4 0.7231 0.7350 0.7512 0.7553
Beta Prime 6 6 0.7261 0.7055 0.7016 0.7329
MG prior 6 6 0.7432 0.7512 0.7693 0.7774

∗dℓ: Number of the variables accepted in the MP model.
∗∗INIT: The results given from a shrinkage prior without the use of PEP-Shrinkage
methodology.

works in a similar manner as the corresponding shrinkage priors. The full model
with the best predictive performance is the one produced by the Beta prime
prior with the PEP methodology. Finally, the model with the best (among all
comparisons) predictive performance is the MP model offered by the PEP -
Local Student’s t prior.
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