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Bayesian analysis of the di�erences of count data
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SUMMARY

Paired count data usually arise in medicine when before and after treatment measurements are consid-
ered. In the present paper we assume that the correlated paired count data follow a bivariate Poisson
distribution in order to derive the distribution of their di�erence. The derived distribution is shown to
be the same as the one derived for the di�erence of the independent Poisson variables, thus recasting
interest on the distribution introduced by Skellam. Using this distribution we remove correlation, which
naturally exists in paired data, and we improve the quality of our inference by using exact distributions
instead of normal approximations. The zero-in�ated version is considered to account for an excess of
zero counts. Bayesian estimation and hypothesis testing for the models considered are discussed. An
example from dental epidemiology is used to illustrate the proposed methodology. Copyright ? 2005
John Wiley & Sons, Ltd.

KEY WORDS: bivariate Poisson distribution; RJMCMC; Bayes factor; DMFT data; zero-in�ated
distributions

1. INTRODUCTION

The decayed, missing and �lled teeth (DMFT) index is an important indicator in dental epi-
demiology for the oral health status of a patient. As the name of the index reveals, the number
of teeth with problems are counted and the index is treated as a count variable (see for de-
tails Reference [1]). Therefore, DMFT measurements before and after a treatment are used to
measure the e�ect of a preventive method in dental caries. Generally, in randomized clinical
trials, treatment e�ects are completely represented by di�erences over time (before and after
the treatment intervention). By using the di�erences instead of the original data, we eliminate
correlation and possible discrepancies observed in the characteristics of the individuals at the
beginning of the study (see, for example, Reference [2]). In the case of the DMFT index, the
di�erence is an integer random variable for which normal approximations are not always valid
since such data can take values on a small range of integers and may further exhibit skew-
ness. Techniques for continuous or binary paired data are widely available in the literature
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while methods suitable for the analysis of paired count data are rare. Such methods are mainly
based on normal approximations of discrete distributions explicitly or on modelling the �rst
few moments (e.g. through a GEE approach). It is apparent that methodologies directly based
on discrete distributions can improve the inference from paired count data.
Here, we start from the bivariate Poisson distribution as the joint distribution of our data and

we develop Bayesian inference and hypothesis tests using the di�erence of the two correlated
Poisson variables. Not surprisingly, the resulting distribution is of the same form as the
distribution of the di�erence of two independent Poisson variates introduced by Skellam [3].
Thus, we recast interest on this ignored distribution. We further consider the case of the
zero in�ated distribution, which is particularly interesting when an excess of ties is observed.
In pre- and post-treatment comparisons, such a model implies a large probability that the
patient’s condition remains stable.
Our approach di�ers from other competitive methods like GEE and mixed models. First of

all our approach is Bayesian and therefore allows for incorporating prior information. Beyond
the philosophical issues for or against the Bayesian approach, our method is relatively simpler
in nature than mixed e�ects models, where speci�c assumptions must be made concerning
the random e�ects. Moreover, it di�ers from the GEE approach since we use a well speci�ed
model based on a distribution for integer numbers and not on normal approximations or
general moment conditions.
The aim of the paper is to introduce the Poisson di�erence and its zero in�ated version

and present possible applications of them in the analysis of paired count data in medicine.
Further contributions of the paper are: (a) the estimation of the parameters using the Bayesian
approach and the development of an MCMC algorithm for this reason; (b) evaluation of certain
hypotheses in these distributions using posterior model odds and RJMCMC algorithm for their
estimation; (c) development of prior distributions for the hypothesis=model comparison; (d)
illustration of their practical use in an example from dental epidemiology. We should further
note, the distributions introduced here can be used to analyse discrete distributions which lie
in the whole range of integers (positive and negative) even if we cannot assume that they
arise as di�erence of Poisson variables. This set-up is only used for the data augmentation
algorithm. In the following, we focus on the distributions introduced rather than in a general
log-linear type model in order to underline how these distributions can be used for a direct
analysis and comparison of before and after treatment.
The remainder of the paper proceeds as follows: the distribution is derived in Section 2

where Bayesian estimation and hypothesis testing are also considered. An illustration of our
methodology is presented using DMFT index data in Section 3. The zero in�ated extension of
the Poisson di�erence model is examined in Section 4, followed by its application to DMFT
index data. We conclude with a short discussion in Section 6.

2. THE DISTRIBUTION OF THE BIVARIATE POISSON DIFFERENCE

2.1. The probability distribution

Let us consider two count measurements X and Y and their di�erence Z =X−Y . The probabil-
ity function of the di�erence Z is a discrete distribution de�ned on the set of integer numbers
Z= {: : : ;−2;−1; 0; 1; 2; : : :}. Although publications on distributions de�ned on Z are rare, the
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di�erence of two independent Poisson random variables has been discussed by Irwin [4] for
the case of equal means and Skellam [3] for the case of di�erent Poisson means. Suppose
that the discrete random variables X , Y jointly follow the bivariate Poisson distribution. The
probability function is given by

PX;Y (x; y | �1; �2; �3)= e−(�1+�2+�3) �
x
1

x!
�y2
y!

min(x;y)∑
i=0

(
x

i

)(
y

i

)
i!
(
�3
�1�2

)i
(1)

�1; �2; �3¿0; x; y=0; 1; : : : with Cov(X; Y )= �3. If �3 = 0 then the two variables are indepen-
dent. Marginally, each random variable follows a Poisson distribution with parameters �1 +�3
and �2 +�3, respectively. For more details on the bivariate Poisson distribution the reader can
refer to Reference [5].

Lemma 1
If (X; Y ) jointly follow the bivariate Poisson distribution with probability function (1), then
the distribution of the random variable Z =X − Y is given by

fPD(z | �1; �2)=P(Z = z | �1; �2)= e−(�1+�2)
(
�1
�2

)z=2
I|z|(2

√
�1�2) (2)

for all z ∈Z, where Ir(x) is the modi�ed Bessel function of order r (see Reference [6, p. 375])
de�ned by

Ir(x)=
(x
2

)r ∞∑
k=0

(
x2

4

)k
k!�(r + k + 1)

Proof
A quick proof of the result can be based on the trivariate reduction of the bivariate Poisson
distribution. If one de�nes three independent random variables Wi, each one following a
Poisson distribution with parameter �i, i=1; 2; 3, then the random variables X =W1 + W3

and Y =W2 + W3, jointly follow a bivariate Poisson distribution. The above implies that
Z =X − Y =W1 −W2 and hence the random variable of the di�erence does not depend on
the random variable W3 and, hence, its parameter �3.

Moreover, the probability function of Z is identical to that of the di�erence of two in-
dependent Poisson variates with parameters �1 and �2, respectively, derived by Skellam [3];
see also Reference [7, p. 191] and references therein. Note a misprint in Reference [7] about
the order of the modi�ed Bessel function. For simplicity we will refer to this distribution as
the Poisson di�erence (PD) distribution and will be denoted as PD(�1; �2).

Remark
The distributions of the di�erence between two independent and two bivariate (correlated)
Poisson variates are of the same form. However, the interpretation of the parameters is dif-
ferent. Assuming that the bivariate Poisson distribution is the correct distribution, then the
marginal means �x and �y will be unbiased estimates of �1 + �3 and �2 + �3, respectively,
instead of the parameters of interest �1 and �2. Therefore, the parameters of the PD distribu-
tion are not directly connected to the marginal means of the actual Poisson distributions.
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Before we proceed further, we should underline that the above distribution can be used
for modelling any discrete measurement which lie in the whole range of integer numbers
(positive and negative). This is important since discrete distributions for such measurements
are rare while such data usually arise in medicine as di�erences of discrete outcomes. There
is no need for the original data of the di�erence to be Poisson. We only use the Poisson
augmentation for the Bayesian estimation which follows.

2.2. Properties of the Poisson di�erence distribution

In this section we review existing and provide new properties of the Poisson di�erence dis-
tribution. The expected value of the PD(�1; �2) distribution is given by E(Z)= �1 − �2 while
the variance is Var(Z)= �1 + �2. In general, the odd cummulants are equal to �1 − �2 while
the even cummulants are equal to �1 +�2. The skewness is determined by the sign of �1−�2.
Thus, if �1¿�2 then positive skewness is present. The distribution is symmetric only when
�1 = �2 (the case discussed by Irwin [4]). For large values of the �1 + �2 the distribution
can be su�ciently approximated by the normal distribution. If the parameter �2 is very close
to 0, then the distribution tends to a Poisson distribution. On the contrary if the parameter �1
approaches 0, then the distribution is the negative of a Poisson distribution (that is, a Poisson
distribution at the negative axis). An interesting property is a ‘type’ of symmetry given by
fPD(z|�1; �2)=fPD(−z|�2; �1). This property can be useful for fast probability calculations. The
unimodality of the Poisson di�erence distribution can be proven using the results of Keilson
and Gerber [8]. The sum and the di�erence of two Poisson di�erence random variables also
follow the same distribution as the following lemma shows.

Lemma
Let us consider two random variables say Z1 ∼PD(�1; �2) and Z2 ∼PD(�3; �4): Then the sum
S2 =Z1 + Z2 follows a PD(�1 + �3; �2 + �4) distribution, while the di�erence D2 =Z1 − Z2
follows a Poisson di�erence distribution with parameters �1 + �4 and �2 + �3.

Proof
Since Z1 and Z2 can be written as Z1 =X1 − X2 and Z2 =X3 − X4 with Xi ∼Poisson(�i) inde-
pendently, for i=1; 2; 3; 4, one obtains that

S2 = (X1 − X2) + (X3 − X4)= (X1 + X3)− (X2 + X4)
with (X1 + X3)∼Poisson(�1 + �3) and (X2 + X4)∼Poisson(�2 + �4). With similar arguments
one can show the result for the di�erence.

Remark
If we consider a random sample of size n of i.i.d variables Zi; i=1; : : : ; n then we can straight-
forwardly show that Sn=

∑n
i=1 Zi ∼PD(n�1; n�2): This quantity approaches a normal distribu-

tion quite quickly.

Lemma 3
Suppose that one has a series of independent Poisson variates, that is Xi ∼Poisson(�i),
i=1; : : : ; n. Further assume a vector Q=(�1; �2; : : : ; �n)T, with �i ∈ {−1; 1}. Then the random
variable Sn=

∑n
i=1 �iXi follows a Poisson di�erence distribution with parameters

�1 =
∑n

i=1 �iI(�i¿0) and �2 =
∑n

i=1 �iI(�i¡0), where I(A) is the indicator function which
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takes value one if A is true and value zero otherwise. Note that if all �i=1 then the resulting
distribution is a simple Poisson distribution with parameter �1 =

∑n
i=1 �i.

Proof
We set S(1)n and S(2)n the sums with �i¿0 and �i¡0, respectively. Therefore

S(1)n =
n∑
i=1

I(�i¿0)Xi ∼Poisson(�1 =
n∑
i=1

�iI(�i¿0))

and

S(2)n =
n∑
i=1

I(�i¡0)Xi ∼Poisson(�2 =
n∑
i=1

�iI(�i¡0))

Now, the initial random variable Sn can be expressed as a di�erence of two Poisson variables,
Sn= S

(1)
n − S(2)n , and hence is distributed as a Poisson di�erence distribution with parameters

�1 and �2 as de�ned above.

Maximum likelihood estimation can be done via an EM type algorithm using the same data
augmentation as the one developed for Bayesian estimation in the next section. More details
on classical estimation can be found in Reference [9].

2.3. Bayesian inference

In Poisson models, the gamma conjugate prior distribution is used to facilitate analytic cal-
culations. Here we adopt the same prior structure which will be conjugate only in terms of
conditional distributions. Namely we assume independent prior distributions given by

�1 ∼Gamma(a1; b1) and �2 ∼Gamma(a2; b2) (3)

Observed di�erences zi, i=1; 2; : : : ; n constitute the data vector z. The full model likelihood
is given by

f(z | �1; �2)= e−n(�1+�2)
(
�1
�2

)(1=2)∑ zi n∏
i=1
I|zi|(2

√
�1�2)

and therefore the posterior distribution f(�1; �2 | z)∝f(z | �1; �2)f(�1)f(�2) is not analytically
tractable. We introduce the latent data

vi ∼Poisson(�1) and ui ∼Poisson(�2) (4)

under the constraint zi= vi−ui. Denote v=(v1; : : : ; vn), u=(u1; : : : ; un). The full joint posterior
distribution of the model parameters (�1; �2) and the latent data v; u is given by

f(v; u; �1; �2|z)∝f(z|v; u; �1; �2)f(v; u|�1; �2)f(�1; �2)

∝ e−n(�1+�2)�
∑n

i=1 vi
1 �

∑n
i=1 ui

2

{
n∏
i=1

I(zi= vi − ui)
vi!ui!

}
f(�1; �2)

where f(v; u|�1; �2) is the model likelihood when the latent data are available, and f(�1; �2)
is the joint prior of the model parameters.
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The gamma prior (3) results in the joint posterior

f(v; u; �1; �2|z)∝ e−(n+b1)�1−(n+b2)�2�n �v+a1−11 �n �u+a2−12

{
n∏
i=1

I(zi= vi − ui)
vi!ui!

}

where �v=
∑n

i=1 vi=n and �u=
∑n

i=1 ui=n. Using the above target distribution we construct the
following MCMC algorithm:

1. Sample (vi; ui) from f(vi; ui|zi= vi − ui; �1; �2)∝ �vi1 �
ui
2

vi!ui!
I(zi= vi − ui); for i=1; : : : ; n.

2. Sample �1 from f(�1|�2; v; u)∼Gamma(n �v+ a1; n+ b1).
3. Sample �2 from f(�2|�1; v; u)∼Gamma(n �u+ a2; n+ b2).

In step 1, for updating the augmented data (vi; ui), we use the following Metropolis step:

• If zi¡0 and (vi; ui) the current values of the augmented data then
— Propose v′i ∼Poisson(�1) and u′

i = v
′
i − zi.

— Accept the proposed move with probability �= min
{
1; �(v

′
i−vi)

2
(vi−zi)!
(v′i−zi)!

}
.

• If zi¿0 and (vi; ui) the current values of the augmented data then
— Propose u′

i ∼Poisson(�2) and v′i = u′
i + zi.

— Accept the proposed move with probability �= min
{
1; �(u

′
i−ui)

1
(ui+zi)!
(u′
i+zi)!

}
.

Extensions of the above model and the respective MCMC algorithm can be constructed
in a straightforward manner. A direct extension is implied by adopting covariates on the log
scale of the parameters �1 and �2. In such a case, we should use a normal prior distribution
on the new parameter space in the same manner as in Poisson log-linear models (see, for
example, Reference [10]).

2.4. Bayesian evaluation of the equality of means

When paired data are available, the hypothesis of equal means of the two (dependent) mea-
surements is usually under investigation. The equality of �1 and �2 can be investigated using
the posterior distribution of the di�erence �1−�2 (or the ratio �1=�2) and by checking whether
the value of zero (or one, respectively), which corresponds the equality of �’s, lie in the cen-
tral region or in the tails of the posterior distribution. In this case, the corresponding credible
intervals may give us an idea about whether the hypothesized value is plausible or not. But it
cannot be used to evaluate evidence in favour or against a speci�c hypothesis (see Reference
[11, p. 262]). Therefore, in this section, we describe how to estimate Bayes factor in order
to quantify evidence in favour of the equality of �′s.
Let us consider available data z and a set of competing models M= {m1; m2; : : : ; m|M|};

where |M| denotes the number of models under consideration. If f(m) is the prior probability
of model m∈M and Xm is its corresponding vector of model parameters, then, using the Bayes
theorem, the posterior probability of model m∈M is given by

f(m | z)= f(m | z)f(m)∑
mk∈M f(mk | z)f(mk) =

f(m)
∫
f(z | Xm;m)f(Xm |m) dXm∑

mk∈M f(mk)
∫
f(z | Xmk ; mk)f(Xmk |mk) dXmk

Alternatively, when we compare two competing models m1 and m2 induced by two hypotheses
we wish to test, then we focus on the posterior odds PO12 of model m1 versus model m2
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de�ned as

PO12 =
f(m1|z)
f(m2|z) =

f(z|m1)
f(z|m2) × f(m1)

f(m2)
=B12 × f(m1)

f(m2)

where B12 and f(m1)=f(m2) are the ‘Bayes factor’ and the ‘prior model odds’ of model m1
against model m2, respectively; for more details see Reference [12].
The integrals involved in the computation of the posterior model probabilities are analyti-

cally tractable only in speci�c examples. Therefore, asymptotic approximations or alternative
computational methods are frequently employed. In the following, we facilitate the reversible
jump MCMC (RJMCMC) algorithm introduced by Green [13] to evaluate posterior proba-
bilities of competing hypotheses concerning the PD distribution. Under this distribution, a
hypothesis of major interest is the equality of means of the latent data. This hypothesis is
substantial when we wish to compare the e�ciency of a medical treatment on a sample of
patients whose performance is measured before and after the treatment. The above hypothesis
testing induces the comparison of two models: the Poisson di�erence model with common
parameters denoted by m1 and parameter Xm1 = (�) and non-common parameters denoted by m2
with parameter vector Xm2 = (�1; �2)T.
In order to simplify and accommodate our hypothesis testing in an MCMC set-up we in-

troduce an additional latent binary indicator � and m1+� model indicator. The prior model
probabilities are speci�ed as f(�)= 1

2 , �=0; 1. The MCMC for model selection can be sum-
marized by the following steps:

1. Generate � using the following Metropolis step:
(a) Propose �′=1− � with probability one.
(b) i. If �′=1 then propose �′

1 and �
′
2 from a proposal distribution q(�′

1; �
′
2 | �).

ii. If �′=0 then propose common �′ from q(�′ | �1; �2).
(c) Accept the proposed move with probability �= min

{
1; O(�

′
1 ;�

′
2 ;�)

1−�

O(�1 ;�2 ;�′)�

}
where O(�′

1;
�′
2; �) is given by

O(�′
1; �

′
2; �)=

{
n∏
i=1

fPD(zi | �′
1; �

′
2)

fPD(zi | �; �)
}
f(�′

1; �
′
2 | �=1)

f(� | �=0)
f(�=1)
f(�=0)

q(� | �′
1; �

′
2)

q(�′
1; �

′
2 | �) (5)

2. Generate the latent data (v(m1+�)i ; u(m1+�)i ) of the current model m1+� from

f(v(m1+�)i ; u(m1+�)i | zi; �(m1+�)1 ; �(m1+�)2 ; �)

following step 1 in Section 2.3; where �(m1+�)j =(1 − �)� + ��j for j=1; 2 are the
parameters of the current model.

3. If �=1 generate �1 and �2 from f(�1; �2 | v; u) as in steps 2 and 3 in the MCMC
algorithm of Section 2.3.
If �=0 generate common � by f(� | v; u)∼Gamma(n �v + n �u + a; 2n + b); where n �v=∑n

i=1 v
(m1+�)
i and n �u=

∑n
i=1 u

(m1+�)
i .
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In the above scheme, step 1 refers to the RJMCMC model moves while steps 2 and 3 update
the parameters within the model proposed by the RJMCMC step. The latter are optional but
are used to improve the mixing and the convergence of the chain.
As proposal distributions we consider gamma distributions for each parameter �, �1

and �2 given by q(�1; �2 | �)= q(�1 | �)q(�2 | �) with q(�j | �)∼Gamma( �aj; �bj) for j=1; 2 and
q(� | �1; �2)∼Gamma( �a0; �b0). The parameters of the proposal distributions are important for
the convergence of the RJMCMC algorithm and can be speci�ed using a small pilot run of
each model (see Reference [14]). Hence the parameters can be set equal to �aj= ��

2
j =S

2
�j and

�bj= ��j=S2�j for j=0; 1; 2; where
��j and S2�j are the posterior mean and variance for �, � and

�2 estimated from the small pilot MCMC run. The above-proposed RJMCMC scheme is es-
sentially an independence sampler (or Metropolized Carlin and Chib approach, see Reference
[14]). In the above RJMCMC scheme, a natural choice might be to use the current values
of �1 and �2 in order to propose deterministically a value for the parameter of the simpler
model, �. Unfortunately, in this case, the posterior mode of simplest model (with common �)
is far away from the proposed values using either the arithmetic or the geometric mean of �1
and �2 which are natural choices in similar problems. Another choice could be to consider
automatic choices proposed by Brooks et al. [15]. This was not straightforward to implement
since derivations include the Bessel function and may have complicated considerably the al-
gorithm. For this reason, we have decided that an independence version of RJMCMC would
have been a more convenient choice.
After running the RJMCMC algorithm we estimate the posterior model probabilities of

models mk for k=1; 2 by

f̂(mk | z)= 1
N − B

N∑
t=B+1

I(m(t) =mk)

where N is the total number of iterations considered, B is the number of iterations discarded
as burn-in period, m(t) is the value of the model indicator m at iteration t. When we wish
to calculate the posterior model odds rather than the posterior model probabilities then we
propose to tune the prior model probabilities in such a way that both models are visited and
then calculate accordingly the actual posterior model odds.
A popular alternative, for estimating the Bayes factor, is the approach of Chib [16]. Gen-

erally the approach of Chib [16] is easier to implement than RJMCMC. On the other hand,
the main advantage of RJMCMC is that we can extract results from a single MCMC output
while Chib’s approach needs output from each model under consideration. This makes Chib’s
approach di�cult to implement when a large number of models is considered. Moreover, in
Chib’s approach, each model should be treated separately depending on the sampling scheme.
Hence, di�erent care should be given if we use Metropolis algorithm instead of Gibbs sampler;
see Reference [17]. Finally, some authors have reported that Chib’s method (for speci�c data
and models) fails to estimate Bayes factor with precision (see for example Reference [18]).
For all the above reasons, we prefer to use RJMCMC which can be adopted even if we use
a log-linear set-up or introduce variable selection in the model formulation. In the illustra-
tive example which follows, we have calculated the logarithm of the Bayes factor using also
Chib’s approach in order to compare its e�ciency with that corresponding to the proposed
RJMCMC method.
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2.5. Prior distributions for Bayesian model comparison

One of the di�cult tasks in Bayesian model comparison and hypothesis testing is the speci�-
cation of prior distributions. Di�culties mainly arise due to the behaviour of posterior model
odds as noted by Lindley [19] and Bartlett [20]. Essentially, we cannot use priors with large
variance which are thought to be non-informative because, in such case the posterior supports
the simplest model. Hence, the prior speci�cation for parameters �1; �2 and � is di�cult since
they are de�ned in (0;∞). Any prior expressing low information using an extremely large
prior variance will activate the Lindley–Bartlett paradox. In order to specify plausible prior
distributions for the model comparison of interest, we use ideas induced by Chen et al. [21].
Let us assume that we have a priori imaginary latent data (v∗i ; u∗

i ) of size n
∗. Using the

imaginary v∗ and u∗, the prior distribution f(�1; �2 | �=1) for model m2 can be de�ned by

f(�1; �2 | v∗; u∗; �=1)∝f(v∗; u∗ | �1; �2; �=1)cf0(�1; �2 | �=1)

where 06c61 is a parameter controlling the weight of belief on the prior data and f0(�1; �2)
can be considered as the pre-prior distribution of type (3). Here we set c=1=(2n∗) in order
for our prior imaginary data to account for one data point. Standard improper pre-prior can
be used by setting a= a1 = a2 = b= b1 = b2 = 0. In this case the above results to the power-
prior of Chen et al. [21]. We prefer to use proper pre-prior to avoid problems appearing in
the computation of Bayes factors (especially when the belief in our imaginary data is weak)
which follows. Therefore, for the hyper-parameters we use a= a1 = a2 = b= b1 = b2 = 0:01.
Assuming prior data with means �v∗= �u∗=1 weighted as one data point, leads us to

f(� | �=0)∼Gamma(1:01; 1:01) (6)

f(�j | �=1)∼Gamma(0:51; 0:51) for j=1; 2 (7)

3. DECAYED, MISSING AND FILLED TEETH (DMFT) INDEX EXAMPLE

We illustrate our methodology using the DMFT index data of B�ohning et al. [1]. The data
we use here are part of a large prospective study of 797 seven-year old school children from
an urban area of Belo Horizonte in Brazil (BELCAP study). Such count data are frequently
modelled as Poisson random variables or, in some cases, as zero in�ated Poisson random
variables (see Reference [1]). Here we consider the di�erence between the DMFT index before
and after a treatment (Z =DMFT1 −DMFT2) to eliminate correlation between measurements
(Pearson correlation=0:59). The before and after comparison is performed for the total sample
and for six di�erent schools which represent di�erent treatment groups. The available treatment
approaches were: oral health education (school 1), enrichment of the school diet with rice
bran (school 4), mouthwash with 0.2 per cent sodium �uoride (NaF) solution (school 5)
and oral hygiene (school 6). Additionally, in school 2 all the above four methods were
used while in school 3 no treatment was used (control group). A histogram of the di�erence
Z =DMFT1−DMFT2 of the two indexes for each school=treatment group are given in Figure 2.
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Here we analyse each group independently in order to keep the conditional conjugacy of the
parameters �1 and �2. Alternatively, a general model can be constructed using the following
formulation:

Zi� ∼ PD(�1�; �2�); i=1; : : : ; n�; �=1; 2; : : : ; 6

log(�j�) = �j + �j�; j=1; 2

with �11 = �21 = 0; �j� is the � parameter which corresponds to � school and j period and n�
is the number of children in � school=group. Di�erent parameterizations of the above model
are possible. No matter which parameterization we use, we can �nd a 1–1 transformation
between � parameters, calculated from the separate groups analysis, and the parameters of
model formulation similar to the above. This implies that the posterior distributions of the
parameters of such model can be easily estimated using the MCMC output of the separate
group analysis presented in this section. For the model formulation above, we can calculate
model parameters using the following transformations:

�j= log �j1 and �j�= log �j� − log �j1; j=1; 2; �=2; : : : ; 6

Generally, the two sets of parameters will be connected with an invertible matrix T such that
W=TR; where WT = (log �j�) and R is the parameter vector of the new model formulation. The
new model parameters will be simply given by R=T−1W.
Initially we provide posterior summaries for the two assumed models. From the posterior

summaries presented in Table I, it is evident that the posterior distributions of �1 and �2 are
not close even if we consider the control group. Additionally, for comparison reasons, we
provide an error bar plot (Figure 1) with the 2.5 and 97.5 percentiles and the mean of the
posterior distributions of �1−�2 which can be thought as estimates of the treatment e�ect for
each school e�ect. All results are based on 10 000 iterations with additional 1000 iterations
as a burn-in. The after treatment DMFT has lower rate measured by �2. Posterior summaries
for the model with common � are also provided for comparison reasons. From Figure 1, we
can discriminate school 1 as the one with the greatest before and after treatment di�erence
and schools 4 and 6 as the groups with the lower di�erence. The posterior distributions of
the parameters’ di�erence provides su�cient information in favour of the improvement of
oral hygiene in all treatment groups. Comparing the posterior distributions of the parameters’
di�erence, we cannot draw a �rm conclusion for which treatment e�ciency is higher. In the
following paragraph, we proceed further and quantify the evidence in favour of the inequality
between �1 and �2 using the Bayes factor.
The logarithm of the Bayes factor of model m2 : PD(�1; �2) versus model m1 : PD(�; �) is

also provided in Table I. The RJMCMC chain was a priori calibrated to visit both models
under consideration in order to be able to estimate the log-Bayes factors with precision. The
evidence in favour of model m2 is strong even for the control group inducing that the DMFT
index was improved in all comparisons. In the same table, Monte Carlo error estimates for
the log-Bayes factors using the batch mean method are also given; for more details on the
approach see Reference [22] and for similar illustration in variable selection see Reference
[14]. A total number of 50 sub samples were used to estimate Monte Carlo error by the
standard deviation of the estimates in each sub sample. All Monte Carlo errors are low which
means that the Bayes factor is estimated with increased precision. Parameters of the proposal
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Table I. Posterior summary results for DMFT data using the Poisson di�erence distribution (Priors:
equations (6) and (7); RJMCMC details: Burn-in =1000 iterations, Iterations Kept =10 000;
St: Dev:=Posterior Standard Deviation, logB21: log Bayes factor of m2 versus m1, MC Error: Monte

Carlo error estimated by the standard deviation of the logB21 for 50 sub samples).

m1: PD(�; �) m2: PD(�1; �2)

� �1 �2

School n Mean St. Dev. Mean St. Dev. Mean St. Dev. log B21 MC Error

1 124 4.35 0.528 3.28 0.333 1.25 0.304 37.96 0.19
2 127 3.53 0.444 3.11 0.330 1.66 0.310 20.00 0.14
3 136 2.37 0.313 2.10 0.209 0.75 0.181 31.49 0.20
4 132 2.82 0.360 2.71 0.307 1.56 0.294 14.69 0.14
5 155 3.41 0.395 2.65 0.260 0.98 0.239 40.31 0.13
6 123 2.24 0.305 2.13 0.247 1.01 0.227 17.87 0.11
All 797 3.16 0.174 2.72 0.117 1.25 0.108 168.60 0.13

1.0 1.5 2.0

School 1

School 2

School 3

School 4

School 5

School 6

All Schools

Posterior Credible Intervals for Theta1-Theta2

Figure 1. 95 per cent credible intervals of �1−�2 for each school=treatment
group using the PD distribution.

distributions were speci�ed following the approach presented in Section 2.4 after running
each model for 500 iterations.
We have also calculated logB21 using Chib’s marginal likelihood approach using output of

length 5000 iterations and additional 500 burn-in for each model. This results in a total of
10 000 iterations kept which is equivalent to the number of iterations we have considered in
RJMCMC. Using similar approach as above, we have separated the output in 50 batches and
estimated logB21 in each of them using the Chib’s marginal likelihood approach. The standard
deviation of the estimated quantities in each batch measures the Monte Carlo error and is
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Figure 2. Comparison of observed and median predictive counts of DMFT di�erence (DMFT1−DMFT2)
using the Poisson di�erence distribution for each school=treatment group (dotted lines represent 2.5 and

97.5 per cent quantiles of the predictive distribution of counts).
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directly comparable to the corresponding Monte Carlo error calculated for RJMCMC. Chib’s
method has demonstrated considerably higher Monte Carlo error (about 3–9 times higher).
In all the above comparisons, we used priors (6) and (7). After performing sensitivity

analysis for the data of school 2, we found that, for values �u∗= �v∗¡1, results are quite
robust. On the other hand, when we consider increasing the values �u∗= �v∗ then our priors
are quite informative in terms of �1 and �2 which is also re�ected in the values of log-BF
giving more support to models with common �’s.
In order to evaluate the �t of our PD model we additionally plotted in Figure 2 the median

and the 2.5 and 97.5 percentiles of the predictive counts for each set of the data. This gives
us a rough idea of the su�ciency of the PD model concerning the DMFT data. Generally,
the PD distribution seems to �t the data with the exception of the zero value. Excess of zeros
appears in most of the groups=schools. For this reason, in the following section, we extend
our methodology by introducing a zero in�ated variation of the PD distribution in order to
capture the excess of zeros, which is usually observed in such data.

4. EXTENDED MODELS: THE ZERO INFLATED DISTRIBUTION

Zero-in�ated distributions are used when an excess of zeros, relative to the expected frequency,
is observed. We extend our model to cover the case of zero in�ation. We de�ne the zero
in�ated Poisson Di�erence (ZPD) distribution as

fZPD(0 |p; �1; �2) =p+ (1− p)fPD(0 | �1; �2) and

fZPD(z |p; �1; �2) = (1− p)fPD(z | �1; �2) (8)

for z ∈Z\{0}; where p∈ (0; 1) and fPD(z | �1; �2) is given by (2). This distribution will be
denoted as ZPD(p; �1; �2). Zero in�ated distributions have been described in Reference [7] and
references therein. Recently, B�ohning et al. [1] recast interest in such distribution proposing
zero in�ated Poisson distributions allowing for covariates (see also Reference [23]).
The zero-in�ated distribution can be thought as a �nite mixture distribution with one of the

components being a degenerate-at-zero distribution. Thus, the additional parameter p can be
considered as the mixing proportion. We introduce a latent binary variable �i indicating the
component (�i=1 indicates the zero in�ated component). The observed data are denoted by
z=(z1; : : : ; zn)T. Moreover, we specify

P(Z0i=0 | �i=1; �1; �2) = 1

P(Z0i= z | �i=0; �1; �2) =fPD(z | �1; �2)

where Z0 is a zero in�ated Poisson di�erence random variable. The parameter vector is now
(p; �1; �2) while the latent data are indicated by (T; v; u). For the parameters �1 and �2 we use
gamma priors as given by (3), while for the mixing proportion p we use a Beta(a3; b3) prior
distribution; in our illustration we use a3 = b3 = 1. Then, the target posterior distribution with

Copyright ? 2005 John Wiley & Sons, Ltd. Statist. Med. 2006; 25:1885–1905



1898 D. KARLIS AND I. NTZOUFRAS

the full latent data is given by

f(T; v; u; p; �1; �2 | z)∝ exp{−(n− n ��+ b1)�1}�n �v−
∑n

i=1 �ivi+a1−1
1

× exp{−(n− n ��+ b2)�2}�n �u−
∑n

i=1 �iui+a2−1
2

×
{

n∏
i=1
[1− I(zi �=0)I(�i=1)]

(
I(zi= vi − ui)

vi!ui!

)1−�i}

×pn ��+a3−1(1− p)n−n ��+b3−1 (9)

where ��=
∑n

i=1 �i=n. Estimation of the above posterior distribution can be obtained using
MCMC methods as in Section 2.3; for details see Appendix A.
Moreover, RJMCMC can be used to test two hypotheses of interest: the equality of means

(as in Section 2.4) and the existence of excessive zeros (p¿0). The second hypothesis is
essential when there is an excessive number of ties which implies that ZPD should be
used. The combination of the above two hypotheses induces four models: m1 and m2 as
in Section 2.4 and the ZPD models m3 and m4 with parameter vectors Xm3 = (�; p)T and
Xm4 = (�1; �2; p)T, respectively. In order to incorporate both comparisons in one RJMCMC run
we introduce � and � latent binary indicators and mk model indicator with k=1+�+2�. The
value �=0 implies that �1 = �2, while the value �=0 implies that p=0. The prior model
probabilities are given by f(�)=f(�)=1=2, �; �=0; 1. The RJMCMC for model selection is
summarized by the procedure described in detail in Appendix B.
The ZPD can model the di�erence of paired data and capture excess of zero-values. The in-

terpretation of zero-values is important when we consider di�erences of clinical measurements.
These zero-values indicate patients whose condition (for several reasons) remains constant and
therefore are not a�ected by the treatment. This percentage may be important for the e�ciency
of the treatment. In the ZPD model, this percentage can arise from two components. The �rst
component is the PD distribution contributing via the number of observations that we expect
to present no change in their measurements under the estimated e�ects given by �2 and �1
parameters. The comparison of �1 = �2 takes into account this percentage. The second com-
ponent captures the excess of patients with no improvement which is not predicted by the
PD component. In our DMFT example, this may indicate children that are already healthy
and their condition cannot be improved further (this cannot be captured by the general PD
distribution). Generally, when a treatment is preventive and the sample comes from the gen-
eral healthy population, then we expect large p to measure a positive e�ect of the treatment
(people are healthy and remain healthy). On the other hand, if the treatment is therapeutic, p
may indicate the percentage of patients with non-reversible condition and hence the percentage
of patients where the treatment has no e�ect.
The meaning of the zero di�erence may vary from problem to problem. Therefore, interpre-

tation may depend upon the measurements we compare. In many cases it might be important
to separate zero di�erences that correspond to 0–0 pairs from the rest. For example, in the
DMFT data, the 0–0 pairs correspond to healthy a priori children who remain healthy after
the treatment. If both before and after data are available, then a possible diagnostic analysis
in order to examine the e�ect of 0–0 counts is to rerun the ZPD model after removing cases
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with X =0 and compare the estimated mixing proportions. If the mixing proportion is robust,
then the de�ciency of zeros is similar for X =0 and X¿0. If the proportion decreases, then
an important part concerning the excess of zeros might be attributed to the 0–0 case which
corresponds to a positive e�ect of the treatment (patient is healthy and remains healthy).

5. DMFT INDEX EXAMPLE (REVISITED)

We reanalyse the DMFT index data using the ZPD distribution in order to account for the
excess of zeros. Posterior means and standard deviations for the ZPD(p; �1; �2) using 10 000
iterations and 1000 additional iterations as burn-in are given in Table II. Figure 3 depicts
error bars of the posterior distribution of the ZPD model for �1 − �2 and p used to compare
di�erences between schools=treatments. Results are in agreement with Figure 2, where the
excess of zeros was clear for schools 2 and 5 and for the aggregated data of all schools, with
posterior means of mixing proportions equal to 0.211, 0.229 and 0.148, respectively. Smaller
excess of zeros was observed for schools 1, 3, 4 and 6 (posterior means of p¡ 0.11); also
see Figure 3(b). From Figure 3(a) we observe large di�erences between �1 and �2 parameters
for schools 1 and 5. On the other hand, for schools 4 and 6 the di�erences are the lowest.
In order to examine the e�ect of 0–0 counts di�erences (recall that in our example the

data for both periods are available), we have excluded cases which were healthy at the
beginning of the study and we rerun the ZPD model. By this analysis, the e�ect of removing
those observations may indicate more clearly the preventive nature of the treatment, since,
healthy patients have now removed. All posterior means of mixing proportion were now found
considerably lower (from 0.017 for the aggregated data to 0.030 for school 2). Since in all
schools, the mixing proportion was considerably decreased we can infer that the excess of
zero di�erences in the original data was due to 0–0 ties. Such ties here can be considered as
in favour of the treatments (which are preventive) since the patient is healthy at the beginning
of the study and remains healthy after the treatment.
Following the above analysis, we estimated posterior model probabilities for all four mod-

els under consideration using the RJMCMC algorithm. Posterior probabilities for model m4:

Table II. Posterior summary results for DMFT data using the zero in�ated Poisson di�erence distribution
(Priors: equations (6) and (7); RJMCMC details: Burn-in =1000 iterations, Iterations Kept =10 000;

St: Dev:=Posterior Standard Deviation, logB4j: log Bayes factor of m4 versus mj).

m4: ZPD(p; �1; �2) ZPD(p; �1; �2) versus

p �1 �2 PD(�; �) PD(�1; �2) ZPD(p; �; �)

School Mean St. Dev. Mean St. Dev. Mean St. Dev. log B41 logB42 logB43 f(m4 | z)
1 0.083 0.04 3.44 0.34 1.23 0.30 38.43 0.45 39.13 0.596
2 0.211 0.05 3.81 0.42 1.97 0.39 30.00 10.02 20.95 1.000
3 0.076 0.05 2.26 0.23 0.80 0.19 31.04 −0.48 31.68 0.420
4 0.108 0.05 3.00 0.36 1.72 0.32 15.83 1.10 14.54 0.783
5 0.229 0.04 3.21 0.30 1.05 0.25 54.81 14.45 42.25 1.000
6 0.105 0.05 2.37 0.29 1.12 0.25 18.64 0.74 18.11 0.638
All 0.148 0.02 3.10 0.14 1.38 0.12 201.34 32.71 169.73 1.000
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Figure 3. 95 per cent credible intervals of �1−�2 and p for each school=treatment group using the ZPD
distribution: (a) posterior credible intervals for �1 − �2; and (b) posterior credible intervals for p.

ZPD(p; �1; �2) are provided in the last column of Table II. In all sets of data, models m1
and m3 (with common �’s) were not visited at all. Results con�rm our conclusions based
on the posterior distributions of the mixing proportion p. Hence, for the aggregated data and
schools 2 and 5, the posterior probability of m4 is found equal to one, indicating strong evi-
dence against both hypotheses tested (equal � and p=0). For school 6, model m4 is supported
with posterior probabilities equal to 0.78 (Bayes factor equal to 4.6) indicating positive evi-
dence in favour of the hypothesis p¿0. For schools 1 and 6, model m4 is slightly supported
with posterior probabilities equal to 0.60 and 0.64 (Bayes factors 1.48 and 1.76), respectively,
indicating low evidence against the hypothesis p=0. Finally, for school 3 the hypothesis of
zero mixing proportion is slightly supported since m4 has posterior probability 0.42 and Bayes
factor of m4 versus m3 is equal to 0.75. To complete our analysis, we rerun the RJMCMC
algorithm after calibrating prior model probabilities so that all models are visited. This en-
ables us to estimate with precision the logarithm of Bayes factors rather than the posterior
probabilities and ensure that the algorithm works e�ciently; results are provided in Table II.
When running RJMCMC for the data from each school, we used the same proposals for
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�, �1 and �2 for both cases of �=0 (PD) and �=1 (ZPD) since their posterior distributions
were close, while, for the aggregated data, we used di�erent proposals for each value of � to
increase the e�ciency of the algorithm. The length of all RJMCMC runs was equal to 11 000
iterations discarding the �rst 1000 iterations as burn-in. In all examples we used priors (6) and
(7) for �, �1 and �2 and uniform prior for p. After performing sensitivity analysis on the data
set of school 2, we found that results concerning the comparison between models with p¿0
versus models with p=0 are robust to changes of �v∗= �u∗. Finally, we have used posterior
model probabilities to produce predictive median counts and their 2.5 and 97.5 percentiles for
each school which are depicted in Figure 4.
To sum up, the ZPD model provides useful information for the DMFT index di�erence.

After the diagnostic excluding prior-to-treatment healthy cases, we have seen that most of the
estimated mixing proportion can be attributed to 0–0 di�erences (healthy cases who remain
healthy after the treatment). Hence, here, parameter p may be interpreted as a percentage
excess of patients with stable oral hygiene. Large p in ZPD indicates positive evidence in
favour of the preventive treatment used. For example, only in the control group (school 3)
did we observe (minor) evidence against the excess of patients with stable oral hygiene. On
the other hand, in schools 2 and 5 we observe strong evidence in favour of an increased
excess of zero DMFT di�erence. In these groups we expected that the treatments would have
been more e�cient since a mouthwash with 0.2 per cent sodium �uoride (NaF) was used in
school 5 and all four treatments were used in school 2.

6. DISCUSSION

In this paper we examined the distribution of the di�erence of two correlated Poisson variates
and their zero-in�ated counterpart. We presented in detail Bayesian estimation and hypothesis
testing for the parameters of interest. The PD distribution allows us to test di�erences on paired
count data by eliminating their correlation. Moreover, the ZPD model captures the excess of
zeros, which frequently appear in medical data, and introduces over-dispersion on the marginal
distributions of counts. Finally, the mixing proportion p in ZPD may be interpreted as an
excess of patients with constant condition which, may o�er important information concerning
the e�ciency of the treatment. The interpretation of p depends on the nature of the treatment
(preventive or therapeutic). Both PD and ZPD distributions can be used e�ciently for mod-
elling the di�erence of discrete variables even if the original ones are not Poisson distributed.
The Poisson data augmentation is used for the estimation procedure in the MCMC algorithm.
An important limitation of the proposed model is the assumption of non-negative correlation

between the two measurements under consideration. Such an assumption is reasonable for pre-
and post-treatment measurements. If negative correlation is present on our data, then the Bayes
factor will support the Poisson model. Before proceeding to the analysis of such data using
PD and ZPD distributions we propose to calculate correlation coe�cients or use scatter plots
to identify the existence of non-positive correlation between the measurements of interest.
Our proposed models can be directly generalized by constructing other distributions based

on di�erences of discrete variables di�erent from the Poisson used in this paper. For example,
assume that parameter �1 follows a gamma distribution. Then the di�erence of such variables
can be derived by a bivariate model with negative binomial and Poisson marginal distributions.
Such model not only allows for modelling dependence between two count variables but also
introduces over-dispersion in the marginal distributions.
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Figure 4. Comparison of observed and model averaged median predictive counts of DMFT di�erence
(DMFT1 − DMFT2) for each school=treatment group (dotted lines represent 2.5 and 97.5 per cent
quantiles of the model averaged predictive distribution of counts); for schools 2 and 5 the predictive

values are based on the zero in�ated distribution only, since f(m4 | z)=1.
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Finally, our current research involves extending the methodology for models based on PD
and ZPD models using a general glm-type model with covariates on model parameters �1,
�2 and possibly p. An interesting problem is to incorporate Bayesian variable selection tech-
niques to identify well �tted models using the data augmentation approach presented in this
paper. A further interesting problem is the comparison of �-di�erences in the DMFT example
using RJMCMC. This application is more complicated than the comparison presented in the
paper and also involves consideration of multiple comparisons of groups using the Bayesian
approach.

APPENDIX A: MCMC FOR THE ZERO-INFLATED POISSON
DIFFERENCE DISTRIBUTION

1. Sample �i from Bernoulli(p̃) with

p̃=f(�i=1 |p; �1; �2; z)= I(zi=0)p
p+ (1− p)fPD(0 | �1; �2)

2. If �i=0 then sample (vi; ui) from f(vi; ui | zi= vi − ui; �1; �2)∝ �vi1 �
ui
2

vi!ui!
I(zi= vi − ui):

If �i=1 we do not need to generate any latent data (vi; ui).
3. Sample �1 from f(�1 |p; �2; T; v; u)∼Gamma(n �v−∑n

i=1 �ivi + a1; n− n ��+ b1).
4. Sample �2 from f(�2 |p; �1; T; v; u)∼Gamma(n �u−∑n

i=1 �iui + a2; n− n ��+ b2).
5. Sample p from f(p | �1; �2; T; v; u)∼Beta(n ��+ a3; n− n ��+ b3).
For model m3 : ZPD(�; �; p), with prior �∼Gamma(a; b), we generate � from

f(� |p; T; v; u)∼Gamma
(
n �v+ n �u−

n∑
i=1
�i(vi + ui) + a; 2n(1− ��) + b

)
(A1)

instead of generating separate �1 and �2 in steps 3 and 4 above. In all other steps �1 and �2
are substituted by the common parameter �.

APPENDIX B: RJMCMC FOR THE ZERO-INFLATED POISSON
DIFFERENCE DISTRIBUTION

1. Generate � using the following Metropolis step:

(a) Propose �′=1− � with probability one.
(b) i. If �′=1 then propose �′

j from q(�′
j | �; �; �) for j=1; 2.

ii. If �′=0 then propose common �′ from q(�′ | �1; �2; �; �).
(c) Accept the proposed move with probability �= min{1; O1(�′

1 ;�
′
2 ;�;p)

1−�

O1(�1 ;�2 ;�′ ;p)� } with

O1(�′
1; �

′
2; �; p) =

{
n∏
i=1

fZPD(zi |p; �′
1; �

′
2)

fZPD(zi |p; �; �)
}
f(�′

1; �
′
2 | �=1; �)

f(� | �=0; �)
{
f(p | �=1; �)
f(p | �=0; �)

}�

× f(�=1)
f(�=0)

× q(� | �′
1; �

′
2; �=1; �)

q(�′
1; �

′
2 | �; �=0; �) (B1)

If �=0 then, in the above equations, p is set equal to zero.
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2. Generate � using following RJMCMC step:

(a) Propose �′=1− � with probability one.
(b) i. If �′=1 then propose p from q(p | �).

ii. If �′=0 then set p=0.
(c) Accept the proposed move with probability �= min{1; O2(p; �1; �2)1−2�} with

O2(p; �1; �2) =
{

n∏
i=1

fZPD(zi |p; �1; �2)
fPD(zi | �1; �2)

}
× f(p | �=1)

q(p | �) × f(�=1)
f(�=0)

×
(
f(�1; �2 | �=1; �=1)
f(�1; �2 | �=0; �=1)

)�
×
(
f(� | �=1; �=0)
f(� | �=0; �=0)

)1−�
(B2)

If �=0 then �1 and �2 of the above equation are substituted by �.

3. If �=1 then generate �i as in step 1 of the Appendix A; otherwise set �i=0.
4. Generate (vi; ui) from f(vi; ui | zi; �; �; �i). If �=1 then follow step 2 of Appendix A;
else follow step 1 of Section 2.3.

5. If �=1 generate �1, �2 as in steps 3 and 4 of Appendix A; else generate � from (A1).

As a proposal q(p | �) in step 2 we consider a Beta( �a; �b) distribution with parameters
calculated using pilot run estimates of model m4 following Reference [14]. Here, we specify �a
and �b by matching the moments of the proposal distribution with the posterior mean �p and
variance s2p of the pilot run. Hence, �a and �b are given by �a= �p{ �p(1 − �p)=s2p − 1} and
�b= �a(1 − �p)= �p. Proposals of �, �1 and �2 can be set according to Section 2.4. When the
posterior distributions of �, �1 and �2 for the ZPD and PD models are far away from each
other, we advise to use di�erent proposals depending on the status of �.
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