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Abstract. We construct and present a Markov Chain Monte Carlo (MCMC) algorithm for the estimation of posterior odds
and probabilities of alternative models used to evaluate competing hypotheses regarding three common discrete distributions
involved in the modeling of the outstanding claim counts in actuarial science. The proposed methodology involves advanced
statistical techniques of Bayesian modeling which make use of the Gibbs sampling variable selection algorithm. One of the
main advantages of this approach over the popular reversible jump algorithm [12] is its straightforward implementation using
the MCMC language tool of WINBUGS software [17]. The methodology is applied to a real data set. Directions regarding
the implementation in WINBUGS are provided at the Appendix. It is worth noting that although the context of the problem
is actuarial, the methodology can be applied to any field of science where the aim is the comparison or selection of discrete
distributions of counts.
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1. Introduction

Modeling random events has always generated a great deal of research interest in Science, Economics
and Engineering. Relevant topics range from the level of rainfall and car traffic to market penetration
of a certain commodity and the pricing of an option. However, the researcher is often uncertain about
the appropriate statistical representation of the phenomenon under study. Initially, the most pressing
statistical question she/he faces is

Which is the best statistical distribution to use?

which usually leads to the more specific one:

How do we evaluate the available ‘candidate’ distributions and choose the best one(s)?

∗Corresponding author. E-mail: katsis@uop.gr.

1472-7978/05/$17.00 2005 – IOS Press and the authors. All rights reserved



202 A. Katsis and I. Ntzoufras / Bayesian hypothesis testing for the distribution of insurance claim counts

To this end, Bayesian statistics seems like a natural approach since any prior beliefs about the unknown
parameters may affect the final decision. Therefore, the researcher must incorporate these beliefs while
conducting the analysis of the experiment. However, most of the Bayesian algorithms on the topic of
Bayesian model comparison are so computationally intensive that effectively forbid most practitioners
from applying them to their work. Hence, the need for a simpler and software-friendlier approach is
apparent.

In actuarial science particularly, the choice of the distribution for the modeling and prediction of
outstanding claims incurred in an insurance company has been extremely important to both practitioners
and academics. It is common practice for these companies not to pay the outstanding claims immediately
but with some delay. Hence, an accurate representation of the number of outstanding claims is of
important practical significance. In addition to that, the Bayesian paradigm has become an integral
research tool in the actuarial discipline (see [15] for a review). However, in the outstanding claims
problem, the Bayesian approach has been mostly confined to parameter estimation (see [5,16,20]) rather
than to testing hypotheses about distributions.

The contribution of this paper is twofold. Firstly, we develop a new algorithm for the estimation of
posterior model odds based on the idea of Gibbs variable selection algorithm of Dellaportas et al. [6]. The
algorithm is used to evaluate and compare three discrete statistical distributions for the modeling of the
outstanding claim counts in actuarial science using the Bayesian approach. The proposed methodology is
computationally simpler and can be generalized to a larger number of candidate distributions as well as to
any other similar research problem in another field (e.g. compare the distributions of arrivals in a queue).
Secondly, we implement our algorithm on the popular, freely available, software WINBUGS [17].
Competing methods such as RJMCMC can not be implemented via WINBUGS. This is an important
advantage since many researchers favoring the Bayesian approach are familiar with WINBUGS. Hence,
they can now implement our proposed methodology directly following the detailed description provided
at the Appendix of this paper.

The paper is organized into five further sections. Section 2 reviews the basic formulation of Bayesian
model comparison. A description of the distributions for the modeling of the outstanding claims is
provided in Section 3. In Section 4 we describe in detail the Gibbs sampling algorithm constructed for our
hypothesis tests and its advantages over the existing techniques. Section 5 analyzes the implementation
of the method in a specific example of insurance claims data using WINBUGS. Finally, conclusions and
closing remarks are presented in Section 6.

2. Bayesian inference

Generally, Bayesian inference is based on constructing a modelm, its likelihoodf(y|θ m,m) and the
corresponding prior distributionf(θm|m), whereθm is a parameter vector andy is the data vector. Al-
though, inference is primarily based on the posterior distributionf(θm|y,m), we may also be interested
in quantifying model uncertainty by estimating the posterior model probabilityf(m|y).

Let us consider two competing modelsm0 andm1. If f(m) is the prior probability of modelm, then,
using the Bayes theorem, the posterior oddsPO01 of modelm0 versus modelm1 are given by

PO01 =
f (m0|y)
f (m1|y)

=
f (y|m0)
f (y|m1)

× f (m0)
f (m1)

= B01 × f (m0)
f (m1)

(1)

whereB01 and f (m0)
f (m1) are the ‘Bayes factor’ and the ‘prior model odds’ of modelm0 against modelm1,

respectively. The quantityf(y|m) involved in the Bayes Factor is defined as the marginal likelihood of
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modelm and is given byf(y|m) =
∫
f(y|θm,m)f(θm|m)dθm. The Bayes factorB10, of modelm1

againstm0, evaluates the evidenceagainstthe null hypothesis which is a familiar concept to classical
significance tests. Thus, large values of, say,B01 (usually greater than 12) indicate strong posterior
support of modelm0 against modelm1 For more details on Bayes factors see Kass and Raftery [13].
Alternatively, when we consider a set of competing modelsM = {m1,m2, · · · ,m|M|}, then we focus
our interest on the posterior probability of modelm ∈ M, defined as

f (m|y) =
f (y|m)f (m)∑

ml∈M
f (y|ml)f (ml)

=


 ∑

ml∈M
POml,m




−1

whereM and|M| denote the set and the number of models under consideration respectively.
The integrals involved in the computation of the posterior model probabilities are mostly analytically

intractable. Therefore asymptotic approximations or alternative computational methods must be fre-
quently employed. One of the most popular techniques for calculation of these quantities is the Markov
Chain Monte Carlo (MCMC) methodology (see [11]) and its recent extensions (reversible jump MCMC
algorithm or RJMCMC) in varying dimension models [12]. Moreover, RJMCMC methodology helps us
to account for model uncertainty using Bayesian model averaging techniques (see [1,3,9,13]). However,
this methodology is demanding in both the design stage and the implementation.

3. Distributions for claim counts

In this section we focus on three popular distributions for modeling the marginal claim counts, more
specifically the simple Poisson distribution [18], the negative binomial [21] and the Generalized Poisson
distribution (see [4]) denoted bym1,m2 andm3 respectively. The Generalized Poisson distribution is
also known as Lagrangian Poisson distribution. Consequently, the simple Poisson model can be regarded
as a special case of either the negative binomial or the Generalized Poisson distribution.

Let us assume datayi, i = 1, . . . , n. Consequently, the simple Poisson model is given by

f(yi|λ,m1) =
λyiexp(−λ)

yi!
.

It is well known that for the Poison distribution the mean equals the variance. This property is not common
in real data sets where the sample variance usually exceeds the sample mean. For this reason alternative
models that allow for over-dispersion relative to the simple Poisson model have been considered. The
variance to the mean ratio, called Dispersion Index (DI), is usually calculated as a measure for data
dispersion; see for example Douglas [8]. For the Poisson random variable the Dispersion Index is equal
to one.

An alternative model for this type of data is the negative binomial distribution given by

f(yi|λ, ϑ,m2) =
Γ(yi + ϑ)

Γ(yi + 1)Γ(ϑ)

(
λ

λ+ ϑ

)yi
(

ϑ

λ+ ϑ

)ϑ

(2)

whereϑ > 0. Although the mean of the negative binomial model is the same as in the Poisson model,
E(yi) = λ, the variance now also depends on the parameterϑ sinceV (y i) = λ + λ2/ϑ. The Poisson
model is a limiting distribution of Eq. (2) forϑ→ ∞. We may adopt the parameterizationϑ = λ/φ. For
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the negative binomial distribution, the Dispersion Index is equal toDI = 1 + φ. Forφ → 0 the above
distribution reduces to the simple Poisson distribution.

Finally, the Generalized Poisson model with parametersλ andω, is defined in the following way:

f(yi|λ, ω,m3) = (1 − ω)λi
{(1 − ω)λi + ωyi}yi−1

yi!
e−{(1−ω)λi+ωyi}. (3)

According to Ter Berg [19], valid values forω are within the interval[0, 1). Typically, the distribution
can be defined for|ω| < 1 but negative values lead to under-dispersion which is not a common property
of claim count data. For this reason we will not consider this case in the present paper. Forω = 0,
the above distribution reduces also to the simple Poisson model with meanλ. The mean ofy i is given
by E(yi) = λ while the variance and the dispersion index are obtained byV (y i) = λ(1 − ω)−2 and
DI = (1−ω)−2 respectively. This parameterization is beneficial for the interpretation of the parameters
of the three models and also simplifies the implementation of the MCMC algorithm described below.

4. Gibbs sampling for testing hypotheses

Gibbs sampling has been widely used for Bayesian model, variable selection and hypothesis tests; see
George and McCullogh [10], Carlin and Chib [2], Kuo and Mallick [14] and Dellaportas et al. [6]. The
Gibbs sampling approach presented here is mainly based on the approach of Gibbs variable selection of
Dellaportas et al. [6] and although some concepts are similar to the approach of Carlin and Chib [2], it is
more flexible since it allows common parameters among different models avoiding over-parameterization
and generation of nuisance parameters.

Without loss of generality, we describe the methodology for a general setup of comparing two nested
modelsm1 andm0. We wish to test that a parameter sub-vector of the super-modelm1 is constrained
to a sub-modelm0. Incorporation of more models (or even non-nested models) is possible in a similar
manner.

Let us denote the parameter vectors of modelsm0 andm1 by θm0 andθm1 respectively. Then we
have the parameter vectorθT

m1
= (θT

m0
,θT

\m0
); whereθ\m0

denotes the parameters of modelm1 that do
not appear in the sub-modelm0. We should further note that common parameters should have similar
interpretation otherwise posterior distributions will be different and the algorithm will fail (for example
in our distributions the parameterλ has exactly the same interpretation since it is the mean ofy i in all
models).

The hypothesis we wish to test takes the formH0 : θ\m0
= µ0 (modelm0) versusH1 : θ\m0

�= µ0

(modelm1). Modelm0 is exactly the same (in terms of likelihood) with modelm1 with parameter vector
(θT

m0
, θT

\m0
= µT

0 ).
In order to construct our algorithm we employ a latent binary indicatorγ taking values zero and one

when supporting the null or the alternative hypothesis. The posterior distribution of this indicator will
give us the posterior probability of each model (or hypothesis) and/or the posterior odds for each model
(or hypothesis) comparison. When no prior information concerning the prior model weightsf(m i) is
provided then we usef(γ) = 1/2 for γ = 0, 1.

Forγ = 0, 1 the model likelihood is now rewritten as

f(y|θmγ ,mγ) = f(y|θm0 ,m0)1−γf(y|θm1 ,m1)γ
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while the prior distributions are given byf(θmi ,mγ , γ) for i = 0, 1. If γ = i then we have the usual
prior distributions

f(θmγ ,mγ , γ) = f(θmγ |mγ)f(γ).

If γ �= i, the resulting distributions are called pseudo-prior distributions since they do not affect the
posterior distributions; for details see Carlin and Chib [2] and Dellaportas et al. [6]. More specifically,

f(θm1 ,m0, γ = 0) = f(θm1 |m0)f(γ = 0)

= f(θm0 ,θ\m0
|m0)f(γ = 0) (4)

= f(θm0 |m0)f(θ\m0
|θm0 ,m0)f(γ = 0).

Thus, the pseudo-prior distribution in Eq. (4) can be rewritten as a product of an actual prior distribution
of simpler modelm0 given byf(θm0 |m0) and an additional pseudo-prior distributionf(θ\m0

|θm0 ,m0)
for the non-common parameters. This distribution is specified via a pilot run of modelm1. Similarly,
the pseudo-prior

f(θm0 ,m1, γ = 1) = f(θm0 |m1)f(γ = 1)

is the prior of modelm1 for the common parametersθm0 . Using this setup, the resulting Gibbs Sampler
is given by

1. Sample model parameters:

– If γ = 0 then

(a) Sampleβm0
from the conditional posterior distribution

f(βm0
|m0,y) ∝ f(y|βm0

,m0, )f(βm0
|m0).

(b) Sampleβ\m0
from the pseudo-prior distributionf(β\m0

|βm0
,m1).

– If γ = 1 then sampleβm1
= (βT

m0
,βT

\m0
) from the conditional posterior distribution

f(βm1
|m1,y) ∝ f(y|βm1

,m1, )f(βm1
|m1).

2. Sampleγ from the posterior distributionf(γ|θm0 ,θ\m0
,y) = Bernoulli

(
Ω

1+Ω

)
; whereΩ is

given by

Ω = LR× PR0 × PR\0 ×
f(m1)
f(m0)

whereLR, PR0 andPR\0 denote the likelihood ratio, and the prior ratios given by

LR =
f(y|θm1 ,m1)
f(y|θm0 ,m0)

, PR0 =
f(θm0 |m1)
f(θm0 |m0)

and PR\0 =
f(θ\m0

|θm0 ,m1)
f(θ\m0

|θm0 ,m0)
.

Note that common parameters are assumed to have the same interpretation hence the prior distri-
butions for the two models can be set equal resulting toPR0 = 1.

The approach described above can be easily extended for non-nested models say,m 1 andm2 much
like our comparison between the negative binomial and generalized Poisson models. Let us assume a
modelm0 with parameter vectorθm0 including all parameters common in both modelm1 andm2 (if
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no common parameters can be identified, thenm0 can be set to the null model with no parameters).
Then we may rewrite the parametersθmi

T = (θm0
T ,θmi/m0

T ) for i = 1, 2 and follow the same
approach as in the previous section. In limiting cases, we may identify links between parameters and
use suitable transformations in order to automatically specify the pseudo-priors and avoid having to
use pilot-run estimates (the approach is analogous to setting suitable transformations in reversible jump
MCMC algorithm). Such a case is here whereθm1 = (λ, ϑ) andθm2 = (λ, ω). The non-common
parametersϑ andω can be efficiently linked by equating the dispersion indexes of the two models.

Unlike reversible jump MCMC, the proposed algorithm is simpler because it is based on Gibbs
sampler rather than Metropolis Hastings algorithm. Since it is a Gibbs sampling based algorithm it can
be implemented in a straightforward manner using the freely available MCMC software of WINBUGS.
It is flexible enough to handle nested models or models with common and non-common parameters.
For this reason, it can be used in a wide variety of similar problems and can be easily extended to
accommodate a larger number of distributions. An application of the aforementioned methodology is
presented in Section 5.

5. Implementation in insurance claims data

In this section we demonstrate the proposed model formulation in the insurance claim data of Belgium
for the year 1993 [7]. The determination of the prior distributions, algorithm specifications and the
results are presented below. Details for the implementation on the WINBUGS software are given at the
Appendix. The full code is available from the authors upon request.

5.1. Prior distributions

The specification of the prior distributions is very important in Bayesian model comparison. As
we have already mentioned, we examine three models:m1 (Poisson),m2 (negative binomial) and
m3 (generalized Poisson) with parameter vectorsθm1 = (λ), θm2 = (λ, ϑ)T and θm3 = (λ, ω)T

respectively.
In order to be consistent across models we must specify the same prior distributions over the common

parameterλ. Hence, we consider a Gamma distribution, that is,

f(λ|mi) = Gamma(0.01, 0.01) for i = 1, 2, 3.

The effect of this choice on the model comparisons will be minimal sinceλ is a common parameter in
all models.

The prior distributionsf(ϑ|λ,m2) andf(ω|λ,m3) will be determined in a way such that the Dispersion
Index will induce the same a priori information for both models. Hence, for the prior ofω we use the
Uniform non-informative prior distribution which gives the equal probability to any interval of the same
range, that is,

f(ω|m3) = Uniform(0, 1)

while the priorf(ϑ|m2) is constructed by setting the dispersion indexes equal for the two distributions
resulting to

ϑ = λ
(1 − ω)2

ω(2 − ω)
. (5)
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Assuming uniform prior forω, the resulting distribution forϑ is a scaled Beta type II prior distribution
given by

f(ϑ|λ,m2) =
1
2
λϑ−2(1 + λ/ϑ)−3/2

5.2. Algorithm specifications: the pseudo-prior distributions

The pseudo-prior distributions are defined by pilot runs estimates. Hence for modelm3 we use a Beta
distribution, that is,

f(ω|m1) = Beta(ā, b̄)

where the parameters̄a, b̄ of the Beta distribution are matched with the posterior mean and variance of a
pilot run of modelm2. Hencēa andb̄ are obtained by

ω̄ =
ā

ā+ b̄
, σ̄2

ω =
āb̄

(ā+ b̄)2(ā+ b̄+ 1)

which leads to

ā = ω̄

(
ω̄(1 − ω̄)
σ̄2

ω

− 1
)
, b̄ = ā

1 − ω̄

ω̄
.

whereω̄ andσ̄2 are the posterior mean and variance ofω estimated by a pilot run. The efficiency of the
chain can be improved by suitably increasing or decreasing the variance of the pseudo-prior distribution
in order to achieve high acceptance rates. In our example the pseudo-priors where estimated from a pilot
run of 1000 iterations and were found̄ω = 0.039 andσ̄ = 0.0036 resulting tof(ω|m1) = Beta (112.7,
2778.1).

The pseudo-priorf(ϑ|m1) is defined indirectly by specifying a pseudo-prior forω and using Eq. (5).
When comparing negative binomial and generalized Poisson models then pseudo-priors are indirectly
defined using Eq. (5). This results to pseudo-priors which take values directly from the posterior
distribution of the competing model and transforming it appropriately.

Finally, if we wish to estimate the log-Bayes posterior odds or the Bayes factor with increased precision,
we may use initial model probabilitiesf (0)(mi) which will result to posterior weights in the interval
(0.40–0.60) and then recalculate the desired posterior model odds using the following equation:

log POij = logPO(0)
ij − log

(
f (0)(mi)
f (0)(mj)

)
+ log

(
f(mi)
f(mj)

)
(6)

wheref (0)(mi) are the initial model probabilities only used to estimate posterior odds with precision,

PO
(0)
ij are the posterior model odds estimated using the initial model probabilities whilef(mi) and

logPOij are the desired prior probabilities and posterior model odds respectively. When there is no
prior information concerning the model space, the log Bayes factor is estimated by the above equation
eliminating the log-ratio of the actual prior model probabilities which is equal zero. In our example we
have usedlog f (0)(m2)/f (0)(m1) = 81, log f (0)(m3)/f (0)(m1) = 82 andlog f (0)(m3)/f (0)(m2) = 0.
Initial values off (0)(m) can be obtained using simple estimators of the marginal likelihood (for example
using Laplace approximation; for details see [13]).
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Table 1
Posterior Odds and Probabilities for the Belgium 1993 dataset; 1= Poisson, 2= Negative
Binomial, 3 = Generalized Poisson Model; [PrM

(0)
ji = f (0)(mj)/f (0)(mi), f (0)(mi|y)

posterior weights obtained from MCMC usingPrM
(0)
ji ]

Compared Models MCMC Results Estimates

i, j log PrM
(0)
ji f (0)(mi|y) log PO

(0)
ij log Bij

Neg.Bin. vs. Poisson 2,1 81 0.610 0.447 81.447
Gen.Poisson vs. Poisson 3,1 82 0.533 0.134 82.134
Gen.Poisson vs. Neg.Bin. 3,2 0 0.671 0.714 0.714

5.3. Results

Results for the Belgium 1993 dataset are provided in Table 1. Trace, density and probability plots of
the dispersion index and the model indicator for each pairwise comparison are also provided in Figs 1–3.
All results have been generated using 1,000 iterations as an initial burn-in period while keeping additional
10,000 iterations for the estimation of the posterior distribution.

Regarding Table 1, the first two columns provide details of the compared models. In the third column
we present the initial model odds used to make the chain mobile (i.e. ‘jump’ from one model to the
other) while the next two columns display the MCMC results directly from the WINBUGS output. The
last column presents the final estimate of the logarithm of the Bayes Factor for each model comparison
using Eq. (6), the initial model odds (third column) and the MCMC results. For example, the second line
of the Table depicts the comparison of the Generalised Poisson versus the Poisson model (modelm 3 vs.
modelm2). The initial model odds was set equal to82 in favor of the Poisson model while the Gibbs
sampling algorithm yielded the posterior model probability for the Generalised Poisson model equal to
0.533. Furthermore, the logarithm of the posterior model odds,log PO(0)

31 , is equal 0.134. Using Eq. (6),
we derive the final estimate for the logarithm of the posterior model odds equal to82.134 which strongly
supports the Generalised Poisson model.

Figures 1–3 are produced directly from WINBUGS software and are provided to give some insight for
the results and the convergence of the algorithm. In all figures, plot (a) depicts the marginal posterior
distribution of the Dispersion index for each comparison using the corresponding initial model odds. In
Figs 1 and 2 we clearly see a spike at the value of one. This is natural since the Poisson distribution is
compared with the Negative Binomial and Generalised Poisson, respectively. When the chain supports
the Poisson model (in both cases) then the produced DI is equal to one. In most cases, when two models
are compared using MCMC, the marginal posterior distribution of a parameter of interest will produce
two modes (one for each model) unless the parameters have similar behavior in both models (this is the
case in Fig. 3(a) or one model is not supported at all (i.e. has low posterior probability). Figs 1(b)–3(b)
present a graph of the posterior distribution ofγ, f(γ|y), that is the posterior model weights for each
comparison (also provided in the fourth column of Table 1). Figures 1(c)–3(c) are Trace plots of the
DI for each comparison. In common MCMC (when only parameter estimation in a single model is
considered) we use such graphs to monitor the convergence of the chain. Plots similar to Fig. 3(c)
indicate convergence. In MCMC constructed for model comparison, it is natural to expect violent jumps
from the posterior distribution of one model to the other as in plots Figs 1(c) and 2(c). Such jumps
are not observed in the comparison of Generalised Poisson and Negative Binomial model because in
both models the distributions of the dispersion index are quite close (as plot Fig. 3(a) also indicated).
Finally, Figs 1(d)–3(d) are also trace plots of the model indicatorγ. These plots are used to monitor the
convergence ofγ. A large number of jumps (changes from one model to the other) indicates that the
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Fig. 1. Plots from MCMC Output for Comparison of Negative Binomial vs. Poisson model: (a) Histrogram of the Margingal
Posterior Distribution of DI; (b) Posterior Model Weights (0= Poisson, 1= Neg.Binomial); (c) Trace Plot of DI; (d) Trace Plot
of Model Indicatorγ.

algorithm works efficiently. When the chain remains in one model for many iterations then the graph
presents a gap of white area. In all comparisons, the chains were highly mobile and this is also depicted
in the corresponding graphs with few short white sequences.

As a conclusion, we observe that the data strongly support the negative binomial and the generalized
Poisson models in favor of the simple Poisson model (log-Bayes factors equal to 81.45 and 82.13
respectively). For the comparison between generalized Poisson and negative binomial models we may
calculate the corresponding log-Bayes factor directly by the difference of the above log-Bayes factors
(equal to 0.69 in favor of the generalized Poisson model) or by generating results from an MCMC directly
sampling from these two models (log Bayes factor equal to 0.71). This leads to a slight advantage of
the Generalized Poisson Model over the Negative binomial one (B32 ≈ 2 and posterior probability
f(m3|y) = 0.671).
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Fig. 2. Plots from MCMC Output for Comparison of Generalized Poisson vs. Poisson model: (a) Histrogram of the Margingal
Posterior Distribution of DI; (b) Posterior Model Weights (0= Poisson, 1= Gen.Poisson); (c) Trace Plot of DI; (d) Trace Plot
of Model Indicatorγ.

6. Conclusions

In this paper, we have developed an advanced MCMC algorithm based on the idea of Gibbs variable
selection in order to compare three statistical distributions that model the marginal claim counts in
actuarial science. The proposed algorithm is simpler than the existing ones such as RJMCMC and can
be implemented in the software-friendly environment of WINBUGS. Furthermore, it can be extended to
a wide variety of applications that include model comparisons. A larger number of distributions may be
examined as well.

The results from our case study demonstrate the superiority of the Negative Binomial and the General-
ized Lagrangian Poisson distributions over the simpler Poisson. Between the first two distributions, the
Generalized Langrangian distribution seems to be slightly supported a-posteriori. Further research may
include covariates onλ in order to treat more sophisticated cases such as the prediction of outstanding



A. Katsis and I. Ntzoufras / Bayesian hypothesis testing for the distribution of insurance claim counts 211

0.95 1.0 1.05 1.1

DI sample: 10000 gamma sample: 10000

DI

gamma

10000 10500 11000

10000 10500 11000

1.0

1.04

1.06

1.08

1.1

1.12

0.5

0.0

iteration

iteration

-1 0 1 4

50.0

90.0

40.0

0.0

0.2
0.5
0.9
0.4
0.0

(a) (b)

(c)

(d)

Fig. 3. Plots from MCMC Output for Comparison of Generalized Poisson vs. Negative Binomial model: (a) Histogram of the
Margingal Posterior Distribution of DI; (b) Posterior Model Weights (0= Neg.Binomial, 1= Gen.Poisson); (c) Trace Plot of
DI; (d) Trace Plot of Model Indicatorγ.

claim reserves. Another important issue is the possible extension of our proposed methodology to a
larger variety of claim distributions. Using this approach, we may compare different models involved in
the claim counts and amounts literature. Implementing Gibbs sampling in a wider variety of actuarial
models and problems will enable us to use Bayesian model averaging techniques which increase the
predictive ability of any quantity of interest.

Appendix: Implementation Using WINBUGS

Data: Data are in the form of two vectors:y[ ] for the values ofy andw[ ] the frequency of each
value ofy.

Likelihood: The likelihood is defined using the method of zeros and ones (see [17], in section: Tricks:
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Advanced Use of the BUGS Language). This allows us to use any form likelihood and does not restrict
us in the limited number of distributions available in WINBUGS. IfK is the number of observed values
of y then the likelihood is defined as:

for (i in 1:K) {
ones[i]<-w[i];
ones[i]˜dbin( p[i], w[i] );
p[i]<-gamma*exp(loglike1[i])+(1-gamma)*exp(loglike0[i])
}

wherelikelihood1[i] andlikelihood0[i] are the densities of the distribution modelsm1

andm0, respectively, evaluated atyi. In our exampleslikelihood0[i] is set equal to the Poisson
log-density whilelikelihood1[i] is set equal to the negative binomial or generalized Poisson
log-density depending on the comparison we wish to implement. The WINBUGS code for setting the
distribution used in this paper follows:

# likelihood of poisson
loglike0[i] <- -lambda + y[i] * log( lambda ) - logfact( y[i] );
#likelihood of negative binomial
loglike1[i] <- loggam( y[i] + theta ) - loggam( y[i]+1 )

- loggam(theta)
+ y[i]*log( lambda ) + theta* log( theta )
-(y[i]+theta)*log(lambda+theta);

#likelihood of generalized poisson
loglike1[i] <- log(1-omega)+log(lambda)

+(y[i]-1)*log( (1-omega)*lambda+omega*y[i] )
-( (1-omega)*lambda+omega*y[i] ) -logfact(y[i]) ;

Prior Distribution of λ: The prior distribution onλ is common for all models. Since no information is
available we use aGamma(0.01, 0.01) prior distribution defined in WINBUGS by

lambda˜dgamma(0.01,0.01);

Prior and Pseudo-prior Distributions on ϑ: Here we setϑ indirectly as a function ofω which follows
Uniform(0, 1) – or equivalentlyBeta(1, 1) - prior distribution whenγ = 1. Whenγ = 0 then we have
the pseudo-prior forω which is set as a beta distribution with parameters specified by a pilot run. The
WINBUGS variableswmean ands2 are the posterior mean and variance ofω when we run the negative
binomial model. Then the parametersabar andbbar of the beta pseudo-prior are matched using the
moments estimates. The parameterc2 is used to adjust the variance of the pseudo-prior. The relevant
code for the Belgium 1993 example is the following:

theta<-lambda*(1-omega)*(1-omega)/(omega*(2-omega))
omega˜dbeta(a,b);
a<-gamma*1 +(1-gamma)*abar;
b<-gamma*1 +(1-gamma)*bbar;
abar<-wmean*( wmean*(1-wmean)/(c2*s2)-1);
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bbar<-abar*(1-wmean)/wmean;
wmean<-0.039;
s2<-pow(0.0036,2);
c2<-0.20;

Prior and Pseudo-prior Distributions on ω: The approach similar as above with the difference now
we directly estimateω. The WINBUGS code for example one is given by

omega˜dbeta(a,b);
a<-gamma*1 +(1-gamma)*abar;
b<-gamma*1 +(1-gamma)*bbar;
abar<-wmean*( wmean*(1-wmean)/(c2*s2)-1);
bbar<-abar*(1-wmean)/wmean;
wmean<-0.039;
s2<-pow(0.036,2);
c2<-1.0;

Prior on Model Indicator γ: When no prior information is available and we wish to roughly estimate the
posterior model probabilities then we simply set thatγ to follow a Bernoulli distribution with probability
1/2 defined by

gamma˜dbern (0.5);

When we wish to estimate the posterior model odds with higher precision then we may use a prior such
that the posterior model weights are close to 0.5 (this can be achieved by repeated pilot runs) and then
calculate backwards the Bayes factor using Eq. (6). In such case we use the code for example one are
given by

gamma˜dbern( pmp );
# values for the comparison Poisson vs. Negative Binomial
pmp2<- -81;
pmp<-exp(pmp2)/(1+exp(pmp2))
# values for the comparison Poisson vs. Generalized Poisson
pmp2<- -82;
pmp<-exp(pmp2)/(1+exp(pmp2));

Comparison of Negative Binomial and Generalized Poisson: The approach is similar as above but
no pseudo-prior is needed since we link the parameters by equating the dispersion indexes of the two
models. Hence the WINBUGS code forϑ andω is simply given by

theta<-lambda*(1-omega)*(1-omega)/(omega*(2-omega))
omega˜dbeta(1,1);
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