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Abstract

The power-expected-posterior (PEP) prior developed for variable selection in
normal regression models provides an objective, automatic, consistent and parsimo-
nious model selection procedure. At the same time it resolves the conceptual and
computational problems which emerge owing to the use of imaginary data. Namely,
(i) it dispenses with the need to select and average across all possible minimal imag-
inary samples, and (ii) it diminishes the effect that the imaginary data have upon
the posterior distribution. These attributes allow for large sample approximations,
when needed, in order to reduce the computational burden under more complex
models. In this work we generalize the applicability of the PEP methodology, fo-
cusing on the framework of generalized linear models (GLMs), by introducing two
new PEP definitions which are in effect applicable to any general model setting.
Hyper prior extensions for the power-parameter that regulates the contribution of
the imaginary data are further considered. Under these approaches the resulting
PEP prior can be asymptotically represented as a double mixture of g-priors. For
estimation of posterior model and inclusion probabilities we introduce a tuning-
free Gibbs-based variable selection sampler. Several simulation scenarios and one
real data example are considered in order to evaluate the performance of the pro-
posed methods compared to other commonly used approaches based on mixtures
of g-priors. Empirical results indicate that the GLM-PEP adaptations are more
effective when the aim is parsimonious inference.

Keywords: expected-posterior prior, g/hyper-g priors, generalized linear models,
imaginary data, objective Bayesian model selection, power-prior

1 Introduction

1.1 Motivation

In this article the variable selection problem in Generalized Linear Models (GLMs) is
analyzed from an objective and fully automatic Bayesian model choice perspective. The



desire for an automatic Bayesian procedure is motivated by the appealing property of
creating a method that can be easily implemented in complex models without the need
of specification of tuning parameters. Regarding the justification for the necessity of an
objective model choice approach we can argue that in variable selection problems we are
rarely confident about any given set of regressors as explanatory variables, which translates
to little prior information about the regression coefficients. Therefore, we would like to
consider default prior distributions, which in many cases are improper, thus leading to
undetermined Bayes factors.

Intrinsic priors (Berger and Pericchi, 1996a,b) and expected-posterior (EP) priors
(Pérez and Berger, 2002) can be considered as fully automatic, objective Bayesian meth-
ods for model comparison in regression models. They are developed, through utilization of
the device of “training” or “imaginary” samples, respectively, of “minimal” size and there-
fore the resulting priors have a further advantage of being compatible across models; see
Consonni and Veronese (2008). Intrinsic priors as well as EP priors have been proposed in
many articles for use on the variable selection problem in the Gaussian linear models (see
for example Casella and Moreno (2006)); however, to the best of our knowledge, there is
only one study that proposes this methodology for GLMs, which is restricted to the case
of the probit model (Leon-Novelo, Moreno and Casella, 2012). We believe that this is due
to the fact that derivation of such priors can be a very challenging task, especially under
complex models, leading to computationally intensive solutions. Furthermore, by using
minimal training samples, large sample approximations (e.g Laplace approximations) can
not be applied in many cases.

Our contribution with this article is two-fold. First, we develop an automatic, objective
Bayesian variable selection procedure for GLMs based on the EP prior methodology. In
particular we consider the power-expected-posterior (PEP) prior of Fouskakis, Ntzoufras
and Draper (2015), that diminishes the effect that the imaginary data have upon the
posterior distribution and therefore the need of using minimal training samples. Through
this approach we can consider imaginary samples of sufficiently large size and therefore
be able to apply, when needed, large sample approximations. Secondly, we introduce a
simple tuning-free Gibbs-based variable selection sampler for estimating posterior model
and variable inclusion probabilities.

1.2 Bayesian variable selection for generalized linear models

Despite the importance and popularity of GLMs, Bayesian variable selection techniques for
non-Gaussian models are scarce in relation to the abundance of methods that are available
for the normal linear model. This is mainly due to the analytical intractability which arises
outside the context of the normal model. Therefore, the relatively limited studies that
focus on non-Gaussian models, mainly aim to overcome analytical intractability through
the use of Laplace approximations and/or stochastic model search algorithms.

Chen and Ibrahim (2003) introduced a class of conjugate priors based on an initial
prior prediction of the data (similar to the concept of imaginary data) associated with a
scalar precision parameter. This approach essentially leads to a GLM analogue of the g



and hyper-g prior (Liang, Paulo, Molina, Clyde and Berger, 2008) distributions where the
precision parameter has the role of g. However, the prior of Chen and Ibrahim (2003) is not
analytically available for non-Gaussian GLMs and, therefore, Chen, Huang, Ibrahim and
Kim (2008) proposed a Markov chain Monte Carlo (MCMC) based solution for this class
of models. Ntzoufras, Dellaportas and Forster (2003) used a unit-information g-prior
(Kass and Wasserman, 1995) for variable selection and link determination in binomial
models through reversible-jump MCMC sampling. Bové and Held (2011) consider the
asymptotic distribution of the prior of Chen and Ibrahim (2003), which results in the
same g-prior form used in Ntzoufras et al. (2003), and further consider mixtures of g-
priors along the lines of Liang et al. (2008). Computation of the marginal likelihood in
Bové and Held (2011) is handled through an integrated Laplace approximation, based on
Gauss-Hermite quadrature, which allows variable selection through full enumeration for
small/moderate model spaces or through MCMC model composition (MC?) algorithms
(Madigan and York, 1995) for spaces of large dimensionality. Other GLM variations
of g-prior mixtures have an empirical Bayes (EB) flavor, using the observed or expected
information matrix evaluated at the ML estimates, as the prior variance-covariance matrix
(Hansen and Yu, 2003, Wang and George, 2007, Li and Clyde, 2015). A computational
benefit of the EB approach is that the integrated Laplace approximation can be expressed
in closed form as a set of functions of the ML estimates. For large model spaces, where full
enumeration is infeasible, Li and Clyde (2015) recommend using the Bayesian adaptive
sampling algorithm (Clyde, Ghosh and Littman, 2011). A relevant prior specification is
the information-matrix prior of Gupta and Ibrahim (2009) which combines ideas from the
g-prior and Jeffreys prior for GLMs (Ibrahim and Laud, 1991); under a Gaussian likelihood
the information-matrix prior becomes the standard g-prior, while for ¢ — oo it reduces
to Jeffreys prior which is proper only for the case of the binomial model. However, in
applications Gupta and Ibrahim (2009) do not directly consider the problem of stochastic
search over the entire model space. Finally, one application of Bayesian intrinsic variable
selection for probit models via MCMC is presented in Leon-Novelo et al. (2012).

As seen, at present most methods for GLMs are anchored to the g-prior approach
(Zellner and Siow, 1980, Zellner, 1986) and therefore cannot be regarded as objective and
fully automatic approaches in the sense that one cannot conduct an analysis starting with
non-informative, flat priors. In this work we present an automatic, objective Bayesian
variable selection procedure for GLMs based on the PEP methodology. The structure
of the remainder of the paper is as follows. In Section 2 we provide an overview of the
PEP prior formulation and discuss the applicability problems that arise in the case of
non-Gaussian models. We proceed with two alternative definitions, which generalize the
applicability of the PEP prior for GLMs. In Section 3 we introduce a Gibbs-based sampler
suitable for variable selection and for single-model posterior inference. Section 4 presents
an hierarchical extension of the methodology which involves assigning a hyper-prior to
the power-parameter that controls the contribution of the imaginary data. Illustrative
examples and comparisons with other methods using both simulated and real data sets
are presented in Section 5. Section 6 concludes with a summary and a discussion of future
research directions.



2 PEP priors for generalized linear models

We consider n realizations of a response variable Y accompanied by a set of predictors
X1, Xs, ..., X, which may potentially characterize the response. To fix notation, let v €
{0,1}? index all 27 subsets of predictors serving as a model indicator, where each element
v;, for j =1,...,p, is an indicator of the inclusion of X in the structure of model M,.
Moreover, let p, = Z§:1 7; denote the number of active covariates in model M.,,. Within
the GLM framework, the response Y follows a distribution which is a member of the
exponential family. The sampling distribution of the response vector y = (y1,...,yn)"
under model M, is given by

£(518., 6) = exp Zyzwz) b(~(5)) 3 ey ). (2.1)
i1 ai(p~) 1

The functions a(-), b(-) and ¢(-) determine the particular distribution of the exponential
family. The parameter v, is the canonical parameter which regulates the location of
the distribution through the relationship ¥y = 9(nyi)) = g o V" (140)), where g(-)
is the link function connecting the mean of the response y; with the linear predictor
) = Xqy@B, and g o ' (ny;)) is the inverse function of g o V' (0ya)) = g(b'(94a)))-
Commonly, a canonical ¢ function is used, so that ¥4 = 1y4). We assume that an
intercept term is included in all 27 models under consideration, so 3, is the dy X 1 vector
of regression coefficients, where dy = p, +1, and X, ;) is the ¢~th row of the n x d, design
matrix X, with a vector of 1’s in the first column and the «-th subset of the X,’s in
the remaining p. columns. The parameter ¢, controls the dispersion and the function
a(-) is typically of the form o;(¢) = ¢, /w;, where the w; is a known fixed weight that
may either vary or remain constant per observation. In addition, the nuisance parameter
¢~ is commonly considered as a common parameter across models, therefore we assume
throughout that ¢, = ¢ without loss of generality. Given the above formulation, we have
that E(y;) = 0'(¥4(;)) and Var(y;) = b" (D)) s ().

The GLM parameters 6, = (B,,¢) are divided into the predictor effects 3., and
the parameter ¢ which affects dispersion. In the following we work along the lines of
(Fouskakis and Ntzoufras, 2016) considering the conditional PEP prior; i.e. we construct
the PEP prior of 8, conditional on ¢.

2.1 An overview of the PEP prior

The PEP prior, initially formulated in Fouskakis et al. (2015) for the case of the normal
linear model, creatively fuses ideas from the power-prior (Ibrahim and Chen, 2000) and
the EP prior (Pérez and Berger, 2002). Let us first describe the EP prior approach. Con-
sider that we have imaginary data y* = (y7,...,y".)T coming from the prior-predictive
distribution m*(y*) of a “suitable” reference model M*. Then, given y*, for any model
M, with sampling distribution f,(y*|3,,¢) as defined in (2.1) and a default baseline-
prior of the form 7 (8, ¢) = 7} (B, |¢)7] (¢), we have a corresponding baseline-posterior



distribution given by
f’)’(y*|187) gb)ﬂ-}j(ﬂ'y|¢>ﬂ-§(¢) )

mi(y*)

5 (B, dly") =

(2.2)

The EP prior for the parameters of model M, is then defined as the posterior distribution
in (2.2), averaged over all possible imaginary samples, i.e.

™ (B, ) = /ﬂ}?(ﬁw oly™)m*(y")dy". (2.3)

The reference model M* is commonly considered to be the simplest model, i.e. the (null)
intercept model in the regression framework. This selection makes the EP approach es-
sentially equivalent to the arithmetic intrinsic Bayes factor of Berger and Pericchi (1996b).

A key issue in the implementation of the EP prior is the selection of the size n*
of the imaginary sample. In order to minimize the effect of the prior on the posterior
inference, the reasonable solution is to choose the smallest possible n* for which the
posterior is proper. This leads to the concept of the so-called minimal training sample,
which however requires calculating the arithmetic mean (or other appropriate measures
of centrality) of Bayes factors over all possible minimal training samples. In addition,
when it comes to regression the same problem arises with the design matrix as one has
to choose appropriate covariate values for each minimal training sample, and this further
depends upon the choice of the reference model. A computational solution to deal with the
aforementioned problems has been proposed in the literature (e.g. Casella and Moreno,
2006, Moreno and Girén, 2008), however, this solution is only applicable under the normal
linear regression model and in addition under this approach it is not clear whether the
resulting Bayes factors retain their intrinsic nature. Furthermore, the effect of the EP
prior can become influential when the sample size is not much larger than the number of
predictors; see Fouskakis et al. (2015) for details. Finally, when n* is small and (2.3) is
hard to derive, large sample approximations cannot be applied.

The PEP prior resolves the problem of defining and averaging over minimal training
samples and at the same time scales down the effect of the imaginary data on the posterior
distribution. The core idea lies in substituting the likelihood function involved in the
calculation of (2.2) by a powered-version of it, i.e. raising it to the power of 1/, similar to
the power-prior approach of Ibrahim and Chen (2000). Following Fouskakis and Ntzoufras
(2016), the conditional PEP prior in the GLM setup, under the null-reference model My,
is defined as follows

T (B4, 910) = 7 (B4, 6)m3 (), (2.4)



where

W (B,10.0) = [ 7B,y 0.0 (v7]6. 01y (2.5)

B,y 6,6) fv(Y*Iig(cz;,jZZ)(ﬂvlczS)’ (26)

m3100) = [ 5718,:0.053(8,10)48,. 2.7

B(18,,6.0) & fy(y" 18y, &), 2.5)

mi(5716:8) = [ oo 0.0) (5 0) A (2.9)

Fo(y" B0y 6,8) o foly "o, 6) (2.10)

Note that the PEP prior for the intercept term of M, essentially reduces to the baseline

prior; i.e. 70 (Bo|d, §) = 7' (Bo|¢). Here the power-parameter ¢ controls the weight that

the imaginary data contribute to the “final” posterior distributions of 8. and ¢. The
default choice is to set it equal to the size of the imaginary sample, i.e. § = n*. Under this
approach the contribution of the imaginary data is downweighted to overall account for one
data point, leading to a minimally-informative prior with a unit-information interpretation
(Kass and Wasserman, 1995). Furthermore, by setting n* = n we avoid the complicated
problem of sampling over numerous imaginary design sub-matrices, as in this case we
have that X* = X.,. As shown in Fouskakis et al. (2015) the PEP prior is robust with
respect to the specification of n* and it also remains relatively non-informative even when
the model dimensionality is close to the sample size.

Another advantage of setting n* = n, which becomes more obvious in the GLM frame-
work, is that one can now utilize large-sample approximations when needed. For instance,
consider the baseline-posterior in (2.6), which can be expressed as

*

I Y Uaa) — bV
mY(Byly*,6,0) o exp (Z% vgga‘@; ”“))wﬁ(ﬁm (2.11)
i=1 ¢

This unnormalized distribution is recognized as the power-prior for GLMs (Chen, Ibrahim
and Shao, 2000). If we assume a flat baseline prior for 8., i.e. 7} (8,|$) o< 1, then, based
on standard Bayesian asymptotic theory (Bernando and Smith, 2000), for n* — oo the
distribution in (2.11) converges to

(B, Iy, 6.6) ~ N, (B5,005(85) ), (2.12)

where B'*v is the MLE of 3, for data y* and design matrix X7, and J7, (Bf;) is the observed
. . A : * *T e * __ 3 *

information evaluated at 3% . Specifically, J = (X,y W,YX,Y) , where W2 = dlag(wv(i))
with w? ) = (ZZ:E;)Q [ai(¢)b”(ﬁ7(i))}_l and fiy) = V' (Uy@)). It is straightforward to see
that the asymptotic distribution in (2.12) has a g-prior form according to the definitions
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for GLMs presented in Ntzoufras et al. (2003) and Bové and Held (2011). The familiar
zero-mean representation in (2.12) arises when the covariates are centered around their
corresponding arithmetic mean and the imaginary response data are all the same, i.e.
y* = ¢ 1(0)1,, where 1, is a vector of ones of size n* since in this case we have that

~

B% = 04,; for details see Ntzoufras et al. (2003).

2.2 PEP prior extensions for GLMs via unnormalized power-
likelihoods

The sampling distribution of the imaginary data involved in the PEP prior via (2.6), (2.7)
and (2.9) is a power version of the likelihood function. In the normal linear regression
case, Fouskakis et al. (2015) and Fouskakis and Ntzoufras (2016) naturally considered the
density normalized power-likelihood

* fv(y*|07)1/6

f"/(y |0’Y76> ff7<y*‘07)1/5dy*7 (213)
which is also a normal distribution with variance inflated by a factor of . Similar results
can be derived for specific distributions of the exponential family such as the Bernoulli,
the exponential and the beta distributions where the normalized power-likelihood is of
the same distributional form. This property simplifies calculations when using the PEP
methodology, especially for Gaussian models where the resulting posterior distribution and
marginal likelihood are available in closed form. An application of the PEP prior using
the normalized power-likelihood for MCMC-based variable selection in binary logistic
regression can be found in Perrakis, Fouskakis and Ntzoufras (2015a).

However, this property does not hold for all members of the exponential family. For in-
stance, for the binomial and Poisson regression models, the normalized power-likelihoods
are composed by products of discrete distributions that have no standard identifiable
form. Although it is feasible to perform likelihood evaluations for each observation, the
additional computational burden renders the implementation of the PEP prior methodol-
ogy time-consuming and inefficient. One possible computational solution to the problem
would be to utilize an exchange-rate algorithm for doubly-intractable distributions (Mur-
ray, Ghahramani and MacKay, 2006). However, this approach would further increase
MCMC computational costs.

Here we pursue a more generic approach for the implementation of PEP methodology
in GLMs by redefining the prior itself. Namely, we consider two adaptations of the PEP
prior which, in principle, can be applied to any statistical model and, consequently, are
applicable to all members of the exponential family. For the remainder of this paper,
without loss of generality we restrict the scale parameter ¢ to be fixed, which is the
case for the binomial, Poisson and normal with known error variance regression models.
Specifically, we assume that ¢ = 1 and remove ¢ from all conditional expressions to
alleviate notation.

The core idea is to use the unnormalized power likelihood (2.8) and (2.10) and nor-




malize the baseline posterior density (2.11), i.e

F+(y*18,) 75 (8,)
J I (ye18,) o5 (B,)dB,

which is also the approach of Friel and Pettitt (2008, Eq.4) in the definition of the power
posterior. Given this first step, we proceed by proposing two versions of the PEP prior
which differentiate with respect to the definition of the prior predictive distribution used
to average the baseline posterior in (2.14) across imaginary datasets. This prior predictive
distribution can be alternatively viewed as a hyper-prior assigned to y* (Fouskakis and
Ntzoufras, 2016). More specifically we define the two PEP variants as follows.

T (B, ly*,0) =

(2.14)

Definition 1 The concentrated-reference PEP prior of model parameters 3., is de-
fined as the power-posterior of B, in (2.14) “averaged” over all imaginary data coming
from the prior predictive distribution of the reference model My based on the actual like-
lzhood, that is

(g o) = [, 0)] = 8, [ T 18,y 200

with mj (y*) / Fo(y*1Bo) 75 (Bo)dBo (2.16)

and mN(y*|§) = / £ (y°18,) P nN(8,)dB,,

In order for the above prior to exist, we need to consider, for each model M, similar
assumptions as in Pérez and Berger (2002), i.e
N *
my (y”)
0 <mY(y*6) < oo, 0< /O—
K mi(y*[9)

In equation (2.15), mY will not necessarily be proper, but still, by abusing slightly nota-
tion, we define the concentrated-reference PEP prior as the expectation of 7 (ﬁ7|y*, J)
with respect to my. Furthermore, impropriety of the baseline priors in (2. 15) causes no
indeterminacy of the resulting Bayes factors, since 7TCR PEP(,@ |0) depends only on the
normalizing constant of the baseline prior of the parameter of the null model. Finally, the
concentrated-reference PEP prior for the parameter of the null model is no longer equal
to the baseline prior m) (), since

f,y(y*\ﬂ7)1/5dy* < 00. (2.17)

ﬂ_ngPEP(B 16) _7To (Bo) / m0y a5 (y*\ﬁo)l/édy*. (2.18)

Definition 2 The diffuse-reference PEP prior of model parameters 3, is defined
as the power-posterior of B, in (2.14) “averaged” over all imaginary data coming from



the “normalized” prior predictive distribution of the reference model My based on the
unnormalized power-likelihood, that is

(s, o) = B [y, 0] w38y [ TR 1 3718,y (219

mi (y*|6)"7
N (/% 1/6 N dﬁ
S m0 (y*]6) _ ffo v*|5o) o (Bo)dfo
vith Moy 1) = TS T T Aoy 1) e (o) Ay

and mN(y')s) = / £,(y°18,) Y mN (8,8,

The conditions for the existence of the diffuse-reference PEP prior, for each model M.,
are similar to (2.17), i.e

mg (y*|0)

0 <mi(y*]6) < oo, 0< .
K S (y*10)

f(y*18,)"°dy* < oo. (2.20)
Again the definition of the diffuse-reference PEP prior as an expectation of 7T,1;I (B4ly",9)
with respect to m5 is slightly abusive under improper baseline prior setups. The nor-
malization of m{(y*|d) is adopted in order to retain the “expected-posterior” inter-
pretation under proper baseline prior setups. The induced normalizing constant Cy =
J mi (y*|0)dy* exists under any proper baseline prior setup and has no effect on the pos-
terior variable selection measures since it is common in all models under consideration.
Additionally, impropriety of the baseline priors causes no indeterminacy of the resulting
Bayes factors, since WER_PEP(BVM) depends only on Cy which is common across all mod-
els. Finally, the diffuse-reference PEP prior for the parameter of the null model is no
longer equal to the baseline prior, since

7DR-PEP (3 15) — ffo y*|6o)"/°dy” J fo(y*1B0)"/°m (Bo)dy™
! o) = Co T T oy 10) o (Bo)dBody ™

Definition 1 is a special case of Definition 2 since m{(y*) is a special case of m{ (y*|d)

with § = 1. Because the likelihood in (2.16) is not scaled down, it provides more informa-
tion from the imaginary data resulting in a more concentrated (in relation to the alterna-
tive approach) predictive distribution. For this reason, this version is named concentrated-
reference PEP (CR-PEP). The CR-PEP prior is also given by

)1/
) = ey [ [ 'ZNyfj;gy o) N By s (222

In Definition 2 the likelihood involved in m} (y*|d) in (2.19) is raised to the power of 1/§
and, therefore, the information incorporated in the prior predictive distribution becomes
equal to n*/é points leading to a distribution which becomes increasingly diffuse as §
grows. Thus, this prior is coined diffuse-reference PEP (DR-PEP). Specifically, we have
that

(2.21)

. . F618,) " fo(y*1B0) " .
W’]YDR PEP(/@7|5) _ C01 N( // Y NG 0 N (Bo)dy*dpo. (2.23)
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2.3 Further prior specifications

To complete the model formulation we need to specify a baseline prior for 8., under
each model M,, and also a prior distribution on the model space M = {0,1}?, as we are
interested in variable selection rather than single-model inference in which case v € M
is fixed. In addition, we do not need to specify a prior for ¢, which is considered fixed
in our setting. For models with random (under estimation) ¢, we propose working along
the lines of Fouskakis and Ntzoufras (2016) and use a flat prior on ¢; this will just add
one additional step to the MCMC algorithm presented in Section 3.

Baseline prior distributions for 3,

Common choices for the baseline prior of the regression vector 8., under each model M.,
are either the flat improper prior

3 (8,) x 1 (2.24)
or Jeffreys’ prior for GLMs (Ibrahim and Laud, 1991) which is of the form
w3 (8,) ox [XIW,(8,)%, /7 (2.25)

For non-Gaussian GLMs Jeffreys’ prior will depend on 3., through the GLM weight matrix
W, (+); see Section 2.1 for details. Note that Jeffreys’ prior for the parameter of the null

model simplifies to m) () o< tr (Wo(ﬁo))l/z.

Prior distributions on model space

A common non-informative option for «y is to use a product Bernoulli distribution where
the prior inclusion probability of each predictor is equal to 0.5. This leads to a discrete
uniform prior on the model space, i.e.

() =277, (2.26)

An alternative choice, better suited for moderate to large p, is to use the hierarchical prior
design
~|7 ~ Bernoulli(7) and 7 ~ Beta(1, 1),

in order to account for an appropriate multiplicity adjustment (Scott and Berger, 2010).
In this case the resulting prior is given by

() = L<p)_l. (2.27)

_p—i-l D~

3 Posterior Computation

In normal linear regression models the conditional PEP prior is a conjugate normal-inverse
gamma distribution which leads to fast and efficients computations (Fouskakis and Nt-
zoufras, 2016). For non-Gaussian GLMs there exist no convenient conjugate distributions

10



and the integrals involved in the derivation of the CR/DR-PEP priors are intractable.
However, one can work with the hierarchical model, i.e. without marginalizing over the
imaginary data, and use an MCMC algorithm in order to sample from the joint posterior
distribution of 8., and y*.

For ease of exposition, for the remainder of this section we use indicator ¢ to distin-
guish between the CR-PEP prior (¢ = 1) and the DR-PEP prior () = d) and we simply
use the general term “PEP” to denote the joint posterior. Specifically, from (2.14), (2.15)
and (2.19) we have the following hierarchical form

(B, ¥ 1y, 0) o< f1(y|B,) 7N (B, ly", 6)mg (y*[v)

2y 1B) 75 (B,)
o f~(y1B,) oo (YY), (3.1)

T m (y*|0) "
where m{ (y*|1) = m)(y*). A further computational problem in (3.1) relates to the
prior predictive distributions mJ(y*|6) and mg (y*[¢)) which are not available in closed
form. One solution is to use a Laplace approximation for both. Alternatively, a more
accurate solution is to augment the parameter space further and include parameter [, of

the reference model M in the joint posterior, thus avoiding to approximate mg (y*|t).
Based on (2.22) and (2.23) the posterior in (3.1) is expanded as

Iy (y*18.,) 7N (B,)
mX (y*[6)

which leaves us with the need of using only one Laplace approximation for m,lj(y*|5).

Sampling from (3.2) for a single model M., i.e. for a fixed configuration of =, is feasible
using standard Metropolis-within-Gibbs algorithms. For variable selection, which is the
topic of the next section, we further assign a prior on -y, based on the options discussed
in Section 2.3, and utilize the algorithm of Dellaportas, Forster and Ntzoufras (2002).
Note that under flat baseline priors the posterior in (3.2) and the corresponding MCMC
scheme are simplified. Finally, under a flat baseline prior one may also consider using the
normal approximation in (2.12) for the entire fraction appearing in (3.2), instead of using
a Laplace approximation for the prior predictive m,l\; (y*]9).

WSEP(/nyaﬁ07y*|y7 5) X f')’(y‘IB‘y) fO(y*|ﬁO)1/¢ﬂ-g](50)7 (32)

3.1 Gibbs variable selection under the PEP prior

The Gibbs variable selection (GVS; Dellaportas et al., 2002) method is a stochastic search
algorithm based on the vector of binary indicators 4 € {0,1}? which represents which
of the p covariates are included in a model. To formulate GVS we need to partition
the regression vector 3 into (3., 6\7), corresponding to those components of 3 that are
included and excluded from the model, i.e. 8; € B, if v, = 1 and 5; € B\, if 7; = 0,
for j = 1,...,p. As we assume that the intercept term is included in all models under
consideration, 8, and B, are of dimensionality dy = py+1 and d\y = p—ps, respectively.
Under the GVS setting the joint prior of 3 and - is specified as follows

(B,7) = m5(B)7(7) = 75(8,)75 (B\,)7 (), (3.3)

11



where the actual baseline prior choice involves only 3., since 775 (5\7) is just a pseudo-prior
used for balancing the dimensions between model spaces; see Dellaportas et al. (2002).
Suitable choices for the priors of 8. and « have been discussed in Section 2.3, thus, in
order to complete the GVS setup, we only need to specify the pseudo-prior for the inactive
part of the regression vector 3. In particular, we use a multivariate normal distribution
of dimensionality d\~, with parameters specified by the ML estimates; namely,

™ (By,) = Na, (fg\v’ld\vaﬂ\ ) (3.4)

where ,@\7 and EgW are the respective ML estimates and corresponding standard errors of
B\ from the full model using the actual data y and I, _ is the d\, X d\, identity matrix.
Based on this formulation, the full augmented posterior used to build our MCMC has the
following form

Sy 1B)Y foly*|Bo) /¥
mX (y*|0)

(BTN (BT ()T (Bo),

(3.5)
where, as a reminder, ¢ = 1 in the CR-PEP setting and ¥ = § in the DR-PEP setting.
Then, the proposed PEP-GVS sampling scheme is the following:

Set starting values 4@, 3 (ﬁ(o), 5@); ﬁ and y*(.
For iterations t = 1,2,..., N:

71-(/67’/6\77507}’*77|Ya 5) & f’Y(y|ﬁ—y)

Step 1: Set current values equal to 8 = B, 8, = B(()tfl) ~ =~ and y* =
*(t—1)

y .

Step 2: For j = 1,2,...,p, sample 7; ~ W(’yj}ﬁ,y\j,y*,y,(S) which is a Bernoulli
distribution.

Step 3: Update 8 = (8,, 6\7) based on the current configuration of ~y.

Step 4: Sample the active effects 3., ~ 7T(,6,Y ”y, vy, (5) using a Metropolis-Hastings
step.

Step 5: Sample the inactive effects B@ from the pseudo-prior in (3.4).

Step 6: Sample 3y from 7(Boly* ) oc fo(y*|B0)/¥ 7 (By) using a Metropolis-
Hastings step.

Step 7: Sample y* from

Ty 1BNY foly*|Bo) ¥

my(y*[0)

7T<y*|1877 /80) Y, 57 ¢) X

using a Metropolis-Hastings step.
Step 8: Update the parameter values at iteration t as B =0, ﬁo = Fy v =~

*

and y*® = y*.

Note that the generation of v and B, (Steps 2 and 5) is straightforward since the corre-
sponding conditional distributions are of known form. For the rest of parameters, 8., 5o
and y*, we use Metropolis-Hastings (M-H) steps. Details are provided next.
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3.2 Implementation details

Concerning the binary inclusion indicators 7;, the conditional posterior distribution
7T(’7j|,@, Y Y 5) is a Bernoulli distribution with success probability O,/(1 + O;) and

fr,, (¥185,,) . Fo, (5°185,) 1/5>< ™. (B) . my. (y*19) ()
f'yjo (Y‘/nyjo) f7j0(y*|/8'7j0) 71',1;1]_0([3) ‘1\71 (y* |5) (')’jo)7

where v, = (3 = Lvy), 7, = (3 = 0,v;) and 75(8) = 7J(8,)7](B\,) for v €
{77} All of the quantities involved in (3.6) are available in closed form expressions
except of the marginal likelihood m,lj(y* |0). The latter is estimated through the following
Laplace approximation

0, = (3.6)

N (y*16) = (2m6) ™ 2 [XEW., (B) X, |21y (v*|82) Y (B2). (3.7)

. -1
where 37 is the MLE for data y* given the configuration of +, [XTW (ﬁ*) ] is

equal to minus the inverse Hessian matrix evaluated at Bf/ and W, is the n x n diagonal
matrix containing the GLM weights. Under a Jeffreys baseline prior for 3., the Laplace
approximation simplifies to mY (y*|d) = (27?5)d7/2f7(y*|ﬁf‘y)1/5.

For the active effects B, of model M, and the intercept term [, of the reference
model My, we use independence sampler M-H steps. Specifically, for 8, we generate new
candidate values as

ﬁ ~ q(/B ) Nd—y (A:ua iﬂz“) )

where B?YH is the ML estimate from a weighted regression on y*! =

(y,y*)T, using weights
will = (1,,1,6 )7, and Zﬂall is the estimated variance-covariance matrix of ﬁa”. The
proposed move is accepted with probability

(v18.) (fv(y*ﬂi,)>1/ " aNB)a(B,)

H1B) \ (718, NBaB,) |

g, = min 1,

where 3. denotes the current value of the chain. The proposal distribution of f; is
q(Bo) = N(@),@Z)Ef\go) with ,é;) and o, being the respective ML estimate of /3y and the

standard error of 50 from the null model with response data y*. The proposed move is
accepted with the usual M-H transition probability where the likelihood of the reference
model is raised to the power of 1/1¢. Note that no specific fine tuning is required for the
proposal distributions of 3., and fy.

Finally, for the generation of the imaginary data we propose candidate values y* from
a proposal distribution q(y*') and accept the proposed move with probability

(e = min | 1 FH185) " <fo(>’*'|ﬁo))w mi (y*10) q(y*)
Y "\ (y*185) fo(y*1Bo) mN(y*'(6) q(y*) | °

13



where the marginal likelihood estimates are obtained through (3.7) and y* denotes the
current value of the chain. The joint proposal density is formed by the product of in-
dependent distributions, i.e. ¢(y*) = H?Zl q(y;), where the proposal of each imaginary
observation y; is constructed by combining the two likelihood components of the PEP
prior. Hence, for the logistic regression model we use

/¢ _1/8

Mo Ty

1/ 175 ’
Wo/wﬁvéz’) + (1= m0) (1 = myp)) /0

q(y!) = Binomial(N;, 7r}) with 7} =

where my = (14 exp(—fo)) ™", Ty = (1 +exp(=Xy»B,)) " and N; denotes the number
of trials of the observed data. Equivalently, for Poisson regression models we consider

N\ — Do 1/6
q(y!) = Poisson ()\0)\7@)>

for the CR-PEP prior; where Ay = exp(fy) and Ay = exp(Xy;3,). For the DR-PEP
prior, the corresponding choice of a Poisson proposal with mean (M), )'/? was not found
to be efficient in practice. Therefore, we use instead a Poisson random-walk proposal with
mean equal to the value of y; at the current iteration.

A complete and thorough description of the PEP-GVS algorithm as implemented in
this work is provided in algorithmic form at the electronic appendix of this paper.

4 Hyper-0 extensions

The initial PEP prior for the normal regression model can be interpreted as a mixture of
g-priors where the power parameter § is equivalent to g and the mixing density is the prior
predictive of the reference model (Fouskakis et al., 2015). Thus, under the PEP approach
we assign a hyper-prior on the imaginary data y*, rather than to the variance multiplier,
i.e. the power-parameter . As discussed in Section 2.1, the same representation holds
asymptotically in the GLM setting given a flat baseline prior. From this perspective, a
natural extension of the PEP methodology arises by introducing an extra hierarchical level
to the model formulation via the assignment of a hyper-prior on §. Under this approach
one can estimate the power-parameter instead of a-priori set it equal to a fixed predefined
value. It should be noted, however, that when 9 is not fixed at n*, then PEP priors loose
their unit-information interpretation.

We define the hyper-0 CR/DR-PEP priors as
— /\* * k A* * -1 * *
A e ) — [ g (8385, 6(X W3 (B5)X3) ™ Y 3 o) m(8)dy s, (4.1

where 1 = {1, 4}, B,*y is the ML estimate given the imaginary data, and fy dv(') denotes
the dy—dimensional multivariate normal distribution. Note that for ease of exposition in
(4.1), and without loss of generality, we use the normal approximation given in (2.12) for
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the baseline posterior W,I;I(,B,yly*, 9). Sensible options for 7(d) are the hyper-g analogues
proposed in Liang et al. (2008). Specifically, we consider the hyper-§ prior
a— 2

m(8) = — (1+6)"%2, (4.2)

which corresponds to a Beta(l,% — 1) for the shrinkage factor ﬁ—g. Thinking in terms
of shrinkage, Liang et al. (2008) propose setting a = 3 in order to place most of the

probability mass near 1 or a = 4 which leads to a uniform prior. An alternative option is
the hyper-d/n prior given by
—a/2
a—2 o
0) = 14— . 4.3
n(8) = ( - n) (13)

In principle, any other prior from the related literature can be incorporated in the PEP
design; for instance, the inverse-gamma hyper prior of Zellner and Siow (1980) or the
recent g-prior mixtures proposed by Maruyama and George (2011) and Bayarri, Berger,
Forte and Garcia-Donato (2012).

Of course, when working outside the context of the normal linear model the integration
in (4.1) with respect to § will not be tractable. Therefore, in order to incorporate the
stochastic nature of § we need to introduce one additional MCMC sampling step. In this
case the augmented posterior is given by

ﬂ-(/@ﬂy? /6\7: ﬁOa y*7 v, 5’y> & 7T(,8,y, IB\’)/? 507 y*a ’7|y> 5)7T(6)7 (44)

where the first quantity in the right-hand side of (4.4) is given in (3.5). The corresponding
full conditionals we wish to sample from are

R . F2(y*185) "7 (5)
_ . (7 1B)Y° foly*|Bo)'/*m (0)
mPRTE(618,, Bo, 0,7, ¥, Y) 7m§(y*|§) : (4.6)

Looking at the above expressions, a subtle point is that ¢ is not directly linked to the
actual data y; however, it is linked indirectly via the posterior values of the parameters of
models M., (for both approaches) and M, (for the DR-PEP prior). Sampling from (4.5)
or (4.6) is achieved by adding one simple step (after Step 7) in the PEP-GVS algorithm
described in Section 3.1. Specifically, we use a random walk M-H step where we propose
a candidate value ¢’ from

2
q(0'0) = Gamma (5—2, 0 ) :

2
S5 55

which has mean equal to the current value ¢ and variance s3. The latter is a tuning pa-
rameter which can be specified appropriately in order to have an acceptance rate between
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0.2 and 0.5, as recommended by Roberts and Rosenthal (2001). The value of s} = §
proved to be efficient in the examples presented in Section 5. Given this proposal, the
new candidate ¢ is accepted with probability «s = min(1, As), with Ay given by

5\ b2
As= [ = —
' (5) £ (y*1B2)

where ¢’ = ¢ = 1 for the CR-PEP prior and ¢/ = §’, ¢ =  for the DR-PEP prior. This
acceptance probability is derived from the marginal likelihood Laplace approximation
presented in (3.7), keeping only the terms that include 0. The analytic description of the
PEP-GVS algorithm found in the electronic appendix includes the additional sampling
step discussed here.

~—

fo(y*\ﬁo){#—i}ﬂ(& 4(618")

1)
7(0) 4(5]6)"

5 Illustrative examples

In this section we present first a simulation study for logistic and Poisson regression taking
into account independent and correlated predictors as well as different levels of sparsity
for the true model. We proceed with a simulation study for logistic models where the
number of predictors is larger and the correlation structure is more complicated. The
section concludes with a real data example for binary responses.

In all illustrations we consider the CR-PEP and DR-PEP priors (introduced in Section
2.2) and their hyper-0 and hyper-0/n extensions (presented in Section 4) with parameter
a = 3, which is one of the main options proposed in Liang et al. (2008). For all PEP
prior configurations we consider n* = n and X7, = X, where the columns of the design
matrix are centered around their corresponding sample means. For fixed § we consider
the default unit-information approach, i.e. 6 = n*. Jeffreys’ prior for GLMs, given in
(2.25), is used as baseline prior for 3,,.

We compare the PEP variants with standard g-prior methods, using the GLM g-prior
formulation of Bové and Held (2011) for the parameters of the predictor variables and a
flat improper prior for the intercept term. In particular, we consider the unit-information
g-prior (with ¢ = n) and three mixtures of g-priors; namely, the hyper-g and hyper-g/n
priors with a = 3 (Liang et al., 2008), and the beta mixture proposed by Maruyama and
George (2011). Henceforth, the latter will be referred to as MG hyper-g. Note that for the
MG hyper-g prior we only consider the part of the methodology that concerns the mixing
density for ¢g; we do not utilize the “generalized” g-prior design proposed in the same
study because the application of this prior in the GLM framework is not straightforward.
Stochastic model search under these approaches is also implemented via GVS sampling.

5.1 Simulation study 1

In this first example we consider two simulation scenarios for logistic and Poisson regres-
sion, presented in Hansen and Yu (2003) and Chen et al. (2008), respectively. Both of
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these scenarios are also considered by Li and Clyde (2015). The number of predictors is
p = 5 in the logistic model and p = 3 in the Poisson model, where each predictor is drawn
from a standard normal distribution with pairwise correlations given by

corr(X;, X;) = 1<i<j<p.

Concerning the correlations between covariates we examine two cases: (i) independent
predictors (r = 0) and (ii) correlated predictors (r = 0.75). In addition, four sparsity
scenarios are assumed; the true data-generating models are summarized in Table 1. For
the logistic case we use the same sample size as in Hansen and Yu (2003), namely n =
100, but with much lower effects in order to reflect more realistic values of odds ratios,
thus, reducing the signal from the generated data. Given the coefficients in Table 1,
the odds ratios are approximately 2, 2.5 and 3.5 for the sparse, medium and full models,
respectively. For the Poisson simulation we use the same regression coefficients as in Chen
et al. (2008), but with sample size equal to n = 100. Each simulation is repeated 100
times.

Scenario Logistic (n = 100) Poisson (n = 100)
Bo B Po By Ba Bs | Bo B B P
null 0.1 0 0 0 0 0 1-03 0 O 0

sparse 0.1 07 0 0 0 0 [-03 03 0 0
medium 01 16 08 -15 0 0 [-0.3 0.3 0.2 0
full 01 1.7 15 -1.1 -14 051]-0.3 03 0.2 -0.15

Table 1: Logistic and Poisson regression scenarios for Simulation Study 1 using indepen-
dent (r = 0) and correlated predictors (r = 0.75).

As the number of predictors in both regression models is small we assign a uniform
prior on model space as given in (2.26). Results based on the frequency of identifying
the true data-generating model through the maximum a-posteriori (MAP) model for the
logistic regression simulation are summarized in Table 2. The comparison between the
PEP prior approaches versus the rest of the methods indicates the following:

i) Overall the PEP based variable selection procedures perform well, since in 5 out of
the 8 simulation scenarios the “best” prior for identifying the true model is at least
one of the PEP priors.

ii) The PEP procedures perform better under the null and sparse simulation scenarios.

iii) Under the medium model scenario the PEP priors perform equally well to the other
methods in the case of independent predictors and slightly worse in the case of
correlated predictors.

iv) Under the full model scenario g-prior methods perform better than PEP priors.
This is no surprise as PEP priors tend to support more parsimonious solutions in
general.
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Logistic regression simulation: independent predictors
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Figure 1: Posterior inclusion probabilities for Simulation Study 1 from 100 replicated
samples of the null, sparse, medium and full logistic regression model scenarios with

independent predictors (r = 0).
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Logistic regression simulation: correlated predictors
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Figure 2: Posterior inclusion probabilities for Simulation Study 1 from 100 replicated
samples of the null, sparse, medium and full logistic regression model scenarios with
correlated predictors (r = 0.75).

With respect to the comparison between the CR-PEP and DR-PEP priors we find no
obvious differences between the two approaches for fixed 6 = n. Concerning the fixed
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approach versus the hyper-6 and §/n extensions, we see that under the DR-PEP approach
the results are more or less the same in terms of MAP model success patterns. However,
this is not the case under the CR-PEP approach as the hyper-é prior seems to provide
more support to complex models than the fixed-§ prior, while the hyper-6/n prior is
somewhere in the middle. Interestingly, a similar pattern is observed among the g-prior
and the hyper-g, hyper-g/n priors. This pattern is identified more clearly by examining the
resulting posterior inclusion probabilities; the corresponding boxplots under each method
and simulation scenario are presented in Figure 1 for the case of independent predictors
and in Figure 2 for the case of correlated predictors. As we can see the DR-PEP design is
quite robust with respect to the choice between fixed versus random d. Also, within the
category of g-prior mixtures the MG hyper-¢g prior seems to have the strongest shrinkage
effect.

The MAP-model results from the Poisson simulations are presented in Table 3. Box-
plots of posterior inclusion probabilities under each method and simulation scenario are
presented in Figure 3 for the case of independent predictors and in Figure 4 for the case
of correlated predictors. Overall, conclusions similar to the logistic case can be drawn.
Specifically, looking at the differences between the PEP priors and the various g-priors,
we conclude to the following:

i) The PEP procedures perform overall satisfactory; in this example 6 out of the 8
best MAP success patterns are achieved by one of the PEP priors.

ii) The PEP procedures perform overall well under sparse conditions, i.e. when the
true model is either the null model or the sparse model.

iii) For the model of medium complexity, the hyper-g and hyper-§ CR-PEP priors yield
the best results; however, success rates under the model with correlated predictors
are very low for all methods.

iv) For the full model with independent covariates, the MAP success rates under all
methods are quite low; the hyper-¢g has the highest rate but with the hyper-6 CR-
PEP prior being close and rather competitive. For the full model with correlated
covariates, all methods fail; the hyper-0 CR-PEP prior has the highest success rate
which is only 3%.

With respect to the various PEP prior distributions the comparison in the Poisson case
leads to the same findings as in the logistic regression case. Again, the most interesting
finding is that inference under the DR-PEP prior is not affected by the choice of fixed
versus random 0. On the contrary, this is not the case for the CR-PEP prior, where the
hyper-d extension systematically supports more complex models. To a lesser extend the
same holds for the CR-PEP hyper-6 /n prior.

As a final remark, we note that all priors yield lower MAP success rates under the
null scenario of the logistic simulations compared to the corresponding rates observed in
the Poisson simulations. On the other hand, under the full scenario, the MAP success
rates are higher in the logistic simulations. This can be attributed to the fact that the
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regression coefficients in the Poisson simulation are quite smaller in absolute value than
the corresponding coefficients of the logistic formulation; see Table 1.

Poisson regression simulation: independent predictors
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Figure 3: Posterior inclusion probabilities for Simulation Study 1 from 100 replicated
samples of the null, sparse, medium and full Poisson model scenarios with independent
predictors (r = 0).
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Poisson regression simulation: correlated predictors
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5.2 Simulation study 2

In this illustration we consider a more sophisticated scenario with p = 10 potential pre-
dictors (1024 models) and a more intriguing correlation structure. Similar to Nott and
Kohn (2005), the first five covariates are generated from a standard normal distribution,
while the remaining five covariates are generated from

fore =1,...,n and j = 6,...,10. We assume that sample size n is 200 and consider
the three logistic regression data-generating models which are summarized in Table 4; the
resulting odds ratios for the sparse and dense simulation models are approximately equal
to 2 and 3, respectively. Each simulation is repeated 100 times.

Scenario Logistic (n = 200)

Bo Bi B2 Pz Ba PBs Bs Br Bs Pa Pio
null 01 O 0 0 0 0 0 0 0 0 0
sparse 0r 0 0O -09 0O O O 12 O 0 04
dense 00 06 0 -09 0 1 09 12 -12 -05 O

Table 4: Three logistic simulation scenarios for Simulation Study 2.

In this example we use the beta-binomial prior with a Beta(1,1) mixing distribution
(Scott and Berger, 2010); see (2.27). The comparison that follows is based on the posterior
inclusion probability of each covariate. Figures 5, 6 and 7 present boxplots of the posterior
inclusion probabilities from the 100 simulated data sets for the null, sparse and dense
simulation scenarios, respectively.

Under the null scenario, all priors exhibit good shrinkage effects except of the hyper-
g prior which yields relatively large posterior inclusion probabilities with considerably
higher variability. The hyper-6 CR-PEP prior also induces more variability, however, the
resulting inclusion probabilities under this method are quite lower in comparison to those
obtained from the hyper-g prior.

Under the sparse simulation scenario (true model: X+ X7+ X7g), there are no striking
differences among methods. All priors provide very strong support for the inclusion of X7
and sufficient support for the inclusion of X3, although the variability under PEP priors
is larger for the latter variable. Also, all methods yield very wide posterior inclusion
probability intervals for predictor Xj,, thus leaving a lot of uncertainty concerning the
inclusion of this variable. For the non-important variables we observe that the fixed-d
CR-PEP and the DR-PEP priors yield the lowest posterior inclusion probabilities.

Finally, in the dense simulation scenario (Figure 7), where the true model is X; + X5+
X5+ X¢ + X7+ Xg + Xy, the fixed-0 PEP priors generally outperform other methods in
terms of providing low posterior inclusion probabilities for the insignificant covariates Xs,
X4 and Xqg. The g-prior and the hyper DR-PEP extensions yield similar posterior inclu-
sion probabilities and generally perform well, however, they introduce some uncertainty
concerning the inclusion of covariate X4. The rest of the methods systematically support
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more complex models as they provide elevated support for the inclusion of variables X,

and Xj.
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Figure 7: Posterior inclusion probabilities for Simulation Study 2 under the various priors
from 100 repetitions of the dense logistic simulation scenario where the true model is
X1+ X+ X5+ Xg + X7+ X+ Xo.

5.3 A real data example

In our last example we consider the Pima Indians diabetes data set (Ripley, 1996), which
has been analyzed in several studies (e.g. Holmes and Held, 2006, Bové and Held, 2011).
The data consist of n = 532 complete records on diabetes presence (present=1, not
present=0) according to the WHO criteria for signs of diabetes. The presence of diabetes
is associated with p = 7 potential covariates which are listed in Table 5.

For each method we used 41000 iterations of the GVS algorithm, discarding the first
1000 as burn-in period. We assigned a beta-binomial prior on model space (see Eq. 2.27).
Table 6 shows the posterior inclusion probabilities of each covariate under the various
methods. For comparison with the results presented in Bové and Held (2011), we also
include in Table 6 the resulting posterior inclusion probabilities from the Zellner and Siow
(1980) inverse gamma (ZS-1G) prior, the hyper-g/n with @ = 4, and a non-informative
inverse gamma (NI-IG) hyper-g prior with shape and scale equal to 1073. As seen, the
posterior inclusion probabilities that we obtain from the GVS algorithm are in agreement
with the results presented in Bové and Held (2011).

For the covariates X7, X5, X5 and Xg, which seem to be highly influential, the results
in Table 6 show no significant differences among methods. On the contrary, the posterior
inclusion probabilities for the “uncertain” covariates X3, X, and X; vary substantially;
specifically, the inclusion probabilities from the fixed-6 CR/DR-PEP priors, the hyper-
d/n DR-PEP prior and the g-prior are considerably lower than the inclusion probabilities
resulting from the rest of the methods. In terms of the shrinkage factors ¢g/(g + 1) and
0/(0 + 1), results show that the shrinkage effect is stronger when g or § is fixed, which
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Covariate | Description

X4 Number of pregnancies

Xs Plasma glucose concentration (mg/dl)
X3 Diastolic blood pressure (mm Hg)

X, Triceps skin fold thickness (mm)

X5 Body mass index (kg/m?)

Xs Diabetes pedigree function

X7 Age

Table 5: Potential predictors in the Pima Indians diabetes data set.

leads to a drastic reduction in the effects (and the inclusion probabilities) of low-influential
covariates. On the other hand, the priors with random ¢ or ¢ clearly result in higher
posterior inclusion probabilities. Among this category of priors, the hyper-6 /n DR-PEP
is evidently the most parsimonious, as it yields posterior inclusion probabilities which are
actually quite close to those obtained from fixed § PEP priors.

The uncertainty of the estimated posterior inclusion probabilities, for the standard
methods considered in the previous examples, is depicted in Figure 8, where we present
the corresponding boxplots produced by splitting the posterior samples into 40 batches
of size 1000. As seen in Figure 8, introducing stochasticity to g and ¢ mainly affects the
posterior inclusion probabilities of the “uncertain” covariates X3, X, and X;. For these
variables the extra prior uncertainty induces higher posterior variability, as expected, and
consequently larger Monte Carlo errors. Apart from that we observe once again the same
patterns evident in the results of Sections 5.1 and 5.2. Among the category of g-prior

Predictor
Method X, X, Xs X, X5 X @ Xo
ZS-IG hyper-g 0.961 1.000 0.252 0.250 0.998 0.994 0.530
NI-IG hyper-g 0.967 1.000 0.349 0.341 0.998 0.996 0.622
g-prior (g = n) 0.952 1.000 0.136 0.139 0.998 0.992 0.382
hyper-g (a = 3) 0.970 1.000 0.397 0.379 0.998 0.996 0.669

hyper-g/n (e =3) | 0.966 1.000 0.304 0.300 0.998 0.995 0.579
hyper-g/n (a=4) | 0.965 1.000 0.307 0.299 0.997 0.995 0.582
MG hyper-g 0.958 1.000 0.262 0.259 0.998 0.994 0.548
CR-PEP 0.948 1.000 0.100 0.104 0.998 0.987 0.339
CR-PEP hyper-o 0.964 1.000 0.296 0.291 0.998 0.995 0.602
CR-PEP hyper-6/n | 0.956 1.000 0.223 0.225 0.998 0.992 0.520
DR-PEP 0.948 1.000 0.102 0.104 0.997 0.988 0.324
DR-PEP hyper-¢ 0.954 1.000 0.174 0.173 0.997 0.991 0.442
DR-PEP hyper-6/n | 0.951 1.000 0.125 0.120 0.998 0.987 0.346

Table 6: Posterior inclusion probabilities for the seven covariates of the Pima Indians
data set.
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mixtures, we see that in terms of shrinkage the MG hyper-g prior induces the strongest
effect, followed by the hyper-g/n prior which has a stronger shrinkage effect in comparison
to the hyper-g prior. Similarly, posterior inclusion probabilities under the hyper-§/n PEP
priors are lower than those resulting from the hyper-§ PEP priors. In addition, the DR
design leads to a more stringent control for inclusion of variables in relation to the CR
prior design.

Figure 9 shows convergence plots and the estimated posterior distribution of the
shrinkage parameter 6/(1 4+ 0) under the four PEP hyper-prior approaches. The pos-
terior histograms are indicative of the behavior of the shrinkage parameter. Comparison
between the hyper-6 (Figure 9a) and the hyper-6/n (Figure 9b) approaches shows that
the posterior distribution of the shrinkage parameter under the latter priors is more con-
centrated to values close to one, thus, resulting to a stronger shrinkage effect. Also, the
histograms in Figure 9a and 9b indicate that the posterior distributions of the shrinkage
parameter under DR-PEP are more concentrated to values close to one in comparison to
the corresponding posteriors under CR-PEP. Note that the shrinkage under the fixed-¢ ap-
proaches is constant, equal to 0.998, which leads to considerably lower posterior inclusion
probabilities as seen in Table 6 and Figure 8.

We conclude this example by examining the out-of-sample predictive accuracy of the
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Figure 8: Boxplots of batched estimates of the posterior inclusion probabilities for the
seven predictors in the Pima Indians dataset based on 40 batches of size 1000.
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various prior designs. To this end we kept at random half of the data set in order to re-do
the analysis based again on 41000 iterations of the GVS algorithm, discarding the first
1000 as the burn-in period. From these simulations we located the corresponding MAP
and medium probability models under each prior, and subsequently used a single-model
M-H algorithm in order to sample from the corresponding posterior distributions of the
MAP and medium probability models. Then, based on posterior samples of size equal to
40000, we generated an equal number of binary predictions using the part of the design
matrix corresponding to the test sample, and counted the number of false negative and
false positive predictions under the corresponding MAP and medium probability models of
each prior. The average percentages of false negatives and false positives are summarized
in Table 7. Overall, we cannot say that there is dominating method in terms of predictive
accuracy as the predictions are more or less the same across the prior designs. We may note
however that the most complex MAP model arises from the hyper-g prior and actually
results in the highest false negative prediction rate. Also, the unit-information g-prior,
the CR-PEP with fixed 9, and the DR-PEP priors lead to a more a parsimonious medium
probability model which has comparable predictive accuracy with the more complex model
that includes covariate X7, resulting from the other methods.

CR-PEP hyper - & prior DR-PEP hyper - prior

—

T T T T T
0 10000 20000 30000 40000

CR-PEP hyper - /n prior

%///

T T T T T
0 10000 20000 30000 40000
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Figure 9: Ergodic mean plots, time-series plots and histograms of the shrinkage factor
d/(1+ 0) for the hyper-6 and hyper-§/n PEP priors based on 40000 draws.
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Method MAP model False Neg. (%) False Pos. (%)
g-prior (g =n) X1+ Xo+ X5+ X 10.8 16.5
hyper-g (CL: 3) X1+ Xo+ X5+ Xy + X5+ X+ Xy 114 16.9
hyper-g/n (a = 3) X1+ Xo+ X5+ Xs 11.0 16.6
MG hyper-g X1+ Xo+ X5+ X 10.9 16.6
CR-PEP X1+ X0+ X5+ X 10.9 16.9
CR-PEP hyper-0 X1+ Xo+ X5+ Xe 10.9 17.0
CR-PEP hyper-/n Xi+Xo+ X5+ X6 10.8 17.0
DR-PEP X1 + X2 =+ X5 + X6 10.9 16.8
DR-PEP hyper-§ X1+ X0+ X5+ X 10.9 16.9
DR-PEP hyper-6/n X1+ Xo+ X5+ Xg 10.9 16.8

Method

Medium probability model

False Neg. (%) False Pos. (%)

g-prior (g =n)
hyper-g (a = 3)
hyper-g/n (a = 3)
MG hyper-g
CR-PEP

CR-PEP hyper-§
CR-PEP hyper-6/n
DR-PEP

DR-PEP hyper-§
DR-PEP hyper-6/n

same as MAP model

X1+ Xo+ X5+ Xe+ X7
X1+ Xo+ X5+ Xe+ X7
X1+ Xo + X5 + Xg + X7

same as MAP model

X1+ Xo+ X5 + Xg + X7
X1+ Xo+ X5+ Xo + X7

11.1 16.8
11.0 16.6
10.9 16.6
11.3 16.4
11.0 16.6

same as MAP model
same as MAP model
same as MAP model

Table 7: Percentages of false negative and false positive detections for the Pima Indian
data set under the MAP model and medium probability model for the various priors.
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6 Discussion

In this paper we presented an objective, automatic and compatible across competing
models Bayesian procedure with applications to the variable selection problem in GLMs.
Specifically we extended the PEP prior formulation through the use of unnormalized
power-likelihoods and defined two new PEP priors, called CR-PEP and DR-PEP, which
differentiate with respect to the definition of the prior predictive distribution of the ref-
erence model. Under the new definitions, the applicability of the PEP methodology is
significantly enhanced. Although we focused on the variable selection problem in GLMs,
the CR/DR-PEP priors proposed here may in principle be used for any general model
setting. At the same time the new approaches retain the desired features of the origi-
nal prior formulation; specifically, i) they resolve the problem of selecting and averaging
across minimal training samples, thus, also allowing for large-sample approximations, and
ii) they are minimally informative as they scale down the effect of the imaginary data on
the posterior distribution. A further research direction that was pursued relates to the
assignment of hyper-prior distributions to the power-parameter ¢ that controls the contri-
bution of the imaginary data. Specifically, following the hyper-g and g/n priors proposed
in Liang et al. (2008), we effectively introduced the hyper-§ and §/n analogues.

The empirical results presented in this paper suggest that the proposed PEP priors
outperform mixtures of g-priors in terms of introducing larger shrinkage to non-influential
or to partially influential predictors, thus, leading to more parsimonious solutions with
comparable predictive accuracy. With respect to the comparison between fixed § vs.
random ¢ PEP priors, the results indicate that the fixed unit-information approach induces
more stringent control in the inclusion of predictors and therefore assigns more support to
simpler models which is a desirable feature when having to select among a large number of
potential predictors. Concerning the choice between the CR and the DR prior designs, we
conclude in favouring the use of the DR-PEP as it seems that this prior is rather robust
with respect to the fixed vs. random specification of the power-parameter, and this also
translates to better shrinkage properties.

In the near future, we aim to investigate further the theoretical properties of the
PEP extensions. So far we have proofs, which are available in an earlier technical report
(Perrakis, Fouskakis and Ntzoufras, 2015b), that both extensions result in model selec-
tion consistency for the case of the Gaussian linear model. We intend to provide similar
proofs within the formal GLM framework, possibly overcoming the problem of analytical
intractability through Laplace-based approximations. In addition, we are currently work-
ing on extensions of the PEP methodology to high-dimensional problems, that include
the small n—large p case, by incorporating shrinkage priors (e.g. ridge and LASSO pro-
cedures) into the PEP design. To this end, another promising alternative is to embody
the expectation-maximization variable selection approach of Rockova and George (2014)
within the PEP prior.
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Electronic Appendix for the the paper entitled “Power-
Expected-Posterior Priors in Generalized Linear Mod-
els”’ by D.Fouskakis, I.Ntzoufras and K.Perrakis.

The PEP-GVS algorithm

Given the posterior distribution in Eq. 3.5, with ¢» = 1 for the CR-PEP prior and ¢ =
for the DR-PEP prior, the PEP-GVS sampler proceeds as follows:
A. Set starting values v, 3 = (ﬁ,(yo),ﬁg)),ﬁéo) and y*(©). For fixed § set 6 = n, for
random § set starting starting value §().
B. For iterations t = 1,2, ..., N:
Step 1: Sampling of %(-t), for j = 1,2,...,p, given the current state of 8, 8\,,7;,¥"
and 0.
(a) Calculate the MLEs under v, = (v; = 1,v;), v;, = (7 = 0,7;) and
compute the Laplace approximations T?L,I;I (y*]9), ﬁ%,ljj (y*|9) through Eq.
1 0

J

3.7.
(b) Evaluate the odds:
o fr,, (¥185,,) [fn,j1 (y*lﬂvjl)] 1/8 (B, )7 (Byy,)
! f77'0 (y"B'Vjo) f770 (y* |ﬂ7io) 71-'1;110 (ﬂ"/jo) W'I;Ijo <'B\710)
my (Y10) w(y;,)
W (510 7,,)

(c¢) Sample 7; ~ Bernoulli (14?&) and set 7]@ = 7;» with probability equal to 1.

Step 2: Update 8¢~ = (ﬁff’l),ﬁg;l)) based on the current configuration of ~.

Step 3: Sampling of ,8,(;) given the current state of «,y* and §.

Qall
"y )

B?YH is the ML estimate from a weighted regression on y*! = (y, y*)T, using

(a) Generate B:y from the proposal distribution q(ﬁ;) = Ng ( 5 ﬁ:n), where
weights w2l = (1,,,1,,6~ 17, and 5 gan is the estimated variance-covariance
ad

matrix of ﬁ?yu.

(b) Calculate the probability of move:

f(y18L) ( fr(y*18L) )”5 wN(BL) ¢(BEY)
) T

HIBY )\ fy(yr 188 N(BYY) q(B,)

04,3‘Y =
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ﬁ:y with probability g,
ﬂﬁf—l) with probability 1 — ag. .

(c) Set B,(yt) = {

Step 4: Sampling of ,3@ given the current state of ~.

(a) Generate ,3/\,7 from the pseudo-prior 7Y (5/\’7) = Ng,, (B\w Id\78%\7> ,where

B\v and Eﬁw are the respective MLEs and corresponding standard errors
of B\, from the full model given data y.

(b) Set 6@ = [3/\,7 with probability equal to 1.

Step 5: Sampling of ﬁét) given the current state of y* and §.
(a) Generate (3, from the proposal distribution ¢(3,) = N(BAO, ¢3§0)7 WEGI‘G E)

and og, are the respective MLE of §, and the standard error of 3, from
the null model given data y*.

(b) Calculate the probability of move:

e | OB (5 (s Y)
" Soly B8y (650) a(By)

B, with probability ag,,
B(()t_l) with probability 1 — g, .

() Set A = {

Step 6: Sampling of y*(*) given the current state of B, Bo, v and 4.
(a) Generate y* from a proposal distribution ¢(y*'); see remark below for
details about this proposal.
(b) Calculate the MLEs given y**~Y and y* and compute the Laplace ap-
proximations mg(y*“_l)\é) and ﬁuN/(y*/](S) through Eq. 3.7.
(c) Calculate the probability of move:

BB foly*Bo)Ye (v D 5) g(y D)
Fr (P EDB)Y foly EDGo) VY m(y¥16)  aly™)

Oéy*:1/\[

*/

(d) Set y*® =<7 with probability ay-,
y*=1 with probability 1 — ay-.

Step 7: Sampling of 6®*) given the current state of B Bo and 7.

(a) If 6 is fixed at n go to Step 1, else implement (b)-(e) of Step 7.
(b) Generate &' from the proposal distribution ¢(¢§'|6¢~Y) = Gamma(a, b) with
a=060"1"/s2 and b= 60tV /s2.
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(d) Calculate the probability of move:

N (5@71))%/2 (m*gv)){yé“”} )
0 fv(y*’ﬁfy)

X[fo(y*wo){wl’w“l-”} (%) CJ(5(“)|5’)]

m(00=1) g(0']60=1)

where 1)’ = 1) = 1 for the CR-PEP prior and ¢/ = ¢, ¢y(¢=1 = 51
for the DR-PEP prior.

(e) Set 6 = 0 Wi.th PTObabi.li.ty as,
51 with probability 1 — as.

C. Repeat the steps in B until convergence.

Suggested proposals for Step 6: For y* we recommend the following proposals de-
pending on the likelihood of the model and on the PEP prior that is used:

i) For logistic regression a product binomial proposal distribution given by

i w/nlfe
o(y*) = Binomial(V;, w}) with 7] = T ~(i ’
i=1 7r0/ 7r,y<i) + (1 - 7r0)1/¢(1 — 7T—y(i))1/5

where my = (1 4 exp(—fo)) ™", my@) = (1 + exp(—X4»B,))"" and N; denotes the
number of trials of the observed data.

ii) For Poisson regression a product Poisson proposal distribution given by
n*
q(y") = [ Pois()).
i=1

For the CR-PEP prior A} = )\0)\,1/(?), where A\ = exp(5y) and Ay = exp(Xy)B,)-

For the DR-PEP prior we utilize a random-walk proposal, i.e. A} = y:(t_l).
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