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Summary. Models based on the bivariate Poisson distribution are used for modelling sports
data. Independent Poisson distributions are usually adopted to model the number of goals of
two competing teams. We replace the independence assumption by considering a bivariate
Poisson model and its extensions. The models proposed allow for correlation between the two
scores, which is a plausible assumption in sports with two opposing teams competing against
each other. The effect of introducing even slight correlation is discussed. Using just a bivariate
Poisson distribution can improve model fit and prediction of the number of draws in football
games.The model is extended by considering an inflation factor for diagonal terms in the bivari-
ate joint distribution.This inflation improves in precision the estimation of draws and, at the same
time, allows for overdispersed, relative to the simple Poisson distribution, marginal distributions.
The properties of the models proposed as well as interpretation and estimation procedures
are provided. An illustration of the models is presented by using data sets from football and
water-polo.

Keywords: Bivariate Poisson regression; Difference of Poisson variates; Inflated distributions;
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1. Introduction

The Poisson distribution has been widely accepted as a simple modelling approach for the
distribution of the number of goals in sports involving two competing teams. Although sev-
eral researchers (see, for example, Lee (1997) and Karlis and Ntzoufras (2000) and the refer-
ences therein) have shown the existence of a (relatively low) correlation between the number
of goals scored by the two opponents, this has been ignored in most modelling approaches
since it demands more sophisticated techniques. Maher (1982) discussed this issue, and Dixon
and Coles (1997) extended the independent Poisson model by introducing indirectly a type of
dependence. In team sports, such as football and water-polo, it is reasonable to assume that the
two outcome variables are correlated since the two teams interact during the game. Moreover,
in some sports games, the two opponents try to score sequentially, and thus the speed of the
game of one team leads to more opportunities for both teams to score. A typical example is
basketball: the correlations for the National Basketball Association and the Euroleague scores
for the 2000–2001 season are 0.41 and 0.38 respectively.
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An alternative to the independent Poisson model can be constructed assuming that the two
outcome variables follow a bivariate Poisson distribution (see Kocherlakota and Kocherlakota
(1992) and references therein). The marginal distributions are simple Poisson distributions,
whereas the randomvariables are nowdependent.Maher (1982)mentioned thebivariatePoisson
distribution but its use has been largely ignored, mainly because of the computational burden
for fitting such a model.
The remainder of the paper proceeds as follows. Firstly, in Section 2, we present briefly the

bivariate Poisson distribution and discuss its applicability in modelling sports data, especially
for football games. The bivariate Poisson distribution allows for improving the model fit of the
number of draws, a problem reported by some researchers (for example see Maher (1982) and
Lee (1997)). An interesting feature of the bivariate Poissonmodel is the fact that the distribution
of the difference of the two variates is the same as the distribution of the difference of two inde-
pendent Poisson variates. However, the parameters have an entirely different interpretation.
Moreover, an incorrect use of the independent Poisson case leads to significant differences.
The effect of such a misspecification is illustrated by using a simple example. Maximum likeli-
hood estimation of the parameters is made through an EM algorithm. In Section 3, extensions
through inflated models are proposed. Since a draw is represented by diagonal terms in a bivar-
iate distribution, adding an inflation term on the diagonal allows for more precise modelling of
the number of draws. In Section 4, the models proposed are illustrated by using examples from
football and water-polo. Finally, concluding remarks can be found in Section 5.

2. The bivariate Poisson distribution and its implementation in sports modelling

2.1. The bivariate Poisson distribution
Consider random variablesXκ, κ = 1, 2, 3, which follow independent Poisson distributions with
parameters λκ > 0. Then the random variables X = X1 + X3 and Y = X2 + X3 follow jointly a
bivariate Poisson distribution BP.λ1,λ2,λ3/, with joint probability function

PX,Y .x,y/ = P.X = x,Y = y/

= exp{−.λ1 + λ2 + λ3/}
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This bivariate distribution allows for dependence between the two randomvariables.Marginally
each random variable follows a Poisson distribution with E.X/ = λ1 + λ3 and E.Y/ = λ2 + λ3.
Moreover, cov.X,Y/ = λ3, and hence λ3 is a measure of dependence between the two random
variables. If λ3 = 0 then the two variables are independent and the bivariate Poisson distri-
bution reduces to the product of two independent Poisson distributions (referred to as the
double-Poisson distribution). For a comprehensive treatment of the bivariate Poisson distribu-
tion and its multivariate extensions see Kocherlakota and Kocherlakota (1992) and Johnson
et al. (1997).
It is plausible to adopt this distribution for modelling dependence in team sports. A natural

interpretation of the parameters of a bivariate Poisson model is that λ1 and λ2 reflect the ‘net’
scoring ability of each team whereas λ3 reflects game conditions (e.g. the speed of the game, the
weather or stadium conditions).

2.2. The probability of the difference
Let us now define the difference Z = X − Y of the goals scored by two opposing teams. Since
P.Z = z/ = P.X − Y = z/ = P.X1 + X3 − X2 − X3 = z/ = P.X1 − X2 = z/, the probability
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function ofZ is independent of λ3 and is the same as that derived from two independent Poisson
variates. So Z follows the Poisson difference distribution with parameters λ1 and λ2, denoted
as PD.λ1,λ2/, given by

PZ.z/ = P.Z = z/ = exp{−.λ1 + λ2/}
(

λ1

λ2

)z=2

Iz {2√.λ1λ2/} , .2/

z = . . . , −3, −2, −1, 0, 1, 2, 3, . . . , where Ir.x/ denotes the modified Bessel function (see
Abramowitz and Stegun (1974), page 375) defined by

Ir.x/ =
(x

2

)r ∞∑
k=0

.x2=4/k

k! Γ.r + k + 1/
: .3/

A special case of two independent Poisson distributions for the case of equal means was
derived by Irwin (1937) whereas the general case was considered by Skellam (1946). Interesting
references on the Poisson difference distribution can be found in Johnson et al. (1992), page
191. Keller (1994) calculated the probability of winning a game assuming independent Poisson
distributions for both X and Y .
Although distribution (2) implies that the winning probability (Z > 0) does not depend on

parameter λ3, treating the number of goals independently for each team leads to an overesti-
mation of model parameters. It should be kept in mind that, since the parameters λ1 and λ2 are
estimated from the marginal distributions, the covariance parameter λ3 is confounded. In the
following section we examine the effect of such a misspecification.

2.3. The effect of model misspecification
Let us consider that the true underlying model is the bivariate Poisson model but we use instead
the double-Poissonmodel. Thenweassume that the differenceZ = X−Y ∼ PD.λ1+λ3,λ2+λ3/

instead of the correct Z ∼ PD.λ1,λ2/. This misspecification has quite a large effect even if the
covariance λ3 is as low as 0.10, which is about the observed covariance in football.
Fig. 1 depicts the relative change in the probability of a draw between the two competing

teams, when independent Poisson distributions are considered compared with the bivariate

Fig. 1. Relative change in the probability of a draw when the two competing teams have marginal means
equal to λ1 D 1 and λ2 ranging from 0.1 to 2: the different lines correspond to different levels of the covari-
ance λ3
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Poisson model with small covariance parameter λ3. Namely the independent Poisson model
assumes that X ∼Poisson.1/ whereas Y ∼Poisson.λ2/. The competing model assumes that
.X,Y/ ∼ BP.1 − λ3,λ2 − λ3,λ3/. Note that for both models the marginal means are the same,
but the bivariate Poissonmodel assumes also the existence of the covariance λ3.We let the value
of λ2 vary from 0.1 to 2, for different values of the covariance term λ3 = 0:05, 0:10, 0:15, 0:20.
These values of the covariance are rather small but are close to those that are observed in real
football data.
Fig. 1 shows that, for the typically observed range of counts in football data, the probability

of a draw under a bivariate Poissonmodel is larger than the corresponding probability under the
double-Poisson model even if λ3 is quite small. For example, if we consider a bivariate Poisson
model with λ3 = 0:05 and λ1 = λ2 = 1 then we expect almost 3.3% more draws than under the
corresponding independent Poisson model, whereas if λ3 increases to 0.20 we expect 14% more
draws. It is also clear that the larger the λ3 the larger the relative change is. This may explain the
empirical fact that the observed number of draws is usually larger than that predicted under an
independent Poisson model.

2.4. Estimation
In this section we focus on the estimation of the parameters of the bivariate Poisson distri-
bution. For the simple, but unrealistic for sports data, model without covariates, standard
estimation procedures have been proposed (see, for example, Kocherlakota and Kocherlakota
(1992)).Herewe considermore realisticmodels that include covariates. Bivariate Poisson regres-
sionmodels have been described recently in Kocherlakota andKocherlakota (2001) andHo and
Singer (2001). The former presents a Newton–Raphson approach for maximizing the likelihood
whereas the latter describes a generalized least squares method.
Let us consider the general case of a bivariate Poisson regression. For the ith observation the

model takes the form

.Xi,Yi/ ∼ BP.λ1i,λ2i,λ3i/,

log.λκi/ = wκiβκ, κ = 1, 2, 3,
.4/

i = 1, . . . ,n denotes the observation number, wκi denotes a vector of explanatory variables for
the ith observation used to model λκi and βκ denotes the corresponding vector of regression
coefficients. It is clear that each parameter of the bivariate Poisson distribution may be influ-
enced by different characteristics and variables. For this reason, the explanatory variables that
are used to model each parameter λκi may not be the same. Parameter estimation for such a
model is not straightforward. Hence, we make use of the EM algorithm to obtain maximum
likelihood estimates.
To construct the EM algorithm for the bivariate Poisson regression model, we make use of

the trivariate reduction derivation of the bivariate Poisson distribution. For this reason, for each
observation i, we further introduce the latent variables X1i, X2i and X3i for which we assume
a Poisson distribution with parameters λ1i, λ2i and λ3i respectively. Moreover, we assume that
Xi = X1i + X3i and Yi = X2i + X3i.
The EM algorithm proceeds by estimating the unobserved data via their conditional expec-

tations at the E-step and then it maximizes the complete-data likelihood at the M-step. Hence,
at the E-step, we obtain the posterior expectation of X1i, X2i and X3i given the data and the
current parameter values and then, at theM-step, we maximize the complete-data likelihood by
fitting three Poisson regressionmodels. The aim is now to estimate the regression coefficientsβκ
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for κ = 1, 2, 3. The full algorithm is available from the authors on request. This EM algorithm
is very flexible and many variations of the bivariate Poisson model can be fitted with slight
modifications.

3. Inflated bivariate Poisson distributions

The bivariate Poisson model introduces correlation between the variables, but the marginal dis-
tributions are still Poisson.As an improvement, relative to the simple bivariatePoissonmodel,we
may consider mixtures of bivariate Poisson distributions, either finite or infinite. Such mixtures
may have a variety of forms, depending on the varying parameters and the mixing distribution.
However, such models incorporate very complicated structures and, therefore, are not very
useful for practical application in sports modelling.
A type of inflated model was used by Dixon and Coles (1997) for modelling football games.

They initially assumed two independent Poisson distributions and then they corrected the ex-
pected values for the outcomes (0–0, 1–0, 0–1, 1–1) by an additional parameter. We propose
alternative models which, at the same time, incorporate correlation between the variables and
overdispersed (relative to Poisson) marginal distributions while they further improve the fit on
the counts of draws.
If the score 0–0 is underestimated by the model then we may inflate the probability at the

(0,0) cell by adding a parameter. In such a case, a model similar to that proposed by Li et al.
(1999) is specified. We propose a more general model formulation which inflates the probabil-
ities of draws. A draw between two teams is represented by the outcomes on the diagonal of
the probability table. To correct for the excess of draws we may add an inflation component on
the diagonal of the probability function. This model is an extension of the simple zero-inflated
model that allows only for an excess in (0,0) draws. We consider, for generality, that the starting
model is the bivariate Poisson model.
Under this approach a diagonal inflated model is specified by

PD.x, y/ =
{

.1 − p/ BP.x, y|λ1,λ2,λ3/, x �= y,

.1 − p/ BP.x, y|λ1,λ2,λ3/ + pD.x,θ/, x = y,
.5/

where D.x,θ/ is a discrete distribution with parameter vector θ. Such models can be fitted by
using the EM algorithm.
Useful choices for D.x,θ/ are the Poisson, the geometric or simple discrete distributions such

as the Bernoulli distribution. The geometric distribution might be of great interest since it has
its mode at zero and decays quickly. As a discrete distribution we consider P.X = j/ = θj for
j = 0, 1, 2, . . . ,J , where ΣJ

j=0 θj = 1; J � 3 is usually sufficient for football data whereas J = 0
corresponds to zero-inflatedmodels. Although univariate zero-inflated Poisson regressionmod-
els have been developed and examined in detail (see, for example, Lambert (1992) and Böhning
et al. (1999)), multivariate extensions, similar to themodels proposed in this paper, are relatively
rare with the exception of Li et al. (1999), Gan (2000) and Wahlin (2001).
There are two important properties of such models. Firstly, the marginal distributions of a

diagonal inflated model are not Poisson distributions but mixtures of distributions with one
Poisson component. Secondly, if λ3 = 0 (corresponding to the double-Poisson distribution)
the resulting inflated distribution introduces a degree of dependence between the two variables
under consideration. For this reason, diagonal inflation may correct both the overdispersion
and the correlation problems that are encountered in modelling football games.
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4. Application in sports

4.1. Modelling football games
Many references in this field assume that the number of goals scored by each team follows a
Poisson distribution (Maher (1982), Lee (1997) and Rue and Salvesen (2000) among others).
Such models take the general form

Xi ∼ Poisson.λ1i/,

Yi ∼ Poisson.λ2i/,

log.λ1i/ = µ + home + atthi + defgi + home:atthi + home:defgi + att:defhigi + home:att:defhigi

log.λ2i/ = µ + attgi + defhi + att:defgihi

for i = 1, 2, . . . ,n, where n is the number of games or observations, i is a game (observation)
indicator, hi and gi indicate the home and the away team in game i, Xi and Yi are the goals
scored by the home (hi) and the away (gi) team in game i, λ1i and λ2i are the corresponding
expected number of goals, µ is a constant parameter, home is the home effect parameter and
finally attk and defk encapsulate the offensive (or attacking) and defensive performances of team
k. Karlis and Ntzoufras (2000) examined such models in a general log-linear setting allowing
also for model selection.
Although we have implemented our proposed models in various data sets, here we focus on

the Italian serie A data for the 1991–1992 season and give some brief details for the Champions
League data for the 2000–2001 season. The classical likelihood ratio test (LRT) and its asymp-
totic χ2 p-value as well as Bayes information criterion (BIC) and Akaike information criterion
(AIC) were used in the selection and fitting of models. We adopted a simpler structure for the
parameters involved in the linear predictors of λ1 and λ2. Hence, for each game i (i = 1, . . . ,n),

.Xi,Yi/ ∼ BP.λ1i,λ2i,λ3i/,

log.λ1i/ = µ + home + atthi + defgi ,

log.λ2i/ = µ + attgi + defhi :

.6/

To achieve identifiability of the above model parameters, we may use any standard set of
constraints. Here we propose to use either sum-to-zero or corner constraints, depending on the
interpretation that we prefer. For this example, we chose sum-to-zero constraints for ease of
interpretation. Therefore, the overall constant parameter specifies λ1 and λ2 when two teams
of the same strength play on a neutral field. Offensive and defensive parameters are expressed
as departures from a team of average offensive or defensive ability.
For the covariance parameters λ3i we considered various versions of the linear predictor

which can be summarized by

log.λ3i/ = βcon + γ1β
home
hi

+ γ2β
away
gi

,

where βcon is a constant parameter and βhome
gi

and β
away
hi

are parameters that depend on the
home and away team respectively. Parameters γ1 and γ2 are dummy binary indicators taking
values 0 or 1, depending on the model that we consider. Hence when γ1 = γ2 = 0 we consider
constant covariance, when .γ1,γ2/ = .1, 0/ we assume that the covariance depends on the home
team only and so on.
The parameter λ3 can be interpreted as a random effect which acts additively on the marginal

mean and reflects game conditions. An alternative structure on the design matrix can be easily
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implemented if additional information is available, or if we assume that attacking abilities are
different in home and away games, or if the home effect varies from team to team.
Diagonal inflated models are suitable for championships with an excess of draws which can-

not be captured by double-Poisson models, or even bivariate Poisson models. Here we illustrate
diagonal inflatedmodels in the Italian serieA data for the 1991–1992 season. The scoring system
in that season gave 2 points for a win and 1 point for a draw. This system often gives an excess of
draws. We considered various models including the double-Poisson, the bivariate Poisson and
the diagonal inflated models using several diagonal distributions; Table 1. The best-fitted model
is the bivariate Poisson model with an extra parameter for the 1–1 score which was otherwise
considerably underestimated: Table 2. The model selected is supported by the AIC, BIC and
LRT for testing the hypothesis H0 : p = 0, where p is the inflation proportion (p-value less than
0.01). Details for the model selection procedure are given in Table 1. Note that the zero-inflated
and the geometric diagonally inflated models did not improve the likelihood since 0–0 scores
were not underestimated. Moreover, the improvement that is offered by a Poisson diagonal
component was statistically significant when added to the simple Poisson model but not when
added to the bivariate Poisson model.

Table 1. Details of the fitted models for the Italian serie A 1991–1992 data

Model distribution Additional model details Log- Number of p-value AIC BIC
likelihood parameters

1, double Poisson −771.5 36 1614.9 1774.2

Covariates on λ3
2, bivariate Poisson Constant (γ1 = γ2 = 0) −764.9 37 0.00† 1603.9 1767.5
3, bivariate Poisson Home team effect −758.9 55 0.84‡ 1627.8 1871.1

(γ1 = 1, γ2 = 0)
4, bivariate Poisson Away team effect −755.6 55 0.41‡ 1621.2 1864.5

(γ1 = 0, γ2 = 1)
5, bivariate Poisson Home and away team −745.9 72 0.33‡ 1635.7 1954.3

effects (γ1 = γ2 = 1)
6, zero-inflated Constant −764.9 38 1.00§ 1605.9 1773.9

bivariate Poisson

Diagonal distribution
7, diagonal inflated Geometric −764.9 39 1.00§ 1607.9 1780.3

bivariate Poisson
8, diagonal inflated Discrete (1) −756.6 39 0.00§ 1591.1 1763.7

bivariate Poisson§§
9, diagonal inflated Discrete (2) −756.6 40 1.00Å 1593.1 1770.1

bivariate Poisson
10, diagonal inflated Discrete (3) −756.4 41 0.54ÅÅ 1594.8 1776.2

bivariate Poisson
11, diagonal inflated Poisson −763.5 39 0.25§ 1605.1 1777.5

bivariate Poisson
12, diagonal inflated Poisson −767.0 38 0.01§ 1610.0 1778.1

Poisson

†H0 : λ3 = 0.
‡H0 : λ3 = constant.
§H0 : p = 0.
§§Best-fitted model.
ÅH0 : θ2 = 0.
ÅÅH0 : θ3 = 0.
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Table 2. Estimated draws for every model

Model distribution Additional model details Estimates for the following scores:

0–0 1–1 2–2 3–3 4–4

Observed data 38 58 10 4 1
1, double Poisson 38 33 9 1 0

Covariates on λ3
2, bivariate Poisson Constant 49 35 11 2 0
3, bivariate Poisson Home team effect 51 34 11 3 0
4, bivariate Poisson Away team effect 49 34 11 2 0
5, bivariate Poisson Home and away team effects 47 32 10 2 0
6, zero-inflated bivariate Poisson 49 35 11 2 0

Diagonal distribution
7, diagonal inflated bivariate Poisson Geometric 49 35 11 2 0
8, diagonal inflated bivariate Poisson† Discrete (1) 43 58 9 2 0
9, diagonal inflated bivariate Poisson Discrete (2) 43 58 9 2 0
10, diagonal inflated bivariate Poisson Discrete (3) 43 58 9 3 0
11, diagonal inflated bivariate Poisson Poisson 50 38 13 3 1
12, diagonal inflated Poisson Poisson 45 40 14 3 1

†Best-fitted model.

The goodness of fit was assessed by comparing our proposed model with the full or satu-
rated model which fits the data exactly. According to the LRT our proposed model fits our data
sufficiently well (p-value 0.85). Moreover, the AIC and BIC measures for the full model are
2204.0 and 4928.7 respectively. Both these criteria indicate the selection of our model against
the alternative full or saturated model.
Table 3 provides the parameter estimates of a simple Poisson model and the selected diagonal

inflated bivariate Poisson model. The expected number of goals from this model for game i with
home team hi and away team gi are

E.Xi/ = λ1i,

E.Yi/ = λ2i,
.7/

where λ1i and λ2i are given by expression (6). For the inflated bivariate Poisson model, a Ber-
noulli distribution was used as inflation with parameter θ1. The expected number of goals by
using this model can be calculated as

E.Xi/ = .1 − p/.λ1i + λ3i/ + pθ1,

E.Yi/ = .1 − p/.λ2i + λ3i/ + pθ1,
.8/

whereλ1i andλ2i are calculated by using expression (6) andp is the estimatedmixing proportion.
Fitted counts for draws are shown in Table 2. Note that the simple Poisson model fits the

number of 0–0 draws very well but considerably underestimates the number of 1–1 scores. In
contrast, the bivariate Poisson model overestimates 0–0 scores since it reduces the estimated
ability of the teams, as described in Section 2. Finally, the model selected seems to be a trade off
between counts for 0–0 and 1–1 scores. It is closer to the observed data since it exactly estimates
the number of 1–1 draws and slightly overestimates the number of 0–0 draws.
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Table 3. Estimated parameters for the Poisson and bivariate
Poisson models for 1991–1992 Italian serie A data†

Team Results for model 1, Results for model 2,
double Poisson bivariate Poisson

Attack Defence Attack Defence

1, Milan 0.68 −0.50 0.84 −1.18
2, Juventus 0.18 −0.50 0.22 −0.70
3, Torino 0.11 −0.60 0.18 −0.86
4, Napoli 0.43 0.12 0.51 0.19
5, Roma 0.00 −0.16 0.02 −0.17
6, Sampdoria 0.02 −0.16 0.10 −0.16
7, Parma −0.15 −0.27 −0.14 −0.34
8, Inter −0.29 −0.28 −0.37 −0.29
9, Foggia 0.49 0.50 0.57 0.63

10, Lazio 0.16 0.10 0.28 0.21
11, Atalanta −0.18 −0.11 −0.21 −0.11
12, Fiorentina 0.18 0.13 0.29 0.28
13, Genoa −0.04 0.25 −0.09 0.40
14, Cagliari −0.21 −0.08 −0.21 −0.01
15, Verona −0.40 0.43 −0.51 0.57
16, Bari −0.33 0.24 −0.50 0.33
17, Cremonese −0.29 0.28 −0.36 0.45
18, Ascoli −0.34 0.61 −0.64 0.75

Other parameters
Intercept µ −0.18 −0.57
Home team effect 0.36 0.50
λ3 0.00 0.23
Mixing proportion 0.00 0.09
θ1 1.00

†Expected number of goals can be calculated by using equations (7)
and (6) for model 1 and equations (8) and (6) for model 2.

It is worth mentioning that the scoring system has been changed to encourage teams not to
be satisfied by draws; a win is now worth 3 points and a draw just 1 point. This has led to a
reduction in the number of draws in recent championships.
Note that the LRT for testingmixturemodels with different numbers of components is known

to be inappropriate (see, for example, Lindsay (1995)). So the choice of model between such
mixtures can be based on the AIC.
A variety of models was fitted in the Champions League data for the 2000–2001 season. The

best-fittedmodel was the bivariate Poissonmodel with constant λ3 supported by the LRTwhich
rejects the hypothesis H0 : λ3 = 0 (p-value 0.042) and the AIC. The zero- and diagonal inflated
models did not improve the model fit. This is mainly because these models are useful only when
the model selected underestimates the number of draws.

4.2. Modelling water-polo outcomes
In this section we present an implementation of the bivariate Poisson models on water-polo
games. This sport was selected because of the relatively small scores (so that it is plausible to use
discrete distributions) and large correlations between the scores of the competing teams. Use-
ful information can be found at www.usawaterpolo.com and www.hickoksports.com.
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The main aim of the game is to score goals. Usual scores are around 8 goals for each team, with
strong correlation between the scores of the competing teams.
Here we implemented the bivariate Poissonmodels to the data of the European national team

cup held at Florence in September 1999. 12 national teams played a total of 50 games. In our
analysis we considered only full-time scores, ignoring extra time. The effect of this truncation
is minimal with only two draws observed.
The model that we consider was similar to the corresponding model for football games with-

out the parameter estimating the home effect:

.Xi,Yi/ ∼ BP.λ1i,λ2i,λ3i/,

log.λ1i/ = µ + atto1i
+ defo2i

, .9/

log.λ2i/ = µ + atto2i
+ defo1i

, .10/

for i = 1, . . . , 50; here o1i and o2i are indicators corresponding to the first and secondmentioned
team opponents in game i. For λ3 we consider two cases; in the first λ3 is constant whereas in
the second λ3 is given by

log.λ3i/ = m + teamo1i
+ teamo2i

.11/

for each game between teams o1i and o2i, where teamk is the effect of team k onλ3. For these data
we did not consider the zero-inflated and diagonal inflated models since draws in water-polo are
rare. As in the football implementation, we may use either sum-to-zero or corner constraints
depending on the interpretation that we prefer. Here we considered corner constraints with
Germany as the base-line team. The constant parameter specifies parameters λ1 and λ2 when
Germany plays a team with identical offensive and defensive ability. Moreover, the offensive
(attk) and defensive (defk) parameters express differences in each team’s offensive or defensive
abilities from those of Germany (the base-line team).
As a consequence three models were fitted (the double Poisson, bivariate Poisson with con-

stant covariance and bivariate Poissonwith covariance depending on opposing teams). All three
criteria used (the LRT, AIC and BIC) indicated as best model the bivariate Poisson model with
constant λ3; Table 4. The AIC and BIC values for the full or saturated model (508.4 and 726.4
respectively) also indicated selection of ourmodel against the full model. The covariance param-
eter λ3 was found to be equal to 5.55, which indicated significant covariance between the scores
of the opposing teams.

Table 4. Details of the fitted models for the water-polo 1999 European national cup

Model Covariates on λ3 Log-likelihood Number of p-value AIC BIC
parameters

1, double Poisson −186.67 23 417.3 474.3
2, bivariate Poisson Constant −171.91 24 0.000† 391.8 451.3
2, bivariate Poisson Constant −172.31 23 0.376‡ 390.62 447.60

(Hungary base-line; µ = 0)
3, bivariate Poisson Equation (11) −167.31 35 0.602§ 404.6 491.3

†H0 : λ3 = 0.
‡H0 : µ = 0.
§H0 : λ3 = constant.
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The parameter estimating the defensive ability of Hungary was found to be a very large neg-
ative number. This implies that the fitted values of the goals conceded by Hungary tend to be
constant for all opposing teams and equal to the covariance parameter λ3 (instead of λ2 + λ3).
Any value for the defensive ability of Hungary lower than−20.0 results in identical fitted values
and likelihood. For this reason, and to avoid unidentifiability, we have set the defensive ability
of Hungary to −20.0. Although this may imply that the model does not provide a good or
sensible estimation of the Hungarian team’s defensive ability this is not so. If we isolate the data
concerning the defence of the Hungarian team (7,3,6,3,6,4,5,12) we observe that they are under-
dispersed relative to the Poisson distribution (mean, 5.75; variance, 8.50). The variance test (see
Karlis and Xekalaki (2000) for a critical review) does not reject the hypothesis of the Poisson
distribution. Hence, the constant mean for the Hungarian team’s defence seems plausible. For
the rest of the teams, the observed data are overdispersed and therefore it is plausible to assume
that the mean is not constant. Note that this numerical problem appears mainly because of the
large number of parameters relative to the amount of data that is available in such competitions
and to the unbalanced design of the data. For this reason, in full season leagues we shall not
have such problems.
To avoid possible overparameterization we also considered a model with Hungary as a base-

line team and the corresponding constant (which is a measure of the overall performance of
Hungary) constrained to be 0. This may be interpreted in the following way: if Hungary plays
with a team which has the same attacking and defensive ability then the expected number of
goals scored will be 1 goal added to the covariance parameter λ3, i.e. E.X/ = E.Y/ = 1+ λ3.
The advantage of such a model is that it does not assume a constant expected number of
goals conceded by Hungary. Comparing the two models with a χ2-test (H0 : µ= 0; p-value
0.38), the BIC or AIC we conclude that the model with Hungary as the base-line team and its

Table 5. Estimated parameters for the double-Poisson and bivariate Poisson
models for the 1999 water-polo European national cup data†

Team Final Results for model 1, Results for model 2,
ranking double Poisson bivariate Poisson

(µ = 0)

Attack Defence
Attack Defence

1, Germany 8 −0.80 0.23 −2.03 2.28
2, Greece 4 −0.48 0.06 −0.79 1.81
3, Hungary 1 0.00 0.00 0.00 0.00
4, Italy 3 −0.45 −0.03 −1.68 0.12
5, Croatia 2 −0.15 0.18 −0.76 0.81
6, Netherlands 12 −0.56 0.50 −2.31 2.59
7, Romania 9 −0.74 0.16 −2.65 1.71
8, Russia 5 −0.34 0.39 −1.50 1.76
9, Slovakia 10 −0.54 0.29 −2.63 1.95

10, Slovenia 11 −0.63 0.34 −2.70 2.22
11, Spain 6 −0.28 0.35 −0.88 2.08
12, Yugoslavia 7 −0.54 0.17 −1.37 1.89

Other parameters
Intercept 2.18 0.00
λ3 0.00 5.50

†Base-line level Hungary. The expected numbers of goals are λ1i + λ3i and λ2i + λ3i;
λ1i and λ2i are given by equations (9) and (10) for bothmodels. For model 1 λ3i = 0:0.
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Table 6. Estimated parameters for the double-Poisson and bivariate Poisson models for the 1999
water-polo European national cup data

Game Phase Opponents Observed Expected goals for the
score following models:

Team 1 Team 2
Double Poisson Bivariate Poisson†

Team 1 Team 2 Team 1 Team 2

1 Group A Italy Hungary 7–7 5.7 8.6 5.7 6.7
2 Group A Slovenia Hungary 3–11 4.7 12.4 5.6 14.8
3 Group A Hungary Croatia 7–6 10.6 7.7 7.8 6.0
4 Group A Greece Hungary 3–8 5.5 9.3 6.0 11.7
5 Group A Hungary Slovakia 13–6 11.8 5.2 12.6 5.6
6 Quarter-final Hungary Germany 15–4 11.1 4.0 15.4 5.7
7 Semi-final Hungary Italy 7–5 8.6 5.7 6.7 5.7
8 Final Croatia Hungary 12–15 7.7 10.6 6.0 7.8

†Hungary base-line; µ = 0.

corresponding constant equal to 0 should be selected. For details of the model parameters of
the two finally selected models see Table 5; fitted values for the games of Hungary are given in
Table 6.

5. Discussion

In the present paper the bivariate Poisson distribution and its extensions were used to model
sports data. The bivariate Poisson distribution allows for correlation between the scores of the
competing teams, which is plausible for certain team sports. Diagonal inflated models are also
proposed to improve the modelling aspects further. The models proposed provide a better fit of
the football data since they can handle both correlation and overdispersion. Furthermore, they
improve the fit on the diagonal of the observed table of results, which reflects ties between the
two opponents. According to the models proposed we can extend the double-Poisson model by
either considering a bivariate Poisson model or by inflating the diagonal elements of the joint
probability function. Both models incorporate correlation, but the latter introduces overdisper-
sion as well.
Maximum likelihood estimation for bivariate Poisson regression models was described in

detail. The EM algorithm that is proposed in this paper can be easily extended to incorpo-
rate more complicated models. Such models were described in Kocherlakota and Kocherlakota
(2001). Additionally, we have extended the zero-inflated multivariate Poisson models of Li et al.
(1999) by defining more general inflation models, with potential implementation in manufac-
turing or marketing. The EM algorithm that was proposed for such models can be quite helpful
for real data applications of such models.
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