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Abstract

Dependencies between random variables are routinely assessed through their variance-

covariance matrix which provides information in a pairwise manner. Here, we explore po-

tential ways to summarize dependencies using a single measure, the total covariation index.

This measure quantifies the total covariation and can be thought as the multivariate analogue

of the covariance. The total covariation index can be implemented to assess dependencies

among variables or identify departures from independence assumptions which are embodied

in many popular statistical models. Due to its univariate nature and its simplicity, it can

be also used to compute the covariation among products of random variables or sums of

products of random variables. Moreover this index allows for the decomposition of the total

covariation related to two sets of variables into between and within sets covariation.

Keywords: Covariance decomposition, Covariance of products, Covariance of sums of

products, Divergence from independence.



1 Introduction

When two random variables are considered, their dependencies are assessed through their

covariance (or correlation). In the case that more than two random variables are considered,

then the variance-covariance matrix is implemented. The variance-covariance matrix consists

of the corresponding pairwise covariances and therefore the dependencies between the N

random variables is assessed in a pairwise manner. In this work, we focus on summarizing

the dependencies between all variables under consideration using the total covariation index

which can combine all relevant information into a single univariate measurement.

The assessment of the total covariation of N variables can be attractive in various ways.

First, it quantifies the magnitude of the dependencies via a single value. Secondly, non-zero

values of the index denote divergences from independence for a particular set of random

variables, even though the reverse statement is not true (that is, zero values do not ensure

independence). Third, it is feasible to explore the factors that influence the dependencies over

all random variables which cannot be done in a straightforward manner using the variance-

covariance matrix. An example is given by Vitoratou et al. (2014) where a total covariation

index is used to assess possible departures from the conditional independence assumption

in Bayesian latent variable models and identify which factors affect them. Finally, the total

covariation index can be used to simplify the computation of covariances among products of

random variables and sums of products of random variables.

The structure of the paper is as follows. Following Vitoratou et al. (2014), in Section 2 we

define the total covariation. We study this index and we provide some further properties. In

Section 3, we illustrate how it facilitates the computation of the covariance among products

of random variables and/or sums of products of variables. In Section 4, we describe the

decomposition of the total covariation related to two sets of variables, in terms of the indexes

of each set. Finally, the paper closes with a short discussion and a comment on potential
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applications of our findings in latent variable models.

2 Indexes of total covariation

The total covariance index (TCI) between N random variables Y = {Y1, . . . , YN} was in-

troduced by Vitoratou et al. (2014) and can be thought as the multivariate extension the

covariance between two random variables. The TCI is formally defined as

TCI(Y ) = E

( N
∏

i=1

Yi

)

−
N
∏

i=1

E(Yi) . (1)

From the above definition, it is clear that in the case of two random variables (N = 2) then

TCI is equal to the covariance between Y1 and Y2. As opposed to the covariance matrix, the

information provided by (1) is based on all N variables simultaneously, rather than being

limited to two variables at each time. However, while (1) provides an index of the total

covariation, it involves only expectations. Nevertheless, Eq. (1) requires the computation of

an N -dimensional integral (the expectation of the product of the variables), which, in many

occasions, can be analytically intractable. For all these reasons, it is reasonable to seek a

more convenient computationally expression of TCI.

Dependencies between N random variables are often conceptualized via the joint cumu-

lants (see Hu, 1991; Hasebe and Saigo, 2011 and references within), given by

κ(Y ) =
∑

π∈PN

(|π| − 1)!(−1)(|π|−1)
∏

b∈π

E

(

∏

i∈b

Yi

)

, (2)

where π runs through PN which is the set of all possible partitions of {1, ..., N}, |π| is he

number of elements in the partition π, and b runs through the list of all blocks of the partition

π. Based on (1) and (2), we define here the total covariation in terms of joint cumulants as
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follows

TCI(Y ) =
∑

π∈PN

∏

b∈π

κ(Y b) −
N
∏

i=1

κ(Yi), Y b = {Yi : i ∈ b} ⊆ Y . (3)

The first term in (2) is the expectation of the product of the N variables and κ(Yi) is the first

order cumulant which is equal to expectation E(Yi) of the random variable Yi . Therefore, in

addition to the expectations, (3) implements the covariances of each pair of variables as well

as higher order cumulants. However, the number of all partitions π of a set {1, ..., N} is given

by the Bell number BN (Rota, 1964) which increases exponentially with N (for example,

when N = 10 the number of possible partitions is B10 = 115975), making the calculation of

the total covariation using (3) less attractive for most applications.

An alternative expression to (1) and (3) can be obtained by the following equation which

uses only first and second order joint cumulants (see Vitoratou et al., 2014)

TCI(Y ) = Cov(N)(Y ) +
N−2
∑

k=1

[(

N
∏

i=N−k+1

E(Yi)

)

Cov(N−k)(Y )

]

. (4)

The term Cov(k)(Y ), k = 2, ..., N will be hereafter refereed to as the item-product covariance,

defined as

Cov(k)(Y ) = Cov

(

k−1
∏

i=1

Yi, Yk

)

. (5)

Note that for random variables centered to zero (E(Yi) = 0), then TCI(Y ) = Cov(k)(Y ).

Using (4), TCI can be computed in a straightforward manner for arbitrary large N since it

does neither involve the evaluation of the N -dimensional integral involved in the expectation

of the product of the random variables as in (1), nor it requires to consider the large number

of partitions as in (3). In addition, it demonstrates the effect of the bivariate covariances in

the total covariation, along with their expectations.

Moreover, Vitoratou et al. (2014) implement the Cauchy-Schwartz inequality to derive an
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upper bound for the absolute value of TCI(Y ); see Collorary 3.2 in Vitoratou et al. (2014).

This upper bound is an increasing function of the expectations, the variances and the number

of random variables under consideration which intuitively implies similar relationships with

the TCI itself. Empirical evidence from simulated data confirmed these effects on the sample

estimates of TCI.

In the following of this section, we proceed further and provide provide some additional

results for the TCI(YN); the subscript N is used here to denote the number of random

variables in Y . Expression (4) implies that the total covariation among N random variables

is assessed through a weighted sum of N -1 covariance terms. For each additional variable

added, its expectation serves as a weight that adjusts the variable’s contribution to the total

covariation. The expression that links two successive terms in (4) is given by:

TCI(Yk+1) = Cov(k+1)(Yk+1) + E(Yk+1) TCI(Yk), k = 2, ..., N − 1, (6)

since

TCI(Yk+1) − Cov(k+1)(Yk+1)=E

(

k+1
∏

i=1

Yi

)

−
k+1
∏

i=1

E(Yi) −

[

E

(

k+1
∏

i=1

Yi

)

− E(Yk)E

(

k
∏

i=1

Yi

)]

=E(Yk+1)

[

E

(

k
∏

i=1

Yi

)

−

k
∏

i=1

E(Yi)

]

=E(Yk+1) TCI(Y k).

From (6), we derive directly an upper bound for the absolute value of the index, given by

|TCI(YN+1)| ≤ |Cov(N+1)(YN+1)| + |E(YN+1) TCI(YN)|. Therefore, if the additional vari-

able is centered around its mean, the total covariation of the augmented set is bounded by

the item-product covariance (with respect to the additional item), that is
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−Cov

(

N
∏

i=1

Yi, YN+1

)

≤ TCI(YN+1) ≤ Cov

(

N
∏

i=1

Yi, YN+1

)

. (7)

In the next sections, we use the TCI(YN) to derive the covariance in more complex

settings involving products of different groups of random variables.

3 On the covariance between products and/or between

sums of products of random variables

With respect to the covariance between products of variables, Brown and Alexander (1991)

provide an expression based on the findings of Goodman (1960), Goodman (1962) and Bohrn-

stedt and Goldberger (1969). Their aim was to decompose the covariance and detect which

variable(s) contribute most on the total variation. In order to achieve that, Brown and

Alexander (1991) implement the sums over all possible k-tuplets (k = 1, ..., N) and r-tuplets

(k = 1, ...,M) of variables, where N and M is the number of variables involved in each of

the two products. This approach can be useful in relation to interaction terms where the

dimensionality (N or M) is no larger than three. Nevertheless, when the objective is to sum-

marize the information (rather than to decompose it in variance components) in cases with

large number of random variables under consideration, TCI(Y ) can provide a reasonable

alternative to Brown and Alexander (1991) formula.

TCI is employed here to facilitate the computation of the covariance of products and

sums of products, concluding to expressions that can be efficiently evaluated no matter how

large is the number of random variables involved in them. To begin with, let us consider

two sets of variables, X = {X1, . . . , XM} and Y = {Y1, . . . , YN}. The covariance between

the products of variables in each set can be computed according to the following lemma.
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Lemma 3.1 The covariance between two products of random variables,
N
∏

i=1

Yi and
M
∏

j=1

Xj, is

given by

Cov

(

N
∏

i=1

Yi,

M
∏

j=1

Xj

)

= TCI(Y ∪ X) − E

(

M
∏

j=1

Xj

)

TCI(Y ) −

[

N
∏

i=1

E(Yi)

]

TCI(X), (8)

where TCI(Y ∪ X) stands for the total covariation index of the full set. The proof is given

in the Appendix.

Expression (7) is simplified if the variables in one of the sets are mutually independent.

In the special case where the variables within both sets are independent, then the covariance

in (8) equals the total covariation of the N + M variables, TCI(Y ∪ X). If additionally

all variables have zero means, then the covariance of the products equals the item-product

covariance of the full set. Lemma 3.1 can be further implemented to derive the covariance

of sums of products of random variables since

Cov

([

S
∑

k=1

Nk
∏

i=1

Yki

]

,

[

S′

∑

k′=1

M
k′

∏

j=1

Xk′j

])

=
S

∑

k=1

S′

∑

k′=1

Cov

([

Nk
∏

i=1

Yki

]

,

[

M
k′

∏

j=1

Xk′j

])

=
S

∑

k=1

S′

∑

k′=1

{

TCI(Yk+ ∪ Xk′+) − E

(

M
k′

∏

j=1

Xj

)

TCI(Yk+) −

[

Nk
∏

i=1

E(Yi)

]

TCI(Xk′+)

}

,

where Yk+ = (Yk1, Yk2, . . . , YkNk
)T and Xk′+ = (Xk′1, Xk′2, . . . , Xk′Mk

)T .

4 Decomposing the total covariation when two groups

of random variables are under consideration

The results of Section 3 provide valuable intuition about the sources of covariation related

to X and Y . Solving (8) with respect to the covariation of the full set TCI(Y ∪ X) leads
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to

TCI(Y ∪ X) = Cov

(

N
∏

i=1

Yi,

M
∏

j=1

Xj

)

+ E

(

M
∏

j=1

Xj

)

TCI(Y ) +

[

N
∏

i=1

E(Yi)

]

TCI(X). (9)

Therefore, the total covariation does not simply coincide with the sum of the TCIs of the

two groups of variables Y and X but takes also under consideration any between groups

dependencies.

If the N and M variables within each group/set are independent then the latter two terms

in (9) become zero and the total covariation coincides with the covariance in the first term.

That is, the covariance of the products of the variables at each set consists of the between

sets covariation. Conversely, if there are no dependencies between the variables that belong

to different sets, the covariance in the first term will be zero since “if the two groups are

expectation-independent and covariance-independent the covariance of the products is zero”

(Bohrnstedt and Goldberger, 1969). On the other hand, the within group total covariation is

given by the corresponding index, TCI(X) or TCI(Y ). The latter two terms in (9) involve

these indexes, each weighted by the expectations referring to the other set. Based on these

observations we decompose the total covariation into within and between groups covariation,

according to the following definition.

Definition 4.1 Let Y = {Yi}
N
i=1 and X = {Xj}

M
j=1 denote two groups or sets of random

variables. The total covariation of the full set (Y ∪X) can be decomposed into between and

within sets covariation

TCI(Y ∪ X) = BCI(Y ,X) + WCI(Y ,X), (10)
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where the between sets covariation is given by

BCI(Y ,X) = E

(

N
∏

i=1

Yi

M
∏

j=1

Xj

)

− E

(

N
∏

i=1

Yi

)

E

(

M
∏

j=1

Xj

)

= Cov

(

N
∏

i=1

Yi,

M
∏

j=1

Xj

)

(11)

and the within sets covariation is given by

WCI(Y ,X) = E

(

N
∏

i=1

Yi

)

E

(

M
∏

j=1

Xj

)

−
N
∏

i=1

E (Yi)
M
∏

j=1

E (Xj)

= E

(

M
∏

j=1

Xj

)

TCI(Y ) +

[

N
∏

i=1

E(Yi)

]

TCI(X). (12)

In equations 10–12 we refer to the covariance attributed to different sets of random

variables, in contrast to ANOVA where we measure the between and within variance of

realizations/observations of the same random variable. Identifying groups or sets of variables

based on their covariance is often the objective in multivariate analysis, as for instance in

cluster and factor analysis models.

5 Discussion: future research

The total covariation among N random variables can be assessed in a straightforward manner

via the index introduced by Vitoratou et al. (2014). In this article, we have demonstrated that

TCI can be employed to compute the covariance of products and/or sums of products that

involve arbitrary large number of variables. Additionally, the total covariation associated

with groups (sets) of variables was studied here in relation to the TCI. Since the TCI measures

the covariation of sets of variables, is directly linked to multivariate analysis techniques. It

can be used in applications related to factor analysis (or latent variable models in general)
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whose objective is to infer on the existence of unobserved (latent) variables based on the

covariation of observed (manifest) items. Below we discuss specific problems encountered in

the field where the use of the TCI seems promising.

To begin with, a fundamental assumption in latent variable models is the conditional

independence assumption, that is, conditional on the latent variables the observed items are

assumed conditionally independent. Non-zero values of the TCI represent divergence from

independence for the variables involved, even though the reverse statement is false. Hence,

it can be employed to test (reject) the independence assumption and more interestingly in

the study of the factors that influence its violation. Such an example is given in Vitoratou

et al. (2014) where the TCI is employed in order to study the impact of the dimensionality

and the components’ variability on Monte Carlo integration (MCI). Based on our results,

similar studies may be conducted for the covariance of products and/or sums of products in

different model settings.

A second area of potential application of the TCI, is the item selection problem often

emerging in applications, as for instance in psychometrics. The item-total correlation (that

is, the correlation of an item with the sum-score of the rest of the items) is extensively

used by practitioners as a rule of thump to decide whether an item is inconsistent (r<0.2)

or redundant (r>0.7) in the assessment of a latent trait. The TCI and the item-product

covariance can play a central role in this procedure since the first is bounded by the latter

when centered variables are added in the current set of variables under study; see equation

(7). The exact mechanism that affects the total covariation for the augmented set is described

by (6). Therefore, the TCI can be potentially used in order to construct a test for the

contribution of an item to the total covariation and to decide upon its inclusion or exclusion.

Finally, the decomposition of the covariance in relation to sets of variables into between

and within sets covariation (see Definition 4.1) can provide information towards the latent

structure. As an appetizer, consider the case of two sets of items, each representing the items
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that load on a specific latent variable. If the between sets covariation is substantially lower

than the within sets covariation, then there is an indication that the items are not allocated

properly. In fact, among all partitions of the items into two sets, the one which maximizes

the within sets covariation (and therefore minimizes the between sets covariation) may be

suggestive of the true latent structure.

While the above observations provide intuition and denote possible applications of the

TCI, future research is required in order to construct appropriate hypothesis testing frame-

work.

APPENDIX

Proof of Lemma 3.1

Cov

(

N
∏

i=1

Yi,

M
∏

j=1

Xj

)

= E

(

N+M
∏

k=1

Yk

)

− E

(

N
∏

i=1

Yi

)

E

(

M
∏

j=1

Xj

)

= E

(

N+M
∏

k=1

Yk

)

−

[

TCI(Y ) +
N
∏

i=1

E(Yi)

][

TCI(X) +
M
∏

j=1

E(Yi)

]

= TCI(Y ∪ X) − TCI(Y )TCI(X) −

[

N
∏

i=1

E(Yi)

]

TCI(X) −

[

M
∏

j=1

E(Xj)

]

TCI(Y )

= TCI(Y ∪ X) − E

(

M
∏

j=1

Xj

)

TCI(Y ) −

[

N
∏

i=1

E(Yi)

]

TCI(X),

since TCI(Y ) TCI(X) = E

(

M
∏

j=1

Xj

)

TCI(Y ) −

[

M
∏

j=1

E(Xj)

]

TCI(Y ). ¤
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