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ABSTRACT

The aim of this paper is to construct Bayesian model comparison tests between discrete distri-
butions used for claim count modeling in the actuarial field. We use advanced computational
techniques to estimate the posterior model odds among different distributions for claim counts.
We construct flexible reversible jump Markov Chain Monte Carlo algorithms and implement them
in various illustrated examples.

1. INTRODUCTION

One of the most important research areas in science and economics has always been the successful
modeling of random events such as the level of rainfall, car traffic, or the market demand of a certain
commodity. Thus choosing the appropriate statistical distribution is of paramount importance for the
accurate representation of the parameter of interest. In actuarial science particularly, the choice of
the distribution for the modeling and prediction of the outstanding claims has been extremely impor-
tant to both practitioners and academics (see, e.g., Makov 2001). Thus the considerable size of the
relevant literature comes as no surprise, including the work of Ter Berg (1980) on Poisson and Gamma
models, Willmot (1987) on the Poisson inverse Gaussian distribution, Ruohonen (1988) on the Dela-
porte distribution, Ter Berg (1996) and Scollnik (1998) on the generalized (or Lagrangian) Poisson
distribution, Denuit (1997) on the Poisson-Goncharov distribution, and Chaubey et al. (1998) on ap-
proximations for aggregate claim distributions. Although the Bayesian approach has been substantially
advocated in the outstanding claims problem (see Verrall 1990; de Alba 2002; Ntzoufras and Dellapor-
tas 2002), it has been largely restricted to posterior parameter estimation using mainly the Poisson
distribution, rather than testing hypotheses about distributions or estimating model uncertainty. In a
general setup, Bayesian inference is based on constructing a model m, its likelihood f(y|0,,, m), and
the corresponding prior distribution f(0, [m), where 0,, is a parameter vector under model m and vy is
the data vector. Inference relies on the posterior distribution £(0,,|y, m), whereas quantifying model
uncertainty by estimating the posterior model probability f(m|y) is an important issue.

For instance, consider two competing models m, and m,. If f(m) is the prior probability of model m,
then, using the Bayes theorem, the posterior model odds PO, of model m,, versus model m, is given
by
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PO,, = fmy|y) _ fylmy) % fmy) — B X f(my)

f(m1|Y) f(y‘"h) fm,) o f(ml),

where B, and f(m,)/f(m,) are the ‘“Bayes factor’” and the “prior model odds” of model m, against
model m,, respectively. Essentially the Bayes factor is the ratio of the posterior model odds over the
prior model odds. It is intended to measure the evidence in favor of a certain model with respect to a
competing one. Thus, large values of, say, B,,; (usually greater than 12) indicate strong posterior sup-
port of model m,, against model m,; for details see Raftery (1996). The quantity f(yjm) involved in the
Bayes factor is called the marginal likelihood of model m and is given by

Joim) = [ F310,.. )70, mydo,

The Bayes factor B, of model m, against m,, evaluates the evidence against the null hypothesis, which
is a familiar concept in classical significance tests; for more details on Bayes factors see Kass and
Raftery (1995). Alternatively, when we consider a set of competing models M = {m,, m,, . . ., myy},
we focus our interest on the posterior probability of model m € ., defined as

_ folmim) ( >
f( | ) B - 2 P Om[,m )
e > fimfom)  \icl

where Jl and |/t denote the set and the number of models under consideration, respectively.

Decision theory also can be useful in this case. Under this approach, a utility function for each model
is specified, and the model maximizing the expected utility is selected (see for details Bernardo and
Smith 1994; Chipman, George, and McCulloch 2001). Strategies based on the maximization of the
posterior model probabilities assume zero-one utility functions for choosing the false or the correct
model, respectively. This further assumes that the correct model is among the ones under considera-
tion. Within the actuarial context, usually the aim is prediction. In such cases, as one referee pointed
out, prediction should be based on the Bayesian model averaging (BMA) technique, which also accounts
for model uncertainty (see for details Draper 1995; Chatfield 1995; Clyde 1999; Hoeting et al. 1999;
Cairns 2000; Hoeting 2002).

Whatever the final intention is (prediction using BMA or selection of a single model), we need to
evaluate posterior model probabilities. The integrals involved in their computations are analytically
tractable only in specific examples. Therefore, asymptotic approximations or alternative computational
methods must be frequently employed. One of the most popular techniques for calculation of these
quantities is the Markov Chain Monte Carlo (MCMC) methodology (see Gilks, Richardson, and
Spiegelhalter 1996; Scollnik 2000, 2001) and its recent extensions (reversible jump algorithm or
RIMCMCQ) in varying dimension models (Green 1995); for critical reviews, comparisons, and recent
advances see also Carlin and Louis (2000), Chen, Shao, and Ibrahim (2000), Han and Carlin (2001),
Chipman, George, and McCulloch (2001), Dellaportas, Forster, and Ntzoufras (2002), and Lopes
(2002).

In this paper we focus on the comparison of discrete distributions used for claim counts and the
estimation of posterior model probabilities using the Bayesian approach. We do so by employing the
RIMCMGC algorithm, illustrating its application to the actuarial field using real data sets. The choice
of the Bayesian paradigm is beneficial because of the following reasons. First, we can implement model
averaging and therefore make more accurate predictions, or alternatively we can use utility functions
and base our selection on a fully decision theoretic context. Second, we can compare non-nested mod-
els, which is not common practice in the frequentist approach. To improve the exposition, we will focus
on three popular discrete distributions; however, the methodology is more general and can be applied
to a larger number of candidate distributions. Since this algorithm is computationally advanced, the
reader must be familiar with the basic concepts of Bayesian inference and MCMC algorithms.

The paper is organized into five further sections. In Section 2 we present the distributions under
consideration. The specification of prior distributions for model comparison, Lindley’s paradox, and
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their effect on Bayesian model comparisons are discussed in Section 3. In Section 4 we describe in
detail the MCMC and reversible jump MCMC algorithms constructed for our model comparisons. Fi-
nally, Section 5 includes illustrated examples, while brief closing remarks and conclusions are presented
in Section 6.

2. DiSTRIBUTIONS FOR CLAIM COUNTS

In this section we describe three widely used distributions for modeling the marginal claim counts,
namely, the simple Poisson distribution (Ter Berg 1980), the negative binomial (Verrall 2000), and
the generalized Poisson distribution (see, e.g., Consul [1989] for a thorough description of the distri-
bution and Ter Berg [1996] and Scollnik [1998] for its actuarial application). The latter distribution
is also known as Lagrangian Poisson. Consequently, the simple Poisson model can be regarded as a
special case of either the negative binomial or the generalized Poisson distribution.

Let us assume datay,, i = 1, ..., n. Consequently, the simple Poisson model is given by

YN ~ Poisson(\)
with probability function

Vi —
fifny = XEPEN,
i
It is well known that, for the Poisson distribution, the mean equals the variance. However, this property
is not common in real data sets, where the sample variance usually exceeds the sample mean. For this
reason alternative models that allow for overdispersion relative to the simple Poisson model have been
considered.

The negative binomial distribution can be constructed by adding a hierarchical step to the simple
Poisson model, more specifically

yle, N ~ Poisson(g\), &Y ~ Gamma(d, 9),

where 9 > 0 and Gamma(a, b) is the gamma distribution with mean a/b and variance a/b?. The
resulting probability function can be written as

Ty + V) Ve
SN, 9 = I'(y, + DHI'®) (x + 1‘)) (x + ﬁ) @1

with E(y;)) = X\ and V(y,) = N + \?>/3. The Poisson model is a limiting distribution of equation (2.1)
for O — . Here we adopt the parameterization ¢ = N/D. In the context of over- or underdispersed
distributions the variance-to-mean ratio, called the dispersion index (DI), is usually reported; see, for
example, Douglas (1980). For the Poisson random variable the dispersion index is equal to 1. Values
far away from 1 indicate that the Poisson assumption is violated. The dispersion index in the negative
binomial distribution is equal to

V()
E(y)
For & — 0O the above distribution reduces to the simple Poisson distribution.
The generalized Poisson model with parameters { and o is defined in the following way:

DI =1+NI =1+ .

f(yi|€? (’))

_ C(C+—°jy)1 o (Chom (2.2)

1

The mean of this distribution is E(y;,) = {(1 — ») !, and the variance is given by V(y,) = {(1 — ») .
According to Ter Berg (1996), valid values for o are within the interval [0, 1). Typically, the distribution
can be also defined for negative values of o (see for details Scollnik 1998), but such values lead to
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underdispersion, which is not a common property of claim count data. For this reason we will not
consider this case in the present paper. For o = 0, the above distribution also reduces to the simple
Poisson model with mean (.

To enhance comparisons across the three models, we reparametrize the above distribution using A
= {/(1 — w). Then the reparametrized generalized Poisson distribution has mean E(y,) = A, variance
V(y,) = M(1 — ») 2, and dispersion index DI = (1 — w) 2. The probability function is now given by

\ {(1 — (1)))\ + (J.)yi}yi*l ei{(liw))ﬁrwyi}‘

fol w) = (1 - w) ,
Vi

(2.3)
This reparametrization is beneficial for the interpretation of the parameters of the three models and
will also facilitate the implementation of the MCMC algorithm described below.

3. SPECIFICATION OF THE PRIOR DISTRIBUTIONS

The posterior model odds are very sensitive to the magnitude of their prior variances, tending to
increase the support in favor of the simplest model as the prior variances increase (Bartlett 1957;
Lindley 1957; see also Sinharay and Stern 2002). Therefore, specifying the prior distribution is pivotal
for the a posteriori support of models. In their original publications, Lindley (1957) emphasized the
effect of sample size on posterior model odds and the contradicting evidence between Bayesian and
classical significance tests, whereas Bartlett (1957) underlined the effect of prior distribution (vari-
ance) on the posterior model odds.

Detailed discussion is provided by Shafer (1982), and examples of the sensitivity of posterior model
odds to the prior distribution are given by Sinharay and Stern (2002). The problem is even more
apparent when comparing two nested models, which is the case here since the Poisson model is nested
in both the negative binomial and the generalized Poisson model.

Let us now define our prior distributions, taking this into consideration. We use the following hier-
archical structure on model parameters:

SO, my) = f()"m])f(m]),
f()\? ﬁ7 mz) = f(ﬁl)\7 mz)f(Mmz)f(mz)’
SO\, 0, my) = f((”')\v ms)f(Mms)f(ms)

The usual choice for the prior on model indicator m is the uniform distribution over the parameter
space Jl resulting in f(m;) = 1, i = 1, 2, 3. This prior can be thought of as noninformative ‘in the
sense of favoring all models equally’” (Chipman, George, and McCulloch 2001, p. 72). As one referee
pointed out, this choice is far from perfect. However, the default prior in the vast majority of Bayesian
applications remains the uniform distribution over the model space. Generally, the choice of the prior
distribution is a topic of current research investigation extending beyond the scope of introducing the
RIMCMC algorithm to an actuarial audience.

In order to be consistent across models with our prior belief, we would like the prior distributions
imposed on some common parameters to be the same. For this reason and since the interpretation of
\ is the same for all models, we use the same prior distributions f(A\jm), which is a Gamma(a, b). Since
no prior information is available, the hyperparameters a, b, both can be set equal to a low positive
number; in the illustrated examples we use ¢ = b = 0.0001 inducing prior mean equal to 1 and variance
equal to 10,000. The effect of this choice on the posterior model probabilities will be minimal since
parameter A is present in all models under consideration (see for details Kass and Raftery 1995, sec.
5.3).

Finally, we need to specify the prior distributions f(9|\, m,) and f(w|\, m3) such that the prior induced
on the dispersion index is the same for both models. For this reason we may specify either f(3|\, m,)
or f(o|\, m;) and calculate the other distribution deterministically by equating the dispersion indexes
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of the distributions under consideration. Using this approach we obtain the same distributions on the
dispersion index under both models. By equating the dispersion indexes of the generalized Poisson and
negative binomial distributions, we obtain

02— v or 1 1

— wo=1-—F——=.
(1 — w)? V1+
Since o is defined in the interval [0, 1), a usual vague prior for f(wjm;) is the uniform distribution that

gives equal probability to any interval of the same range. Therefore, the corresponding prior distribution
of ¢ is a Beta type II distribution with parameters 1 and 1/2 and density function

b =N = 3.1)

1 2
f¢(¢|7\7 m,) = 5 1+ &)~
Since ¥ = N/, the prior on ¥ is given by
S ma) = Fu OO, mhd 2 = 3 N0+ A/) 2,

which is recognized as a scaled Beta type II distribution.

4. ReversIBLE JumP MCMC rFor COMPARISON OF CLAIM COUNT DISTRIBUTIONS

In this section we focus on the computation of posterior model odds and probabilities using reversible
jump Markov chain Monte Carlo (RIMCMC) methodology introduced by Green (1995). As we have
already noted, the integrals involved in the computation of posterior model probabilities have led to
the development of various approaches including analytical approximations, Monte Carlo estimates,
estimates using the output of MCMC of each model, and recently varying dimensions MCMC (including
RIMCMQ); for comprehensive reviews and introduction of all these approaches see, for example, Kass
and Raftery (1995), Carlin and Louis (2000), Chipman, George, and McCullock (2001), and Lopes
(2002). We focus our interest on RIMCMC because of its flexibility and the fact that it can handle a
large number of candidate models using a single MCMC run. The latter is evident in variable selection
problems (see, e.g., Dellaportas, Forster, and Ntzoufras 2002). Furthermore, since this is an introduc-
tory paper on RIMCMC, we illustrate the algorithm using a problem with only three models (Poisson,
negative binomial, and generalized Poisson) under consideration. Surely the methodology presented
below may be extended to include the evaluation of other competing distributions or models with no
additional computational burden.

However, because of the advanced structure of RIMCMC, the researcher needs to be familiar with
the fundamental knowledge of Bayesian inference and MCMC algorithms.

4.1 The Reversible Jump MCMC Algorithm

The reversible jump methodology was introduced to the statistical community by Green (1995). It
extends the established MCMC techniques since it accounts for comparing models of different dimen-
sions. It is based on creating an irreducible and aperiodic Markov chain that can alternate (jump)
among various models with parameter spaces of different dimensions, while retaining detailed balance,
which ensures the correct limiting distribution. For some critical reviews, comparisons, and recent
advances we advise readers to see Carlin and Louis (2000), Chen, Shao, and Ibrahim (2000), Han and
Carlin (2001), and Dellaportas, Forster, and Ntzoufras (2002). Further work on the subject can be
found in Green and Mira (2001), Rotondi (2002), and Brooks, Guidici, and Roberts (2003).

Let us assume a set of competing models JAl. A latent variable m € Jl indicates each model, whereas
0,, denotes the corresponding parameter vector. If the current state of the Markov chain is (m, 0,,),
where 0,, has dimension d,,, then a general version of the algorithm is the following:

m?
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* Propose a new model m' with probability j(m, m").

e Generate u from a specified proposal density q(ul0,,,
* Propose a new vector of parameters 0, by setting (0
invertible function.

To achieve the correct limiting distribution, accept the proposed move to model m’ with probability

fylm’, 8),)/(8;, [m")fm")iom’, m), g’]8,, m’, m) |38, ) ) 1)
f(y|mv ﬁm)f(ﬁm|m)f(m)](m, m/)q(u|en1” m, m,) a(em, u) . .

Important features for the efficiency and the practical implementation of the algorithm are the proposal
distributions ¢(ul®,,, m, m’) and the matching function g, ,,. The vectors u and u’ are used to make
the dimensions of the parameter spaces of m and m’ equal. The usual practice is to set d,, or d,, equal
to zero depending on which model has fewer parameters. When d,, < d,,,,, we set d,, = 0, generate u
as described above, and calculate 0, using the matching function g, . Otherwise, when d,,, <d,,, we
set d, equal to zero and directly calculate 0,, and u’ using the matching function g since we do
not need to generate any additional parameters.

The corresponding proposal distributions are usually constructed by single MCMC runs within each
model (see Dellaportas, Forster, and Ntzoufras 2002), while the matching function g, , is con-
structed by considering the structural properties of each model and their possible association (for
an example see Ntzoufras, Dellaportas, and Forster 2003). Finally, note that because of symmetry,

5 — 51
gm’,m - gm,m"

m, m').
e W) = g,...(0,, u) where g, . is a specified

m’

a = min <1,

m,m’

4.2 Application to the Claim Count Distributions

Let us now construct the RIMCMC algorithm for the claim count data, using the three competing
models described in Section 2. The latent model indicator m takes values m € {m,, m,, my} corre-
sponding to the Poisson, negative binomial, and generalized Poisson distributions, respectively. More-
over, we denote by 8, =\, 0,, = (A, ¥)", and 8, = (\, ®)" the parameters of the Poisson, negative
binomial, and generalized Poisson distributions, respectively.

Assuming the current state of the Markov chain, (m, 0,,), the reversible jump for the comparison of
the distributions we are interested in can then be formulated in the following way:

mp

1. Generate model parameters 0,, from the posterior distribution f(0, |y, m); see Appendix A for the
computational details.
2. Propose with probability j(m, m") = (Ji| — 1)~! to jump from m to m’, where m’ # m.
3. (@) i. If m = m, (Poisson) and m’' = m, (negative binomial), then generate a proposed value for
9 from the proposal distribution g (3|m).
ii. If m = m, (Poisson) and m’' = m, (generalized Poisson), then generate a proposed value for
o from the proposal distribution ¢, (w|m).
iii. If m = m, (negative binomial) and m’ = m; (generalized Poisson), then set the proposed
value for w using the matching function

w="h,,, @©) =1-10+N"H"

which is derived by equating the dispersion indexes of the two distributions.

iv. If m = m, (negative binomial) or m, (generalized Poisson) and m’ = m, (Poisson), then we
do not need to generate any additional parameters.

v. If m = m, (generalized Poisson) and m’ = m, (negative binomial), then we set

N1 - w)?

Y =h; =G o)

m;,mg (w) = hrrm,rng (0‘))

(b) Accept the proposed move with probability a(m, m') = min{1, 8(m, m')}, where
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SN, B, my)f(\, Bjmy)fm,)
SN, my) fNm) fm )y (dmy)’

f(yl)\v w, m?)f()\’ w|m3)f(m3)
N, m)fm) fima,(wm,)’

8(m2, ma) :f(yp\v W, ms)fo\v w’mS)f(mS) X 1 (1 + )\671)73/3 )\872.

f(yl)\v 9, m,) f(\, ﬁ’mz)f(mz) 2

For all other inverse comparisons we have 8(m, m’) = 1/8(m’, m).

d(my, m,) =

8(Tn’h m3) =

Note that, since a conjugate prior distribution is used for the Poisson model, the posterior of
f(\]y, m,) is a Gamma distribution with parameters a’ = 2 | y, + @ and b’ = n + b. Therefore in step
1 above, when m = 1, we directly generate values of N from the posterior distribution.

In the above algorithm, the comparison between models m, and m; can be also achieved by con-
structing a Metropolized version of the Carlin and Chib (1995) algorithm (or independence sampler)
as described in Dellaportas, Forster, and Ntzoufras (2002). In such a case, we propose additional pa-
rameters ¥ and o by the proposal distributions of steps 3(a)i and 3(a)ii and calculate 8(m,, my) =
d(my, my)/d(m,, m,). In the algorithm proposed above, we alternatively have constructed a more au-
tomatic version of RIMCMC for the comparison of models m, and m,, following the approach of Ntzouf-
ras, Dellaportas, and Forster (2003). Instead of generating the parameters ¥ and o, we propose the
additional parameters needed by matching their dispersion indexes. This results in a one-to-one trans-
formation given by equation (3.1) with the property of retaining the dispersion index constant when a
“jump”’ from the negative binomial to the generalized Poisson distribution (or vice versa) is proposed.

Using the proposed prior formulation presented in Section 3 the above ratio degenerates to a simple
comparison of the likelihoods (adjusted by the prior model probabilities) in each iteration

Sms, ) :f(y|)\, o, my)f(m,)
T FOIN D, mo)fmy)

4.3 Specification of Proposal Distributions

An important aspect regarding the efficiency of the RIMCMC is the careful specification of the proposal
distributions ¢, (9|m) and ¢, (w|m). The proposal distributions produce values for the additional param-
eters when a “jump’’ from one model to another is proposed. Hence an efficient RIMCMC algorithm
should propose parameter values close to the corresponding posterior distribution of the proposed
model m’. If this does not happen, then the proposed values will be frequently rejected, and hence the
algorithm will either be concentrated on one model or converge to the correct posterior distribution
very slowly.

Here we use pilot runs of MCMC algorithms of length 1,000 iterations within each model. These
values serve as rough estimates of the posterior distributions of each model and help us to ensure that
the proposed values are close to the target posterior distributions. For the parameter ¥ of the nega-
tive binomial model (which takes positive values) a log-normal distribution is employed q4(9m) =
LN(log 9, 6, ), where log ¥ and 63, ; are the mean and variance of the log(9), respectively, estimated
using the pilot run; for more details regarding the log-normal density see equation (A.1) given in
Appendix A. Alternatively, we may use any other distribution defined in the interval (0, %) by matching
again their parameters with the posterior mean and variance taken by the pilot runs. The efficiency of
each proposal distribution will depend on how close it is to the underlying posterior distribution. We
should emphasize that posterior model probabilities should be robust on different choices of proposal
distributions provided that good mixing between models is achieved. On the other hand, the efficiency
of the algorithm will be sensitive to different choices of proposal distributions, and hence the number
of iterations needed to achieve convergence will depend on such a choice; for a detailed discussion and
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automatic specification of proposals see Dellaportas, Forster, and Ntzoufras (2002) and Brooks, Giudici,
and Roberts (2003).

Similarly, for the parameter o of the generalized Poisson distribution, which takes values in the
interval [0, 1), we utilize ¢,(o/m) = Beta(a, b). The parameters @ and b can be calculated by equating
the mean and the variance of the Beta distribution with the estimated mean (®) and variance (62) of
o from the output of an MCMC pilot run for the GP distribution. Hence

ab
@+ b3>@+b+ 1)y

j=)}

- =2
w = = g, =
a+b °

which leads to

a @(M—l), h—ai—2

52 )

w

The efficiency of the chain can be improved by suitably increasing or decreasing the variance of the
proposal distribution to achieve high acceptance rates.

4.4 Analysis of the RMCMC Output

After running the MCMC algorithm L iterations we get a sample with values m®, \® §®  »® for cach
iteration k = 1, . . ., L. The variable m will be an indicator taking values 1, 2, or 3 depending on which
model the algorithm visited on the corresponding iteration. When m, is visited, then m = 1 and ¥ =
o = 0; when m, is visited, then m = 2 and o = 0; when m; is visited, then m = 3 and ¥ = 0. Note
that we discard the first B iterations as a burn-in to eliminate possible effect of initial values.

From the RIMCMC output the posterior model probability f(m,]y) for i = 1, 2, 3 is estimated by

1 L
—— > I, (m®),

mly) =
fmly) = — 5.2

where the indicator function f,, (m®) = 1 ifi = m® and zero otherwise. Then we use the above estimate
to calculate the posterior model odds and the Bayes factors given by

_ f(m1|y) B f(m’l)

PO. = = BF. ,
07 fmly) 0 famy

BF.. = PO, 5——. 4.2
0 =P Fom, -2

The posterior distribution of each parameter within each model can be described using simple de-
scriptive measures as the mean derived by

R 1 L
EQly, m) = T monlsy ey NI}, for =1, 2,3,
L 1 L
E(ﬂ‘y’ m2) = (L — B)f'(m |y) ] ;4_] {ﬁ(k)]mz(m(k))}’
2 R=
, 1 L
E(wly, my) = > A{o®I,, (m®)}.

(L — B)f(my|y) 1541

Similarly we can produce Monte Carlo estimates of any descriptive measure or more generally any
function 7(0,,) of the parameters we wish to describe or estimate. A general equation for estimating
the posterior expectation of any function 7'(0,,) under model m is given by
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1 S (k) (k)
&= Bl w3 OO}

For example, if we set T(8,) = X or T(0,) = {A — E(\|ly, m)}2, then the above equation produces
Monte Carlo estimates of the posterior mean and variance for parameter A under model m.

The efficiency of such estimates can be quantified by measuring Monte Carlo error (that is, deviance
due to the simulation). A popular method is the batch-mean method (see for more details Roberts
1996) in which we split the final sample (output of MCMC) in K subsamples (usually 30-50; in the
illustrated examples that follow we have used 50). Each subsample produces an independent estimate
of the desired quantity of interest (here A, ¥, w, f(m,|y), or posterior odds). The results of these
subsamples can be used to monitor convergence of a quantity (by plotting the evolution of the posterior
model probabilities, posterior model odds, or simply the mean of a parameter) or to roughly estimate
Monte Carlo error by the standard deviation of the estimates in each subsample.

Bayesian model averaging can be directly imposed by the MCMC output of RIMCMC. For example,
we can produce an estimate of the dispersion index using Bayesian model averaging using the following
equation:

E{T(®,)|y, m} =

L
By = —— > DO, m®),
L - B i=B+1

where D(0,,, m) is the function for the dispersion index for each model m as defined in Section 2.

Usually we leave the RIMCMC algorithm to run using the desired prior model probabilities and then
directly estimate their posterior values from the output of the chain. In such cases specific models are
not visited at all by the RIMCMC algorithm because of their low posterior probability, and hence their
relative posterior model odds PO, cannot be estimated with accuracy. To avoid this we can use the
following secarch algorithm for ‘“‘tuning” the prior model probabilities and estimating posterior odds
with precision. The proposed algorithm is suitable for pairwise comparisons, but it can be ecasily gen-
eralized for more than two models. In this algorithm we search for appropriate values of prior model
probabilities that result in posterior probabilities for all models that are close to each other. This helps
us to estimate posterior model odds (using these ‘“‘tuned” prior probabilities) with precision. Then,
using equation (4.2), we can estimate the underlying Bayes factor and, consequently, the corresponding
posterior model odds using the prior probabilities we originally accept. The ‘“‘search’ algorithm can be
summarized using the following steps:

1. Let us denote our desired prior model probabilities by f(m,) and f(m,). We start by setting f@ (m,)
= f(m,) and fV(m,) = f(m,), where f® (m) are the prior model probabilities used in the k-th iteration
of this step.

2. Run the RIMCMC algorithm for a limited number of iterations (say, 1,000) long enough to roughly
estimate the magnitude of posterior model probabilities.

3. (a) If the posterior model odds PO & (0.5 — &, 0.5 + &), then

i. Set

f(k+1)(m1) f(k)(ml)
SED(m,) fB(m,)

where s is usually the posterior model odds PO unless it takes very small or large values
and it is replaced by ¢/(1 — ¢€) or (1 — €)/g, respectively. Hence we write that

€ 1—¢
¢ = min {max <PO§’§), ), }, (4.4

1—¢ €

log = log — log s, (4.3)

where PO is the posterior model odds estimated for prior model probabilities f® (m) and
€ defines an interval of type (¢, 1 — ¢€) outside of which we cannot estimate with precision
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the posterior model probabilitiecs. We propose to use € = 0.01, and hence when PO{Y <
0.01, ¢ = 0.01/0.99 = 0.0101, while when PO%®) > 0.99, ¢ = 99.
ii. Return to step 2.
(b) If PO € (0.5 — & 0.5 + §), then
i. Rerun the RIMCMC with full number of iterations required.
ii. Recalculate PO%® from the output of the full RIMCMC.
iii. Calculate the posterior model odds we are interested in using:

f(k) (my) % fm,)
f(k) (my)  f(m,)

We note that the prior model probabilities assume various values not because of any change in the
prior beliefs but to ensure that the posterior model odds fall within a specified interval around 0.5.
When this happens, we employ equation (4.5) to calculate the posterior model odds for the desired
prior model probabilities. In the above algorithm, & specifies an interval around 0.5 in which we wish
the “tuned” posterior model odds to be included. We propose the value £ = 0.1 (hence we use the
interval 0.4-0.6) for estimating posterior model odds with increased precision. Alternatively, the value
& = 0.2 (interval 0.3-0.7) also worked well enough in our examples and, on the other hand, considerably
reduced the computational effort. Both equations (4.3) and (4.4) can be derived using equation (4.2)
assuming that we calculate two posterior model odds using different prior model probabilities and
setting their Bayes factors (which do not depend on prior model probabilities) equal. The above process
will reduce Monte Carlo error and produce stable estimates for the Bayes factor. When more than two
models are under consideration (for example, here we consider three), we may try to tune the posterior
model probabilities around 1/|/t|, and hence they will lie within an interval [1/]M] — & 1/[M| + &],
where || is the number of models under consideration. When the number of models under consider-
ation is large (for example, in the context of variable selection), such action will not be possible. In
such cases we propose to search the whole model space M and then remove all models with low
posterior probability and work only on the reduced model space (see for similar techniques Hoeting et
al. 1999).

PO,, = POY X (4.5)

5. ILLUSTRATED EXAMPLES

In this section we employ cight data sets of insurance claims for different countries and years used by
Denuit (1997) in order to implement our proposed methodology (see Fig. 1). The first six data sets
were also used earlier by Gossiaux and Lemaire (1981), and the first data set (Switzerland, 1961) was
used by Ter Berg (1996) as well. All data sets are listed in detail in Appendix B (see Table 7).

Here we present posterior summaries of the parameters of interest for the Poisson (Table 1), negative
binomial (Table 2), and generalized Poisson distributions (Table 3). The results concerning the Poisson
distribution have been calculated analytically according to Appendix A. We further present boxplots of
the posterior distribution of the dispersion index resulting from the negative binomial and the gener-
alized Poisson distributions (see Figure 2). The posterior distribution of the dispersion index is quite
close for both distributions.

Regarding the implementation of RIMCMC, we have used pairwise comparisons tuned a priori to
achieve posterior model probabilities within the interval 0.40-0.60 (for details see Section 4.4). The
emphasis on the estimation of the Bayes factor is important since all the results show that the negative
binomial and/or the generalized Poisson distributions are a posteriori much more probable than the
simpler Poisson model. In all the chains, we have considered 1,000 iterations as a burn-in and an
additional 20,000 iterations for calculation of the posterior distributions. Initial values were calculated
using the moment estimates. Parameters of the proposal distributions were based on pilot runs of
2,000 iterations with their variances tuned to achieve high acceptance rates, greater than 80% in all
data sets.



100

NORTH AMERICAN ACTUARIAL JOURNAL, VOLUME 9, NUMBER 3

Figure 1
Histograms of Denuit (1997) Data
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Table 1

Posterior Summaries of A of Poisson Model for Denuit (1997) Data
f(\|y) ~ Gamma(a’, b’)

Posterior Values

a b’ Mean Std. Dev.
Data Set Zr,y + a {n + b} {EQ\|y) = a'/b'} {8y, = Vd'/b}
Switzerland 1961 18,594 119,853 0.155 0.0011
Zaire 1974 346 4,000 0.087 0.0047
United Kingdom 1968 55,493 421,240 0.132 0.0006
Germany 1960 3,402 23,589 0.144 0.0025
Belgium 1958 2,028 9,461 0.214 0.0048
Belgium 1975-76 10,813 106,974 0.101 0.0010
Belgium 1993 6,691 63,299 0.106 0.0013
Belgium 1994 13,594 131,182 0.104 0.0009
Table 2

Posterior Summaries of Parameters of Negative Binomial Distribution for Denuit (1997) Data

Posterior Mean + Standard Deviation

Data Set A ) Dispersion Index
Switzerland 1961 0.155+0.0012 1.033+0.045 1.151+0.007
Zaire 1974 0.087+0.0056 0.218+0.038 1.410+0.075
United Kingdom 1968 0.132+0.0006 2.607+0.138 1.051+0.003
Germany 1960 0.144+0.0026 1.127+0.126 1.130+0.014
Belgium 1958 0.214+0.0056 0.704+0.062 1.307+0.028
Belgium 1975-76 0.101+0.0010 1.637+0.154 1.062+0.006
Belgium 1993 0.106=0.0013 1.284+0.124 1.083+0.008
Belgium 1994 0.104+0.0009 1.392+0.103 1.076 +0.005

The logarithms of the estimated Bayes factors are given in Table 4, and the graphical evolution of
the estimated log-Bayes factor is provided in Figure 3 (additional similar figures are available upon
request). Estimated Bayes factors for all data sets imply very strong evidence against the simpler Pois-
son model (B,; > 8.6 X 10° and B;, > 10.97 X 10 for all data sets). The differences between negative
binomial and generalized Poisson are small, but, in all data sets, the generalized Poisson model is
supported slightly more strongly against the negative binomial model (1.22 = B,, = 10.80 and 0.55
= f(m,]y) = 0.915). The support in favor of the generalized Poisson is stronger for data sets 1 and 5
(Switzerland 1961 and Belgium 1958, respectively). Following the interpretation of Kass and Raftery
(1995) we have “positive” evidence in favor of the generalized Poisson model (against the negative
binomial model) only for these two data sets, while for all other comparisons the evidence is low.

Table 3

Posterior Summaries of Parameters of Generalized Poisson Distribution for Denuit (1997) Data

Posterior Mean + Standard Deviation

Data Set N ® Dispersion Index
Switzerland 1961 0.155+0.0012 0.068+0.0027 1.152+0.007
Zaire 1974 0.087 +0.0056 0.161+0.0240 1.425+0.082
United Kingdom 1968 0.132+0.0006 0.025+0.0013 1.051+0.003
Germany 1960 0.144+0.0027 0.060+0.0061 1.131+0.015
Belgium 1958 0.215+0.0056 0.128+0.0099 1.315+0.023
Belgium 1975-76 0.101+0.0010 0.030+0.0027 1.062+0.006
Belgium 1993 0.1060.0013 0.039+0.0036 1.084+0.008
Belgium 1994 0.104 +0.0009 0.036+0.0025 1.077 +0.005




102 NORTH AMERICAN ACTUARIAL JOURNAL, VOLUME 9, NUMBER 3

Figure 2
Boxplots of Posterior Densities of Dispersion Indexes for Denuit (1997) Data
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Predictive distributions are provided for the Switzerland 1961 and Belgium 1958 data in Tables 5 and
6. For the Switzerland 1961 data, we can clearly see some differences between the predictive distri-
bution of the simple Poisson model and the observed data. On the other hand, the differences between
the predictive distributions of NB and GP and the observed data are much smaller. Although differences
between NB and GP are relatively small, the data provide (through the Bayes factor) “positive’ evidence
in favor of the generalized Poisson model when compared to the negative binomial data. The results
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Table 4

Estimated Log Bayes Factors and Posterior Model Probabilities for Denuit (1997) Data

Log-Bayes Factor

Data Set m, vs. m, my vs. m, my vs. m, f(my)y)
Switzerland 1961 488.17 490.55 2.38 0.915
Zaire 1974 59.72 59.96 0.23 0.560
United Kingdom 1968 230.45 231.24 0.78 0.688
Germany 1960 70.25 70.82 0.56 0.639
Belgium 1958 139.10 140.97 1.88 0.867
Belgium 1975-76 79.16 79.37 0.20 0.552
Belgium 1993 81.54 82.23 0.69 0.666
Belgium 1994 140.91 141.41 0.49 0.622

Notes: m,: Poisson distribution; m,: negative binomial distribution; ms: generalized Poisson distribution; f(ms|y): posterior probability of model
ms; (m;]y) = 0 and f(m,|y) = 1 — f(ms]|y) for all data sets.

Figure 3

Ergodic Log Bayes Factors of Generalized Poisson versus Negative Binomial Distribution

for Denuit (1997) Data
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Table 5

Descriptive Summaries of Predictive Distributions for Models 1-3 for Switzerland 1961 Data

Predictive Means of Frequencies (Y)

Model 0 1 2 3 4 5 6 Mean DI
Poisson 102,630.3 15,921.5 1234.9 63.8 2.5 0.1 0.0 0.155 1.000
Negative binomial 103,724.9 13,988.7 1856.5 245.6 323 4.3 0.6 0.155 1.150
Generalized Poisson 103,724.1 14,002.1 1837.7 248.7 34.6 4.9 0.7 0.155 1.152
Observed 103,704 14,075 1766 255 45 2 0.155 1.156
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Table 6
Descriptive Summaries of Predictive Distributions for Models 1-3 for Belgium 1958 Data

Predictive Means of Frequencies (Y)

Model 0 1 2 3 4 5 6 7 Mean DI
Poisson 7636.6 1635.8 1753 12.5 0.7 0.0 0.0 0.0 0.214 1.000
Negative binomial 7846.4 1288.5 256.6 54.3 11.8 2.6 0.6 0.1 0.214 1.306
Generalized Poisson 7848.4 1290.5 251.4 54.1 12.5 3.1 0.8 0.2 0.214 1.315
Observed 7840 1317 239 42 14 4 4 1 0.214 1.348

for the Belgium 1958 data set are similar. Results of a Bayesian model averaging approach can be
easily calculated using weighted means of the quantities reported in Tables 5 and 6.

For the calculations of all the examples presented in this article we have used the Fortran 77 com-
puting language for the generation of the RIMCMC output and then Splus statistical software for its
statistical analysis. Any other computing language package can be used without any difficulty. All the
computations have been conducted on a Pentium II/600MH personal computer. The code is available
on request. We strongly recommend that practitioners develop their own versions of the code to fully
grasp the method and be able to adapt it to their own problems. We are now in the process of developing
RIMCMC code suited for the R package.

6. DiIsSCUsSION

In this paper we have implemented advanced MCMC techniques in order to assess and compare, using
the Bayesian approach, three popular distributions concerning the distribution of claim counts. The
use of the Bayesian paradigm is advantageous because it enables model averaging or utility functions
as well as comparisons among non-nested models. Results from eight data sets from various countries
indicate that the Poisson distribution is not adequate to describe claim count data. The negative
binomial and the generalized Poisson distributions are a posteriori much more probable than the
Poisson distribution. Between the two, the generalized Poisson is consistently superior a posteriori to
the negative binomial distribution, although the strength of this evidence varies from data set to data
set.

It must be emphasized that the negative binomial distribution and the generalized Poisson distri-
butions are quite similar for the range of parameters found in the used data sets. In addition, Douglas
(1994) pointed out that for count data with small counts, various discrete distributions can fit the
data sufficiently well. It is very important that our model choice approach succeeded in choosing
between the two models as indicated by the values of the Bayes factors. For larger counts the differences
would be more apparent.

Further research may include the implementation of the above methodology in the general claim
counts context (see England and Verrall 2002) in order to test if the Poisson distribution is adequate
or if more sophisticated models are demanded. Moreover, we may include covariates on \ to treat more
sophisticated cases such as the prediction of outstanding claim reserves. Another important issue is
the possible extension of RIMCMC methodology in a larger variety of distributions. Using this approach,
we may compare different models involved in the claim counts and amounts literature. The extension
of the RIMCMC algorithm in such cases is by no means straightforward and needs increased experience
and careful construction of each chain. Implementing RIMCMC in a wider variety of actuarial models
and problems will enable us to use Bayesian model averaging techniques that increase the predictive
ability of any quantity of interest. We hope that a great deal of the relevant research issues will be
dealt with in the near future.
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APPENDIX A

MCMC wiTHIN EAcH MODEL

Step 1 of Section 4.2 refers to simple MCMC methods used to generate values of the posterior distri-
bution of a parameter given the model structure. Here we describe how we construct an MCMC algo-
rithm based on the Metropolis-Hastings approach in order to generate parameter values from an a
posterior distribution within each model.

Let us assume arbitrary initial values 0¥ and repeat the following steps until convergence is achieved.
For our models we have 0, = X\, 0,, = (A, 9)’, and 0,,, = (\, ®)". Initial values are discarded as a
burn-in period to eliminate the effect of the initial arbitrary values. For our MCMC algorithm, we
propose as initial values N© = 3, 9@ = max{0.01, 3°/(s; — ¥)}, and @ = max{0.01, 1 — Vy/s3},
where y and s] are the sample mean and variance of the data.

To implement an MCMC algorithm within a model m we repeat the following steps for t = 1,

L, T:

mp

Step 1
Set 6 = 0%

m*

Step 2
Forj=1,...,d

m*

1. Propose 6/ from q(Qi’|O\i, 0,), where 0; is the j-th element of vector 0 and
0,=@04,...,04,0,,,..., Bdm)T.
2. Calculate the acceptance probability
o { [0, m)f(0'[m)q (6,0, 9{)}
a = min {1, p ,
f(v]e, m)f(9|m)q(9,~|9\j, ej)
where 0 = (6, ...,6,_,,6/,6,,,...,0,)"
3. Generate u ~ U(0, 1), where U(0O, 1) is the uniform distribution in the interval (0, 1).
4. If a > u then set 6, = 6,, else leave 6, unchanged.

Step 3
Set 04D = 0.

As we have already stated, the posterior distribution of the Poisson model is conjugate, and hence,
in RIMCMC, we generate the parameters of N directly from the posterior distribution.

For the other two models, the proposal distribution concerning the parameter A was based on the
posterior distribution of the parameter when assuming the simpler Poisson model. Hence g(\'|\) was
set equal to a Gamma distribution with parameters a + ny and b + n. This worked sufficiently well for
our illustrated data sets.

For the parameters ¥ and o, we have used variations of the random walk Metropolis algorithms.
More specifically, for the parameter ¥ we have used the proposal distribution q(d'|9) =
LN(log ¥, C3), where LN(p, s?) is the log-normal distribution with parameters w and s and density

1 1 (logx — p g
flx) = Vomon eXP{ > (73 > } (A.1)

For o we have used the proposal distribution ¢(o»'|o) = Beta(C, /(1 — w), C,) with mean o and
density given by
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C
1" w

q(0'|lw) =
r <cm ; @ ) INCON

o' Co ©/(1-0) —1 1 - wr)c(f]'

-

The proposal parameters Cy and C, are tuning parameters specified appropriately to achieve an accep-
tance rate within the range 30-50%.

Following the above comments, the generation of the parameters within model m, (negative bino-
mial) has been completed using the following steps (assuming that (A, ¥) are the current values of the
algorithm):

1. We sample N\ from f(\|9, y, m,) using the following independent Metropolis scheme:
(a) Propose new candidate value N’ from Gamma(ny + a, n + b).
(b) Accept the proposed value with probability

N N+ 9 ny+nd+3/2 ’
o = min {1, N ()\, n {}) e M)

2. We sample ¥ from f(9|\, ¥, m,) using the following Metropolis-Hastings scheme:
(a) Propose new candidate value ¥’ from LN(log 9, C3).
(b) Accept the proposed value with probability « = min{1, A}, where A is given by

_N Iy, + 9 I'(9) , ;o
log A = 1:21 log iy, + 9) + n log (o) + (¥ + 1/2) log ¥ MY + 1/2) log v
+ (ny — 3/2) log );\i% + nd’ log(A + ¥') — nd log(\ + V).

Similarly, the generation of the parameters within model m, (generalized Poisson) has been completed
using the following steps (assuming that (A, ) are the current values of the algorithm):

1. We sample N\ from f(\|9, y, m,) using the following independent Metropolis scheme:
(a) Propose new candidate value N’ from Gamma(ny + a, n + b).
(b) Accept the proposed value with probability

N n—ny , n 1 — N+ . yie1
a =min 1, | — e =N H ( w) wy; ‘
A =1\ (1 — o)\ + oy,

2. We sample o from f(w|\, ¥, m;) using the following Metropolis-Hastings scheme:
(a) Propose new candidate value o’ from Beta(C, o/(1 —w), C,).
(b) Accept the proposed value with probability « = min(1, A), where A is given by

1 - o (1 — o)\ + 'y,
1w (I = @A + oy

losA=m-C, + 1) log

- nE - N - ) +i<(yi— 1) log




BAYESIAN ASSESSMENT OF THE DiSTRIBUTION OF INSURANCE CLAIM CouNTs UsING REVERSIBLE Jump MCMC 107

Table 7
Frequency of Automobile Claims for Denuit (1997) Data

Number of Accidents

Data Set 0 1 2 3 4 5 6 7
Switzerland 1961 103,704 14,075 1766 255 45 6 2 0
Zaire 1974 3,719 232 38 7 3 1 0 0
Great Britain 1968 370,412 46,545 3935 317 28 3 0 0
Germany 1964 20,592 2,651 297 41 7 0 1 0
Belgium 1978 7,840 1,317 239 42 14 4 4 1
Belgium 1975-76 96,978 9,240 704 43 9 0 0 0
Belgium 1993 57,178 5,618 446 50 8 0 0 0
Belgium 1994 118,700 11,468 930 70 14 0 0 0

APPENDIX B

INSURANCE CLAIMS DATA

The available data are presented in Table 7. The first column corresponds to the number of claims per
contract, and the other columns denote the respective frequencies.
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