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Abstract

In this paper, we describe full Bayesian inference for generalised linear models where un-
certainty exists about the structure of the linear predictor, the linear parameters and the link
function. Choice of suitable prior distributions is discussed in detail and we propose an e1cient
reversible jump Markov chain Monte-Carlo algorithm for calculating posterior summaries. We
illustrate our method with two data examples.
c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Generalised linear models (GLMs) are frequently used to model the dependence
of a response variable Y on a set of possible explanatory variables (predictors or
covariates) X1; X2; : : : ; Xp. Brie<y, a GLM assumes that the mean � of an observation
of Y is related to the explanatory variables through the linear predictor �=g(�) where
g(·) is the link function. We describe a GLM, m, by the pair (�; S) where �∈{0; 1}p
is a vector of indicator variables denoting which explanatory variables are present in
the linear predictor, and S denotes other structural properties such as the response
distribution, link and variance functions. Therefore, m∈{0; 1}p ×S, where S is the
set of all structural properties. Note that here a variable may be a term in a factorial
model, and hence be of dimension greater than one.

∗ Corresponding author. Tel.: +30-1-820-3567; fax: +30-1-820-3567.
E-mail addresses: ntzoufras@aegean.gr (I. Ntzoufras), petros@aueb.gr (P. Dellaportas),

jf@maths.soton.ac.uk (J.J. Forster).

0378-3758/02/$ - see front matter c© 2002 Elsevier Science B.V. All rights reserved.
PII: S0378 -3758(02)00298 -7



166 I. Ntzoufras et al. / Journal of Statistical Planning and Inference 111 (2003) 165–180

In this paper, we focus on situations where uncertainty concerns � and the link func-
tion only, with all other structural properties of the model assumed known. Therefore,
we express the possible set of models as M= {0; 1}p ×L, where L is the set of all
links for the distribution under consideration. Therefore m= (�; L) where L is the link
for model m and we denote the corresponding function of � by gL(�). We also denote
the n observations of the response variable by y= (y1; : : : yn).
Our approach is Bayesian. For each model m, a prior distribution f(�m|m) is speci-

Fed for the model parameters �m. Models are compared using posterior model
probabilities f(m|y) which are calculated using

f(m|y) = f(m)f(y|m)∑
m∈M f(m)f(y|m) ;

where

f(y|m) =
∫
f(y|�m; m)f(�m|m) d�m (1)

is the marginal likelihood, and f(m) the prior probability, for model m.
As m = (�; L), model uncertainty concerns two aspects; the necessary predictors of

the response, and the appropriate link function. Bayesian methods for variable selection
for linear and generalised linear models has recently been an area of active research.
See, for example, George and McCulloch (1997), Raftery (1996) and Carlin and Chib
(1995). For an overview, see Dellaportas et al. (2000, 2002). Here, we focus on
link functions, although variable selection remains an integral part of our approach.
Our examples concern binomial data, and we consider L = {logit; probit; log–log;
complementary log − log} in Section 4.1 while more general link families are con-
sidered in Section 4.2.
General link functions can be adopted by considering a family of link functions

indexed by one or more (unknown) continuous-valued parameters. For a binomial re-
sponse, these approaches are often based on an inverse distribution function F−1(�; �)
and then the continuous-valued parameter(s) � give rise to a range of possible link
functions. For example, Mallick and Gelfand (1994) considered mixtures of beta dis-
tributions while Basu and Mukhopadhyay (2000) proposed normal scale mixtures. Lang
(1999) considers the link function

g�(�) = m1(�)F−∞(�) + m2(�)F(�) + m3(�)F∞(�);

where � is a mixing parameter to be estimated; and F−∞(�)= 1− exp(−e�) (extreme
minimum value function), F∞(�) = exp(−e�) (extreme maximum value function) and
F(�)=e�=(1+e�) (logistic function). The mixing parameter �, is given a prior distribu-
tion. Aranda-Ordaz (1981) and Albert and Chib (1997) used the family of symmetric
links given by

g�(�) =
2
�
× �� − (1− �)�

�� + (1− �)�
;

where � = 0:0; 0:4; 1:0 correspond to the logit, (approximately) probit and
linear links, respectively. Aranda-Ordaz (1981) also proposed an asymmetric family
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given by

g�(�) =
(1− �)−� − 1

�
:

Alternatively, Albert and Chib (1993) used link functions based on the inverse distri-
bution function of the t distribution while Genter and Farewell (1985) proposed the
inverse cumulative distribution function of a random variable which is 1=q times the
logarithm a gamma random variable with shape and scale parameters both equal to
q−2. Other approaches include the link family based on the inverse distribution func-
tion of the logarithm of an F-distributed random variable (Prentice, 1976), the link
family deFned by

g�1 ;�2 (�) =
��1−�2 − 1
�1 − �2

=
(1− �)�1+�2 − 1

�1 + �2
:

(Pregibon, 1980), the Box–Cox transformation based link family

g�(�) =
[�=(1− �)]−� − 1

�

(Guerrero and Johnson, 1982), the generalization of the logit link suggested by Stukel
(1988) and a family of robust link functions proposed by Haro-LKopez et al. (2000).
The paper is organized into four further sections. In Section 2, we describe construc-

tion of the prior distributions for the unknown quantities, which are the model (�; L)
and the corresponding model parameters. The resulting posterior distributions cannot,
in general, be calculated analytically. Therefore, in Section 3, we describe a method
of Markov chain Monte-Carlo computation for simultaneous link and variable selec-
tion, based on reversible jump (Green, 1995). This method is illustrated with various
examples in Section 4. Section 5 contains a brief discussion.

2. Prior distributions

We require a prior distribution to express prior uncertainty about the unknown quanti-
ties m=(�; L) and �m (which we also write as ��L). The prior distribution is constructed
hierarchically as

f(��L; �; L) = f(��L|�; L)f(�|L)f(L):
The prior distributions f(L) and f(�|L) are discrete distributions over Fnite sets. For
convenience we usually assume them to be discrete uniform. In particular, we take

f(L) =
1

|L| ; L∈L:

However, certain combinations of explanatory variables may be considered a priori
more plausible than others. For example, it may be sensible to rule out certain com-
binations (f(�|L) = 0); see Section 4 for details. The performance of the posterior
computations is not aLected by the choice of f(�|L) or f(L).
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The remainder of this section is devoted to consideration of prior distributions for the
model parameters �L for model m= (�; L). A possible family of prior distributions is

��L|�; L ∼ N(��L;��L) (�; L)∈{0; 1}p ×L:

We write ��L as (��L0; �
∗
�L) where ��L0 is an intercept term (assumed present in all

models). In situations where strong prior information does not exist, the prior mean of
(��L0; �

∗
�L) may be set at a neutral value of (��L; 0), so that all terms other than the inter-

cept have zero prior mean; see also Raftery (1996) and Dellaportas and Forster (1999).
In the class of models which we are considering, there exist models with the same set

of explanatory variables, but with diLerent link functions. It seems sensible to require
that the prior distributions for the parameters of any two such models are consistent
with respect to the pattern of dependence of the response on the predictors. Therefore,
we propose that, for every �∈{0; 1}p, there must be a consistency relationship between
the means ��L and between the variances ��L for all L∈L.
This relationship is based on a Taylor series expansion of the link functions about

� = �0

�L = gL(�) = gL(�0) + (� − �0)g′L(�0) + · · · ; (2)

where �L is the linear predictor corresponding to link L. Then, truncating this expansion
after the linear term, we have, for every L∈L,

� − �0 =
�L − gL(�0)
g′L(�0)

:

Therefore, we have an approximate linear relationship between the linear predictors
provided by any two link functions L1 and L2

�L1 =
g′L1 (�0)
g′L2 (�0)

�L2 + gL1 (�0)−
g′L1 (�0)
g′L2 (�0)

gL2 (�0): (3)

Clearly this approximation will be most appropriate for values of � close to �0. How-
ever, we also use it to obtain the required consistency relationship between the prior
distributions as follows.

��L = X���L = ��L01+ X∗
� �

∗
�L; (4)

where ��L is the vector of linear predictors for all observations and X� is the model
matrix for model m= (�; L). From (3) and (4), we have

��L10 =
g′L1 (�0)
g′L2 (�0)

��L20 + gL1 (�0)−
g′L1 (�0)
g′L2 (�0)

gL2 (�0); (5)

�∗�L1 =
g′L1 (�0)
g′L2 (�0)

�∗�L2 : (6)
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Therefore, from (5) and (6), the consistency relationship between the means for the
intercept parameters of any two models with diLerent links is

��L1 =
g′L1 (�0)
g′L2 (�0)

��L2 + gL1 (�0)−
g′L1 (�0)
g′L2 (�0)

gL2 (�0) (7)

and from (6) the consistency relationship between the variances for the model para-
meters of any two models with the same � but diLerent links is

��L1 = ��L2

(
g′L1 (�0)
g′L2 (�0)

)2
: (8)

We now require a prior mean ��L for ��L0 and a prior variance ��L for ��L for each
�∈{0; 1}p for one (reference) link. The prior parameters for other links may be ob-
tained using (7) and (8).
When strong prior information does not exist, we choose ��L to give a diLuse

prior distribution. However, care is required as the marginal likelihood for m (1) is
sensitive to the choice of ��L. Following Kass and Wasserman (1995), we use a prior
variance ��L which corresponds to unit prior information. For a generalised linear
model m= (�; L), the information matrix I(��L) is given by

I(��L) = X
T
� W�LX�;

where

W�L = diag
(

1
V (�i)�ig′L(�i)2

)
;

where �i represents the mean of the ith observation of the response, �i the correspond-
ing scale parameter, and V (·) the variance function for the model.
The unit information matrix is given by I(��L)=N where N is the number of units

in the data. This is typically the number of observations of Y . The unit information
prior variance is then

NI(��L)
−1 = N (XT� WLX�)−1:

However, this matrix typically depends on the unknown parameters ��L, through V (�i)
and g′L(�i). Therefore, in order to use it as a prior variance, we need to input prior
estimates for ��L. We propose to replace ��L by the prior mean (��L; 0). Then �i = ��L
and �i=g−1L (��L) for all i. Note that, if ��L for diLerent L are related by (7) and all link
functions are approximated linearly by (2), then g−1L (��L) is the same for all L∈L.
We denote this common value of � by �∗. Therefore, we use the unit information prior
variance

��L = NV (�∗)g′L(�
∗)2(XT� diag(1=�i)X�)

−1: (9)

Note that V (·) does not depend on L, so unit information prior variance matrices
are mutually consistent, as (8) is satisFed for �0 = �∗. For convenience, the further
approximation �i = � for all i may be used if the scale parameters are of a similar
magnitude. This is particularly convenient if the predictors are orthogonal, in which
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case the prior variance matrix becomes diagonal. For example, � = min�i may be
thought of as a ‘lower bound’ for a unit information prior variance.

3. Reversible jump Markov chain Monte-Carlo

Green (1995) proposed reversible jump Markov chain Monte-Carlo (RJMCMC) as
a general MCMC approach appropriate for examples where model uncertainty exists.
The general approach is extremely <exible, allowing quite general transitions in the
joint space of models and model parameters.
Dellaportas et al. (2002) describe an application of reversible jump MCMC to vari-

able selection. Within a model, the parameters are updated using a Gibbs sampler.
Model updating is performed by local moves where single terms are added or deleted
from the model. Following Dellaportas and Forster (1999), when a variable is deleted
from a model, all remaining parameters are unchanged. When a variable is added to
the model, a value for the parameter corresponding to the new variable is generated
from a normal proposal distribution with parameters which do not depend on which
other variables are present in the model. In the examples presented in Section 4, the
proposal mean is calculated using the maximum likelihood estimate for the saturated
model, and the variance using the curvature of the log-likelihood at this maximum
likelihood estimate. Hence, diLerent proposals are used for diLerent link functions.
Here we adapt this approach to GLMs where additional uncertainty exists about the

link function L. At any iteration, we may propose to change L to L′, with � remaining
at its current value. Therefore, we require a value of ��L′ . As we already have a value
of ��L, it makes sense to use this information to generate �

′
�L. We propose to generate

�′�L from ��L deterministically, using (5) and (6). This transformation requires us to
specify a suitable value of �0. One possibility is to use the approximate prior value,
�∗. However, as we are choosing �0 to facilitate the mobility of our reversible jump
sampler, we should choose a value that makes the approximations (5) and (6) as
accurate as possible. Therefore, a natural choice is �0 = Py or �0 =

∑
�−1
i yi=

∑
�−1
i .

In our examples, we found that using this transformation allows e1cient transition
between links, which does not occur if the identity transformation is used.
Our reversible jump algorithm for variable and link selection can be summarised by

sampling (in any order) ��L, � and L as follows:

(1) Generate each element of ��L from its log-concave univariate full conditional
posterior distribution f(��Li|��L\i ; �; L; y). Either Metropolis–Hastings or adaptive
rejection algorithms may be used; we have found that both methods have similar
performance.

(2a) Generate a proposed variable j∈{1; : : : ; p} to add or delete from the model with
probability 1=p. Therefore, we propose to change � to �′ where �′j = 1− �j with
all other components remaining the same.

(2b) If �j = 0 then

(i) Generate the additional parameter corresponding to variable j from a proposal
density qj(�

′
j|L).
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(ii) Set �′�′L = [��L; �
′
j].

(iii) Accept the proposed move with probability

�=min

{
1;

f(y|�′�′L; �′; L)f(�′�′L|�′; L)f(�′; L)
f(y|��L; �; L)f(��L|�; L)f(�; L)qj(�′j|L)

}
:

(iv) If the proposed move is accepted, update � and ��L by �
′ and �′�′L, respectively;

otherwise leave � and ��L unchanged.
(2c) If �j = 1 then

(i) Set �′�′L equal to the corresponding parameters of ��;L.
(ii) Accept the proposed move with probability

�=min

{
1;
f(y|�′�′L; �′; L)f(�′�′L|�′; L)f(�′; L)qj(�j|L)

f(y|��L; �; L)f(��L|�; L)f(�; L)

}
:

(iii) If the proposed move is accepted, update � and ��L by �
′ and �′�′L, respec-

tively; otherwise leave � and ��L unchanged.
(3) (i) Propose a new link L′ 	=L with probability j(L; L′) = 1=(|L| − 1).

(ii) Calculate �′�L′ using (5) and (6).
(iii) Accept the proposed move with probability

�=min

{
1;
f(y|�′�L′ ; �; L′)f(�′�L′ |�; L′)f(�; L′)j(L′; L)
f(y|��L; �; L)f(��L|�; L)f(�; L)j(L; L′)

∣∣∣∣∣@�
′
�L′

@��L

∣∣∣∣∣
}
; (10)

where∣∣∣∣∣@�
′
�L′

@��L

∣∣∣∣∣=
(
g′L′(�0)
g′L(�0)

)d(�)

and d(�) is the dimension (number of parameters) of the model m= (�; L).
(iv) If the proposed move is accepted, update L and ��L to L

′ and �′�L′ , respec-
tively; otherwise leave L and ��L unchanged.

4. Implementation for binomial data

4.1. Common link functions

Our examples concern observations of n binomial random variables, Y1; : : : ; Yn (ex-
pressed as proportions) with corresponding denominators m1; : : : ; mn. The mean param-
eters are the binomial probabilities and V (�) = �(1− �). We consider the set of link
functions L={logit; probit; log−log; complementary log−log}. See Table 1 for details.
We use a normal prior distribution for the model parameters for all models, as

proposed in Section 2. In the absence of strong prior information, for the canonical
(logistic) link function we propose a value of ��L = 0, and hence �∗ = 0:5. The value
of ��L for all other links follows from (7). The unit information prior variance for
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Table 1
Binomial link functions

Link g(�) g′(�)

Logit Log[�=(1− �)] [�(1− �)]−1

Probit �−1(�) [�(�−1(�))]−1

Log–log −Log[− log(�)] −[� log(�)]−1
Complementary log–log Log[− log(1− �)] −[(1− �) log(1− �)]−1

binomial data and logistic link is, from (9),

��L = 4�
n∑
i=1

mi(XT� X�)
−1: (11)

Taking �∗=0:5, and N , the total number of units in the data equal to
∑n

i=1 mi. Here,
we have also approximated all �i ≡ 1=mi by the common value �. In the examples,
we used �−1 = Pm and �−1 = maxmi. However, the results are similar, so we only
report those for �−1 = max(mi). Note that when all mi are equal, these coincide, and
the approximation is exact. The unit prior information matrix for all other links follows
from (8).
To calculate posterior summaries, we used the reversible jump algorithm described

in Section 3, with �0 =
∑

miyi=
∑

mi for link transitions. For Example 2, we used
orthogonal polynomials as explanatory variables, as then parameters have a similar in-
terpretation across models. This increases mobility of transitions in �, without aLecting
the interpretation of the polynomial regression models considered. In Example 1, the
dummy explanatory variables are orthogonal by construction. We do not allow arbitrary
combinations of terms in the linear predictor, restricting models to those that satisfy
the usual marginality restrictions.
The subsamples containing the model parameters �j for those models with poste-

rior probability higher than 0.05 were checked for MCMC convergence, by using the
diagnostics of Geweke (1992) and Heidelberger and Welch (1983). MCMC standard
errors for the model probabilities were calculated by dividing the MCMC output into
40 batches. The length of the Markov chain was determined by imposing upper bounds
for these standard errors. In the results presented here we chose this upper bound to
be max{0:015; 0:03f(m|y)} where f(m|y) is estimated using the MCMC output.

4.1.1. Example 1
We Frst consider a data set analysed by Healy (1988) and presented in Table 2.

The data re<ect the relationship between the number of survivals, the patient condi-
tion (more or less severe) and the received treatment (antitoxin medication or not).
Dellaportas et al. (2000) analysed these data using a Bayesian approach incorporating
uncertainty about variables but not links.
A total of 110,000 iterations of reversible jump MCMC were used, with the Frst

10,000 discarded as burn in. The Markov chain mixed well. In particular, mobility
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Table 2
Example 1: Healy (1988)

Severity(A) Antitoxin (B) Death Survivals

More severe Yes 15 6
No 22 4

Less severe Yes 5 15
No 7 5

Table 3
Posterior model probabilities for Example 1

Link Linear predictor

1 1+B 1+A 1+A+B 1+A+B+AB

Logit 0.001 0.002 0.108 0.146 0.028
Probit 0.001 0.002 0.098 0.121 0.021
Log–log 0.001 0.002 0.097 0.088 0.021
Complementary log–log 0.001 0.003 0.097 0.141 0.023

between diLerent link functions was extremely high, with a link change occurring on
average in 77% of iterations.
The posterior model probabilities are presented in Table 3. Of the 20 models con-

sidered, only those with linear predictors 1+A and 1+A+B have substantial posterior
probability. For the model 1+A the posterior probabilities are close for all four links.
This is to be expected as this model simply implies that, regardless of the link function,
the data are modelled by two binomial probabilities, one for each level of severity. The
only diLerence is in the prior distributions, and this is minimised by the consistency
relationships discussed in Section 2. For the model 1 + A + B, a greater diLerence
between link functions is evident, but this diLerence is still small, as the binomial
probabilities are not close to the extremes (0,1) where the diLerence between link
functions is greatest.
The similarity between the model probabilities suggests that selection of a single

model may not be appropriate. The model probabilities may be used as weights in
a ‘model averaged’ posterior inference which fully accounts for model uncertainty
(Draper, 1995).
The mixing of the Markov chain was satisfactory, producing Monte-Carlo standard

errors for all posterior model probabilities less than 0.008. To investigate the sensitivity
of the approach to the choice of �0, required for parameter transformations when a
change of links is proposed, we performed MCMC runs using seven diLerent values
of �0, and also without any transformation. Selected MCMC performance statistics are
presented in Table 4. Our proposed transformation (�0 = 0:401) seems to be a good
choice. For all values 0:256 �06 0:75 all posterior model probabilities are estimated
with a Monte-Carlo standard error less than 1.5%. Without any transformation, the
reversible jump sampler performs poorly.
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Table 4
Example 1: Performance of reversible jump sampler, based on diLerent transformation parameters �0 when
a link change is proposed.

Proposal �0 Link jumps Maximum model Models with MCMC s.e.
accepted (%) MCMC s.e. (%) ¿max{0:015; 0:03f(m|y)}

0.05 16.7 1.88 4
0.25 59.5 0.84 0
0.40 76.9 0.80 0
0.50 69.4 0.83 0
0.60 58.1 1.09 0
0.75 38.3 1.27 0
0.95 4.8 4.44 6

No transformation∗ 12.1 11.28 9

∗log–log models were not visited by the chain

Table 5
Example 2: Dobson (1983)

Concentration (X ) Total (M) Number killed (Y )

1.6907 59 6
1.7242 60 13
1.7552 62 18
1.7842 56 28
1.8113 63 52
1.8369 59 52
1.8610 62 61
1.8839 60 60

4.1.2. Example 2
The second data set we consider was analysed by Dobson (1983) and is presented

in Table 5. This data set describes the number of beetles killed in each of eight groups
after a 5 h exposure to carbon disulphide. Spiegelhalter et al. (1996) analysed these
data using a Bayesian approach but did not explicitly incorporate uncertainty either
about variables or links.
A total of 210,000 iterations of reversible jump MCMC were used. The Frst 10,000

were discarded as burn in, and the remaining sample was thinned by a factor of 5 due
to storage constraints. The Markov chain mixed well, although not quite as well as
Example 1; a link change occurred on average in 8% of iterations.
The posterior model probabilities are presented in Table 6. A much greater distinc-

tion between link functions is observed here, compared with Example 1, as several
of the binomial probabilities are close to the extreme value 1. The dominant model
is the simple linear model with complementary log–log link. For the other link func-
tions, the linear model does not Ft well, and the quadratic model has a substantially
higher posterior probability. Our approach allows a quantiFable comparison, in terms of
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Table 6
Posterior model probabilities for Example 2

Link Linear predictor

1 + X 1 + X + X 2 1 + X + X 2 + X 3

Logit 0.018 0.072 0.008
Probit 0.026 0.058 0.005
Log–log 0.000 0.024 0.004
Complementary log–log 0.714 0.065 0.006

Table 7
Example 2: Performance of reversible jump sampler, based on diLerent transformation parameters �0 when
a link change is proposed.

Proposal �0 Link jumps Maximum model Models with MCMC s.e.
accepted (%) MCMC s.e. (%) ¿max{0:015; 0:03f(m|y)}

0:05∗ 0.05 24.34 4
0:25+ 5.26 9.07 3
0.40 6.29 3.45 2
0.50 7.48 2.44 1
0:60+ 7.94 2.04 0
0:75+ 6.56 2.11 1
0:95+ 0.23 38.92 8

No transformation∗ 0.14 21.54 5

∗log–log models were not visited by the chain; +1 + X log–log model was not visited by the chain

posterior probabilities, of models which are not nested, such as the linear com-
plementary log–log model and the quadratic models with other links. The posterior
model probabilities favour the more parsimonious model, as one would desire.
As in Example 1, we investigated the sensitivity of the approach to the choice of �0.

The results are presented in Table 7. Again, the results indicate that our proposed trans-
formation (here �0 =0:60) is within the range of values for which the algorithm works
well, and again the reversible jump sampler performed poorly when no transformation
was used.

4.2. General link families

As an alternative to the link functions presented in the previous section we may
adopt more <exible link families, of the form discussed in Section 1. For illustra-
tion, we consider here the comparison of the inverse t-link family proposed by Albert
and Chib (1993) and the log–gamma link family proposed by Genter and Farewell
(1985).
The inverse t-link family is given by gT�(�) =F−1

T (�; �) where FT(·; �) is the dis-
tribution function of a t distribution with �¿ 1 degrees of freedom. This link family
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includes as a special case the probit link function (� → ∞). Furthermore, Albert and
Chib (1993) argue that the t-link with � = 8 is a reasonable approximation to the
logit link. The log–gamma link family is given by g$�(�)=(1=|�|) log(� 2F−1

$ [�; � −2])
if �¿ 0 and g$�(�) = (1=|�|) log(� 2F−1

$ [1 − �; � −2]) if �¡ 0, where F$(·; �) is the
distribution function of gamma distribution with mean and variance equal to �. This
family includes as special cases the probit link (� → 0), the log–log link (� = −1)
and the complementary log–log link (� = 1). The link parameter � controls the sym-
metry of the link function while the t-link is symmetric for all values of �. Hence,
the link function can be (at least approximately) any one of the four links we consid-
ered in Section 4.1, as well as a wide range of alternative symmetric and asymmetric
functions.
For the link indicator L, we now substitute the pair (‘; �) where ‘ is a binary link

family indicator taking value 0 for t-link and 1 for log–gamma link. Note that the
interpretation of � depends strongly on ‘. The hierarchy of the prior distribution is
slightly changed to

f(��L; �; ‘; �) = f(��L|�; ‘; �)f(�|‘)f(�; ‘):
The prior for the model coe1cients ��L is chosen to be a multivariate normal distri-
bution with zero mean and covariance matrix given by (8) and (11). The derivatives
involved in (8) are given by

g′T�
(�0) = (fT[F−1

T (�0; �); �])−1 (12)

and

g′$�(�0) =

{
(|�|F−1

$ (�0; � −2)f$[F−1
$ (�0; � −2); � −2])−1 if �¿ 0;

(|�|F−1
$ (1− �0; � −2)f$[F−1

$ (1− �0; � −2); � −2])−1 if �¡ 0:
(13)

For the link parameter �, we specify a prior which re<ects the fact that the shape
of the link function changes most rapidly with respect to � when � is close to 1 for
the t-link and close to 0 for the log–gamma link. Hence, we choose priors which
have highest density at these values, with tails monotonically decreasing, but still quite
heavy, to re<ect genuine uncertainty about �. Therefore, for the t-link, we choose
f(�|‘ = 0) = � −2 (Pareto) and for the log–gamma link, the prior distribution for
�|‘ = 1 is t3. Finally, we specify f(�; ‘) = (2|M|)−1 where M here represents the
parameter space for �.
For the implementation of the reversible jump algorithm, we divide step 3 of the

procedure proposed in Section 3 into two sub-steps: one (3a) for updating the link
family parameter � and the other (3b) for updating the indicator ‘. The two steps are
as follows:

(3a) (i) If ‘=0 propose �′ from a uniform distribution over (max{1; �−c0=2}; �+c0=2),
and if ‘ = 1 propose �′ from an N (�; c21) proposal distribution where c0 and
c1 are tuning parameters.

(ii) Calculate �′�L′ using (5), (6) and (12) or (13).
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(iii) Accept the proposed move with probability (10) in which the Jacobian is
replaced by

∣∣∣∣∣@�
′
�L′

@��L

∣∣∣∣∣=


(
g′T�′

(�0)

g′T�
(�0)

)1−‘(
g′$�′ (�0)

g′$�(�0)

)‘
d(�)

;

where g′T and g′$ are given by (12) and (13), and j(L
′; L)=j(L; L′)=(�+c=2−

max{1; �− c=2})=(�′ + c=2−max{1; �′ − c=2}) if ‘ = 0, and 1 otherwise.
(iv) If the proposed move is accepted then update � by �′ and ��L by �

′
�L′ ; other-

wise leave � and ��L unchanged.
(3b) (i) If ‘=0, propose ‘′=1 and generate candidate �′ from an N ( P�1; S21 ) distribution,

where P�1 and S21 are posterior estimates based on a pilot reversible jump
MCMC run, with ‘ Fxed at 1. If ‘=1, propose ‘′=0 and generate candidate
�′ as 1 + exp(u) where u has an N ( P�0; S20 ) distribution, and P�0 and S20 are
posterior estimates based on a pilot reversible jump MCMC run, with ‘ Fxed
at 0. Alternatively, using the prior as a proposal distribution is possible.

(ii) Calculate �′�L′ by transforming ��L using (5), (6), (12) and (13).
(iii) Accept the proposed move with probability (10) in which the Jacobian is

replaced by

∣∣∣∣∣@�
′
�L′

@��L

∣∣∣∣∣=


(
g′$�′ (�0)

g′T�
(�0)

)1−‘(
g′T�′

(�0)

g′$�(�0)

)‘
d(�)

;

where g′T and g′$ are given by (12) and (13), and j(L
′; L)=j(L; L′) is based

on the proposal densities for �′ implied by (i) above.
(iv) If the proposed move is accepted then update L and ��L by L′ and �′�L′

respectively, otherwise leave them unchanged.

4.2.1. Examples 1 and 2 revisited
For Example 1, the MCMC output was based on 10,000 burn-in and a further

200,000 iterations. The mixing was reasonably satisfactory, with a link family change
occurring on average in 55% of iterations, while the link parameter � was updated
using step 3a in over 40% of iterations for both ‘ = 0 and 1.
The posterior model probabilities are presented in Table 8. There is some support for

a symmetric link function, with the t-link being generally preferred, but there remains
a large amount of uncertainty about the link (degrees of freedom) parameter. Indeed,
for no model is the posterior for � signiFcantly diLerent from the prior. Compared
with Table 6, slightly more weight is now given to models which include both A
and B main eLects. Again, given the wide range of models which are supported,
a model-averaged inference is attractive here. All posterior model probabilities were
estimated with Monte-Carlo standard errors less than 1.5%.
For Example 2, we used a total of 400,000 iterations of reversible jump MCMC

(after a burn-in of 10,000), saving every 10th observation due to storage constraints.
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Table 8
Example 1: Summary of the posterior distribution f(�; ‘; �|y) for models with f(�; ‘|y)¿ 0:01

� ‘ = 0 (Student link) ‘ = 1 (Log–gamma link)

f(�; ‘|y) Quantiles of f(�|�; ‘; y) f(�; ‘|y) Quantiles of f(�|�; ‘; y)
2.5% 50% 97.5% 2.5% 50% 97.5%

1 + A + B 0.36 1.02 1.54 18.68 0.17 −2.26 0.23 2.96
1 + A 0.20 1.02 1.72 25.88 0.14 −3.26 −0.03 2.73
1 + A + B + AB 0.09 1.01 1.43 14.45 0.03 −3.17 0.03 2.90
(prior) 1.03 2 40 −3.18 0 3.18

Table 9
Example 2: Summary of the posterior distribution f(�; ‘; �|y)

� ‘ = 0 (Student link) ‘ = 1 (Log–gamma link)

f(�; ‘|y) Quantiles of f(�|�; ‘; y) f(�; ‘|y) Quantiles of f(�|�; ‘; y)
2.5% 50% 97.5% 2.5% 50% 97.5%

1 + X 0.03 1.31 5.23 106.29 0.60 0.15 0.90 1.74
1 + X + X 2 0.15 1.26 3.74 61.59 0.17 −1.06 0.32 2.21
1 + X + X 2 + X 3 0.03 1.11 2.56 30.70 0.02 −1.49 0.27 2.10
(prior) 1.03 2 40 −3.18 0 3.18

A change of link family occurred only on 8.4% of iterations while link parameter � was
updated in around 40% of iterations. The posterior model probabilities are presented in
Table 9 and resemble the results presented in Table 6, in that for these data, a simple
linear model with asymmetric link function is supported. Hence, the log–gamma link
is generally preferred to the t-link. For the preferred linear predictor (1 + X ) the
posterior median for the log–gamma link parameter is 0.90, which is close to the
special case of the complementary log–log link function, the preferred link in Table
6. With a larger range of observed proportions, these data provide more information
about the link function and larger discrepancies between the prior and posteriors for
� are evident. Nevertheless, for linear predictors other than 1 + X there seems to be
much less information concerning �. This is compatible with our previous results in
Table 6. Marginal probabilities for the three linear predictors are also similar to those in
Table 6. Again, all posterior model probabilities have been estimated with Monte-Carlo
standard error less than 1.5%.
As before, in both examples, we tested the e1ciency of our suggested methodology

by rerunning the chain without any parameter transformation on change of L. Again,
the transformation proved extremely useful in assisting mobility of the chain. For both
examples, changes in ‘ were accepted over twice as often with the transformation, and
changes in � for the log–gamma link were also much more frequent. The transformation
did not have such a large eLect on the acceptance of proposed changes in � for the
t-link. Without the transformation, standard errors for several models exceeded our
threshold of 1.5%.
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5. Discussion

In this paper, we have presented full Bayesian inference for generalised linear models
where uncertainty exists about the structure of the linear predictor, the linear parameters
and the link function.
Dellaportas et al. (2002) described an alternative MCMC approach under model un-

certainty based on an ‘independence sampler’, a special case of the reversible jump
formulation. They described connections between this sampler, and the MCMC model
selection approach proposed by Carlin and Chib (1995), based on the Gibbs sampler.
The independence sampler requires a full set of model parameters (��L) to be proposed
whenever a new model (�; L) is proposed. Deterministic transformations of the type
allowed by general RJMCMC are not permitted. Our experience with the independence
sampler is that it can be made to work e1ciently, but that in order to achieve this,
it is usually necessary to perform a greater amount of prior tuning than is required
for the kind of RJMCMC approach described in the current paper. Further details and
comparisons are given by Dellaportas et al. (2002). In general, an independence sam-
pler performs best when the proposal closely resembles the posterior, and in complex
examples this is di1cult to achieve without a large amount of pilot MCMC exploration.
The linear predictor and the link function are two components of a generalised linear

model. We have assumed that the other aspects of the model; the distribution, associated
variance function, and any scale parameters, are known. In principle uncertainty about
these aspects could also be incorporated in a full Bayesian analysis, and this is an area
of ongoing research.
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