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Abstract

Chib’s method for estimating the marginal likelihood required for model evaluation and com-
parison within the Bayesian paradigm, makes use of Gibbs sampling outputs from reduced
Markov chain Monte Carlo (MCMC) runs for each parameter separately. More recently, the
Chib-Jeliazkov method extended the application of the original approach to cases where the
full conditional probabilities are not analytically available, estimating the marginal likeli-
hood from multiple Metropolis-Hastings runs. This paper shows that a marginal likelihood
estimation from a Metropolis-Hastings algorithm output can be computed from a single
Markov chain Monte Carlo (MCMC) run of the full model under mild independence condi-
tions. Marginal likelihood estimations are notoriously difficult to compute, and particularly
so in high dimensional problems, such as those involving latent variable and/or random effect
models. Thus, the applicability of the proposed estimation method is demonstrated by its
application to simulated and real datasets, and we suggest that our findings can be further
extended to data augmentation schemes leading to local (conditional) independence.

KEYWORDS: Generalised linear latent variable models, mixed effects models, bridge sam-
pling, Monte Carlo error, Laplace-Metropolis estimator

1 INTRODUCTION

Bayesian model comparison via the Bayes factors, posterior model probabilities and odds
(Kass and Raftery, 1995) requires the computation of the marginal likelihood given by:

f(Y|m) =

∫
f(Y|θ,m)π(θ|m)dθ, (1)

where m stands for the hypothesized model, and π(θ|m) is the density of the model specific
parameter vector θ ∈ Ω ⊂ Rp (m will be dropped hereafter for simplicity). The marginal
likelihood often involves high dimensional integrals making the analytic computation infea-
sible except in some special cases. Several approximating methods have been proposed in
the literature for estimating the marginal likelihood, including the importance sampling es-
timator (Newton and Raftery, 1994), the harmonic mean estimator (Kass and Raftery 1995,
Raftery et al. 2007), Chib’s estimator (Chib, 1995), the Bridge sampling estimator (Meng
and Wong, 1996), the Metropolised Laplace estimator (Lewis and Raftery, 1997), Chib and
Jeliazkov estimator (Chib and Jeliazkov, 2001), and, lately, the power posterior estimator
(Friel and Pettit, 2008).

This paper focuses on the estimator proposed by Chib and Jeliazkov (2001), which is an
extension of the marginal likelihood estimator of Chib (1995). Both methods are based on
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the candidate’s identity (Besag, 1989) explained below.

f(Y) =
f(Y|θ)π(θ)

π(θ|Y)
⇔ log f(Y) = log f(Y|θ) + log π(θ) − log π(θ|Y). (2)

From equation (2), the marginal likelihood depends on the posterior density of the model
parameters π(θ|Y). Since (2) holds for every point θ of the parameter space, the posterior
density can be approximated using a specific point θ∗. Following Chib (1995), let us suppose
that the parameter space is split into p blocks. Then the posterior can be decomposed as:

π(θ∗|Y) = π(θ∗1, θ
∗
2, · · · , θ∗P |Y) = π(θ∗1|Y)π(θ∗2|Y, θ∗1) · · ·π(θ∗p|Y, θ∗1, θ

∗
2, · · · , θ∗p−1), (3)

where each conditional density is called an ordinate. The integrated likelihood is calculated
in a straightforward manner when (3) is analytically available. In the case when the posterior
ordinates, π(θ∗j |Y, θ∗1, θ

∗
2, · · · , θ∗j−1), are not available in a closed form, Chib (1995) presented

an algorithm that uses the output from the Gibbs sampler to estimate them. In addition,
Chib and Jeliazkov (2001) extended the method to deal with cases where the full conditional
posterior distributions are not available and, therefore, a Metropolis–Hastings (MH) algo-
rithm is used to generate posterior samples. Such an algorithm can be summarized by the
following simple steps:

At every simulation step and for j = 1, . . . , p

1. When θj is the current parameter value, propose θ′j from a proposal centered at θj with
density q(θj, θ

′
j|Y , θ\j); where θ\j is the parameter vector θ excluding θj.

2. Accept the proposed move with probability

a
(
θj, θ

′
j|Y , θ\j

)
= min

{
1,

f
(
Y |θ′j, θ\j

)
π
(
θ′j, θ\j

)
q
(
θ′j, θj|Y , θ\j

)

f
(
Y |θj, θ\j

)
π
(
θj, θ\j

)
q
(
θj, θ′j|Y , θ\j

)
}

. (4)

Chib and Jeliazkov (2001) exploited the reversibility condition which assumes that the prob-
ability of sampling any pair (θj, θ

′
j) is the same regardless of the sequence by which the values

are generated. Hence, the reversibility condition (with respect to θ∗j ) is written as:

K(θj, θ
∗
j |Y, θ\j)π(θj|Y, θ\j) = K(θ∗j , θj|Y, θ\j)π(θ∗j |Y, θ\j). (5)

with
K(θj, θ

∗
j |Y, θ\j) = a(θj, θ

∗
j |Y, θ\j)q(θj, θ

∗
j |Y, θ\j), j = 1, · · · , p, (6)

denoting the transition probability of sampling θ∗j given that θj has been already generated
(that is, the MH sub-kernel). From (5), they obtained that each of the posterior ordinate
π(θ∗j |Y, θ∗1, · · · , θ∗j−1) appearing in (3) is equal to

CJj =
E1

{
a
(
θj, θ

∗
j |Y, ψ∗

j−1, ψ
j+1

)
q
(
θj, θ

∗
j |Y, ψ∗

j−1, ψ
j+1

)}

E2

{
a
(
θ∗j , θj|Y, ψ∗

j−1, ψ
j+1

)} , (7)
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where ψj−1 = (θ1, · · · , θj−1) and ψj+1 = (θj+1, · · · , θp) for j = 1, . . . , p with ψ0 and ψp+1

referring to the empty sets. The expectations in the numerator and the denominator are
with respect to π

(
θj, ψ

j+1|Y, ψ∗
j−1

)
and π

(
ψj+1|Y, ψ∗

j

)
q
(
θj, θ

∗
j |ψ

∗
j−1, ψ

j+1
)
.

A Monte Carlo estimator ĈJ j for each CJj can be obtained by replacing the expectations
in (7) with their corresponding sample means from simulated samples. The final posterior

estimator (ĈJ) is given by multiplying the estimators for each block.

Since the expectations in (7) are conditional on specific parameter points ψ∗
j−1 = (θ∗1, · · · , θ∗j−1)

and ψ∗
j = (θ∗1, · · · , θ∗j ), the corresponding Monte Carlo estimates cannot be obtained by the

initial (full) MCMC run. Specifically, for a p dimensional parameter space, p − 1 reduced
runs are needed. Therefore, in high dimensional problems, the computational time can be
frustratingly long. As an example, Chib and Jeliazkov (2001) address the issue of multiple
latent variable blocks, where the latent vector Z may easily “run into hundreds if not thou-
sands”. For such cases, the authors provide a solution when at least one posterior ordinate
π(θj|Y, ψj−1) is analytically available. To be more specific, they rewrite the corresponding
ordinate π(θ∗j |Y, ψ∗

j−1) as an integral involving the latent variable quantities Z, that is:

π(θ∗j |Y, ψ∗
j−1) =

∫
π(θ∗j ,Z|Y, ψ∗

j−1)dZ

=

∫
π(θ∗j |Y, ψ∗

j−1,Z)π(Z|Y, ψ∗
j−1)dZ. (8)

Therefore p − 1 ordinates are approximated via (7) as usual, while the integral (8) is ap-
proximated as the average of π(θ∗j |Y, ψ∗

j−1) with respect to π(Z|Y, ψ∗
j−1). This approach is

actually equivalent to marginalizing out the latent variables as nuisance parameters.

In practice, even one posterior ordinate of the above type is rarely available in closed form.
On the other hand, the dimensionality of Z makes the implementation of the Chib and
Jeliaskov (CJ) estimator unattractive in its original form since it requires a large number
of reduced (or nested) MCMC runs. In this article, we propose a simplification of the CJ
estimator for computing the marginal likelihood from a single Metropolis-Hastings run for
models with conditional (local) independence such as the generalised linear latent variable
models (GLLVM) and mixed effect models. The proposed modification avoids the multiple
runs, making the Chib and Jeliazkov (2001) method applicable in such cases.

The rest of the article is organized as follows. In Section 2, we describe the proposed method
after introducing some preliminary definitions and results. Section 3 describes the relation
of our proposed modified estimator with the one obtained using bridge sampling. Section 4.1
describes the implementation in generalised latent variable models including illustrations on
simulated and real datasets. Concluding remarks are provided in the closing section of this
article.
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2 ESTIMATING THE MARGINAL LIKELIHOOD IN

MODELS WITH LOCAL INDEPENDENCE

2.1 Definitions and Properties

In this section, we discuss two necessary model properties, that lead to the simplification of
the CJ estimator. Let us first define our model structure and the corresponding notation.

We focus on models which can be defined with a likelihood of the following structure:

f
(
Y |Θ = (θ0, θ1, . . . , θp),L

)
= f

(
Y |θ = (θ1, . . . , θp),Z = (θ0,L)

)
with Y = (Y 1, . . . ,Y p),

(9)
where

– Y is a n × p data array of n observations and p observed items (or variables),

– Yj is the n × 1 vector with the data values for item j,

– L is the k × n matrix of the latent variables,

– Θ is the whole parameters (k + 1) × p vector,

– θ0 is the set of parameters which is common across different variables,

– θj for j = 1, . . . , p are the variable specific parameters (linked to Yj only)

In the above model formulation, the pair of parameters and the latent variables (Θ,L)
are substituted by a new pair (θ,Z) with θ being the variable specific parameters (that is
decomposed later to parameters which are related to one variable at a time) and Z being
the set of parameters and/or latent variables which are common and shared across different
variables or items. In latent variable models, parameters shared across different items do not
exist unless equality constraints are imposed. Hence Z solely refers to latent variables L. The
local independence assumption is common in such models and it is described in Definition
2.1 which follows.

Definition 2.1 The model presented in (9) embodies the local independence assumption
if the observed response variables (or items) are independent of each other conditional on the
latent variable(s):

f(Y |θ,Z) =

p∏

i=1

f(Y j|θj,Z) . (10)

The local independence assumption implies that correlations among the items are induced
solely by Z, that is, the latent variables and the common parameters. We now show that
this property can be extended to the posterior distributions when prior local independence
exists. This notion is introduced in Definition 2.2 which follows.
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Definition 2.2 For the model presented in (9), a set of variable specific parameters θ is
defined to be a-priori locally independent if they are a-priori independent conditionally
on Z. Therefore the prior structure will satisfy the following equation:

f(θ|Z) =

p∏

j=1

f(θj|Z) . (11)

Similarly we can introduce the posterior local independence by the following definition.

Definition 2.3 For the model presented in (9), a set of variable specific parameters θ is
defined to be a-posteriori locally independent if they are a-posteriori independent condi-
tionally upon Z. Therefore the posterior structure will satisfy the following equation

f(θ|Y ,Z) =

p∏

j=1

f(θj|Y j,Z) . (12)

Lemma 2.1 For any model with structure (9) for which the assumptions of

a) local independence and

b) prior local independence

hold, then the property of posterior local independence also holds.

Proof

π(θ|Y,Z) =
f(Y|θ,Z)π(θ|Z)∫
f(Y|θ,Z)π(θ|Z)dθ

=

p∏
j=1

f(Yj|θj,Z)
p∏

j=1

π(θj|Z)

∫
· · ·

∫ p∏
j=1

f(Yj|θj,Z)
p∏

j=1

π(θj|Z)dθ1 · · · dθp

=

p∏

j=1

f(Yj|θj,Z)π(θj|Z)∫
f(Yj|θj,Z)π(θj|Z)dθj

=

p∏

j=1

π(θj|Yj,Z) . (13)

¤

The second necessary condition is related to the acceptance probability of the MH algorithm
which, for any model with structure (9), is described by the following steps:

1. for j = 1, . . . , p

(a) When θj is the current parameter value, propose θ′j from a proposal with density
q(θj, θ

′
j|Y , θ\j,Z); where θ\j is θ excluding θj.

(b) Accept the proposed move with probability

a
(
θj, θ

′
j|Y , θ\j,Z

)
= min

{
1,

π
(
θ′j|Y , θ\j,Z

)
q
(
θ′j, θj|Y , θ\j,Z

)

π
(
θj|Y , θ\j,Z

)
q
(
θj, θ′j|Y , θ\j,Z

)
}

. (14)
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2. Sample Z from f(Z|Y ,θ) using any sampling scheme.

Lemma 2.2 For any model with structure (9), the acceptance probability (14) of the MH
algorithm described above simplifies to:

a(θj, θ
′
j|Y, θ\j,Z) = a(θj, θ

′
j|Y,Z) = min

{
1,

f(Yj|θ
′
j,Z)π(θ′j|Z) q(θ′j, θj|Y,Z)

f(Yj|θj,Z)π(θj|Z) q(θj, θ′j|Y,Z)

}
. (15)

when

a) the posterior local independence property holds and

b) each θj is proposed independently from θ\j.

The above lemma is straightforward to prove by implementing conditions (a) and (b) on the
acceptance probability (14).

Lemmas 2.1 and 2.2 also hold in the special case of prior independence between θj and Z,
that is π(θ,Z) =

∏p

j=1 π(θj)π(Z), and/or when common parameters across different variables
(that is θ0) do not exist which refers to the usual factor models. In Section 2.2, we illustrate
the simplification of the CJ estimator of the marginal likelihood using the lemmas of this
section.

2.2 CJ Estimator in a Single Run for Models with Conditional

Independence

Following similar arguments as in Chib and Jeliazkov (2001), we start from the reversibility
of the sub-kernel at any point θ∗j . If we multiply both sides of (5) with π(θ\j|Y,Z) then,

K(θj, θ
∗
j |Y) π(θj, θ\j|Y,Z) = K(θ∗j , θj|Y) π(θ∗j , θ\j|Y,Z),

which results in

K(θj, θ
∗
j |Y) π(θj|Y,Z)

p∏

j′=1,j′ 6=j

π(θj′|Z,Y) = K(θ∗j , θj|Y) π(θ∗j |Y,Z)

p∏

j′=1,j′ 6=j

π(θj′|Z,Y)

due to the posterior local independence assumption.

By integrating over θj,

∫
K(θj, θ

∗
j |Y) π(θj|Y,Z)dθj =

∫
K(θ∗j , θj|Y) π(θ∗j |Y,Z)dθj,

and solving with respect to π(θ∗j |Y,Z) we get:

CJ I
j = π(θ∗j |Y,Z) =

∫
K(θj, θ

∗
j |Y) π(θj|Y,Z)dθj∫

K(θ∗j , θj|Y)dθj

. (16)
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The modified expression for the posterior π(θ|Y) is then given by multiplying CJ I
j over all

p blocks and integrate out the latent vector:

CJ I =

∫ p∏

j=1

π(θj|Yj,Z)π(Z|Y)dZ =

∫ p∏

j=1

[∫
K(θj, θ

∗
j |Y) π(θj|Y,Z)dθj∫

K(θ∗j , θj|Y)dθj

]
π(Z|Y) dZ

=

∫ [ p∏
j=1

K(θj, θ
∗
j |Y)

∫ p∏
j=1

K(θ∗j , θj|Y)dθj

]
π(θ,Z|Y) d(θ,Z)

= Eθ,Z|Y




p∏
j=1

a
(
θj, θ

∗
j |Y,Z

)
q
(
θj, θ

∗
j |Y,Z

)

Eq

[
p∏

j=1

a
(
θ∗j , θj|Y,Z

) ]


 , (17)

where Eq is the expectation with respect to the proposal density
q(θ∗,θ|Y,Z) =

∏p

j=1 q
(
θ∗j , θj|Y,Z

)
. Due to Lemma 2.2, the expectation in the denomi-

nator of (17) can be replaced by the product of p expectations that involve densities of much
lower dimension and thus can be estimated with a reduced Monte Carlo error as illustrated
by Vitoratou et al. (2011). Thus (17) can be estimated from:

ĈJ
I

=
1

R

R∑

r=1




p∏
j=1

a
(
θ

(r)
j , θ∗j |Y,Z(r)

)
q
(
θ

(r)
j , θ∗j |Y,Z

)

p∏
j=1

[
1
M

M∑
m=1

a
(
θ
∗(m)
j , θj|Y,Z(r)

)]


 . (18)

The sample
{
θ

(r)
1 , θ

(r)
2 , · · · , θ

(r)
p ,Z(r)

}R

r=1
comes from the joint posterior of (θ,Z) which is avail-

able from a full MCMC run. For each sampled set of latent and parameter values
(
θ(r),Z(r)

)
,

r = 1, ..., R, points {θ
(m)
j }M

m=1 are generated from the proposal density q(θj, θ
∗
j |Y,Z). These

values are used to compute the expectation in the denominator of (17). From (18), it is
straightforward to see that a single MCMC run from the posterior of the model under study
is required to compute the independence estimator ĈJ I.

To sum up, in this section we have introduced a modification of the original CJ estimator
of the marginal likelihood, that is, the independence CJ estimator, ĈJ I. This estimator can
be easily implemented in high dimensional models involving latent variables and random
effects even when none of the posterior ordinates is available analytically as it is required in
Chib and Jeliazkov (2001). The proposed estimator is based on Lemma 2.2 that requires the
existence of posterior local independence and the generation of a posterior sample using an
MH algorithm with independent proposals. The assumption of posterior local independence is
mild since, due to Lemma 2.1, it is true for any model which assumes local independence when
a prior distribution with independence structure (11) is adopted. The local independence
assumption is fundamental for a wide class of models such as latent variable and random
effect models. Finally, the prior local independence induced by (11) seems to be a reasonable
assumption since such models require local independence for the parameters.
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3 CJ Estimator and Bridge Sampling

The CJ estimator can be viewed as a special case of the bridge sampling estimator (Meng
and Wong, 1996). It was originally addressed for problems that require the approximation
of the ratio r of two normalizing constants c1 and c2 for any two densities pj(θ) = gj(θ)/cj,
(i = 1, 2) with supports Ω1 and Ω2 respectively. For any arbitrary function h(θ) defined in
Ω1 ∩ Ω2 such as that:

0 <

∣∣∣∣
∫

Ω1∩Ω2

h(θ)p1(θ)p2(θ)dθ

∣∣∣∣ < ∞, (19)

the ratio r = c1
c2

is given by the identity:

r =

∫
g1(θ)h(θ)p2(θ)dθ∫
g2(θ)h(θ)p1(θ)dθ

=
Ep2

[
g1(θ)h(θ)

]

Ep1

[
g2(θ)h(θ)

] . (20)

The above identity can be used to construct a Monte Carlo estimate of r using two random
samples from p1 and p2.

Mira and Nicholls (2004) showed that the CJ estimator can be seen as a bridge sampling
estimator, by appropriately defining the densities p1, p2 and h, for each block j. Similarly,
the independence estimator ĈJ I can be written as a bridge sampling estimator when:

c1 = 1, c2 = 1/π(θ∗j |Y,Z)
g1 = π(θj|Y,Z), g2 = q(θ∗j , θj)/π(θ∗j |Y,Z)

p1 = π(θj|Y,Z), p2 = q(θ∗j , θj), h =
a(θ∗j , θj|Y,Z)

π(θj|Y,Z)
.

By substituting the above quantities in (20) and employing the detailed balance relation for
q, a and π (see equation 5) in the nominator we obtain:

BSj =

∫
π(θ∗j |Y,Z)q(θ∗j , θj)

a(θ∗j , θj|Y,Z)

π(θj|Y,Z)
π(θj|Y,Z)dθj

∫
π(θj|Y,Z)

a(θ∗j , θj|Y,Z)

π(θj|Y,Z)
q(θ∗j , θj)dθj

(21)

=

∫
a(θj, θ

∗
j |Y,Z)q(θj, θ

∗
j )π(θj|Y,Z)dθj∫

a(θ∗j , θj|Y,Z)q(θ∗j , θj)dθj

= CJ I
j (22)

By marginalizing out the latent vector as in (17), we obtain the modified CJ I expression.

4 IMPLEMENTATION OF THE CJ ESTIMATOR IN

GLLVM

4.1 Model formulation

The Generalised Linear Latent Variable Model (GLLVM) (Moustaki and Knott, 2000) con-

sists of three components: (a) the multivariate random component Ỹ = (Y1, Y2, . . . , Yp) of
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the response variables, (b) the linear predictor denoted by ηj and (c) the link function υ(·),
which connects the previous two components. Hence, a GLLVM can be summarized as:

Yj|Z ∼ ExpF, ηj = αj +
k∑

ℓ=1

βjℓZℓ, and υj

(
µj(Z)

)
= ηj (23)

for j = 1, . . . p ; where ExpF is a member of the exponential family and µj(Z) = E(Yj|Z).
Finally, a multivariate distribution π(Z) needs to be specified for the latent variables, which
is usually assumed to be a standard normal distribution.

It is further assumed that, given Z and θ, the responses to the observed variables are inde-
pendent (local independence assumption) resulting in

f(Y |Z,θ) =
n∏

i=1

p∏

j=1

f(Yij|θj,Zi) , (24)

where Y is a n× p observed data matrix with elements Yij denoting the response of subject
i to item j and Zi are the subject specific values of the latent variables Z, θ = (α,β),
α = (α1, . . . , αp), β = (β1, . . . ,βp), β1 = (β11, . . . , β1k) and θj = (αj,βj).

The model likelihood is obtained by marginalizing out the latent variables, and is given by

f(Y |θ) =
n∏

i=1

f(Yi|θ) =
n∏

i=1

∫
f(Yi|θ,Zi) π(Zi) dZi , (25)

where Yi is the vector of responses for subject i (i.e. the i-th row of matrix Y ). The
integrals with respect to the subject specific latent variables Zi in (25) can be approximated
with fixed Gauss-Hermite quadrature points (used to calculate each f(Yi|θ) in equation 25).
Other more accurate approximations can be also used, such as the adaptive quadrature points
(Rabe-Hesketh et al. 2005, Schilling and Bock 2005) or Laplace approximations (Huber et al.,
2004).

The corresponding marginal likelihood f(Y) =

∫
f(Y |θ,Z) π(θ,Z) d(θ,Z) needed for com-

puting the Bayes factor is a highly dimensional integral, which is not available analytically.
The results of Section 2.1 can be implemented here since the local independence assumption
is a fundamental component of the model formulation, as described in (23).

In our simulations we used binary items (latent trait models) that are a special case of the
GLLVM discussed in Moustaki and Knott (2000). The logit link is used for the response
probabilities, giving:

logit
[
E

(
Yj|Z

)]
= log

P (Yj = 1 | Z)

(1 − P (Yj = 1 | Z)
= αj +

k∑

ℓ=1

βjℓZℓ, j = 1, . . . , p. (26)

4.2 Parametrization and Prior Specification

Patz and Junker (1999) implemented Bayesian inference using the full model likelihood (24)
for latent variable models with binary items. Model identification is crucial under the presence
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of k latent variables. Here, we implement the Cholesky decomposition on the loadings B =(
βjℓ

)
with j = 1, . . . , p, ℓ = 1, . . . , k as described by Lopes and West (2004) and Dunson

(2006). Therefore, we set βjℓ = 0 for all j < ℓ and βjj > 0. Moreover, we use a prior
based on the ideas presented by Ntzoufras et al. (2000) and further explored in the context
of generalised linear models by Fouskakis et al. (2009, equation 6). For GLLVMs with binary
responses, this prior corresponds to a N(0, 4) for all non-constrained loadings and for all αj.
For the diagonal elements of B, we use a standardized normal distribution as a prior for each
log βjj inducing prior a standard deviation for βjj approximately equal to 2, in analogy with
the rest non-zero elements of B. Hence, the structure of B can be summarized as follows

βjℓ =





0 if j < ℓ
LN(0, 1) if j = ℓ
N(0, 4) if j > ℓ

where Y ∼ LN(µ, σ2) is the log-normal distribution with the mean and the variance of log Y
being equal to µ and σ2, respectively. Finally, latent variables are assumed to be a-priori
distributed as standard normal distributions i.e. Zℓ ∼ N(0, 1) for all subjects.

4.3 Monte Carlo Error and Laplace-Metropolis Estimator

The Monte Carlo error (MCE) of the ĈJ I was estimated using the method of batch means
(Schmeiser 1982, Bratley et al. 1987). The simulated sample was divided into 30 batches

and the marginal log-likelihood was approximated via ĈJ I at each batch. The mean over all
batches, denoted by ĈJ I

bm
, is referred to as the batch mean estimator, while the the standard

deviation of the log-marginal likelihood estimator over the different batches is considered as
its MCE estimate. The same procedure was repeated for the ĈJ I, which were estimated using
three alternative measures of central location of the posterior distribution (the componentwise
posterior mean, median and mode) as θ∗.

Moreover, the Laplace-Metropolis estimator (L̂M) proposed by Lewis and Raftery (1997)
was used as benchmark method. The Laplace-Metropolis method was implemented on the
posterior π(θ|Y ), therefore, the vector of the latent variables Z were marginalized out. The
normal approximation used in the Laplace method was applied to the original parameters
for all αj and βjℓ, with j < ℓ, and on the log βjj for j = 1, . . . , k for the diagonal loadings.
For the latter, we have used the logarithms instead of the original parameters in order to
avoid asymmetries caused by their positivity constraint and, by this way, to achieve a well
behaved approximation of the marginal likelihood.

4.4 Tuning M and R

We initially use a dataset generated from a one-factor model with 4 binary items and 400
individuals (p = 4, N = 400 and k = 1 respectively, that is 408 unknown parameters). We
use this rather restricted example in order to examine the convergence of the estimator as
a function of the number of M and R values generated from the proposal and the posterior
densities, respectively. Specifically, 300,000 posterior observations were generated after dis-
carding additional 10,000 iterations as a burn in period from a Metropolis-Hastings, within
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a Gibbs, algorithm. A thinning interval of 10 iterations was additionally considered in order
to diminish autocorrelations, leaving a total of 30,000 values available for posterior analysis.
All simulations were conducted using R version 2.12 on a quad core i5 Central Processor
Unit (CPU), at 3.2GHz and with 4GB of RAM.

Before dividing the simulated sample into batches, we have graphically examined the con-
vergence of the estimator by changing

a) M , that is, the number of points generated from the proposal density q(θ,θ∗|Y,Z)
used for the estimation of the denominator in (18),

b) R, that is, the number of points generated from the posterior π(θ,Z|Y ) that are required

for the estimation of ĈJ I within each batch.

We initially focused on (a), with M ranging from 100 to 2000, and kept R fixed at 1000

iterations. Figure 1(a) illustrates that all versions of ĈJ I were stabilized up to a decimal
point, even for M ≥ 40. Time increased linearly, with M varying from 0.5 to 4.7 mins, which
is approximately one minute increment per 25 generated values.

Regarding (b), the ergodic estimator was computed with R taking values from 100 to 2000 and
M = 50, which seem more than sufficient according to Figure 1(a). The ergodic estimators

of all versions of ĈJ I for each selected R are depicted in Figure 1(b). The estimates were
close and stable for R ≥ 500. The CPU time was also increased linearly from 0.5 to 9 mins
at the cost of half a minute per 100 additional iterations.

Based on Figure 1, we proceeded with thirty batches of size R = 1000 and M = 50 to ensure
convergence of the estimates. Figure 2 presents the marginal likelihood estimates based on
CJ and LM using the posterior mean, median and mode as points of central location. When
using the posterior mean, L̂M was found to be equal to -977.76, while ĈJ I

bm
was equal to

-977.73, with the estimated MCE being equal to 0.026. The estimators are quite robust,
regardless of the choice of the posterior point of central location. Specifically, the L̂M was
-977.65 at the median and -977.71 at the mode. Similarly, the ĈJ I

bm
was -977.77 at the

median and -977.75 at the mode, with equivalent MCEs (0.020 and 0.022 respectively).

In the next section we proceed with more realistic illustrations, using both simulated and
real data sets. In all the examples which follow, the same tuning procedure was followed but
it is not reported for brevity.

4.5 Computation of Bayes Factors: Simulated Examples

Here we demonstrate the performance of the CJ estimator using the output from a single
run of a Metropolis-Hastings algorithm in three simulated datasets of larger size, allowing, in
addition, for the models to be fitted with multiple factors of higher dimension. We consider
the datasets with the following setups:

a) N = 600 observations with p = 6 items generated from a k = 1 factor model

b) N = 600 observations with p = 6 items generated from a k = 2 factor model

11
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(a) Sensitivity of ĈJ I on different M with R = 1000.
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(b) Sensitivity of ĈJ I on different R with M = 50.

Figure 1: Ergodic ĈJ I using three posterior measures of central location (mean, median and
mode) for different M (number of values generated from the proposal) and for different R
(number of MCMC iterations); p=4 items, N = 400 individuals and k=1 latent factor.
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Figure 2: ĈJ I (dotted line) over 30 batches of size R=1000 compared with L̂P (solid line)
estimated from an MCMC output of 30,000 iterations using the posterior median, mean or
mode as measures of central location; p=4 items, N = 400 individuals and k = 1 factor.

c) N = 800 observations with p = 7 items generated from a k = 3 factor model

All model parameters were selected randomly from a uniform distribution, U(−2, 2). The
number of unknown parameters for the posterior ordinate in (18) is equal to k(p + N) + p,
corresponding to 606, 1218 and 2428 parameters, respectively, for each of the three situations
described above. Models that either overestimate or underestimate k were also considered,
this time evaluating the Bayes factor in favour of the true generating model. Using the same
procedure as in Section 4.4, we have concluded that it is sufficient to select 30 batches of 1000,
2000 and 3000 iterations for the one, two and three-factor models, respectively. All estimators
were evaluated at the componentwise posterior median (that is, θ∗=posterior median).

The L̂M is also reported in Table 1 as a gold standard. It is computed over 30,000 iterations,
while ĈJ I refers to the first batch. The batch mean estimator and the corresponding error
were calculated as described in Section 4.3. Under all scenarios, the two methods provide
close estimates of the marginal likelihood. The Monte Carlo error of the ĈJ I estimator is
fairly small but naturally gets higher as the number of unknown parameters in the posterior
ordinate increase for a fixed number of iterations. Nevertheless, this Monte Carlo error can
be efficiently reduced by increasing the number of MCMC iterations.

The BF estimates (in log scale) reported in Table 2 are based on the marginal likelihood esti-

mates presented in Table 1. In all three simulated datasets, the estimated Bayes factors B̂F
indicated the true model. Moreover, when the ĈJ I was used, the true model was suggested by
the BF estimator at every batch. Bayes factors for the second and the third dataset clearly
indicate the true model, with values ranging from e33 to e116. Only in the first dataset is the
Bayes factor much lower and equal to e3 ≈ 20. In the latter case, or in more extreme cases
where two competing models have Bayes factors close to one, the Monte Carlo error should
be small enough in order to be able to identify which model is a-posteriori supported. Here
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Table 1: Simulated Example Results: Marginal Likelihood Estimates in Section 4.5.

Dataset p N ktrue kmodel log L̂M log ĈJ I ̂log CJ I
bm

MCE(log ĈJ I)

1 6 600 1 1 -2175.3 -2175.2 -2175.1 0.016
2 -2178.2 -2178.2 -2178.2 0.253

2 6 600 2 1 -2187.2 -2187.6 -2187.5 0.033
2 -2070.8 -2071.3 -2071.2 0.066

3 7 800 3 1 -3422.4 -3422.3 -3422.5 0.029
2 -3374.4 -3374.1 -3375.2 0.133
3 -3341.3 -3339.1 -3339.3 0.332

p: number of items; N : number of individuals; ktrue and kmodel: number of factors in the true and evaluated

model, respectively; L̂M and ĈJ I : Laplace-Metropolis and Chib and Jeliaskov estimates of the marginal

likelihood; ̂log CJ I

bm
: Batch mean estimator of the log-marginal likelihood; MCE(log ĈJ I): Monte Carlo

error of the log ĈJ I estimator obtained as the standard deviation of 30 batches of equal size as the estimate
reported in 7th column of the table.

we estimated an error equal to 0.25, with 95% of the estimates ranging between e2.5 = 12.2
and e3.3 = 27.1, in all cases safely inferring in favour of the true generating mechanism.

Table 2: Simulated Example Results: Bayes Factor Estimates in Section 4.5.

Dataset details Comparison Batch summaries of log ĈJ I

# p N ktrue k1 vs. k2 log B̂F (LM) log B̂F (CJ) Mean S.D. 1stQ 3rdQ
1 6 600 1 1 − 2 3.1 3.0 3.1 0.25 2.5 3.3

2 6 600 2 2 − 1 116.3 116.3 116.3 0.08 116 116.5

3 7 800 3 3 − 1 81.1 83.3 83.2 0.33 81.5 84.5
3 − 2 33.3 35.0 35.9 0.35 34.3 37.7

p: number of items; N : number of individuals; ktrue: number of factors in the true model; k1 vs. k2: the Bayes factor

comparing the k1 versus the k2-factor model is estimated; B̂F (LM) and B̂F (CJ): Estimated Bayes factors based on

Laplace-Metropolis and Chib and Jeliaskov estimates of the marginal likelihood; Batch summaries of log ĈJ I : Summaries

based on 30 batches of log ĈJ I (mean=Batch mean estimate, S.D.= standard deviation - provides an estimate for the
Monte Carlo Error, 1stQ and 3rdQ: first and third quartiles).
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4.6 Implementation on real datasets

We proceed with two real-data examples also analyzed in Bartholomew et al. (2008, chapter
8). In all examples the marginal likelihood was estimated via CJ I and LP methods at the
median point, over samples of 10 thousand iterations (after discarding 1000 iterations as a
burn in period and keeping 1 every 10 iterations to reduce autocorrelations).

The first data set is originally provided by Bock and Lieberman (1970) and is part of the Law
School Admission Test (LSAT) completed by N = 1005 individuals. The test consists of five
items and was originally designed to measure one latent factor which is also supported by
the computed Bayes factor (≈ 0.22 and 0.24 for LM and CJ I , respectively; posterior weight
of one-factor model 0.802 and 0.817 respectively) reported in the first row of Table 3.

The second data set is part of the 1990 Workplace Industrial Relations Survey (WIRS, Airey
et al. 1992). The Bayes factor of the two versus the one-factor model clearly supports the
latter (log BF21 ≈ 69); see second line of Table 3. Bartholomew et al. (2008) suggest to omit
the first item of the scale in order to improve the model fit. The analysis was replicated for
the 5 items version implying again two factor model as the best model but the BF21 is now
much lower and of magnitude approximately equal to 40.

Table 3: Marginal Likelihood and Bayes Factors for the Real Datasets in Section 4.6

log L̂M log ĈJ I

Dataset 1-factor 2-factor log B̂F
(LM)

21 1-factor 2-factor log B̂F
(CJ)

21

1. LSAT -2494.8 -2496.2 -1.4 -2495.1 -2496.6 -1.5
2. WIRS-6 items -3456.1 -3387.1 69.0 3456.2 -3387.3 68.9
3. WIRS-5 items -2786.6 -2782.8 3.8 -2786.8 -2783.1 3.7
L̂M and ĈJ I : Laplace-Metropolis and Chib and Jeliaskov estimates of the marginal likelihood; 1-factor and 2-factor

columns: estimates of the log-marginal likelihood for the 1-factor and 2-factor models, respectively B̂F
(LM)
21 and

B̂F
(CJ)
21 : Estimated Bayes factors of 2-factor versus 1-factor model based on L̂M and ĈJ I , respectively.

5 CONCLUSION

The paper introduces a simplification of the Chib and Jeliazkov (2001) marginal likelihood
estimator for models with conditional independence. This approach drastically reduces the
computational effort required for the marginal likelihood estimate, since only a single MCMC
run is required for the computation of the posterior ordinate. For this reason, this result is
quite appealing in high dimensional models that include either random effects or latent
variables.

This strategy can be easily implemented even for models with no latent variables when
the posterior distribution can be augmented using auxiliary variables which introduce local
independence between parameters (Tanner and Wong 1987,van Dyk and Meng 2001).
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