The reinvention of Markov chain Monte Carlo (MCMC) methods and their implementation within the Bayesian framework in the early 1990s has established the Bayesian approach as one of the standard methods within the applied quantitative sciences. Their extensive use in complex real life problems has lead to the increased demand for a friendly and easily accessible software, which implements Bayesian models by exploiting the possibilities provided by MCMC algorithms. WinBUGS is the software that covers this increased need. It is the Windows version of BUGS (Bayesian inference using Gibbs sampling) package appeared in the mid-1990s. It is a free and a relatively easy tool that estimates the posterior distribution of any parameter of interest in complicated Bayesian models. In this article, we present an overview of the basic features of WinBUGS, including information for the model and prior specification, the code and its compilation, and the analysis and the interpretation of the MCMC output. Some simple examples and the Bayesian implementation of the Lasso are illustrated in detail.

HISTORICAL BACKGROUND

The BUGS (Bayesian inference using Gibbs sampling) project was introduced in 1989 by the research group of David Spiegelhalter in the MRC Biostatistics Unit as a software that uses Markov chain Monte Carlo (MCMC) methods in complex Bayesian methods. BUGS was initially a software for DOS and Linux operating systems limited in specialized algorithms. The project started expanding after it moved to the Imperial College in 1996 headed by Nicky Best, and the first version of WinBUGS for Windows became available in 1997. In the following years, WinBUGS was improved and extended by considering more complicated model structures. Later when Jon Wakefield and Dave Lunn joined the group, WinBUGS capabilities improved impressively. The latest version of WinBUGS (1.4.3) was developed jointly by Imperial College and the School of Medicine at St Mary’s, London. More details can be found in Ref 1 and in the web page of OpenBUGS (http://www.openbugs.info).

WinBUGS has become widely popular over the last years as it can estimate the posterior distributions of the parameters of interest in a variety of models using MCMC. It only requires to specify the model code in which the model likelihood and the prior distribution are defined. The programming syntax and requirements are similar to the ones in R and Splus. For those who are not familiar with programming, there is also DOODLE, a graphical interface in which we can define our model via drawing the corresponding directed acyclic graph (DAG). Moreover, WinBUGS is freely available and this is one of the reasons that contributed in its growing popularity. A detailed manual, as well as three volumes of examples that provide important help and insight to the WinBUGS user, is available in the BUGS project website (www.mrc-bsu.cam.ac.uk). A comprehensive introduction in Bayesian modeling using WinBUGS is also offered by Ntzoufras, in which emphasis is given on model building, implementation using WinBUGS, and the interpretation and analysis of the posterior results.

The purpose of this article is to provide a comprehensive short tutorial by summarizing the most important features of WinBUGS. It provides information on how to code and compile a model through two simple examples and a more detailed one that illustrates the implementation of Bayesian Lasso method in WinBUGS. The remainder of this article is organized as follows. Section ‘Getting Started with Winbugs’ contains a brief description of the menu bar and detailed illustration of the model specification, the
data and the initial values definition using two simple examples. Section ‘Running an MCMC in Winbugs and Obtaining Posterior Summaries’ provides a condensed list of the actions needed to run the MCMC algorithm for a model and how to obtain and analyze the corresponding output. An example of implementing the Bayesian Lasso in WinBUGS can be found in the Section ‘An Illustrating Example—Implementing Bayesian Lasso in Winbugs’. The article closes with a short discussion concerning the future potentials of WinBUGS followed by a short conclusion.

GETTING STARTED WITH WINBUGS

The Menu Bar

The latest version of WinBUGS (1.4.3) as well as installation instructions and the free key for unrestricted use can be found on the software’s website: www.mrc-bsu.cam.ac.uk/bugs/winbugs/contents.shtml. Once the installation process has been completed, WinBUGS can be assessed by double-clicking its shortcut. All main operations are available in a menu bar, which is similar to the ones found at any windows-based program.

The basic operations in the menu bar are the File, Window, and Help menus. The File menu handles the usual file actions that are available in any windows-based software (e.g., Open, Close, Save, Print), the Window manages active windows in WinBUGS and the Help provides access to the detailed manual and examples of WinBUGS which are very useful for the user.

The Tools, Edit, Attributes, and Text menus refer to editing facilities of the documents in WinBUGS. To be more specific, the Edit menu allows the user to do the usual editing actions of any word-processing software (e.g., Copy, Cut, Paste), while the Tools menu manages more specialized actions available for WinBUGS compound documents (insert dates, encode, and decode algorithms). The WinBUGS user can change the color, the font type, and size of the text in a compound document using the Attributes menu, while he/she can find or replace a text, insert a ruler, a paragraph, or blank spaces (amongst other operations) in the Text menu.

The most substantial WinBUGS operations are included in the Model and Inference menus. They include all the commands and actions related to running the MCMC algorithm and analyzing its output in order to obtain posterior results.

The Specification tool, under the Model menu, is used to compile the model and initialize the MCMC algorithm; the Update tool generates random observations from the posterior distribution and the Monitor Met tool checks the acceptance rate of the Metropolis-Hasting algorithm (in cases it is used). The last set of generated values can be saved using the Save State tool. This set of values can be used as initial values in cases that we want to rerun the MCMC algorithm from the point that a previous MCMC run stopped. The Inference menu provides information about the posterior distribution of the model parameters. This information is based on the analysis of the MCMC output. Under this menu, the most frequently used tool is the Samples tool, which provides basic descriptive summaries and graphical representation for specific attributes of the MCMC output and the corresponding estimated posterior distribution.

The Info and Options menus are offering some auxiliary tools for MCMC analysis. From the former menu, we can open or clear a log window (where WinBUGS results and figures are printed) or we can extract the current parameter values using the Node info tool. From the latter menu, we can change some options concerning the output, the blocking and the generation algorithm used to update each parameter.

Finally, the Map and the Doodle menus are offering more specialized tools for the user. The Map menu corresponds to the GeoBUGS add-in module and it can be used for spatial modeling and mapping. The Doodle menu is used to construct the DAG that describes the conditional dependencies of the Bayesian model we wish to fit. This tool is essential for those who are not familiar with programming as the model code can be generated from this graphical representation of the model. Nevertheless, it assumes very good knowledge and understanding of Bayesian models and how they can be represented in terms of conditional distributions and hierarchies.

How to Code a Model

WinBUGS uses its own type of input and output files that are called compound documents and are saved with the odc suffix. The first step in WinBUGS is to specify the model, which includes the likelihood function for the observed sample and the prior information for the parameters. The model code is written in a compound file within the syntax

model { }.

There are three categories for the model parameters (or nodes): the constant, the stochastic, or random and the logical. The constant nodes are fixed values while the stochastic are random variables, such as the data and the model parameters. The stochastic nodes follow a distribution, which can be
specified by using commands similar with the ones used in R and Splus packages. The logical nodes are mathematical expressions of other (constant or stochastic) components.

Example 1

Let’s assume that a part of a Bayesian model includes a normally distributed variable \(X \sim \text{Normal}(\mu, \sigma^2 = 1/\tau) \), with known mean \(\mu = 0 \) and unknown precision \(\tau \). If the uncertainty about the precision is expressed by considering the Gamma prior \(\tau \sim \text{Gamma}(a, 0.01) \), with known mean \(\mu = 0 \) and variance \(\sigma^2 \), the parameter \(\theta \) is expressed by a known distribution \(\theta \sim \text{Normal}(\mu, \tau) \). The following calculation \(x^Ty \) between the vectors \(x \) and \(y \) can be performed using the function \(\text{inprod}(x[], y[]) \) and the multiplication between two matrices \(A \) and \(B \) of dimension \(n \times k \) and \(k \times m \) can be performed using the \(\text{inprod} \) for all the rows and columns. Thus, the use of the function \(\text{for} \) is required to define a loop among the rows and the columns, and the multiplication is performed as follows:

```r
for (i in 1:n){
    for (j in 1:m){
        C[i,j] <- inprod(A[i,],B[,j])
    }
}
```

A set of built-in functions are available within WinBUGS including arithmetic functions such as the absolute value (abs), the exponential (exp), the natural logarithm (log), the square root (sqrt), and the statistical functions such as the sum (sum) the standard deviation (sd) and the rank (rank). A list with the functions that can be used in WinBUGS can be found on the software’s manual.

Model Specification

Suppose that \(n \) realizations are available for the response variable \(y \), which follows a distribution with parameter vector \(\theta \). Assume that the parameter \(\theta \) is related with the explanatory variables \(X_1, X_2, \ldots, X_p \) through a link function \(h \) and a parameter vector \(\beta \). The prior information for \(\beta \) is expressed by a known distribution. This model is specified in WinBUGS with the following syntax.

Likelihood
for (i in 1:n){
 y[i] ~ distribution.name(theta)
}

Link function
theta <- [function of beta and X's]

prior distribution
beta ~ distribution.name(...)

If the parameters \(\beta, \theta \) have dimension higher than one, a for loop is needed to specify them.
Example 2
Consider a normal linear regression model with the response vector \(y = (y_1, \ldots, y_n)^T \) following the normal distribution and \(x_1, x_2 \) the realizations of 2 explanatory variables \(X_1, X_2 \) for \(i = 1, \ldots, n \) individuals. The Bayesian model is formulated as

\[
Y_i \sim N(\mu_i, \sigma^2) \quad \text{for} \quad i = 1, \ldots, n
\]

and the parameter \(\mu_i \) is a linear combination of the explanatory variables,

\[
\mu_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2}.
\]

The Normal distribution is chosen to express the prior information for \(\beta \) and the Gamma distribution for the precision \(\tau = \sigma^{-2} \). Hence,

\[
\beta_i \sim \text{Normal}(0, 10^4) \quad \text{for} \quad i = 0, 1, 2,
\]

\[
\tau \sim \text{Gamma}(0.01, 0.01).
\]

The syntax of the above regression model follows.

```r
model{
  # definition of the likelihood function
  for (i in 1:n){
    y[i] ~ dnorm( mu[i], tau )
    mu[i] <- inprod(X[i,]) ,
    beta[]
  }
  # prior distributions
  for (j in 1:p+1){
    beta[j] ~ dnorm( 0.0 , 1.0E-4 )
  }
  tau ~ dgamma( 0.01, 0.01 )
  # other parameters of interest
  s2 <- 1/tau
  s <- sqrt(s2)
}
```

Data and Initial Value Specification
To complete the model specification in WinBUGS, we need to insert the data and provide some initial values for the MCMC algorithm.

The initial values are used as a starting point in the iterative procedure of the MCMC algorithm. Initial values are needed for all the model parameters, i.e., stochastic components of the model that are not data and for which prior distributions are imposed. The option of random generation of a part or all the initial values is available in WinBUGS but it is advised to be avoided as it may lead to bad starting points entailing slow mixing of the algorithm or even numerical errors such as overflows.

The syntax used to initialize values for the model in Example 2 is

```r
# INITIS
list( beta=0, beta1=0, beta2=0,
      tau=1 )
```

The data can be written using the list syntax which is similar to the corresponding one used in R/Splus. For example, the data of the Example 2 with 2 explanatory variables of \(n = 5 \) observations can be specified as follows:

```r
# DATA
list(n=5,
     x1=c(1,2,3,4,5),
     x2=c(23,57,59,14,36)
)
```

Alternatively, the data can be specified in matrix form as follows:

```r
# DATA
list(n=5, p=2,
     X = structure(.Data=c(1,23,2,38,5),
                  dim=c(5,2))
)
```
Both codes above define the same data matrix but with different types of nodes. The second code is preferable when the number of variables involved is large. It is also advised to use R and the command `dput` to directly import the data in WinBUGS with this format; see Section 3.4.6.2 in Ref 6 for more details.

Alternatively, the data can be represented in a simpler, rectangular form. The names of the vector nodes (followed by `[]`) must be stated in the first row followed by the variable values for each observation in each line. The data must conclude with the command `END` followed by a blank line. All variables—vector nodes must have the same length.

```
DATA
y[] x1[] x2[] x3[]
20  23  1  14
19   6  0  23
32  18  1  12
22  20  1  12
... ... ... ...
END
(Blank line)
```

RUNNING AN MCMC IN WINBUGS AND OBTAINING POSTERIOR SUMMARIES

Once the model, the data, and the initial values have been specified we can compile and run the MCMC algorithm. The procedure to be followed is described below.

1. Open the Specification tool under the Model menu and highlight the word `model`. WinBUGS checks the syntax of the model by clicking the check model button. A message appears in the bottom left-hand corner of the window indicating whether the model is syntactically correct or not. If an error message appears, the model code must be corrected and revised and then the model syntax must be checked again (note that the cursor indicates the location of the error in the code).

2. If the model is syntactically correct, the load data box becomes accessible. Highlight the word `list`, if the data are presented in the list form, or the first line of the rectangular form and press the load data button. The message `data loaded` should appear. If more than one dataset is available we repeat the above procedure until all the data are loaded.

3. If steps 1 and 2 are successful, then the model is compiled by clicking the corresponding button. The message `model compiled` should appear. If an error message is produced, then the model code must be corrected and the procedure must be started from step 1 again.

4. Once the model is compiled successfully, the load inits button becomes active. Highlight the word `list` that contains the initial values of the stochastic components and click the load inits button. The button `gen inits` can alternatively be used to generate random initial values for the parameters. If the message `this chain contains uninitialized variables` appears, then some stochastic nodes do not have initial values. In such cases `gen inits` can be also used. If the message `model is initialized` appears in the left bottom bar of WinBUGS then the MCMC is ready to start generating random values.

5. Open the Update tool under the Model menu and specify the number of iteration in the burn-in period in the box entitled `updates`. The number in the box `refresh` shows how often the results are refreshed, `thin` defines the lag between stored iterations and `iteration` shows the current number of iterations of the MCMC algorithm. Insert the desired numbers and click `update`. The iteration counter will start changing until the required number of iterations is reached.

6. Open the Sample Monitor tool under the Inference menu and select the parameters for which we wish to infer about. Write the name of the parameters in the node box and press `set`. This should be repeated for all the parameters that we wish to monitor. Return to the update tool and select the number of iterations that we wish to generate and then press the `updates` button. When the counter reaches the required number of iterations then an MCMC sample from the posterior distribution is available for the monitored variables.

Analysis of the MCMC output and inference concerning the posterior distribution can be obtained by the Sample Monitor tool. Summaries of the posterior distributions can be derived by typing the name of the parameter of interest in the node box (or using the pull down menu) and pressing the `stats` button. The posterior summaries of all monitored parameters can be extracted if we use the asterisk
(**) in the node box. A density plot of the marginal posterior distribution of each node can be obtained using the density button.

The remaining buttons can be used to obtain a basic analysis of the MCMC output by checking the convergence of the chain (history), the Monte Carlo (MC) error (stats) and the autocorrelation (autocorr). The thinning interval of observations used to derive the summaries can be controlled by the corresponding box. A detailed diagnostic analysis of the MCMC output can be conducted in R, using the CODA and BOA packages. The observations of the posterior distributions of the WinBUGS output can be obtained in a compatible format using the option coda.

AN ILLUSTRATING EXAMPLE—IMPLEMENTING BAYESIAN LASSO IN WINBUGS

The Lasso is a shrinkage and variable selection method for normal linear regression models. Its estimates are obtained by imposing the L_1 norm penalty on the linear regression coefficients. Owing to the shape of the L_1 norm, the regression coefficients are shrunk toward zero and some of them are set exactly equal to zero.

The Lasso estimates have an apparent Bayesian perspective as they correspond to the posterior mode of a Bayesian normal linear regression model using a double-exponential prior distribution for the regression coefficients. The corresponding model is described by the following formulation:

\[
Y_i | \beta, \tau \sim \text{Normal}(\mu, \tau^{-1}), \quad i = 1, \ldots, n \\
\mu = X\beta \quad \text{with} \quad \mu = (\mu_1, \mu_2, \ldots, \mu_n)^T \\
\beta_j \sim \text{DE}(0, \frac{1}{\tau \lambda}), \quad j = 1, \ldots, p, \\
\tau \sim \text{Gamma}(a, d),
\]

where $\tau = 1/\sigma^2$ is the precision of the Normal regression model and λ is the shrinkage parameter which controls the prior variance given by $2/(\tau \lambda)^2$. Different values of λ correspond to different levels of shrinkage. Small values of λ correspond to large variance introducing low information in the Bayesian model and essentially not imposing any shrinkage on the model parameters. On the other hand, large values of λ correspond to strong prior that β is close to zero resulting to high levels of shrinkage. To ensure that λ has the same meaning for all covariate effects, we assume, without loss of generality, that all the variables have mean zero and variance equal to one.

Example

We illustrate the Bayesian Lasso regression using a simulated data set that consists of $n = 50$ observations and $p = 5$ covariates generated from independent standardized normal distributions and the response from

\[
Y_i \sim \text{Normal}(X_{i3} + X_{i4}, 2.5^2), \quad \text{for} \quad i = 1, \ldots, 50.
\]

The Bayesian Lasso is performed on this dataset for different values of λ by considering 2,000 updates after discarding additional 1,000 iterations as burn-in period.

In the Bayesian implementation, we standardize both the response and the covariates. For this reason, the constant parameter is not included in the model for the standardized variables as it is natural to set it equal to zero. All the variables are standardized within the WinBUGS code (see lines 2–14 in the code of Algorithm 1). Note that WinBUGS allows to define stochastic nodes twice only in the case of transforming response variables as in this example. The original regression parameters are calculated in WinBUGS using simple logical nodes as

\[
\beta_0 = \bar{y} - \frac{\sum_{j=1}^{p} b_j \bar{x}_j}{\bar{y}}, \\
\beta_j = \frac{S_y}{S_{x_j}} b_j, \\
\sigma^2 = \frac{S_y^2}{S_{x_j}^2}
\]

where σ^2 is the error variance, b_j the coefficients of the regression model using the standardized variables, \bar{y} and \bar{x}_j the sample means, and S_y^2 and $S_{x_j}^2$ the sample variances for Y and X_j, respectively.

The code for the above-defined Bayesian Lasso model is given in Algorithm 1. The model was initialized by setting all standardized coefficients equal to zero and the corresponding precision equal to one. Following the arguments in Ref 10, we choose the value of $\lambda = 0.067$.

We follow the procedure described in Section ‘Running an MCMC in WinBUGS and Obtaining Posterior Summaries’ to obtain summaries for the posterior distribution. The posterior summaries of the parameters of the Lasso regression coefficients and the variance of the regression model are displayed in Figure 1 for the standardized data and in Figure 2 for the original data. The posterior means and medians of the coefficients of X_1 and X_2 are very low indicating that these are the least important variables. As expected, the variables used to generate
ALGORITHM 1 | WinBUGS Code for the Bayesian Lasso Model.

```winbugs
model{
# calculating means and standard deviations
meany <- mean( y[] )
sdy <- sd( y[] )
for ( j in 1:p ){
  meanx[j] <- mean( X[,j] )
sdx[j] <- sd( X[,j] )
  meansd[j] <- meanx[j]/sdx[j]
}
# standardizing data
for ( i in 1:n ){
  z.y[i] <- ( y[i] - meany )/sdy
}
# model likelihood
for ( i in 1:n ){
  z.y[i] ~ dnorm( mu[i], tau )
  mu[i] <- inprod( Z.X[i,], b[] ) # Z.X is n xp
}
# # prior for b (parameters of the model using standardized variables

tt <- lambda*tau
for ( j in 1:p ){ b[j] ~ dexp( 0, tt ) }

# # prior for tau (for the model with standardized variables)
tau ~ dgamma( 0.0001, 0.0001 )

# sz.sq <- 1/tau
sz <- sqrt( sz.sq )

# # calculating the parameters for the original model
# (without standardized variables)

beta0 <- meany - sdy * inprod( b[], meansd[] )
for ( j in 1:p ){ beta[j] <- sdy*b[j]/sdx[j] }

sigma.sq <- sdy*sdy*sz.sq

sigma <- sqrt( sigma.sq )
}
```

The response \((X_3, X_4)\) have the highest posterior measures, whereas the last covariate \((X_5)\) has moderate measures. Similar conclusions are drawn from the Figure 3, which gives the densities of the posterior summaries of the Lasso coefficients. The results here provide some evidence about the important variables, although the variable selection problem is not directly addressed. Moreover, we observe that the posterior means of \(\beta\) are similar to the ordinary least square estimates \([\hat{\beta} = (0.16, -0.19, 0.067, 1.19, 1.67, -1.11)^T]\) concluding that our prior was essentially noninformative implementing minor (or no) shrinkage on the model parameters. For illustration, we also rerun the model with \(\lambda = 2\) resulting to a posterior with summaries given in Figure 4. For this value of \(\lambda\), the posterior means are shrunk by 42% for \(\beta_1\) and from 5 to 20% for the rest of the coefficients. Differences of the coefficients obtained using the two values of \(\lambda\) are depicted in the box plots of Figure 5. The most noteworthy change is observed for \(\beta_5\), for which zero lies outside the 95% posterior credible interval in the first run and inside this interval in the second run.

We can extend the aforementioned model in order to incorporate the variable selection procedure in our formulation. This can be achieved by introducing a vector of binary indicators \(\gamma\) that highlights which variables are included in the model (with \(\gamma_j = 1\)) or not (with \(\gamma_j = 0\)) as in Refs 11 and 12. This formulation was proposed by Lykou and Ntzoufras\(^{10}\) and is described below.

\[
Y_i | \beta, \tau, \gamma \sim \text{Normal}(\mu_i, \tau^{-1}), \text{ for } i = 1, 2, \ldots, n
\]

\[
\mu = X\beta(\gamma) \text{ with } \beta(\gamma) = (\beta'_1, \beta'_2, \ldots, \beta'_p)^T
\]
FIGURE 1 | Posterior summaries of the Lasso regression parameters using standardized data ($\lambda = 0.067$).

FIGURE 2 | Posterior summaries of the Lasso regression parameters for the unstandardized data ($\lambda = 0.067$).

FIGURE 3 | Posterior densities of the Lasso regression coefficients for the unstandardized data ($\lambda = 0.067$).
\[\beta_j(\gamma) = \gamma_j \beta_j \]

\[\beta_j | \tau \sim \text{DE} \left(0, \frac{1}{\tau \lambda} \right), \text{ for } j = 1, \ldots, p, \]

\[\tau \sim \text{Gamma}(a, d), \]

\[\gamma_j \sim \text{Bernoulli}(\pi_j) \]

where Bernoulli(\(\pi\)) is the Bernoulli distribution with success probability \(\pi\). The actual model parameters \(\beta(\gamma)\) are denoted with a vector of length \(p\) with elements \(\beta_j(\gamma) = \gamma_j \times \beta_j\) (for \(j = 1, \ldots, p\)) which are constrained to zero if \(X_j\) is not included in the model formulation.

In order to extend the model code of Algorithm 1 according to the above-mentioned formulation we need to

1. substitute line 18 with the following syntax

\[
\text{mu[i] <- inprod(Z, X[i,], bgamma[[]])}
\]

in order to substitute \(\beta_j\) by \(\gamma_j \beta_j\),

FIGURE 4
Posterior summaries of the Lasso regression parameters for standardized and unstandardized data (\(\lambda = 2\)).

FIGURE 5
Posterior box plots describing the 95% credible intervals of the regression coefficients using the standardized data (obtained by inserting node \(b\) in the node box of Compare tool inside the Inference menu). (a) \(\lambda = 0.067\); (b) \(\lambda = 2\).
2. substitute line 33 by

```r
beta0<- meany - sdy * inprod( bgamma[,], meansd[]>
```

in order to calculate correctly the constant parameter for any given model,

3. add the following syntax

```r
for (j in 1:p){
  # b x gamma for the standardized data
  bgamma[j] <- b[j] * gamma[j]
  # prior for gamma
  gamma[j]~dbern(0.5)
  # beta*gamma for the unstandardized data
  betagamma[j] <- beta[j] * gamma[j]
}
```

in order to define $b_j^\gamma = \gamma_j b_j$, $\hat{\beta}_j^\gamma = \gamma_j \hat{\beta}_j$ and the prior for each γ_j.

Posterior summaries for $\beta | \mathcal{Y}$ are given in Figure 6 for $\lambda = 0.067$. We clearly observe that the first two coefficients are shrunk toward zero (the posterior means shrunk by 99.6 and 96% respectively). Also the posterior distribution of β_3 was dramatically pushed toward zero with the posterior mean shrunk by 83.7%. On the other hand, the posterior means for the coefficients of X_3 and X_4 remained almost unchanged (shrunk by 8.6 and 0.06% respectively). The posterior inclusion probabilities for each covariate can be estimated from the posterior means of each γ_j as given in Figure 7. From the results, we clearly observe that covariates X_3 and X_4 must be included in the model having posterior probabilities 0.9 and 1.0, respectively. Covariates X_1 and X_2 have very low posterior probabilities ($\sim 1.8\%$), while covariate X_5 is included in the model with posterior probability of 17%.

Figure 8 displays the densities of the posterior distributions of $\beta | \mathcal{Y}$. The posterior distributions of the coefficients for the non-important variables have high spikes at zero except for covariate X_4, which is the most important one in this illustration and its posterior distribution is well placed away from zero. The posterior distribution of β_3 is bimodal, with one mode at zero and one at a positive value. However, the posterior median of the distribution and the posterior mean of the corresponding inclusion probability (given by the mean of γ_1 and it is equal to 0.90) indicate that this variable should also be included in the model.

DISCUSSION: A FUTURE FULL OF PROMISES

Over the last years WinBUGS gained a tremendous popularity within the scientific community. WinBUGS has been used in a wide range of practical problems having different scientific backgrounds. It has been the object of interest in various short courses and workshops. More and more universities include Bayesian data analysis courses using WinBUGS in their syllabus; see ‘BUGS resources online’ link in the

Figure 6 Posterior summaries of the Lasso regression coefficients with variable selection.
FIGURE 7 | Posterior summaries the indicator parameters included in the Bayesian Lasso model.

FIGURE 8 | Posterior densities for model parameters $\beta^{(v)}$.

WinBUGS is a powerful tool for Bayesian analysis, and its popularity has motivated various expansions and made it applicable in a wider range of disciplines. The popularity of WinBUGS has also been extended due to its compatibility with other statistical packages and software. WinBUGS runs from GenStat, which is a software for bioscience. It can also be called via R using the R2WinBUGS R-library on Comprehensive R Archive Network (CRAN) site. There are also codes that can be used to call WinBUGS through Stata, SAS and a code for Excel that does not require any knowledge of WinBUGS. MATBUGS is a Matlab interface for WinBUGS, which has been extended to run in Linux systems. Details about it can be found on www.mrc-bsu.cam.ac.uk/bugs/winbugs/remote14.shtml.
Note that WinBUGS was now stabilized in version 1.4.3 and it will not be developed any more. Instead, the interest of the group is now turned on the development of OpenBUGS (www.openbugs.info) which is an open source version of WinBUGS with additional features and contributions. This project started in 2004 when Andrew Thomas moved from London to Helsinki and now is stable and reliable package running under Windows, Linux, and MAC operating systems. The possibility that researchers will be able to contribute and improve an already popular and successful software leaves high expectations for the future.

CONCLUSION

This article summarizes the basic concepts required to perform Bayesian analysis using the WinBUGS. It provides information on model specification and coding, algorithm implementation and output interpretation along with some toy examples, and a more detailed illustration that demonstrates the implementation of Bayesian Lasso in WinBUGS. It can be used as a brief introduction to WinBUGS for researchers with or without statistical background.

WinBUGS is a useful computational tool that fits complicated Bayesian models using MCMC methods. It is widely popular due to its numerous extensions and applications in various scientific fields. It is relatively straightforward to use with syntax similar to the one in R and Splus. Alternatively, DOODLE interface can be used to specify the structure of the model through a graphical representation. The recent development of OpenBUGS (the open source version of the program) creates high expectations for the future where any researcher will be able to contribute to the development and the improvement of this popular software.

REFERENCES

