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Abstract

The marginal likelihood, can be notoriously difficult to compute, and particularly so in high
dimensional problems. Chib and Jeliazkov employed the local reversibility of the Metropolis-
Hastings algorithm to construct an estimator in models where full conditional densities are
not available analytically. The estimator is free of distributional assumptions and is directly
linked to the simulation algorithm. However, it generally requires a sequence of reduced
Markov chain Monte Carlo (MCMC) runs which makes the method computationally de-
manding especially in cases when the parameter space is large. In this article, we study the
implementation of this estimator on latent variable models which embed independence of the
responses to the observables given the latent variables (conditional or local independence).
This property is employed in the construction of a multi-block Metropolis-within-Gibbs algo-
rithm that allows to compute the estimator in a single run, regardless of the dimensionality of
the parameter space. The counterpart one-block algorithm is also considered here, by point-
ing out the difference between the two approaches. The paper closes with the illustration of
the estimator in simulated and real life data sets.

KEYWORDS: Generalised linear latent variable models, Laplace-Metropolis estimator, MCMC,
Bayes Factor
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1 Introduction

Latent variable models are a broad family of models that can be used to capture abstract con-
cepts by means of multiple indicators. Social scientists know them best in the form of factor
analysis and structural equation models, in which continuous latent variables are captured
by continuous or categorical observed variables also known as items or indicators. Social
surveys and many other applications often yield observed variables that are categorical in-
stead of continuous. That gave rise to the generalised linear latent variable model (GLLVM)
framework [1] that can handle both continuous, discrete and categorical variables. Latent
variable models are widely used in Social Sciences. Specifically, in educational testing where
scores can be discrete but also binary indicating a correct/incorrect response (see [2], for real
data examples). In applied psychometrics, where constructs such as stress, attitude, behav-
ior are measured through ordinal or discrete indicators [3]. In demography, where fertility
preferences and family planing behavior are usually measured with nixed categorical and
survival indicators [4]. In archaeology, where classification of subjects is based on chemical
analysis that produce continuous and binary indicators [5].

Various estimation methods have been proposed for estimating the parameters of latent
variable models (see [6]). They are mainly divided into maximum likelihood estimation
(likelihood of observed variables obtained by integrating out the latent variables) and MCMC
estimation methods [7]. Model selection criteria such AIC and BIC are often used for selecting
among models with different number of factors or between constrained and unconstrained
models.

Within the Bayesian framework, model comparisons via the Bayes factor, posterior model
probabilities and odds [8] require the computation of the marginal likelihood (integrated
likelihood)

f(Y|m) =

∫
f(Y|θ,m)π(θ|m)dθ, (1)

where Y denotes a vector of observed variables, m stands for the hypothesized model, and
π(θ|m) is the density of the model specific parameter vector θ (m will be dropped hereafter
for simplicity). The marginal likelihood often involves high dimensional integrals making the
analytic computation infeasible, except in some special cases. Several approximating methods
have been proposed in the literature for estimating the marginal likelihood, including Chib’s
estimator [9], the Bridge sampling estimator [10], the Laplace-Metropolis estimator [11], Chib
and Jeliazkov estimator [12], and, lately, the power posterior estimator [13].

One of the most popular marginal likelihood estimators is the one proposed by [12] that
extends the Chib’s [9] original estimator, by allowing intractable full conditional densities.
It is based on the estimation of the posterior ordinate evaluated at a high density point θ∗,
using output from sequential Metropolis-Hastings algorithms, one for each element of θ. The
sequential Markov chain Monte Carlo (MCMC) runs, appear to be computationally demand-
ing when the parameter space is large. However, the method is favored by the fact that the
posterior ordinate is directly obtained by the M-H kernel, used to produce the posterior out-
put, while no additional assumptions are imposed during the marginal likelihood estimation.
For instance, the estimators of the importance [14], or bridge family [10], even though very
efficient, require to sample from a carefully constructed and well tuned envelope function.
Quick approximation techniques, such as the Metropolised Laplace [11] or Gaussian copula
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[15] estimators, can be also used but they impose distributional restrictions for the posterior,
such as normality or symmetry. On the contrary, the Chib and Jeliazkov’s [12] approach is
based on the M-H kernel per ce, without any additional restrictions or assumptions.

In this article, the Chib and Jeliazkov [CJ, 12] estimator is studied in latent variables models
that have a large number of parameters and together with the latent variables, estimation
and goodness-of-fit testing can involve heavy integrations. A wide range of models with latent
variables, such as the GLLVM, embed independence of the responses to the observed variables
given the latent variables (conditional or local independence). The local independence is
employed in the construction of a multi-block Metropolis-within-Gibbs (M-G) algorithm that
allows to compute the CJ estimator in a single MCMC run, regardless of the dimensionality of
the parameter space. This is achieved simultaneously by marginalizing out the latent vector
directly from the M-G kernel and estimating the posterior ordinate via the CJ method.
The alternative one-block algorithm is also considered here, by pointing out the difference
between the two approaches. In the absence of reduced MCMC runs, the CJ estimator is
considerably simplified, minimizing the computational burden. Regarding the models where
local independence is not assumed, it is described how the latent variables can be marginalized
out, when none of the conditional posterior ordinates is fully available and therefore Rao-
Blackwellization is not applicable ([12], [16], [17]).

The rest of the article is organized as follows. Section 2 gives the general model framework
for fitting models with latent variables. In Section 3, we describe the CJ [12] estimator.
In Section 4, we describe how the method can be simplified using the local independence
assumption of the likelihood and we compare it with other single-run versions of the method.
The section closes with a discussion on how the estimator can be implemented when none
of the conditional posterior ordinates is analytically available. Section 5 describes the imple-
mentation in generalised latent variable models including illustrations on simulated and real
data sets. Concluding remarks are provided in the closing section of this article.

2 Framework and model formulation

Let us first define the general model structure and the corresponding notation. Here, we
study models which can be defined with a likelihood of the following structure

f
(
Y |Θ = (θ0,θ1, . . . ,θp),L

)
= f

(
Y |θ = (θ1, . . . ,θp),Z = (θ0,L)

)
, (2)

where

– Y = (Y 1, . . . ,Y p) is a n × p data array of n observations and p observed variables
(items),

– Yj is the n × 1 vector with the data values for item j,

– L is the k × n matrix of the latent variables,

– Θ is the whole parameters (k + 1) × p vector,

– θ0 is the set of parameters which is common across different items,
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– θj for j = 1, . . . , p are the item specific parameters (linked to Yj only).

The above setting includes a variety of models, such as random effect models and the gen-
eralised linear latent variable models [1, 18]. In the remaining we focus on the latter model
formulation. More specifically, the GLLVM [1] consist of three components: (i) the multi-
variate random component Y of the observed variables, (ii) the linear predictor denoted by
ηj and (iii) the link function υ(·), which connects the previous two components. Hence, a
GLLVM can be summarized as:

Yj|Z ∼ ExpF, ηj = αj +
k∑

ℓ=1

βjℓZℓ, and υj

(
µj(Z)

)
= ηj (3)

for j = 1, . . . p ; where ExpF is a member of the exponential family and µj(Z) = E(Yj|Z).
Finally, a multivariate distribution π(Z) needs to be specified for the latent variables, which
is usually assumed to be a multivariate standard normal distribution. It is assumed that
the responses to the observed variables are independent given the latent vector Z (within
subjects independence), and the item specific parameters θ (between subjects independence)
resulting in,

f(Y |θ,Z) =
n∏

i=1

p∏

j=1

f(Yij|θj,Zi) , (4)

where Y is the observed data matrix with elements Yij denoting the response of subject
i to item j, Zi are the subject specific values of the latent variables Z, θ = (α,β), α =
(α1, . . . , αp), β = (β1, . . . ,βp), βj = (βj1, . . . , βjk) and θj = (αj,βj).

Note that in the model formulation in (2), the pair of parameters and the latent variables
(Θ,L) correspond to the pair (θ,Z) with θ being the item specific parameters and Z being
the set of parameters and/or latent variables which are common and shared across different
items. In GLLVMs, parameters shared across different items do not exist unless equality
constraints are imposed. Hence Z solely refers to latent variables L.

Finally, model identification, which is crucial for the parameter estimation, can be obtained
if the loading matrix is constrained to be a full rank lower triangular matrix (see also [19],
[20] and [21]). Here we follow this approach by setting βjℓ = 0 for all j < ℓ and βjj > 0.

3 The Chib and Jeliazkov marginal likelihood estima-

tor

Both Chib’s [9] and Chib and Jeliazkov [12] estimators, are based on the candidate’s identity
[22]:

f(Y) =
f(Y|θ)π(θ)

π(θ|Y)
⇔ log f(Y) = log f(Y|θ) + log π(θ) − log π(θ|Y). (5)

From (5), the marginal likelihood depends on the posterior density of the model parameters
π(θ|Y). Since (5) holds for every point θ of the parameter space, the posterior density can
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be estimated using a specific point θ∗. Following [9], let us suppose that the parameter space
is divided into p blocks of parameters. Then the posterior ordinate can be decomposed to

π(θ∗|Y) = π(θ∗1,θ
∗
2, · · · ,θ∗

p|Y) = π(θ∗
1|Y)π(θ∗

2|Y,θ∗
1) · · ·π(θ∗

p|Y,θ∗
1,θ

∗
2, · · · ,θ∗

p−1). (6)

The marginal likelihood is calculated in a straightforward manner when (6) is analytically
available. In the case when the full conditionals are known, [9] presented an algorithm
that uses the output from the Gibbs sampler to estimate them by Rao-Blackwellization. In
addition, [12] extended the method to deal with cases where the full conditional posterior
distributions are not available and, therefore, a Metropolis–Hastings (M-H) algorithm is used
to generate posterior samples. The authors implement for that purpose the kernel of the M-H
algorithm, which denotes the transition probability of sampling θ∗

j given that θj has been
already generated

K(θj,θ
∗
j |Y,θ\j) = a(θj,θ

∗
j |Y,θ\j)q(θj,θ

∗
j |Y,θ\j), j = 1, · · · , p, (7)

where θ\j is the parameter vector θ without θj, a(θj,θ
∗
j |Y,θ\j) is the M-H acceptance

probability and q(θj,θ
∗
j |Y,θ\j) is the proposal density. Employing the local reversibility

condition, each of the posterior ordinate appearing in (6) can be written as

π(θ∗
j |Y,θ∗

1, · · · ,θ∗
j−1) =

E1

{
a
(
θj,θ

∗
j |Y, ψ∗

j−1, ψ
j+1

)
q
(
θj,θ

∗
j |Y, ψ∗

j−1, ψ
j+1

)}

E2

{
a
(
θ∗

j ,θj|Y, ψ∗
j−1, ψ

j+1
)} , (8)

where ψj−1 = (θ1, · · · ,θj−1) and ψj+1 = (θj+1, · · · ,θp) for j = 1, . . . , p with ψ0 and ψp+1

referring to the empty sets. The expectations in the numerator and the denominator are
with respect to π

(
θj, ψ

j+1|Y, ψ∗
j−1

)
and π

(
ψj+1|Y, ψ∗

j

)
q
(
θj,θ

∗
j |ψ

∗
j−1, ψ

j+1
)

accordingly.

A Monte Carlo estimator for each ordinate can be obtained by replacing the expectations
in (8) with their corresponding sample means from simulated samples. The final posterior

estimator (ĈJ) is given by multiplying the estimators for each block. Since the expectations
in (8) are conditional on specific parameter points ψ∗

j−1 = (θ∗
1, · · · ,θ∗

j−1), the corresponding
Monte Carlo estimates cannot be obtained by the initial (full) MCMC run. Hence, for a
parameter space that consists of p blocks, p− 1 reduced runs are needed to compute the CJ
estimator. For models with latent variables, whose number of parameters when including
the latent variables exceeds several hundreds, estimating the posterior ordinate requires a
marginalization step. This is discussed in detail in Section 4.

In the case of the GLLVM, the posterior ordinate required to calculate the marginal likelihood
includes all parameters, that is π(θ∗,Z∗|Y ). Usually, the number of blocks employed for θ∗

is reasonable creating no problem in the computation of CJ. On the contrary, the latent
vector Z is highly dimensional and direct application of the CJ method requires a large
number of reduced MCMC runs. Chib and Jeliazkov [12] address the issue of multiple
latent variable blocks and suggest to overcome the problem by marginalizing out the latent
vector. Specifically, the first p − 1 ordinates are estimated via (8), while the last one is
calculated via a Rao-Blackwellization step as the average of π(θ∗

p|Y, ψ∗
p−1,Z) with respect to

π(Z|Y, ψ∗
p−1). This straightforward solution occurs when at least one conditional density is

analytically available. The procedure is discussed in detail in Chib and Jeliazkov [12], along
with examples, as well as within the longitudinal data setting considered in [23].
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In the next section we describe how the Metropolis kernel can be used to marginalize out the
latent vector, when the Rao-Blackwellization step is not applicable. Different scenarios are
considered for models under the setting given in equation (2).

4 Efficient estimation of the posterior ordinate in la-

tent variable models

Within the framework given in equation (2), a multi-block CJ estimator using a single-run
of the Metropolis algorithm is described, based on local independence properties of models
with latent vectors. The one-block approach that also leads to single-run CJ estimators is
discussed along with practical solutions when the local independence assumptions are not
met.

4.1 Models with local independence

As mentioned in Section 2, the GLLVM framework embraces the within subjects indepen-
dence that is typical also in various models with latent vector and/or random effects. This
property is met in the literature as the local (conditional) independence assumption.

Definition 4.1 The local independence refers to the independence of the data (Y) con-
ditional on the latent vector (within subjects independence). That is, under the assumption
of local independence, it holds that

f(Y |θ,Z) =

p∏

j=1

f(Yj|θj,Z) , (9)

The local independence implies also that the association among the observed variables for the
ith individual is induced solely by the individual’s latent position Zi, i ∈ {1, 2, ..., n}.

The key observation here is that the local independence can be extended to the posterior
distribution of the parameters provided that prior local independence exists, that is introduced
in Definition 4.2 which follows.

Definition 4.2 For any model with likelihood given by equation (2), a set of parameters θ

is defined as a-priori locally independent if they are a-priori independent conditionally
on Z. Therefore, the prior will satisfy the following equation

f(θ|Z) =

p∏

j=1

f(θj|Z) . (10)

Similarly we can introduce the posterior local independence using Definition 4.3.
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Definition 4.3 For any model with likelihood (2), a set of parameters θ is defined as a-

posteriori locally independent if they are a-posteriori independent conditionally on Z.
Therefore the posterior distribution will satisfy the following equation

f(θ|Y,Z) =

p∏

j=1

f(θj|Yj,Z) . (11)

For any model where the assumptions of local and prior local independence hold, it is trivial
to show that the posterior local independence holds as well. These properties naturally affect
the acceptance probability of the sampling algorithm and consequently the implementation
of the CJ estimator in either multi-block or one-block designs.

4.1.1 CJ estimator from a single run using multi-block MCMC

In this section we introduce a simplification of the original CJ estimator that occurs in models
with local (conditional) independence, denoted hereafter as the independence CJ estimator

(ĈJ I). The estimator occurs under the Metropolis-within-Gibbs algorithm described by the
following steps:

1. Sample Z from f(Z|Y,θ) using any sampling scheme.

2. for j = 1, . . . , p

(a) When θj is the current parameter value, propose θ′
j from a proposal with density

q(θj,θ
′
j|Y,Z).

(b) Accept the proposed move with probability

a
(
θj , θ

′
j |Y, θ\j ,Z

)
= min

{
1,

f(Y|θ\j , θ
′
j ,Z)π(θ\j , θ

′
j |Z)π(Z)q(θj , θ

′
j |Y,Z)

f(Y|θ\j , θj ,Z)π(θ\j , θj |Z)π(Z)q(θj , θ
′
j |Y,Z)

}

= min

{
1,

f(Yj |θ
′
j ,Z)π(θ′

j |Z) q(θ′
j , θj |Y,Z)

f(Yj |θj ,Z, )π(θj |Z) q(θj , θ
′
j |Y,Z)

}
= a(θj , θ

′
j |Y,Z), (12)

due to local and prior local independence defined in (9) and (10). Therefore the acceptance
rate given in (12) depends only on the current and new (proposed) values of component θj and
the latent vector Z. This assumption is common when implementing Metropolis-within-Gibbs
algorithms, with the simpler case described by a simple random walk algorithm. Moreover,
since the components of θ are independent for given values of Z it is reasonable to adopt
proposals that take into account only the current status of θj.

The simplification of the acceptance probability achieved due to the local independence
directly affects the Metropolis kernel given in (7). Following similar arguments as in [12], we
can exploit the the local reversibility condition at any point θ∗

j :

K(θj,θ
∗
j |Y,Z,θ\j) π(θj|Y,Z,θ\j) = K(θ∗

j ,θj|Y,Z,θ\j) π(θ∗
j |Y,Z,θ\j),

taking under consideration the posterior local independence given in equation (11)

K(θj,θ
∗
j |Y,Z) π(θj|Y,Z) = K(θ∗

j ,θj|Y,Z) π(θ∗
j |Y,Z).
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By integrating both sides of the equation over θj, we obtain

∫
K(θj,θ

∗
j |Y,Z) π(θj|Y,Z)dθj =

∫
K(θ∗

j ,θj|Y,Z) π(θ∗
j |Y,Z)dθj,

resulting in

CJ I
j = π(θ∗

j |Y,Z) =

∫
K(θj,θ

∗
j |Y,Z) π(θj|Y,Z)dθj∫

K(θ∗
j ,θj|Y,Z)dθj

, (13)

if we solve with respect to π(θ∗
j |Y,Z).

The expression for the posterior π(θ|Y) is then given by multiplying CJ I
j over all p blocks

and integrate out the latent variables directly from the kernel. Therefore, we have that

π(θ∗|Y) =

∫ p∏

j=1

π(θ∗
j |Yj,Z)π(Z|Y)dZ

=

∫ p∏

j=1

[∫
K(θj,θ

∗
j |Y,Z) π(θj|Y,Z)dθj∫

K(θ∗
j ,θj|Y,Z)dθj

]
π(Z|Y) dZ

=

∫



p∏
j=1

K(θj,θ
∗
j |Y,Z)

p∏
j=1

∫
K(θ∗

j ,θj|Y,Z)dθj


π(θ,Z|Y) d(θ,Z)

= Eθ,Z|Y




p∏
j=1

a
(
θj,θ

∗
j |Y,Z

)
q
(
θj,θ

∗
j |Y,Z

)

p∏
j=1

Eqj

[
a

(
θ∗

j ,θj|Y,Z
) ]


 , (14)

where Eθ,Z|Y is the posterior mean and Eqj
are the expectations with respect each of the

proposal densities q(θ∗
j ,θj|Y,Z). Thus equation (14) can be estimated from:

ĈJ I =
1

R

R∑

r=1




p∏
j=1

a
(
θ

(r)
j ,θ∗

j |Y,Z(r)
)
q
(
θ

(r)
j ,θ∗

j |Y,Z(r)
)

p∏
j=1

[
1
M

M∑
m=1

a
(
θ∗

j ,θ
(m)
j |Y,Z(r)

)]


 . (15)

The sample
{
θ

(r)
1 ,θ

(r)
2 , · · · ,θ(r)

p ,Z(r)
}R

r=1
comes from the joint posterior of (θ,Z) which is

available from a full MCMC run. For each sampled set of latent and parameter values(
θ(r),Z(r)

)
, r = 1, ..., R, additional points {θ

(m)
j }M

m=1 are generated from each proposal density
q(θ∗

j ,θj|Y,Z,θ). These values are used to compute the expectation in the denominator of
(14). From (15), it is straightforward to see that a single MCMC run from the posterior of

the model under study is required to compute the independence estimator ĈJ I.

To sum up, ĈJ I is based on the local independence assumption. The prior local independence
(10), on its turn, is a reasonable assumption for such models. The above properties lead to the
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posterior local independence which actually ensures the one run procedure. Most importantly,
the ĈJ I is based solely on the generation of a posterior sample using a multi-block Metropolis-
within-Gibbs algorithm and is applicable when none of the posterior ordinates are analytically
available, since the marginalization is directly implemented in the corresponding kernel.

4.1.2 An alternative one-block CJ estimator

An alternative way to obtain a single-run CJ estimator is to consider all parameters θ as
one block jointly proposed by q(θ,θ′|Y,Z). For models with structure described by (2),
under local and prior local independence assumptions, the acceptance probability under the
one-block design is given by

a(θ,θ′|Y,Z) = min





1,

p∏
j=1

[
f(Yj|θ

′
j,Z)π(θ′

j|Z)

]
q(θ′,θ|Y,Z)

p∏
j=1

[
f(Yj|θj,Z)π(θj|Z)

]
q(θ,θ′|Y,Z)





. (16)

Even though the properties of the local and prior local independence were also used here,
the expression in (16) cannot be simplified further, since it requires the entire parameter
vector θ, unlike the acceptance probabilities in (12). This is the major difference between
the two sampling schemes and is directly reflected to the corresponding posterior ordinate
expressions, under the CJ method. As opposed to (14), the expression of the posterior
ordinate under the one-block design is given by

π(θ∗|Y) = Eθ,Z|Y




a (θ,θ∗|Y,Z) q(θ∗,θ|Y,Z)

Eq

[
a (θ∗,θ|Y,Z)

]


 , (17)

with draws coming from the posterior π(θ,Z|Y) for the nominator and from the proposal
density q(θ∗,θ|Y,Z) for the denominator. The difference between the expressions in (17)
and (14) becomes more evident if we assume q(θ′,θ|Y,Z) =

∏p

j=1 q(θ′
j,θj|Y,Z) that is

reasonable due to the local and prior local independence. By defining the quantity Aj as

Aj =
f(Yj|θ

∗
j ,Z)π(θ∗

j |Z) q(θ∗
j ,θj|Y,Z)

f(Yj|θj,Z)π(θj|Z) q(θj,θ
∗
j |Y,Z)

,

the acceptance probabilities involved in the posterior ordinate expressions (17) and (14) are

given by min
{

1,
p∏

j=1

Aj

}
in the case of the one-block design, and by

p∏
j=1

min {1, Aj} under

a multi-block design, respectively.

Using one-block MCMC for θ may be beneficial in terms of mixing only when parameters
are a-posteriori depended [24, see Section 1.4.2] which is not the case for the models here
where local and prior local independence is assumed. Therefore, the single-run multi-block
estimator (15) is expected to be more efficient and accurate than the alternative one-block,
for the same number of iterations.
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4.2 Models without local independence

When local independence cannot be assumed, one of the posterior ordinates in (6) can be
exploited in order to marginalize out the latent vector Z. Chib and Jeliazkov [12] suggest to
add a Rao-Blackwellization step at the end of the procedure for this purpose, provided that
π(θ∗

p|Y,Z, ψ∗
p−1) is analytically available. Here, we further describe that if there is not such

a conditional ordinate analytically available, then we estimate it by integrating out Z from
(8) and them implement the same strategy as in the CJ method. That is achieved directly
from the local reversibility condition of the corresponding sub-kernel:

π(θ∗
p|Y,Z, ψ∗

p−1) =

∫
K(θp ,θ∗

p|Y,Z, ψ∗
p−1)π(θp|Y,Z, ψ∗

p−1) dθp∫
K(θ∗

p ,θp|Y,Z, ψ∗
p−1) dθp

.

The latent vector is then integrated out directly from the kernel

π(θ∗
p|Y, ψ∗

p−1) =

∫ [∫
K(θp ,θ∗

p|Y,Z, ψ∗
p−1)π(θp|Y,Z, ψ∗

p−1) dθp∫
K(θ∗

p ,θp|Y,Z, ψ∗
p−1) dθp

]
π(Z|Y, ψ∗

j−1) dZ

=

∫
K(θp ,θ∗

p|Y,Z, ψ∗
p−1)∫

K(θ∗
p ,θp|Y,Z, ψ∗

p−1) dθp

π(θp ,Z|Y, ψ∗
p−1) d(θp ,Z) . (18)

The corresponding estimator of (18) is identical with (15), for p = 1 and conditioning upon
{Y,Z, ψ∗

p−1}. Naturally, the first p − 1 ordinates in (6) are estimated via (8), while the
last ordinate is used to marginalize out the latent variables. The M-H output required for
the marginalization is already available from the reduced run implemented to assess the
denominator of the previous ordinate. Finally, a single-run estimator can be obtained, in a
straightforward manner, by sampling all parameters in θ one block as described in Section
4.1.2.

5 Applications on GLLVM

In this section we illustrate the estimators discussed in Section 4 in simulated and real
datasets. Emphasis is given in the estimation of the marginal likelihood and in the computa-
tion of the Bayes factor as means of comparing models with different number of factors. All
our examples are for binary observed variables but the methodology, as already discussed,
can be applied in all GLLVMs.

5.1 Latent trait model and Bayes factor estimation

The latent variable model for binary observed variables is also known in the Psychometric
literature as a latent trait model (LTM). The LTM is a a special case of the GLLVM discussed
in [1]. The link used here is the logit giving:

logit
[
E

(
Yj|Z

)]
= log

P (Yj = 1 | Z)

1 − P (Yj = 1 | Z)
= αj +

k∑

ℓ=1

βjℓZℓ, j = 1, . . . , p. (19)
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The prior used here is based on the ideas presented by [25] and further explored in the context
of generalised linear models by Fouskakis et al. [26, equation 6]. For GLLVMs with binary
variables, this prior corresponds to a N(0, 4) for all non-constrained loadings and for all αj.
For all the βjj parameters we assume a standardized normal distribution as a prior for each
log βjj inducing prior a standard deviation for βjj approximately equal to 2, in analogy with
the rest non-zero parameters βjl. To summarize, the prior is given by:

π(βjℓ) =





0 with probability 1 if j < ℓ

LN(0, 1) if j = ℓ

N(0, 4) if j > ℓ

where Y ∼ LN(µ, σ2) is the log-normal distribution with the mean and the variance of log Y

being equal to µ and σ2, respectively. Finally, latent variables are assumed to be a-priori
distributed as independent standard normal distributions i.e. Zℓ ∼ N(0, 1) for all subjects.
These complete the model specification, under the Bayesian paradigm and we may proceed
to the marginal likelihood and the Bayes factor (BF) estimation. The BF is computed for
pairs of competing models (m1, m2) as the ratio of their marginal likelihoods given by (1):

BF12 = f(Y|m1)
f(Y|m2)

, or, alternatively, as the ratio of their posterior model probabilities assuming

that they are a-priori equivalent [8]. Kass and Raftery [8] state threshold values for the BF.
Specifically, values larger than one provide evidence in favor of m1, while values higher than
two are considered decisive.

The estimate of the log marginal likelihood based on the CJ I is given by

log L̂ = log f(Y|θ∗) + log π(θ∗) − log ĈJ I . (20)

Note that for a random sample of size n, the observed likelihood f(Y |θ), is obtained by
marginalizing out the latent variables:

f(Y |θ) =
n∏

i=1

f(Yi|θ) =
n∏

i=1

∫
f(Yi|θ,Zi) π(Zi) dZi . (21)

The integrals with respect to the subject specific latent variables Zi in (21) can be ap-
proximated with fixed Gauss-Hermite quadrature points (used to calculate each f(Yi|θ) in
equation 21). Other more accurate approximations can be also used, such as the adaptive
quadrature points ([27], [28]) or Laplace approximations [29].

The Monte Carlo error (MCE) of the log L̂ was estimated using the method of batch means
([30], [31]). The simulated sample was divided into 30 batches and the marginal log-likelihood
was estimated via (21) at each batch. The mean over all batches, denoted by logL, is
referred to as the batch mean estimator, while the the standard deviation of the log-marginal
likelihood estimator over the different batches is considered as its MCE estimate. The same
procedure was repeated using three alternative measures of central location of the posterior
distribution (the componentwise posterior mean, median and mode) as θ∗.

Moreover, the Laplace-Metropolis estimator (LM) proposed by [11] was used as benchmark
method. The Laplace-Metropolis method was implemented on the posterior π(θ|Y), there-
fore, the vector of the latent variables Z was marginalized out. The normal approximation
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used in the Laplace method was applied to the original parameters for all αj and βjℓ, with
j < ℓ, and on the log βjj for j = 1, . . . , k for the diagonal loadings. For the latter, we have
used the logarithms instead of the original parameters in order to avoid asymmetries caused
by their positivity constraint and, by this way, to achieve a well behaved approximation of
the marginal likelihood.

5.2 Tuning M and R

We initially use a dataset generated from a one-factor model with 4 binary items and 400
individuals (p = 4, N = 400 and k = 1 respectively, that is 408 unknown parameters). We
use this rather restricted example in order to examine the convergence of the estimator as
a function of the number of M and R values generated from the proposal and the posterior
densities, respectively. Specifically, 300,000 posterior observations were generated after dis-
carding additional 10,000 iterations as a burn in period from a Metropolis-Hastings, within
a Gibbs, algorithm. A thinning interval of 10 iterations was additionally considered in order
to diminish autocorrelations, leaving a total of 30,000 values available for posterior analysis.
All simulations were conducted using R version 2.12 on a quad core i5 Central Processor
Unit (CPU), at 3.2GHz and with 4GB of RAM.

Before dividing the simulated sample into batches, we have graphically examined the con-
vergence of the estimator by changing

a) M , that is, the number of points generated from the proposal density q(θ,θ∗|Y,Z)
used for the estimation of the denominator in (15),

b) R, that is, the number of points generated from the posterior π(θ,Z|Y ) that are required

for the computation of L̂ within each batch.

We initially focused on (a), with M ranging from 100 to 2000, and kept R fixed at 1000

iterations. Figure 1(a) illustrates that all versions of log L̂ were stabilized up to a decimal
point, even for M ≥ 40. Time increased linearly, with M varying from 0.5 to 4.7 mins, which
is approximately one minute increment per 25 generated values.

Regarding (b), the ergodic estimator was computed with R taking values from 100 to 2000 and
M = 50, which seem more than sufficient according to Figure 1(a). The ergodic estimators

of all versions of log L̂ for each selected R are depicted in Figure 1(b). The estimates were
close and stable for R ≥ 500. The CPU time was also increased linearly from 0.5 to 9 mins
at the cost of half a minute per 100 additional iterations.

Based on Figure 1, we proceeded with thirty batches of size R = 1000 and M = 50 to ensure
convergence of the estimates. Figure 2 presents the marginal likelihood estimates based on
CJ and LM using the posterior mean, median and mode as points of central location. When
using the posterior mean, LM was found to be equal to -977.76, while logL was equal to
-977.73, with the estimated MCE being equal to 0.026. The estimators are quite robust,
regardless of the choice of the posterior point of central location. Specifically, the LM was
-977.65 at the median and -977.71 at the mode. Similarly, the log L̂ was -977.77 at the median
and -977.75 at the mode, with equivalent MCEs (0.020 and 0.022 respectively).
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In the next section we proceed with more realistic illustrations, using both simulated and
real data sets. In all the examples which follow, the same tuning procedure was followed but
it is not reported for brevity.

5.3 Computation of Bayes Factor: simulated examples

Here we demonstrate the performance of the CJ estimator using the output from a single run
of a multi-block Metropolis-within-Gibbs algorithm, in three simulated datasets of larger size,
allowing, in addition, for the models to be fitted with multiple factors of higher dimension.
We consider the datasets with the following settings:

a) N = 600 observations with p = 6 items generated from a k = 1 factor model

b) N = 600 observations with p = 6 items generated from a k = 2 factor model

c) N = 800 observations with p = 7 items generated from a k = 3 factor model

All model parameters were selected randomly from a uniform distribution, U(−2, 2). The
number of unknown parameters for the posterior ordinate in (15) is equal to k(p + N) + p,
corresponding to 606, 1218 and 2428 parameters, respectively, for each of the three situations
described above. Models that either overestimate or underestimate k were also considered,
this time evaluating the Bayes factor in favour of the true generating model. Using the same
procedure as in Section 5.2, we have concluded that it is sufficient to select 30 batches of 1000,
2000 and 3000 iterations for the one, two and three-factor models, respectively. All estimators
were evaluated at the componentwise posterior median (that is, θ∗=posterior median).

The LM estimate of the marginal likelihood is reported as a gold standard using an MCMC
output of 30,000 iterations, while the log L̂ refers to the estimate of the first batch (of 1,000
iterations). The batch mean estimator and the corresponding error were calculated as de-
scribed in Section 5. The results in Table 1 suggest that estimates based on the independence
CJ method, proposed in Section 4.1.1, are similar to the ones of the benchmark method (LM),

even from the first batch. Moreover, the Monte Carlo error of the log L̂ is fairly small but
naturally gets higher as the number of unknown parameters in the posterior ordinate increase
for a fixed number of iterations. Nevertheless, this Monte Carlo error can be efficiently re-
duced by increasing the number of MCMC iterations.

In addition, the one-block (OB) M-H approach described in Section 4.1.2 was implemented
for the second data set (b). The batch mean and the corresponding error were computed over
30 batches, as in the case of the multi-block design. In the case where one factor was assumed,
the batch mean was logLOB = −2200.68, with MCE(log L̂OB) = 1.98. In the case where two

factors were assumed, the batch mean was logLOB = −2066.23, with MCE(log L̂OB) = 3.11.
In both cases the estimated log-marginal is far away from the corresponding ones reported
in Table 1 using the LM and the independence CJ estimator. Moreover, under the one-block
design, the estimated MCE was 60 and 47 times as high as the corresponding values under the
more efficient multi-block design, presented in Table 1. It is therefore verified that between
the two single-run approaches, the independence CJ estimator is more efficient and accurate
than the one-block CJ estimator.
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With regards to the BF, the estimates (in log scale) reported in Table 2 are based on the
marginal likelihood estimates presented in Table 1. In all three simulated datasets, the
estimated Bayes factors B̂F indicated the true model. Moreover, when the independence CJ
was used, the true model was suggested by the BF estimator at every batch. Bayes factors for
the second and the third dataset clearly indicate the true model, with values ranging from e33

to e116. Only in the first dataset is the Bayes factor much lower and equal to e3 ≈ 20. In the
latter case, or in more extreme cases where two competing models have Bayes factors close
to one, the Monte Carlo error should be small enough in order to be able to identify which
model is a-posteriori supported. Here we estimated an error equal to 0.25, with 95% of the
estimates ranging between e2.5 = 12.2 and e3.3 = 27.1. Hence, the independence CJ method
infers safely in favour of the true generating mechanism, providing BF estimates similar to
the ones obtained from the gold standard of the LM, in all cases.

5.4 Illustration on real data

We proceed with two real-data examples also analyzed in Bartholomew et al. [2, chapter
8]. In all examples the marginal likelihood was estimated via CJ I and LM methods at the
median point, over samples of 10 thousand iterations (after discarding 1000 iterations as a
burn in period and keeping 1 every 10 iterations to reduce autocorrelations).

The first data set is originally provided by [32] and is part of the Law School Admission Test
(LSAT) completed by N = 1005 individuals. The test consists of five items and was designed
to measure one latent factor which is also supported by the computed Bayes factor (≈ 0.22
and 0.24 for LM and CJ I based estimators, respectively; posterior weight of one-factor model
0.802 and 0.817 respectively) reported in the first row of Table 3. In particular, the BF of
the one-factor versus the two-factor model was less than 0.5 and therefore according to [8]
the evidence against the unidimensional model “do not worth more than a bare mention”.

The second data set is part of the 1990 Workplace Industrial Relations Survey (WIRS,
[33]). The Bayes factor of the two versus the one-factor model clearly supports the latter
(log BF21 ≈ 69); see second line of Table 3. As further analysis, Bartholomew et al. [2]
suggested to omit the most poorly fitted item (here item 1) of the scale in order to improve
the fit of the one-factor model. The analysis was replicated for the remaining 5 items to
suggest again the two-factor model as the preferred model (BF21 = 40, that corresponds
to “decisive evidence” against the one-factor model, [8]). To summarize, simulations and
real-data analysis suggest that the independence CJ estimator succeeds to detect the true
model, provides similar estimates to the benchmark method (LM) and has an acceptable
MCMC error.

6 Closing remarks

The paper focused on the CJ [12] marginal likelihood estimator for latent variable models. In
the popular case where the likelihood expression embodies local independence, conditional on
the latent vector, it was illustrated that the CJ estimator can be computed in a single run of
a Metropolis-within-Gibbs algorithm. This approach drastically reduces the computational
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effort required for the marginal likelihood estimate. Under conditional independence, the
dimensionality of the model is no longer an aspect of the CJ [12] estimator. Hence, this
strategy can be implemented to reduce the computational time even in models with no
latent variables. That is in models where the likelihood can be augmented using auxiliary
variables ([17],[34]) to introduce likelihood local independence.

Two more additional points are discussed: (a) the differences of the proposed simplified CJ
estimator from the (trivial) single-run CJ estimator obtained from one-block Metropolis-
Hastings samplers and (b) how we can use the Metropolis kernel to integrate out the latent
variables when no posterior ordinate is analytically available.

The points outlined in this article simplify the implementation of the CJ method on specific
cases making a method, which is accurate and already established in bibliography, easier to
use and more efficient in practice.
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Tables

Table 1: Simulated results: marginal likelihood estimates in Section 5.3.

Dataset p N ktrue kmodel log LM log L̂ logL MCE(log L̂)

(a) 6 600 1 1 -2175.3 -2175.2 -2175.1 0.016
2 -2178.2 -2178.2 -2178.2 0.253

(b) 6 600 2 1 -2187.2 -2187.6 -2187.5 0.033
2 -2070.8 -2071.3 -2071.2 0.066

(c) 7 800 3 1 -3422.4 -3422.3 -3422.5 0.029
2 -3374.4 -3374.1 -3375.2 0.133
3 -3341.3 -3339.1 -3339.3 0.332

p: number of items; N : number of individuals; ktrue and kmodel: number of factors in the true and
evaluated model, respectively; LM and L̂: Laplace-Metropolis and Chib and Jeliazkov estimates of the
marginal likelihood; logL: Batch mean estimator of the log-marginal likelihood; MCE(log L̂): Monte Carlo

error of the log L̂ obtained as the standard deviation of 30 batches of equal size as the estimate reported in
7th column of the table.
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Table 2: Simulated results: Bayes Factor estimates in Section 5.3.

Dataset details Comparison log B̂F Batch summaries of log L̂

# p N ktrue k1 vs. k2 LM CJ Mean S.D. 1stQ 3rdQ
(a) 6 600 1 1 − 2 3.1 3.0 3.1 0.25 2.5 3.3

(b) 6 600 2 2 − 1 116.3 116.3 116.3 0.08 116.0 116.5

(c) 7 800 3 3 − 1 81.1 83.3 83.2 0.33 81.5 84.5
3 − 2 33.3 35.0 35.9 0.35 34.3 37.7

p: number of items; N : number of individuals; ktrue: number of factors in the true model; k1 vs. k2: the Bayes factor

comparing the k1 versus the k2-factor model is estimated; B̂F : Estimated Bayes factors based on Laplace-Metropolis (LM)

and Chib and Jeliazkov (CJ) estimates of the marginal likelihood; Batch summaries of log L̂: Summaries based on 30

batches of log L̂ (mean=Batch mean estimate, S.D.= standard deviation - provides an estimate for the Monte Carlo Error,
1stQ and 3rdQ: first and third quartiles).
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Table 3: Marginal Likelihood and Bayes Factor for the real data: LSAT and WIRS

log LM log L̂

Dataset 1-factor 2-factor log B̂F
(LM)

21 1-factor 2-factor log B̂F
(CJ)

21

1. LSAT -2494.8 -2496.2 -1.4 -2495.1 -2496.6 -1.5
2. WIRS-6 items -3456.1 -3387.1 69.0 3456.2 -3387.3 68.9
3. WIRS-5 items -2786.6 -2782.8 3.8 -2786.8 -2783.1 3.7
LM and L̂: Laplace-Metropolis and Chib and Jeliazkov estimates of the marginal likelihood; 1-factor and 2-factor

columns: estimates of the log-marginal likelihood for the 1-factor and 2-factor models, respectively; B̂F
(LM)

21 and

B̂F
(CJ)

21 : Estimated Bayes factors of 2-factor versus 1-factor model based on LM and L̂, respectively.
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Figure labels

Figure 1

Main caption

Ergodic log L̂ using three posterior measures of central location (mean, median and mode)
for different M (number of values generated from the proposal) and for different R (number
of MCMC iterations); p=4 items, N = 400 individuals and k=1 latent factor.

Sub captions

Figure 1(a): Sensitivity of log L̂ (based on CJ I) on different M with R = 1000.

Figure 1(b): Sensitivity of log L̂ (based on CJ I) on different R with M = 50.

Figure 2

Main caption

Log-likelihood estimated via CJ I (dotted line) over 30 batches of size R=1000 compared with
the corresponding Laplace-Metropolis estimate (solid line) using MCMC output of 30,000
iterations and the posterior median, mean or mode as measures of central location; p=4
items, N = 400 individuals and k = 1 factor.
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