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1 Prior mean and covariance matrix for model parameters

under the Z-PEP prior

The Z-PEP marginal prior distributions can be expressed as

πZ-PEP

ℓ (βℓ|X
∗
ℓ , δ) =

∫
πZ-PEP

ℓ (βℓ, σ
2
ℓ |X

∗
ℓ , δ) dσ2

ℓ

=

∫ {∫
fNdℓ

[
βℓ ; w β̂

∗

ℓ , δ w (X∗T

ℓ X∗
ℓ )

−1σ2
ℓ

]
fIG

(
σ2

ℓ ; aℓ +
n∗

2
, bℓ +

SS∗
ℓ

2

)
dσ2

ℓ

}
×

mN
0 (y∗|X∗

0 , δ) dy∗

=

∫
fStdℓ

[
βℓ ; 2 aℓ + n∗, w β̂

∗

ℓ , δ w (X∗T

ℓ X∗
ℓ )

−1 bℓ +
SS∗

ℓ

2

aℓ + n∗

2

]
mN

0 (y∗|X∗
0 , δ) dy∗ (1)

and

πZ-PEP

ℓ (σ2
ℓ |X

∗
ℓ , δ) =

∫
πZ-PEP

ℓ (βℓ, σ
2
ℓ |X

∗
ℓ , δ) dβℓ

=

∫ {∫
fNdℓ

[
βℓ ; w β̂

∗

ℓ , δ w (X∗T

ℓ X∗
ℓ)

−1σ2
ℓ

]
dβℓ

}

× fIG

(
σ2

ℓ ; aℓ +
n∗

2
, bℓ +

SS ∗
ℓ

2

)
mN

0 (y∗|X∗
0 , δ) dy∗

=

∫
fIG

(
σ2

ℓ ; aℓ +
n∗

2
, bℓ +

SS∗
ℓ

2

)
mN

0 (y∗|X∗
0 , δ) dy∗ . (2)

Theorem 1: Under the baseline prior setup given by equation (15) in the main paper, when (aℓ > 1, a0 >

1) the Z-PEP prior mean of βℓ is E (βℓ) = 0, and when (aℓ > 2, a0 > 1) the Z-PEP prior covariance
matrix is

V (βℓ) =

{
δ w

aℓ − 1 + n∗

2

[
bℓ +

1

2

b0

a0 − 1
tr(Λ∗

ℓΛ
∗
0
−1)

]
Idℓ

+
w2b0

a0 − 1
(X∗T

ℓ X∗
ℓ )

−1X∗T

ℓ Λ∗
0
−1X∗

ℓ

}
(X∗T

ℓ X∗
ℓ)

−1 , (3)

where tr(A) is the trace of the matrix A.
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Proof of Theorem 1. From (1), the prior mean is

E(βℓ) =

∫
βℓ πZ-PEP

ℓ (βℓ |X
∗
ℓ , δ) dβℓ

=

∫ {∫
βℓ fStdℓ

[
βℓ ; 2 aℓ + n∗, w β̂

∗

ℓ , δ w (X∗T

ℓ X∗
ℓ )

−1 bℓ +
SS∗

ℓ

2

a + n∗

2

]
dβℓ

}
mN

0 (y∗|X∗
0 , δ) dy∗

=

∫
EStdℓ

[
βℓ ; 2 aℓ + n∗, w β̂

∗

ℓ , δ w (X∗T

ℓ X∗
ℓ )

−1 bℓ +
SS∗

ℓ

2

aℓ + n∗

2

]
mN

0 (y∗|X∗
0 , δ) dy∗ ; (4)

here SS∗
ℓ is defined in Section 2.2 of the main paper and EStd [ξ(z) ; df, µ, Σ] is the expectation of a

function ξ(z) of z, where z follows a d-dimensional Student distribution with density fStd (z ; df, µ, Σ)
given by

fStd (y ; df, µ, Σ) =
Γ
(

df+d
2

)

Γ
(

df
2

) (df π)−
d
2 |Σ|−

1

2

[
1 +

1

df
(y − µ)T Σ−1(y − µ)

]− df+d

2

. (5)

For ξ(z) = z, the expectation is µ, yielding

E(βℓ) =

∫
w β̂

∗

ℓ mN
0 (y∗|X∗

0 , δ) dy∗ = w (X∗T

ℓ X∗
ℓ )

−1X∗T

ℓ

∫
y∗ mN

0 (y∗|X∗
0 , δ) dy∗

= w (X∗T

ℓ X∗
ℓ )

−1X∗T

ℓ

∫
y∗fStn∗

(
y∗ ; 2 a0,0,

b0

a0
Λ∗

0
−1

)
dy∗

= w (X∗T

ℓ X∗
ℓ )

−1X∗T

ℓ EStn∗

(
y∗ ; 2 a0,0,

b0

a0
Λ∗

0
−1

)

= w (X∗T

ℓ X∗
ℓ )

−1X∗T

ℓ 0 = 0 . (6)

Since the mean is zero, the covariance matrix is

V(βℓ) = E(βℓ βT
ℓ ) =

∫
βℓ βT

ℓ πZ-PEP

ℓ (βℓ |X
∗
ℓ , δ) dβℓ

=

∫
EStdℓ

[
βℓ βT

ℓ ; 2 aℓ + n∗, w β̂
∗

ℓ , δ w (X∗T

ℓ X∗
ℓ )

−1 bℓ +
SS∗

ℓ

2

aℓ + n∗

2

]
mN

0 (y∗|X∗
0 , δ) dy∗ . (7)

For z ∼ St(df, µ, Σ), E(zzT ) is given by

E(zzT ) = V(z) + E(z) [E(z)]T =
df

df − 2
Σ + µµT , (8)

from which

EStdℓ

[
βℓ βT

ℓ ; 2 aℓ + n∗, w β̂
∗

ℓ , δ w (X∗T

ℓ X∗
ℓ )

−1 bℓ +
SS∗

ℓ

2

aℓ + n∗

2

]
= δ w

(
bℓ +

SS∗

ℓ

2

aℓ − 1 + n∗

2

)
(X∗T

ℓ X∗
ℓ )

−1 +

w2β̂
∗

ℓ β̂
∗T

ℓ . (9)

Substitution into (7) yields
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V(βℓ) =

∫ [
δ w

(
bℓ +

SS∗

ℓ

2

aℓ − 1 + n∗

2

)
(X∗T

ℓ X∗
ℓ )

−1 + w2β̂
∗

ℓ β̂
∗T

ℓ

]
mN

0 (y∗|X∗
0 , δ) dy∗

= δ w
1

aℓ − 1 + n∗

2

[
bℓ +

1

2

∫
SS∗

ℓ mN
0 (y∗|X∗

0 , δ) dy∗

]
(X∗T

ℓ X∗
ℓ )

−1 +

w2

∫
β̂
∗

ℓ β̂
∗T

ℓ mN
0 (y∗|X∗

0 , δ) dy∗

= δ w
1

aℓ − 1 + n∗

2

[
bℓ +

1

2
EStn∗

(
y∗T

Λ∗
ℓy

∗; 2 a0,0,
b0

a0
Λ∗

0
−1

)]
(X∗T

ℓ X∗
ℓ )

−1 +

w2(X∗T

ℓ X∗
ℓ )

−1X∗T

ℓ EStn∗

(
y∗y∗T

; 2 a0,0,
b0

a0
Λ∗

0
−1

)
X∗

ℓ(X
∗T

ℓ X∗
ℓ )

−1 . (10)

Now (see, e.g., Scott, 1997, Theorem 9.18) for any symmetric matrix A and any random vector z with
mean µ and covariance matrix V(z),

E(zT Az) = tr
[
A V(z)

]
+ µT Aµ , (11)

if E(zzT ) exists. Therefore for z ∼ St(df, µ, Σ),

E(zT Az) =
df

df − 2
tr(AΣ) + µT Aµ , (12)

from which, in our case,

EStn∗

(
y∗T

Λ∗
ℓ y∗; 2 a0,0,

b0

a0
Λ∗

0
−1

)
=

b0

a0 − 1
tr(Λ∗

ℓΛ
∗
0
−1) . (13)

Moreover,

EStn∗

(
y∗y∗T

; 2 a0,0,
b0

a0
Λ∗

0
−1

)
= VStn∗

(
y∗; 2 a0,0,

b0

a0
Λ∗

0
−1

)
+ 0 =

b0

a0 − 1
Λ∗

0
−1 . (14)

Substituting (13) and (14) into (10), we obtain (3) as desired.

Theorem 2: Under the baseline prior setup given by equation (15) in the main paper, for (aℓ > 1, a0 > 1)
the Z-PEP prior mean of σ2

ℓ is

E
(
σ2

ℓ

)
=

b0

a0 − 1

1
2 tr

(
Λ∗

ℓΛ
∗
0
−1

)
+ (a0−1)bℓ

b0
n∗

2 + aℓ − 1
, (15)

and for (aℓ > 2, a0 > 2) the Z-PEP prior variance is

V
(
σ2

ℓ

)
=

[(
n∗

2
+ aℓ − 1

) (
n∗

2
+ aℓ − 2

)]−1 {
b2
ℓ +

bℓ b0 tr(Λ∗
ℓΛ

∗
0
−1)

a0 − 1
+

b2
0

[
2 tr(Λ∗

ℓΛ
∗
0
−1Λ∗

ℓΛ
∗
0
−1) + tr(Λ∗

ℓΛ
∗
0
−1)2

]

4(a0 − 1)(a0 − 2)

}
−

(
b0

a0 − 1

)2
[

1
2 tr(Λ∗

ℓΛ
∗
0
−1) + (a0−1)bℓ

b0
n∗

2 + aℓ − 1

]2

. (16)
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Proof of Theorem 2. The prior mean of the variance parameter is

E
(
σ2

ℓ

)
=

∫
σ2

ℓ πZ-PEP

ℓ (σ2
ℓ |X

∗
ℓ , δ) dσ2

ℓ

=

∫ [∫
σ2

ℓ fIG

(
σ2

ℓ ; aℓ +
n∗

2
, bℓ +

SS∗
ℓ

2

)
dσ2

ℓ

]
mN

0 (y∗|X∗
0 , δ) dy∗

=

∫
EIG

(
σ2

ℓ ; aℓ +
n∗

2
, bℓ +

SS∗
ℓ

2

)
mN

0 (y∗|X∗
0 , δ) dy∗ . (17)

Here EIG [ξ(Z); a, b] is the expectation of a function ξ(Z) of Z, where Z follows an Inverse-Gamma
distribution with parameters a and b; for ξ(Z) = Z this expectation is b

a−1 . Thus the prior mean of σ2
ℓ is

E
(
σ2

ℓ

)
=

∫
bℓ +

SS∗

ℓ

2
n∗

2 + aℓ − 1
mN

0 (y∗|X∗
0 , δ) dy∗

=

(
n∗

2
+ aℓ − 1

)−1 [
bℓ +

1

2
EStn∗

(
SS∗

ℓ ; 2 a0,0,
b0

a0
Λ∗

0
−1

)]

=

(
n∗

2
+ aℓ − 1

)−1 [
bℓ +

1

2
EStn∗

(
y∗Λ∗

ℓ y∗; 2 a0,0,
b0

a0
Λ∗

0
−1

)]
. (18)

From (13),

E
(
σ2

ℓ

)
=

(
n∗

2
+ aℓ − 1

)−1 [
bℓ +

1

2

b0

a0 − 1
tr(Λ∗

ℓΛ
∗
0
−1)

]

=
b0

a0 − 1

1
2 tr(Λ∗

ℓΛ
∗
0
−1) + (a0−1)bℓ

b0
n∗

2 + aℓ − 1
. (19)

The prior variance of σ2
ℓ can be written as

V
(
σ2

ℓ

)
= E

(
σ4

ℓ

)
−

[
E

(
σ2

ℓ

)]2

= E
(
σ4

ℓ

)
−

(
b0

a0 − 1

)2
[

1
2 tr(Λ∗

ℓΛ
∗
0
−1) + (a0−1)bℓ

b0
n∗

2 + aℓ − 1

]2

, (20)

where

E
(
σ4

ℓ

)
=

∫
σ4

ℓ πZ-PEP

ℓ (σ2
ℓ |X

∗
ℓ , δ) dσ2

ℓ

=

∫ [∫
σ4

ℓ fIG

(
σ2

ℓ ; aℓ +
n∗

2
, bℓ +

SS∗
ℓ

2

)
mN

0 (y∗|X∗
0 , δ) dσ2

ℓ

]
dy∗

=

∫
EIG

[
(σ2

ℓ )
2 ; aℓ +

n∗

2
, bℓ +

SS∗
ℓ

2

]
mN

0 (y∗|X∗
0 , δ) dy∗ . (21)

For a random variate Z that follows an Inverse-Gamma distribution with parameters a and b,

E(Z2) = V(Z) + E(Z)2 =
b2

(a − 1)2(a − 2)
+

(
b

a − 1

)2

=
b2

(a − 1)(a − 2)
(22)
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for a > 2. Hence

E
(
σ4

ℓ

)
=

∫
(
bℓ +

SS∗

ℓ

2

)2

(
n∗

2 + aℓ − 1
) (

n∗

2 + aℓ − 2
) mN

0 (y∗|X∗
0 , δ) dy∗

=

∫ (
b2
ℓ + bℓSS∗

ℓ + 1
4SS∗2

ℓ

)
(

n∗

2 + aℓ − 1
) (

n∗

2 + aℓ − 2
) mN

0 (y∗|X∗
0 , δ) dy∗

=

[(
n∗

2
+ aℓ − 1

) (
n∗

2
+ aℓ − 2

)]−1 [
b2
ℓ + bℓ

∫
SS∗

ℓ mN
0 (y∗; X∗

0 , δ) dy∗+

1

4

∫
SS∗2

ℓ mN
0 (y∗; X∗

0 , δ) dy∗

]

=

[(
n∗

2
+ aℓ − 1

) (
n∗

2
+ aℓ − 2

)]−1 {
b2
ℓ + bℓ EStn∗

(
y∗T

Λ∗
ℓ y∗; 2 a0,0,

b0

a0
Λ∗

0
−1

)
+

1

4
EStn∗

[
(y∗T

Λ∗
ℓ y∗)2; 2 a0,0,

b0

a0
Λ∗

0
−1

]}
. (23)

The expectation EStn∗

(
y∗T

Λ∗
ℓy

∗; 2 a0,0, b0
a0

Λ∗
0
−1

)
is given by (13). Moreover, if A is a symmetric matrix

and z ∼ Nd(0, Σ) then (see Scott, 1997, Theorem 9.21)

E
[
(zT Az)2

]
= 2 tr(AΣAΣ) + tr(AΣ)2 . (24)

By rewriting the multivariate Student distribution with density fStd (y ; df, µ, Σ) as a Normal-Inverse-

Gamma scale mixture, we can calculate EStn∗

[
(y∗T

Λ∗
ℓ y∗)2; 2 a0,0, b0

a0
Λ∗

0
−1

]
, as follows: if z ∼ Std(df,0, Σ)

then

EStd

[
(zT Az)2 ; df,0, Σ

]
=

∫
(zT Az)2fStd (z ; df,0, Σ) dz

=

∫
(zT Az)2

[∫
fNd

(z ; 0, Σψ) fIG(ψ ;
df

2
,
df

2
) dψ

]
dz

=

∫ [∫
(zT Az)2fNd

(z ; 0, Σψ) dz

]
fIG(ψ ;

df

2
,
df

2
) dψ (25)

=
[
2 tr(AΣAΣ) + tr(AΣ)2

] ∫
ψ2fIG(ψ ;

df

2
,
df

2
)dψ

=
[
2 tr(AΣAΣ) + tr(AΣ)2

] df2

4(
df
2 − 1

) (
df
2 − 2

) . (26)

It now follows that

EStn∗

[
(y∗T

Λ∗
ℓ y∗)2; 2 a0,0,

b0

a0
Λ∗

0
−1

]
=

b2
0

(a0 − 1)(a0 − 2)

[
2 tr(Λ∗

ℓΛ
∗
0
−1Λ∗

ℓΛ
∗
0
−1) + tr(Λ∗

ℓΛ
∗
0
−1)2

]
. (27)

By substituting (13) and (27) in (23), we obtain

E
(
σ4

ℓ

)
=

[(
n∗

2
+ aℓ − 1

) (
n∗

2
+ aℓ − 2

)]−1 {
b2
ℓ +

bℓ b0 tr(Λ∗
ℓΛ

∗
0
−1)

a0 − 1
+ (28)

b2
0

[
2 tr(Λ∗

ℓΛ
∗
0
−1Λ∗

ℓΛ
∗
0
−1) + tr(Λ∗

ℓΛ
∗
0
−1)2

]

4(a0 − 1)(a0 − 2)

}
. (29)
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Finally, the prior variance is then

V
(
σ2

ℓ

)
= E

(
σ4

ℓ

)
−

[
E

(
σ2

ℓ

)]2
(30)

=

[(
n∗

2
+ aℓ − 1

) (
n∗

2
+ aℓ − 2

)]−1 {
b2
ℓ +

bℓ b0 tr(Λ∗
ℓΛ

∗
0
−1)

a0 − 1
+

b2
0

[
2 tr(Λ∗

ℓΛ
∗
0
−1Λ∗

ℓΛ
∗
0
−1) + tr(Λ∗

ℓΛ
∗
0
−1)2

]

4(a0 − 1)(a0 − 2)

}
−

(
b0

a0 − 1

)2
[

1
2 tr(Λ∗

ℓΛ
∗
0
−1) + (a0−1)bℓ

b0
n∗

2 + aℓ − 1

]2

.

2 MCMC for sampling from the posterior

To generate MCMC samples from the posterior distributions defined by equation (14) or equation (19) in
the main paper (under the two baseline prior choices), we consider the following conditional distribution:

f(βℓ, σ
2
ℓ , y

∗|y; Xℓ, X
∗
ℓ , δ) ∝ fNdℓ

(
βℓ ; β̃

N
, Σ̃Nσ2

ℓ

)
fIG(σ2

ℓ ; ãN
ℓ , b̃N

ℓ ) ×

mN
ℓ (y|y∗; Xℓ, X

∗
ℓ , δ)mN

0 (y∗|X∗
0 , δ) . (31)

The parameters in the above Normal-Inverse-Gamma distribution are given in equations (11) and (20) in
the main paper for the baseline Jeffreys and g-priors, respectively. From the above we have that

f(σ2
ℓ |y, y∗; Xℓ, X

∗
ℓ , δ) = fIG(σ2

ℓ ; ãN
ℓ , b̃N

ℓ ), f(βℓ|σ
2
ℓ , y, y∗; Xℓ, X

∗
ℓ , δ) = fNdℓ

(
βℓ ; β̃

N
, Σ̃Nσ2

ℓ

)
and

f(y∗|y; Xℓ, X
∗
ℓ , δ) ∝

∫ ∫
f(βℓ, σ

2
ℓ , y

∗|y; Xℓ, X
∗
ℓ , δ) dβℓ dσ2

ℓ

∝

[∫ ∫
fNdℓ

(
βℓ ; β̃

N
, Σ̃Nσ2

ℓ

)
fIG(σ2

ℓ ; ãN
ℓ , b̃N

ℓ ) dβℓ dσ2
ℓ

]
×

mN
ℓ (y|y∗; Xℓ, X

∗
ℓ , δ)mN

0 (y∗|X∗
0 , δ)

∝ mN
ℓ (y|y∗; Xℓ, X

∗
ℓ , δ)mN

0 (y∗|X∗
0 , δ)

∝ mN
ℓ (y∗|y; Xℓ, X

∗
ℓ , δ)

mN
0 (y∗|X∗

0 , δ)

mN
ℓ (y∗|X∗

ℓ , δ)
, (32)

with

mN
ℓ (y∗|y, Xℓ, X

∗
ℓ , δ) =

∫ ∫
f(y∗|βℓ, σ

2
ℓ , Mℓ ; X∗

ℓ , δ) f(βℓ , σ2
ℓ |y, Mℓ ; Xℓ) dβℓ dσ2

ℓ . (33)

For the baseline g-prior, (33) becomes

mN
ℓ (y∗|y, Xℓ, X

∗
ℓ , δ) =

∫ ∫
fNn∗

(y∗ ; X∗
ℓβℓ , δ σ2

ℓ In∗) fNdℓ

[
βℓ ;

g

g + 1
β̂ℓ ,

g

g + 1
(XT

ℓ Xℓ)
−1σ2

ℓ

]
×

fIG

(
σ2

ℓ ; aℓ +
n

2
, bℓ +

SSℓ

2

)
dβℓ dσ2

ℓ

=fStn∗

{
y∗ ; 2 aℓ + n,

g

g + 1
X∗

ℓ β̂ℓ ,
2bℓ + SSℓ

2 aℓ + n

[
δ In∗ +

g

g + 1
X∗

ℓ (X
T
ℓ Xℓ)

−1X∗T

ℓ

]}
, (34)

where SSℓ = yT
[
In − g

g+1Xℓ (XT
ℓ Xℓ)

−1XT
ℓ

]
y; for the Jeffreys baseline prior the expression is the same

with g
g+1 = 1, aℓ = −dℓ

2 and bℓ = 0. Therefore for the Jeffreys baseline prior, equation (33) becomes

mN
ℓ (y∗|y, Xℓ, X

∗
ℓ , δ) = fStn∗

{
y∗ ; n − dℓ, X∗

ℓ β̂ℓ ,
SSℓ

n − dℓ

[
δ In∗ + X∗

ℓ (X
T
ℓ Xℓ)

−1X∗T

ℓ

]}
, (35)
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with the posterior sum of squares now given by SSℓ = yT
[
In − Xℓ (XT

ℓ Xℓ)
−1XT

ℓ

]
y.

Using the above expressions, we can specify the following MCMC scheme, in which the Inverse-Gamma
distribution IG(a, b) was previously defined in Section 2.1.1 of the main paper:

(1) Generate y∗ from (32);

(2) Generate σ2
ℓ from IG(ãN

ℓ , b̃N
ℓ ); and

(3) Generate βℓ from Ndℓ

(
β̃

N
, Σ̃Nσ2

ℓ

)
.

In Step 1, we can generate the imaginary data y∗ by using a Metropolis-Hastings algorithm with
proposal q(y∗′) = mN

ℓ (y∗′ |y, Xℓ, X
∗
ℓ , δ) given in (34) or (35) (for the baseline g-prior or Jeffreys prior

choices, respectively) and acceptance probability

α = min

[
1,

mN
0 (y∗′ |X∗

0 , δ)mN
ℓ (y∗|X∗

ℓ , δ)

mN
ℓ (y∗′ |X∗

ℓ , δ)mN
0 (y∗|X∗

0 , δ)

]
, (36)

where mN
ℓ (y∗|X∗

ℓ , δ) is given in equations (9) and (16) of the main paper for the baseline Jeffreys and
g-prior choices, respectively.

3 Marginal-likelihood computation

In the main paper we noted that four different Monte-Carlo estimates of the marginal likelihood of any
model Mℓ ∈ M are possible, in settings in which the marginal likelihood is not analytically tractable.
Here we present details on the two least successful of these approaches, denoted by schemes (3) and (4).

(3) Generate y∗(t) (t = 1, . . . , T ) from mN
0 (y∗|X∗

0 , δ) and estimate the marginal likelihood by

m̂PEP
ℓ (y|Xℓ , X∗

ℓ , δ) =
1

T
mN

ℓ (y|Xℓ, X
∗
ℓ )

T∑

t=1

mN
ℓ (y∗(t)|y, Xℓ, X

∗
ℓ , δ)

mN
ℓ (y∗(t)|X∗

ℓ , δ)
. (37)

This approach was also proposed by Perez and Berger (2002).

(4) Generate y∗(t) (t = 1, . . . , T ) from mN
0 (y∗|y, X0, X

∗
0 , δ) and estimate the marginal likelihood by

m̂PEP
ℓ (y|Xℓ , X∗

ℓ , δ) = mN
0 (y|X0, X

∗
0)

[
1

T

T∑

t=1

mN
ℓ (y|y∗(t), Xℓ, X

∗
ℓ , δ)

mN
0 (y|y∗(t), X0, X∗

0 , δ)

]
. (38)

The third and fourth Monte-Carlo schemes are straightforward, since we only need to obtain a single
sample of y∗ from the prior and the posterior predictive distribution from model M0, respectively; then we
estimate the marginal likelihood of every model using those simulated values. Nevertheless we expect those
estimates for the marginal likelihood of model Mℓ to have large Monte-Carlo error, since the imaginary
data are generated from importance functions that do not make full use of the data y (in the third Monte-
Carlo scheme) or the stochastic structure of model Mℓ (in the third and fourth schemes). See Section 5.1.1
of the main paper for numerical comparisons between these two schemes and the other two approaches.
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4 Implementation of the EIBF

The results in this paper based on the Expected Intrinsic Bayes Factor (EIBF) were obtained using the
following procedure:

(1) Generate S random splits.

(2) For every random split s = 1, 2, . . . , S we denote by y[s] and X[s] the data used for the evaluation
of the posterior distribution and by y[\s] and X[\s] the remaining data used for the calculation of
the Bayes factor.

(3) For every split we calculate the marginal likelihood of model Mℓ by

ψ(y|Mℓ, s) =

∫
f(y[\s]|βℓ , σ2

ℓ , Mℓ; Xℓ[\s]) f(βℓ , σ2
ℓ |y[s], Mℓ; Xℓ[s]) dβℓ dσ2

ℓ , (39)

where Xℓ[s] and Xℓ[\s] are the submatrices of X[s] and X[\s] corresponding to model Mℓ, respectively.

(4) We then calculate the Bayes factor of model Mℓ versus the reference model M0 under the split s by

IBF
[s]
ℓ 0 =

ψ(y|Mℓ, s)

ψ(y|M0, s)
. (40)

(5) We calculate the EIBF by computing the arithmetic mean of IBF
[s]
ℓ 0 over all splits s = 1, . . . , S:

EIBFℓ 0 =
1

S

S∑

s=1

IBF
[s]
ℓ 0 . (41)

(6) All weights based on the EIBF are calculated by

WEIBF
ℓ =

EIBFℓ 0∑
Mℓ∈M

EIBFℓ 0
. (42)

For the IBF approach we generate one random split and we calculate the Bayes factor as in step (4).

5 Model-search algorithm

For any number of variables p under consideration in our model-uncertainty problem, the number of
models for which we need to evaluate the marginal likelihood is 2p, which is enormous even when p is
only moderately large. As a result, full enumeration (across all models) of the marginal likelihoods and
the corresponding posterior model probabilities needed in Bayesian variable-selection problems becomes
infeasible. For this reason, in such problems, advanced MCMC methods are typically used as model-
search algorithms to identify the most important models and variables. Estimation of posterior model
odds can then be performed efficiently within reduced model spaces in which unimportant variables have
been excluded, according to the model search algorithm; see Fouskakis, Ntzoufras and Draper (2009) for
an example of this approach in practice.

When the marginal likelihood is given in closed form, we may use the MCMC model composition
(MC3: Madigan and York, 1995) method, which is a simple Metropolis algorithm that can be employed
to explore large model spaces. The MC3 algorithm can be summarized as follows:

(1) For the current model m ∈ M, propose a move to model m′ ∈ M with probability j(m, m′).
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(2) Calculate and store the marginal likelihood f(y|m′) of model m′.

(3) Set m = m′ (i.e., accept the proposed model m′) with probability α = min
[
1,

f(m′|y)
f(m|y)

j(m′,m)
j(m,m′)

]
.

(4) Store m as the current model.

(5) Repeat steps (1)–(4) until a target number of models is visited or a pre-specified CPU budget is
exhausted.

Posterior model probabilities can be estimated in two ways: by considering the marginal likelihoods of
the visited and proposed models stored in step (2), or by a frequency tabulation of the visited models in
the output of the MCMC sampler.

When the marginal likelihood is not analytically tractable under the PEP prior, it can be obtained
by one of the Monte-Carlo schemes described in Section 3 of the main paper and in Section 3 of this
Appendix. We can exploit the fact that, in order to estimate the marginal likelihood of any model
Mℓ ∈ M, in the third and fourth Monte-Carlo schemes we need only to sample y∗ from mN

0 (y∗|X∗
0 , δ)

and mN
0 (y∗|y; X0, X

∗
0, δ), respectively.

Here (when marginal likelihoods are not available analytically) we propose to modify the standard
MC3 method by sampling a binary vector γ indicating the variables included in the model (see, e.g.,
George and McCulloch, 1993), using a Metropolis-within-Gibbs approach as follows.

(1) Generate y∗(t) (t = 1, . . . , T ) from mN
0 (y∗|X∗

0 , δ) (this is the third Monte-Carlo marginal likelihood
scheme) or mN

0 (y∗|y; X0, X
∗
0 , δ) (this is the fourth scheme).

(2) For the current model Mℓ , corresponding to the set of variable-inclusion indicators γℓ , repeat the
following:

For j = 1, . . . , p (selected in random order), repeat the following steps:

(a) Propose γ′
j = 1 − γj with probability one.

(b) Keep the other covariates the same: γ′
l = γl for all l 6= j.

(c) Identify Mℓ ′ corresponding to the vector γℓ ′ with elements γ′
k , k = 1, . . . , p.

(d) If Mℓ ′ is not previously visited, calculate and store its estimated marginal likelihood
f(y|Mℓ ′) = m̂PEP

ℓ ′ (y|Xℓ ′ , X∗
ℓ ′ , δ) given by equation (37) or (38) in this Appendix for the

third or fourth schemes, respectively.

(e) Set Mℓ = Mℓ ′ (i.e., accept the proposed model Mℓ ′) with probability

α = min

[
1,

f(Mℓ ′ |y)

f(Mℓ|y)

]
= min

[
1,

m̂PEP
ℓ ′ (y|Xℓ ′ , X∗

ℓ ′ , δ)

m̂PEP
ℓ (y|Xℓ , X∗

ℓ , δ)

f(Mℓ ′)

f(Mℓ)

]
, (43)

where f(Mℓ) is the prior probability for model ℓ.

(3) Store Mℓ as the current model.

(4) Repeat steps (2)–(3) until a target number of models is visited or a pre-specified CPU budget is
exhausted.

For the first and second Monte-Carlo marginal-likelihood estimates, we start the above MC3 algorithm
from step (2) and in step (2)(d) we generate y∗(t) (t = 1, . . . , T ) from mN

ℓ ′(y∗|y; Xℓ, X
∗
ℓ , δ), which now

depends on the proposed model, and estimate the marginal likelihood of that model using expressions
(25) and (26) from the main paper, respectively.
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6 Ozone data set details

Here we present a brief description of the data and the transformations used in the analyses of Section
5.2 of the main paper, based on the original ozone data.

• The response variable ozone (daily maximum of 24 hourly averages: midnight–1am, 1–2am, ...,
11pm–midnight) had substantial positive skew; within the Box-Cox power transformation family
the optimal transformation was ozone0.17. This is not far from the log transform, which is easier
to interpret, so we standardized log(ozone) (subtracting off its mean and dividing by its standard
deviation: all of the standardizations here and below are to stabilize the numerical work and
reduce the correlations between main effects and their squares); the standardized variable is called
s_log_ozone.

• Month, day and weekday predictors: Weekday had no effect on ozone and was omitted. We
combined month and day to create a variable called day_of_year that ran through the consecutive
integers 1–366 from 1 Jan to 31 Dec, and we then standardized this variable; the standardized
variable is called s_day_of_year . We then created a variable called s_day_of_year_2 by squaring
s_day_of_year.

• Temperature predictors: Temperature at Sandburg and temperature at El Monte were very
highly correlated, and the El Monte temperature variable had 139 missing values (versus only 2
missing values for the Sandburg temperature), so we omitted the El Monte temperature variable.

• The remaining 8 covariates were pressure_500, humidity, temp_sandburg, inversion_height,
wind, pressure_gradient, inversion_temp, and visibility; these were standardized as above
(the variable names of the resulting standardized versions are the same as those of the original
variables preceded by s_). We also calculated squared versions of all standardized variables with a
naming convention similar to that above (for example, the squared standardized wind variable was
called s_wind_2).

• Omitting all rows of data for which one or more of the predictors were missing, our regression
modeling was based on 330 days of data.

• Local-regression (loess) descriptive analyses of the relationships between the outcome s_log_ozone
and each of our 9 predictor variables revealed cubic relationships between the outcome and the
predictors temp_sandburg and inversion_temp, so we raised each of s_temp_sandburg and
s_inversion_temp to the third power and included these two cubic terms among the total set
of predictor variables.

• With 9 main effects there are 9·8
2 = 36 pairwise interactions among the main effects; we also created

these 36 variables by multiplying the standardized versions of the predictors in a pairwise manner.
The resulting variables had names of the form humidityXwind.

• Our total set of predictor variables therefore had 9 main effects, 9 quadratic terms, 2 cubic terms,
and 36 two-way interactions, for a total of 56 predictors.

• The final data set contains 330 rows and 57 columns; the first column is s_log_ozone, and the
other 56 columns are the predictors.

Additional details on the ozone data analysis are available in a supplemental document provided on
request; our version of the data set is also available from us.
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7 Reduced model space in the ozone example

Index Name

1 Day of year
2 Wind speed at LAX
5 Temperature at Sandburg
7 PG from LAX to Daggett
8 Inversion base temperature at LAX
9 Visibility at LAX

10 (Day of year)2

12 (500 mb pressure height at VAFB)2

13 (Humidity at LAX)2

15 (Inversion base height at LAX)2

16 (PG from LAX to Daggett)2

18 (Visibility at LAX)2

20 (Inversion base temperature at LAX)3

23 (Day of year) × (Humidity at LAX)
26 (Day of year) × (PG from LAX to Daggett)
30 (Wind speed at LAX) × (Humidity at LAX)
36 (500 mb pressure height at VAFB) × (Humidity at LAX)
39 (500 mb pressure height at VAFB) × (PG from LAX to Daggett)
42 (Humidity at LAX) × (Temperature at Sandburg)
43 (Humidity at LAX) × (Inversion base height at LAX)
48 (Temperature at Sandburg) × (PG from LAX to Daggett)
51 (Inversion base height at LAX) × (PG from LAX to Daggett)

Notes: (1) Abbreviations used in this table: LAX = Los Angeles International Airport, mb = millibar, VAFB =
Vandenberg Air Force Base, PG = pressure gradient (mm Hg). (2) Wind speed is measured in mph, temperature
and inversion base temperature in ◦F, visibility in miles, inversion base height in feet, humidity in % and pressure
height in m. (3) As mentioned in the text, all variables were standardized (mean 0, standard deviation 1) before
exploring quadratic/cubic terms and interactions, to minimize collinearity.
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