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Summary: In the context of the expected-posterior prior (EPP) approach to Bayesian variable
selection in linear models, we combine ideas from power-prior and unit-information-prior method-
ologies to simultaneously (a) produce a minimally-informative prior and (b) diminish the effect of
training samples. The result is that in practice our power-expected-posterior (PEP) methodology
is sufficiently insensitive to the size n∗ of the training sample, due to PEP’s unit-information con-
struction, that one may take n∗ equal to the full-data sample size n and dispense with training
samples altogether. This promotes stability of the resulting Bayes factors, removes the arbitrari-
ness arising from individual training-sample selections, and greatly increases computational speed,
allowing many more models to be compared within a fixed CPU budget. In this paper we focus on
Gaussian linear models and develop our PEP method under two different baseline prior choices: the
independence Jeffreys (or reference) prior, yielding the J-PEP posterior, and the Zellner g-prior,
leading to Z-PEP. The first is the usual choice in the literature related to our paper, since it results
in an objective model-selection technique, while the second simplifies and accelerates computations
due to its conjugate structure (this also provides significant computational acceleration with the
Jeffreys prior, because the J-PEP posterior is a special case of the Z-PEP posterior). We find
that, under the reference baseline prior, the asymptotics of PEP Bayes factors are equivalent to
those of Schwartz’s BIC criterion, ensuring consistency of the PEP approach to model selection.
We compare the performance of our method, in simulation studies and a real example involving
prediction of air-pollutant concentrations from meteorological covariates, with that of a variety of
previously-defined variants on Bayes factors for objective variable selection. Our PEP prior, due
to its unit-information structure, leads to a variable-selection procedure that (1) is systematically
more parsimonious than the basic EPP with minimal training sample, while sacrificing no desir-
able performance characteristics to achieve this parsimony; (2) is robust to the size of the training
sample, thus enjoying the advantages described above arising from the avoidance of training sam-
ples altogether; and (3) identifies maximum-a-posteriori models that achieve good out-of-sample
predictive performance. Moreover, PEP priors are diffuse even when n is not much larger than the
number of covariates p, a setting in which EPPs can be far more informative than intended.
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1 Introduction

A leading approach to Bayesian variable selection in regression models is based on posterior model
probabilities and the corresponding posterior model odds, which are functions of Bayes factors.
In the case of Gaussian regression models, on which we focus in this paper, an active area of
research has emerged from attempts to use improper prior distributions in this approach; influential
contributions include a variety of Bayes-factor variants (posterior, fractional and intrinsic: see, e.g.,
Aitkin (1991), O’Hagan (1995), and Berger and Pericchi (1996a, 1996b), respectively).

An important part of this work is focused on objective model selection methods (Casella and
Moreno (2006); Moreno and Girón (2008); Casella, Girón, Mart́ınez and Moreno (2009)), hav-
ing their source in the intrinsic priors originally introduced by Berger and Pericchi (1996b); these
methods attempt to provide an approximate proper Bayesian interpretation for intrinsic Bayes
factors (IBFs). Intrinsic priors can be considered as special cases of the expected-posterior prior
(EPP) distributions of Pérez and Berger (2002), which have an appealing interpretation based on
imaginary training data coming from prior predictive distributions. EPP distributions can accom-
modate improper baseline priors as a starting point, and the marginal likelihoods for all models are
calculated up to the same normalizing constant; this overcomes the problem of indeterminacy of
the Bayes factors. However, in regression problems, the approach is based on one or more training
samples chosen from the data, and this raises three new questions: how large should such training
samples be, how should they be chosen, and how much do they influence the resulting posterior
distributions?

In this paper we develop a minimally-informative prior and simultaneously diminish the effect
of training samples on the EPP approach, by combining ideas from the power-prior method of
Ibrahim and Chen (2000) and the unit-information-prior approach of Kass and Wasserman (1995):
we raise the likelihood involved in the EPP distribution to the power 1

n
(where n denotes the

sample size), to produce a prior information content equivalent to one data point. In this manner
the effect of the imaginary/training sample is small with even modest n. Moreover, as will become
clear in Section 5, in practice our power-expected-posterior (PEP) prior methodology, due to its
low-information structure, is sufficiently insensitive to the size n∗ of the training sample that one
may take n∗ = n and dispense with training samples altogether; this both removes the instability
arising from the random choice of training samples and greatly reduces computation time.

As will be seen, PEP priors have an additional advantage over standard EPPs in settings, which
arise with some frequency in disciplines such as bioinformatics/genomics (e.g., Council (2005))
and econometrics (e.g., Johnstone and Titterington (2009)), in which n is not much larger than
the number of covariates p: standard EPPs can be far more informative than intended in such
situations, but the unit-information character of PEP priors ensures that this problem does not
arise with the PEP approach. (As interesting as settings with n ≤ p (and especially n << p) are,
we wish to emphasize at the outset that our methodology is intended only for situations in which
n > p.)

The PEP prior approach can be implemented under any baseline prior choice, proper or im-
proper. In this paper, results are presented for two different prior baseline choices: the Zellner
g-prior and the independence Jeffreys prior. The conjugacy structure of the first (a) greatly in-
creases calculation speed and (b) permits computation of the first two moments (see Section 1 of the
web Appendix) of the resulting PEP prior, which offers flexibility in situations in which non-diffuse
parametric prior information is available. When (on the other hand) little information, external
to the present data set, about the parameters in the competing models is available, the PEP prior
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with the independence Jeffreys (or reference) baseline prior can be viewed as an objective model-
selection technique, and the fact that the PEP posterior with the Jeffreys baseline is a special case
of the posterior with the g-prior as baseline provides significant computational acceleration using
the Jeffreys baseline.

With either choice of baseline prior, simple but efficient Monte-Carlo schemes for the estimation
of the marginal likelihoods can be constructed in a straightforward manner. We find that the
corresponding Bayes factors, under the reference baseline prior, are asymptotically equivalent to
those of the BIC criterion (Schwarz, 1978); therefore the resulting PEP objective Bayesian variable-
selection procedure is consistent.

The plan of the paper is as follows. In the next two sub-sections, to fix notation, we provide some
preliminary details on the EPP approach, and we highlight difficulties that arise when implementing
it in variable-selection problems. Our PEP prior methodology is described in detail in Section 2,
and the resulting prior and posterior distributions are presented under the two different baseline
prior choices mentioned above. In Section 3 we provide Monte-Carlo estimates of the marginal
likelihood for our approach. Section 4 explores the limiting behavior of the resulting Bayes factors,
under the reference baseline prior. In Section 5 we present illustrations of our method, under
both baseline prior choices, in a simulation experiment and in a real-data example involving the
prediction of atmospheric ozone levels from meteorological covariates. Finally, Section 6 concludes
the paper with a brief discussion and some ideas for further research.

1.1 Expected-posterior priors

Pérez and Berger (2002) developed priors for use in model comparison, through utilization of
the device of “imaginary training samples” (Good (2004); Spiegelhalter and Smith (1988); Iwaki
(1997)). They defined the expected-posterior prior (EPP) as the posterior distribution of a pa-
rameter vector for the model under consideration, averaged over all possible imaginary samples y∗

coming from a “suitable” predictive distribution m∗(y∗). Hence the EPP for the parameters of any
model Mℓ ∈ M, with M denoting the model space, is

πE
ℓ (θℓ) =

∫
πN

ℓ (θℓ|y
∗) m∗(y∗) dy∗ , (1)

where πN
ℓ (θℓ|y

∗) is the posterior of θℓ for model Mℓ using a baseline prior πN
ℓ (θℓ) and data y∗.

A question that naturally arises when using EPPs is which predictive distribution m∗ to employ
for the imaginary data y∗ in (1); Pérez and Berger (2002) discussed several choices for m∗. An
attractive option, leading to the so-called base-model approach, arises from selecting a “reference” or
“base” model M0 for the training sample and defining m∗(y∗) = mN

0 (y∗) ≡ f(y∗|M0) to be the prior
predictive distribution, evaluated at y∗, for the reference model M0 under the baseline prior πN

0 (θ0).
Then, for the reference model (i.e., when Mℓ = M0), (1) reduces to πE

0 (θ0) = πN
0 (θ0). Intuitively,

the reference model should be at least as simple as the other competing models, and therefore a
reasonable choice is to take M0 to be a common sub-model of all Mℓ ∈ M. This interpretation is
close to the skeptical-prior approach described by Spiegelhalter, Abrams and Myles (2004, Section
5.5.2), in which a tendency toward the null hypothesis can be a-priori supported by centering the
prior around values assumed by this hypothesis when no other information is available. In the
variable-selection problem that we consider in this paper, the constant model (with no predictors)
is clearly a good reference model that is nested in all the models under consideration. This selection
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makes calculations simpler, and additionally makes the EPP approach essentially equivalent to the
arithmetic intrinsic Bayes factor approach of Berger and Pericchi (1996a).

One of the advantages of using EPPs is that impropriety of baseline priors causes no indetermi-
nacy. There is no problem with the use of an improper baseline prior πN

ℓ (θℓ) in (1); the arbitrary
constants cancel out in the calculation of any Bayes factor. Impropriety in m∗ also does not cause
indeterminacy, because m∗ is common to the EPPs for all models. When a proper baseline prior
is used, the EPP and the corresponding Bayes factors will be relatively insensitive to large values
of the prior variances of the components of θℓ.

1.2 EPPs for variable selection in Gaussian linear models

In what follows, we examine variable-selection problems in Gaussian regression models. We consider
two models Mℓ (for ℓ = 0, 1) with parameters θℓ = (βℓ , σ2

ℓ ) and likelihood specified by

(Y |Xℓ,βℓ, σ
2
ℓ ,Mℓ) ∼ Nn(Xℓ βℓ , σ2

ℓ In) , (2)

where Y = (Y1, . . . , Yn) is a vector containing the (real-valued) responses for all subjects, Xℓ is an
n × dℓ design matrix containing the values of the explanatory variables in its columns, In is the
n×n identity matrix, βℓ is a vector of length dℓ summarizing the effects of the covariates in model
Mℓ on the response Y and σ2

ℓ is the error variance for model Mℓ. Variable selection based on EPP
was originally presented by Pérez (1998); additional computational details have recently appeared
in Fouskakis and Ntzoufras (2012).

Suppose we have an imaginary/training data set y∗, of size n∗, and design matrix X∗ of size
n∗× (p+1) , where p denotes the total number of available covariates. Then the EPP distribution,
given by (1), will depend on X∗ but not on y∗, since the latter is integrated out. The selection of a
minimal training sample has been proposed, to make the information content of the prior as small
as possible, and this is an appealing idea. However, even the definition of minimal turns out to be
open to question, since it is problem-specific (which models are we comparing?) and data-specific
(how many variables are we considering?). For example, if we define “minimal” in terms of the
largest model in every pairwise comparison (as in, e.g., Casella et al. (2009) and Moreno and Girón
(2008)), then the training sample specifying the prior will change in every comparison, making the
overall variable-selection procedure incoherent. Another idea is to let the dimension of the full
model specify the minimal training sample for all model comparisons; this choice makes inference
within the current data set coherent, but what happens if some additional predictor variables are
included later in the study? In such cases, the size of the training sample and hence the prior must
be changed, and the overall inference is again incoherent. Moreover, when n is not much larger than
p, working with a minimal training sample can result in a prior that is far more influential than
intended. Additionally, if the data derive from a highly structured situation, such as a complete
randomized-blocks experiment, most choices of a small part of the data to act as a training sample
would be untypical.

Even if the minimal-training-sample idea is accepted, the problem of choosing such a subset of
the full data set still remains. A natural solution involves computing the arithmetic mean (or some
other summary of distributional center) of the Bayes factors over all possible training samples,
but this approach can be computationally infeasible, especially when n is much larger than p; for
example, with (n, p) = (100, 50) and (500, 100) there are about 1029 and 10107 possible training
samples, respectively, over which to average. An obvious choice at this point is to take a random
sample from the set of all possible minimal training samples, but this adds an extraneous layer of
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Monte-Carlo noise to the model-comparison process. These difficulties have been well-documented
in the literature, but the quest for a fully satisfactory solution is still on-going; for example, Berger
and Pericchi (2004) note that they “were unable to define any type of ‘optimal’ training sample.”

An approach to choosing covariate values for the training sample has been proposed by re-
searchers working with intrinsic priors (Casella and Moreno (2006); Girón, Mart́ınez, Moreno and
Torres (2006); Moreno and Girón (2008); Casella et al. (2009)), since the same problem arises there
too. They consider all pairwise model comparisons, either between the full model and each nested
model, or between every model configuration and the null model, or between two nested models.
They used training samples of size defined by the dimension of the full model in the first case, or
by the dimension of the largest model in every pairwise comparison in the second and third cases.
In all three settings, they proved that the intrinsic prior of the parameters of the largest model in
each pairwise comparison, denoted here by Mk, depends on the imaginary covariate values only
through the expression W−1

k = (X∗T

k X∗
k)

−1, where X∗
k is the imaginary design matrix of dimension

(dk + 1) × dk for a minimal training sample of size (dk + 1). Then, driven by the idea of the
arithmetic intrinsic Bayes factor, they avoid the dependence on the training sample by replacing
W−1

k with its average over all possible training samples of minimal size. This average can be proved

to be equal to n
dk+1

(
XT

k Xk

)−1
, where Xk is the design matrix of the largest model in each pairwise

comparison, and therefore no subsampling from the Xk matrix is needed.
Although this approach seems intuitively sensible and dispenses with the extraction of the

submatrices from Xk, it is unclear if the procedure retains its intrinsic interpretation, i.e., whether
it is equivalent to the arithmetic intrinsic Bayes factor. Furthermore, and more seriously, the
resulting prior can be influential when n is not much larger than p, in contrast to the prior we
propose here, which has a unit-information interpretation. Finally, all three of these approaches
have coherence problems similar to those detailed in the discussion in the second paragraph of this
subsection.

2 Power-expected-posterior (PEP) priors

In this paper, starting with the EPP methodology, we combine ideas from the power-prior approach
of Ibrahim and Chen (2000) and the unit-information-prior approach of Kass and Wasserman
(1995). As a first step, the likelihoods involved in the EPP distribution are raised to the power 1

δ

and density-normalized. Then we set the power parameter δ equal to n∗, to represent information
equal to one data point; in this way the prior corresponds to a sample of size one with the same
sufficient statistics as the observed data. Regarding the size of the training sample, n∗, this could
be any integer from (p + 2) (the minimal training sample size) to n. As will become clear below,
we have found that significant advantages (and no disadvantages) arise from the choice n∗ = n,
from which X∗ = X. In this way we completely avoid the selection of a training sample and its
effects on the posterior model comparison, while still holding the prior information content at one
data point. Sensitivity analysis for different choices of n∗ is performed as part of the first set of
experimental results below (see Section 5.1).

For any Mℓ ∈ M, we denote by πN
ℓ (βℓ, σ

2
ℓ |X

∗
ℓ) the baseline prior for model parameters βℓ and

σ2
ℓ . Then the power-expected-posterior (PEP) prior πPEP

ℓ (βℓ, σ
2
ℓ |X

∗
ℓ , δ) takes the following form:

πPEP
ℓ (βℓ, σ

2
ℓ |X

∗
ℓ , δ) = πN

ℓ (βℓ, σ
2
ℓ |X

∗
ℓ)

∫
mN

0 (y∗|X∗
0 , δ)

mN
ℓ (y∗|X∗

ℓ , δ)
f(y∗|βℓ , σ2

ℓ ,Mℓ ; X∗
ℓ , δ) dy∗ , (3)
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where f(y∗|βℓ , σ2
ℓ ,Mℓ ; X∗

ℓ , δ) ∝ f(y∗|βℓ , σ2
ℓ ,Mℓ ; X∗

ℓ)
1

δ is the EPP likelihood raised to the power
of 1

δ
and density-normalized, i.e.,

f(y∗|βℓ , σ2
ℓ ,Mℓ ; X∗

ℓ , δ) =
f(y∗|βℓ, σ

2
ℓ ,Mℓ ; X∗

ℓ)
1

δ

∫
f(y∗|βℓ, σ

2
ℓ ,Mℓ ; X∗

ℓ)
1

δ dy∗
=

fNn∗
(y∗ ; X∗

ℓβℓ , σ2
ℓ In∗)

1

δ

∫
fNn∗

(y∗ ; X∗
ℓβℓ , σ2

ℓ In∗)
1

δ dy∗

= fNn∗
(y∗ ; X∗

ℓβℓ , δ σ2
ℓ In∗) ; (4)

here fNd
(y ; µ,Σ) is the density of the d-dimensional Normal distribution with mean µ and covari-

ance matrix Σ, evaluated at y.
The distribution mN

ℓ (y∗|X∗
ℓ , δ) appearing in (3) is the prior predictive distribution (or the

marginal likelihood), evaluated at y∗, of model Mℓ with the power likelihood defined in (4) under
the baseline prior πN

ℓ (βℓ, σ
2
ℓ |X

∗
ℓ), i.e.,

mN
ℓ (y∗|X∗

ℓ , δ) =

∫ ∫
fNn∗

(y∗ ; X∗
ℓβℓ , δ σ2

ℓ In∗) πN
ℓ (βℓ , σ2

ℓ |X
∗
ℓ) dβℓ dσ2

ℓ . (5)

Under the PEP prior distribution (3), the posterior distribution of the model parameters (βℓ , σ2
ℓ )

is

πPEP
ℓ (βℓ, σ

2
ℓ |y; Xℓ, X

∗
ℓ , δ) ∝

∫
πN

ℓ (βℓ, σ
2
ℓ |y,y∗; Xℓ, X

∗
ℓ , δ) ×

mN
ℓ (y|y∗; Xℓ, X

∗
ℓ , δ) mN

0 (y∗|X∗
0 , δ) dy∗, (6)

where πN
ℓ (βℓ, σ

2
ℓ |y,y∗; Xℓ, X

∗
ℓ , δ) and mN

ℓ (y|y∗; Xℓ, X
∗
ℓ , δ) are the posterior distribution of (βℓ, σ

2
ℓ )

and the marginal likelihood of model Mℓ, respectively, using data y and design matrix Xℓ under
prior πN

ℓ (βℓ , σ2
ℓ |y

∗; X∗
ℓ , δ) — i.e., the posterior of (βℓ , σ2

ℓ ) with power Normal likelihood (4) and
baseline prior πN

ℓ (βℓ, σ
2
ℓ |X

∗
ℓ).

In what follows we present results for the PEP prior using two specific baseline prior choices:
the independence Jeffreys prior (improper) and the g-prior (proper). The first is the usual choice
among researchers developing objective variable-selection methods, but the posterior results using
this first baseline-prior choice can also be obtained as a limiting case of the results using the second
baseline prior (see Section 2.3); usage of this second approach can lead to significant computational
acceleration with the Jeffreys baseline prior.

2.1 PEP-prior methodology with the Jeffreys baseline prior: J-PEP

Here we use the independence Jeffreys prior (or reference prior) as the baseline prior distribution.
Hence for Mℓ ∈ M we have

πN
ℓ (βℓ , σ2 |X∗

ℓ) =
cℓ

σ2
ℓ

, (7)

where cℓ is an unknown normalizing constant; we refer to the resulting PEP prior as J-PEP.

2.1.1 Prior setup

Following (3) for the baseline prior (7) and the power likelihood specified in (4), the PEP prior, for
any model Mℓ , now becomes

πJ-PEP

ℓ (βℓ, σ
2
ℓ |X

∗
ℓ , δ) =

∫
fNdℓ

[
βℓ ; β̂

∗

ℓ , δ (X∗T

ℓ X∗
ℓ)

−1σ2
ℓ

]
×

fIG

(
σ2

ℓ ;
n∗ − dℓ

2
,
RSS∗

ℓ

2δ

)
mN

0 (y∗|X∗
0 , δ) dy∗ , (8)
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where fIG (y ; a, b) is the density of the Inverse-Gamma distribution with parameters a and b and

mean b
a−1

, evaluated at y. Here β̂
∗

ℓ = (X∗T

ℓ X∗
ℓ)

−1X∗T

ℓ y∗ is the MLE with outcome vector y∗ and

design matrix X∗
ℓ , and RSS∗

ℓ = y∗T
[
In∗ − X∗

ℓ(Xℓ
∗T X∗

ℓ)
−1Xℓ

∗T
]
y∗ is the residual sum of squares

using (y∗, X∗
ℓ) as data. The prior predictive distribution of any model Mℓ with power likelihood

defined in (4) under the baseline prior (7) is given by

mN
ℓ (y∗ |X∗

ℓ , δ) = cℓ π
1

2
(dℓ−n∗) |X∗T

ℓ X∗
ℓ |

− 1

2 Γ

(
n∗ − dℓ

2

)
RSS∗

−

(
n∗−dℓ

2

)

ℓ . (9)

2.1.2 Posterior distribution

For the PEP prior (8), the posterior distribution of the model parameters (βℓ , σ2
ℓ ) is given by (6)

with f(βℓ, σ
2
ℓ |y,y∗,Mℓ ; Xℓ, X

∗
ℓ , δ) and mN

ℓ (y|y∗; Xℓ, X
∗
ℓ , δ) as the posterior distribution of (βℓ, σ

2
ℓ )

and the marginal likelihood of model Mℓ, respectively, using data y, design matrix Xℓ, and the
Normal-Inverse-Gamma distribution appearing in (8) as prior. Hence

πN
ℓ (βℓ|σ

2
ℓ ,y,y∗; Xℓ, X

∗
ℓ , δ) = fNdℓ

(
βℓ ; β̃

N
, Σ̃Nσ2

ℓ

)
and

πN
ℓ (σ2

ℓ |y,y∗; Xℓ, X
∗
ℓ , δ) = fIG(σ2

ℓ ; ãN
ℓ , b̃N

ℓ ) , (10)

with

β̃
N

= Σ̃N(XT
ℓ y + δ−1X∗T

ℓ y∗), Σ̃N =
[
XT

ℓ Xℓ + δ−1X∗T

ℓ X∗
ℓ

]−1

and

ãN
ℓ =

n + n∗ − dℓ

2
, b̃N

ℓ =
SSN

ℓ + δ−1RSS∗
ℓ

2
. (11)

Here

SSN
ℓ =

(
y − Xℓ β̂

∗

ℓ)
T

[
In + δ Xℓ(X

∗T

ℓ X∗
ℓ)

−1XT
ℓ

]−1 (
y − Xℓ β̂

∗

ℓ) (12)

and

mN
ℓ (y|y∗; Xℓ, X

∗
ℓ , δ) = fStn

{
y ; n∗ − dℓ, Xℓβ̂

∗

ℓ ,
RSS∗

ℓ

δ(n∗ − dℓ)

[
In + δ Xℓ(X

∗T

ℓ X∗
ℓ)

−1XT
ℓ

]}
, (13)

in which Stn(· ; d,µ, Σ) is the multivariate Student distribution in n dimensions with d degrees of
freedom, location µ and scale Σ. Thus the posterior distribution of the model parameters (βℓ , σ2

ℓ )
under the PEP prior (8) is

πJ-PEP

ℓ (βℓ, σ
2
ℓ |y; Xℓ, X

∗
ℓ , δ) ∝

∫
fNdℓ

(
βℓ ; β̃

N
, Σ̃Nσ2

ℓ

)
fIG(σ2

ℓ ; ãN
ℓ , b̃N

ℓ ) ×

mN
ℓ (y|y∗; Xℓ, X

∗
ℓ , δ) mN

0 (y∗|X∗
0 , δ) dy∗ , (14)

with mN
0 (y∗|X∗

0 , δ) given in (9). A detailed MCMC scheme for sampling from this distribution is
presented in Section 2 of the web Appendix.

2.2 PEP-prior methodology with the g-prior as baseline: Z-PEP

Here we use the Zellner g-prior as the baseline prior distribution; in other words, for any Mℓ ∈ M

πN
ℓ (βℓ|σ

2
ℓ ; X∗

ℓ) = fNdℓ

[
βℓ ; 0, g (X∗T

ℓ X∗
ℓ)

−1σ2
ℓ

]
and πN

ℓ (σ2
ℓ ) = fIG

(
σ2

ℓ ; aℓ, bℓ

)
. (15)

We refer to the resulting PEP prior as Z-PEP.
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2.2.1 Prior setup

For any model Mℓ, under the baseline prior setup (15) and the power likelihood (4), the prior
predictive distribution is

mN
ℓ (y∗ |X∗

ℓ , δ) = fStn∗

(
y∗ ; 2 aℓ,0,

bℓ

aℓ

Λ∗
ℓ
−1

)
, (16)

where

Λ∗
ℓ
−1 = δ

[
In∗ −

g

g + δ
X∗

ℓ

(
X∗

ℓ
T X∗

ℓ

)−1
X∗

ℓ
T

]−1

= δ In∗ + g X∗
ℓ

(
X∗

ℓ
T X∗

ℓ

)−1
X∗

ℓ
T . (17)

In the special case of the constant model, (17) simplifies to
(
δ In∗ + g

n
1n∗1T

n∗

)
, where 1n∗ is a vector

of length n∗ with all elements equal to one.
Following (3) for the baseline prior (15) and the power likelihood specified in (4), the PEP prior,

for any model Mℓ , now becomes

πZ-PEP

ℓ (βℓ, σ
2
ℓ |X

∗
ℓ , δ) =

∫
fNdℓ

[
βℓ ; w β̂

∗

ℓ , w δ (X∗T

ℓ X∗
ℓ)

−1σ2
ℓ

]
×

fIG

(
σ2

ℓ ; aℓ +
n∗

2
, bℓ +

SS∗
ℓ

2

)
mN

0 (y∗|X∗
0 , δ) dy∗ . (18)

Here w = g

g+δ
is the shrinkage weight, β̂

∗

ℓ = (X∗T

ℓ X∗
ℓ)

−1X∗T

ℓ y∗ is the MLE with outcome vector y∗

and design matrix X∗
ℓ , and SS∗

ℓ = y∗T

Λ∗
ℓ y∗ is the posterior sum of squares.

The prior mean vector and covariance matrix of βℓ, and the prior mean and variance of σ2
ℓ ,

can be calculated analytically from these expressions; details are available in Theorems 1 and 2 in
Section 1 of the web Appendix.

2.2.2 Posterior distribution

The distributions πN
ℓ (βℓ, σ

2
ℓ |y,y∗; Xℓ, X

∗
ℓ , δ) and mN

ℓ (y|y∗; Xℓ, X
∗
ℓ , δ) involved in the calculation

of the posterior distribution (6) are now the posterior distribution of (βℓ, σ
2
ℓ ) and the marginal

likelihood of model Mℓ, respectively, using data y, design matrix Xℓ, and πN
ℓ (βℓ , σ2

ℓ |y
∗; X∗

ℓ , δ) as a
prior density (which is the Normal-Inverse-Gamma distribution appearing in (18)). Therefore the
posterior distribution of the model parameters (βℓ , σ2

ℓ ) under the Z-PEP prior (18) is given by

πZ-PEP

ℓ (βℓ, σ
2
ℓ |y; Xℓ, X

∗
ℓ , δ) ∝

∫
fNdℓ

(
βℓ ; β̃

N
, Σ̃Nσ2

ℓ

)
fIG(σ2

ℓ ; ãN
ℓ , b̃N

ℓ ) ×

mN
ℓ (y|y∗; Xℓ, X

∗
ℓ , δ) mN

0 (y∗|X∗
0 , δ) dy∗ , (19)

with

β̃
N

= Σ̃N(XT
ℓ y + δ−1X∗T

ℓ y∗), Σ̃N =
[
XT

ℓ Xℓ + (w δ)−1X∗T

ℓ X∗
ℓ

]−1

and

ãN
ℓ =

n + n∗

2
+ aℓ , b̃N

ℓ =
SSN

ℓ + SS∗
ℓ

2
+ bℓ . (20)

Here

SSN
ℓ =

(
y − w Xℓ β̂

∗

ℓ)
T

[
In + δ w Xℓ(X

∗T

ℓ X∗
ℓ)

−1XT
ℓ

]−1 (
y − w Xℓ β̂

∗

ℓ) , (21)
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while

mN
ℓ (y|y∗; Xℓ, X

∗
ℓ , δ) = fStn

{
y ; 2 aℓ + n∗, w Xℓβ̂

∗

ℓ ,
2bℓ + SS∗

ℓ

2 aℓ + n∗

[
In + w δ Xℓ(X

∗T

ℓ X∗
ℓ)

−1XT
ℓ

]}
, (22)

and mN
0 (y∗|X∗

0 , δ) is given in (16). A detailed MCMC scheme for sampling from this distribution
is presented in Section 2 of the web Appendix.

2.2.3 Specification of hyper-parameters

The marginal likelihood for the Z-PEP prior methodology, using the g-prior as a baseline, depends
on the selection of the hyper-parameters g, a and b. We make the following proposals for specifying
these quantities, in settings in which strong prior information about the parameter vectors in the
models is not available.

The parameter g in the Normal baseline prior is set to δ n∗, so that with δ = n∗ we use
g = (n∗)2. This choice will make the g-prior contribute information equal to one data point within
the posterior πN

ℓ (βℓ , σ2
ℓ |y

∗; X∗
ℓ , δ). In this manner, the entire Z-PEP prior contributes information

equal to
(
1 + 1

δ

)
data points.

We set the parameters a and b in the Inverse-Gamma baseline prior to 0.01, yielding a baseline
prior mean of 1 and variance of 100 (i.e., a large amount of prior uncertainty) for the precision
parameter. (If strong prior information about the model parameters is available, Theorems 1 and
2 in Section 1 of the web Appendix can be used to guide the choice of a and b.)

2.3 Connection between the J-PEP and Z-PEP distributions

By comparing the posterior distributions under the two different baseline schemes described in
Sections 2.1 and 2.2, it is straightforward to prove that they coincide under the following conditions
(∗): large g (and therefore w ≈ 1), aℓ = −dℓ

2
and bℓ = 0.

To be more specific, the posterior distribution in both cases takes the form of equation (14).
The parameters of the Normal-Inverse-Gamma distribution (see equations (20)) involved in the
posterior distribution using the g-prior as baseline become equal to the corresponding parameters
for the Jeffreys baseline (see equations (11)) with parameter values (∗). Similarly, the conditional
marginal likelihood mN

ℓ (y|y∗; Xℓ, X
∗
ℓ , δ) under the two baseline priors (see equations (13) and (22))

becomes the same under conditions (∗).
Finally, the prior predictive densities mN

0 (y∗|X∗
0 , δ) involved in equations (14) and (19) can be

written as mN
0 (y∗|X∗

0 , δ) ∝ (2 bℓ + SS∗
ℓ )

−
n
∗
+aℓ

2 for the g-prior baseline and as mN
0 (y∗|X∗

0 , δ) ∝

RSS∗−
n
∗
−dℓ
2

ℓ for the Jeffreys baseline. For large values of g, SS∗
ℓ → δ−1RSS∗

ℓ , and the two unnor-
malized prior predictive densities clearly become equal if we further set aℓ = −dℓ

2
and bℓ = 0. Any

differences in the normalizing constants of mN
0 (y∗|X∗

0 , δ) cancel out when normalizing the posterior
distributions (14) and (19).

For these reasons, the posterior results using the Jeffreys prior as baseline can be obtained as
a special (limiting) case of the results using the g-prior as baseline. This can be beneficial for the
computation of the posterior distribution, which is detailed in Section 2 of the web Appendix, and
for the estimation of the marginal likelihood presented in Section 3.
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3 Marginal-likelihood computation

Under the PEP-prior approach, it is straightforward to show that the marginal likelihood of any
model Mℓ ∈ M is

mPEP
ℓ (y|Xℓ , X∗

ℓ , δ) = mN
ℓ (y|Xℓ , X∗

ℓ )

∫
mN

ℓ (y∗|y, Xℓ, X
∗
ℓ , δ)

mN
ℓ (y∗|X∗

ℓ , δ)
mN

0 (y∗|X∗
0 , δ) dy∗ . (23)

Note that in the above expression mN
ℓ (y|Xℓ , X∗

ℓ) is the marginal likelihood of model Mℓ for the
actual data under the baseline prior and therefore, under the baseline g-prior (15), is given by

mN
ℓ (y|Xℓ , X∗

ℓ) = fStn

{
y ; 2 aℓ,0,

bℓ

aℓ

[
In + g Xℓ

(
X∗T

ℓ X∗
ℓ

)−1

Xℓ
T

]}
; (24)

under the Jeffreys baseline prior (7), mN
ℓ (y|Xℓ , X∗

ℓ) is given by equation (9) with data (y, Xℓ).
In settings in which the marginal likelihood (23) is not analytically tractable, we have obtained

four possible Monte-Carlo estimates. In Section 5.1.1 we show that two of these possibilities are
far less accurate than the other two; we detail the less successful approaches in Section 3 of the
web Appendix. The other two (more accurate) methods are as follows:

(1) Generate y∗(t) (t = 1, . . . , T ) from mN
ℓ (y∗|y, Xℓ, X

∗
ℓ , δ) and estimate the marginal likelihood

by

m̂PEP
ℓ (y|Xℓ , X∗

ℓ , δ) = mN
ℓ (y|Xℓ, X

∗
ℓ)

[
1

T

T∑

t=1

mN
0 (y∗(t)|X∗

0 , δ)

mN
ℓ (y∗(t)|X∗

ℓ , δ)

]
. (25)

(2) Generate y∗(t) (t = 1, . . . , T ) from mN
ℓ (y∗|y; Xℓ , X∗

ℓ , δ) and estimate the marginal likelihood
by

m̂PEP
ℓ (y|Xℓ , X∗

ℓ , δ) = mN
0 (y|X0, X

∗
0)

[
1

T

T∑

t=1

mN
ℓ (y|y∗(t); Xℓ, X

∗
ℓ , δ)

mN
0 (y|y∗(t); X0, X∗

0 , δ)

mN
0 (y∗(t)|y; X0, X

∗
0 , δ)

mN
ℓ (y∗(t)|y; Xℓ, X∗

ℓ , δ)

]
.

(26)

Monte-Carlo schemes (1) and (2) generate imaginary data from the posterior predictive dis-
tribution of the model under consideration, and thus we expect them to be relatively accurate.
Moreover, in the second Monte-Carlo scheme, when we estimate Bayes factors we only need to
evaluate posterior predictive distributions, which are available even in the case of improper base-
line priors. Closed-form expressions for the posterior predictive distributions can be found in
Section 2 of the web Appendix.

Using arguments similar to those in Section 2.3, it is clear that the marginal likelihoods
mPEP

ℓ (y|Xℓ , X∗
ℓ , δ) under the two baseline prior choices considered in this paper will yield the

same posterior odds and model probabilities for g → ∞, aℓ = −dℓ

2
and bℓ = 0. This is because

the posterior predictive densities involved in the expressions for mPEP
ℓ (y|Xℓ , X∗

ℓ , δ) become the
same for the above-mentioned prior parameter values, while the corresponding prior predictive
density will be the same up to normalizing constants, common to all models, that cancel out in the
calculation.
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4 Consistency of the J-PEP Bayes factor

Here we present a condensed version of a proof that Bayes factors based on the J-PEP approach are
consistent for model selection; additional details are available in Fouskakis and Ntzoufras (2013).

The PEP prior (3) can be rewritten as

πPEP
ℓ (βℓ, σ

2
ℓ |X

∗
ℓ , δ) =

∫ ∫
πPEP

ℓ (βℓ, σ
2
ℓ |β0, σ

2
0; X

∗
ℓ , δ) πN

0 (β0, σ
2
0|X

∗
0) dβ0 dσ2

0 , (27)

in which the conditional PEP prior is given by

πPEP
ℓ (βℓ, σ

2
ℓ |β0, σ

2
0; X

∗
ℓ , δ) =

∫
f(y∗|βℓ, σ

2
ℓ ,Mℓ; X

∗
ℓ , δ) f(y∗|β0, σ

2
0,M0; X

∗
0, δ) πN(βℓ, σ

2
ℓ |X

∗
ℓ)

mN
ℓ (y∗|X∗

ℓ , δ)
dy∗ .

(28)
For the J-PEP prior, resulting from the baseline prior (7), it can be shown — following a line of
reasoning similar to that in Moreno and Torres (2003) — that

πJ-PEP

ℓ (βℓ, σ
2
ℓ |β0, σ

2
0; X

∗
ℓ , δ) =

Γ(n∗ − dℓ)

Γ(n∗−dℓ

2
)2

(σ2
0)

−
n
∗
−dℓ

2 (σ2
ℓ )

n
∗
−dℓ

2
−1

(
1 +

σ2
ℓ

σ2
0

)−(n∗−dℓ)

×

fNn∗

[
βℓ; β0, δ(σ

2
ℓ + σ2

0)
(
X∗

ℓ
T X∗

ℓ

)−1
]

; (29)

here β0 = (βT
0 ,0T

dℓ−d0
)T and 0k is a vector of zeros of length k.

Following steps similar to those in Moreno and Torres (2003), we find that the Bayes factor of
model Mℓ versus the reference model M0 (with M0 nested in Mℓ) is given by

BF J-PEP

ℓ 0 = 2
Γ (n − dℓ)

Γ
(

n−dℓ

2

)2

∫
π

2

0

(sin φ)n−d0−1(cos φ)n−dℓ−1(n + sin2 φ)
n−dℓ

2

(
nRSSℓ

RSS0
+ sin2 φ

)n−d0
2

dφ . (30)

Theorem 1: For any two models Mℓ, Mk ∈ M \ {M0} and for large n, we have that

−2 log BF J-PEP

ℓ k ≈ n log
RSSℓ

RSSk

+ (dℓ − dk) log n = BICℓ − BICk . (31)

Proof. For large n we have that

(n + sin2 φ)
n−dℓ

2 ≈ n
n−dℓ

2 exp

(
sin2 φ

2

)
,

(
n

RSSℓ

RSS0

+ sin2 φ

)n−d0
2

≈

(
n

RSSℓ

RSS0

)n−d0
2

exp

(
1

2
sin2 φ

RSS0

RSSℓ

)
, and (32)

log Γ(n − dℓ) − 2 log Γ

(
n − dℓ

2

)
≈

1

2
log n + n log 2 .

From the above we obtain (31) due to the integral inequality∫
π

2

0

(sin φ)n−d0−1(cos φ)n−dℓ−1 exp
(

sin2 φ

2

)

exp
(

1
2
sin2 φRSS0

RSSℓ

) dφ ≤

∫ π

2

0

exp

[
sin2 φ

2

(
1 −

RSS0

RSSℓ

)]
dφ (33)
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which is true for any n ≥ (d0 + 1) and n ≥ (dℓ + 1). Casella et al. (2009, p.1216) have shown
that the right-hand integral in (33) is finite for all n; therefore the left-hand integral in (33), which
arises in the computation of BF J-PEP

ℓ 0 via equation (30), is also finite for all n.

Therefore the J-PEP approach has the same asymptotic behavior as the BIC-based variable-
selection procedure. The following Lemma is a direct result of Theorem 1 and of Theorem 4 of
Casella et al. (2009).

Lemma 1: Let Mℓ ∈ M be a normal regression model of type (2) such that

lim
n→∞

XT

(
In − Xℓ(X

T
ℓ Xℓ)

−1XT
ℓ

)
XT

n
is a positive semidefinite matrix,

with XT being the design matrix of the true data generating regression model MT 6= Mj. Then,
the variable selection procedure based on J-PEP Bayes factor is consistent since BF J−PEP

jT → 0 as
n → ∞.

5 Experimental results

In this section we illustrate the PEP-prior methodology with two examples — one simulated,
one real — and we perform sensitivity analyses to verify the stability of our findings; results are
presented for both Z-PEP and J-PEP. In both cases, the marginal likelihood (23) is not analytically
tractable, and therefore initially we evaluated the four Monte-Carlo marginal-likelihood approaches
given in Section 3 above and in Section 3 of the web Appendix. Then we present results for n∗ = n,
followed by an extensive sensitivity analysis over different values of n∗. Our results are compared
with those obtained using (a) the EPP with minimal training sample, with power parameter δ = 1
and the independence Jeffreys prior as baseline (we call this approach J-EPP) and (b) the expected
intrinsic Bayes factor (EIBF), i.e., the arithmetic mean of the IBFs over different minimal training
samples (in Section 5.1.3 we also make some comparisons between the Z-PEP, J-PEP and IBF
methods). Implementation details for J-EPP can be found in Fouskakis and Ntzoufras (2012),
while computational details for the EIBF approach are provided in Section 4 of the web Appendix.
In all illustrations the design matrix X∗ of the imaginary/training data is selected as a random
subsample of size n∗ of the rows of X.

Note that, since Pérez and Berger (2002) have shown that Bayes factors from the J-EPP ap-
proach become identical to those from the EIBF method as the sample size n → ∞ (with the
number of covariates p fixed), it is possible (for large n) to use EIBF as an approximation to
J-EPP that is computationally much faster than the full J-EPP calculation. We take advantage
of this fact below: for example, producing the results in Table 2 would have taken many days of
CPU time with J-EPP; instead, essentially equivalent results were available in hours with EIBF.
For this reason, one can regard the labels “J-EPP” and “EIBF” as more or less interchangeable in
what follows.

5.1 A simulated example

Here we illustrate the PEP method by considering the simulated data set of Nott and Kohn (2005).
This data set consists of n = 50 observations with p = 15 covariates. The first 10 covariates are

12



Table 1: Posterior model probabilities for the best models, together with Bayes factors for the Z-
PEP MAP model (M1) against Mj, j = 2, . . . , 7, for the Z-PEP and J-PEP prior methodologies,
in the simulated example of Section 5.1.

Z-PEP J-PEP
Posterior Model Bayes Posterior Model Bayes

Mj Predictors Probability Factor Rank Probability Factor
1 X1 + X5 + X7 + X11 0.0783 1.00 (2) 0.0952 1.00
2 X1 + X7 + X11 0.0636 1.23 (1) 0.1054 0.90
3 X1 + X5 + X6 + X7 + X11 0.0595 1.32 (3) 0.0505 1.88
4 X1 + X6 + X7 + X11 0.0242 3.23 (4) 0.0308 3.09
5 X1 + X7 + X10 + X11 0.0175 4.46 (5) 0.0227 4.19
6 X1 + X5 + X7 + X10 + X11 0.0170 4.60 (9) 0.0146 6.53
7 X1 + X5 + X7 + X11 + X13 0.0163 4.78 (10) 0.0139 6.87

generated from a multivariate Normal distribution with mean vector 0 and covariance matrix I10,
while

Xij ∼ N
(
0.3Xi1 + 0.5Xi2 + 0.7Xi3 + 0.9Xi4 + 1.1Xi5, 1

)
for (j = 11, . . . , 15; i = 1, . . . , 50) , (34)

and the response is generated from

Yi ∼ N
(
4 + 2Xi1 − Xi5 + 1.5Xi7 + Xi,11 + 0.5Xi,13, 2.5

2
)

for i = 1, . . . , 50 . (35)

With p = 15 covariates there are only 32,768 models to compare; we were able to conduct a full
enumeration of the model space, obviating the need for a model-search algorithm in this example.

5.1.1 PEP prior results

To check the efficiency of the four Monte-Carlo marginal-likelihood estimates (the first two of
which are detailed in Section 3 above, and the second two in Section 3 of the web Appendix), we
initially performed a small experiment. For Z-PEP, we estimated the logarithm of the marginal
likelihood for models (X1 + X5 + X7 + X11) and (X1 + X7 + X11), by running each Monte-Carlo
technique 100 times for 1,000 iterations and calculating the Monte-Carlo standard errors. The
first and second Monte-Carlo schemes produced, for both models, Monte-Carlo standard errors of
approximately 0.03, while the Monte-Carlo standard errors of the third and fourth schemes were
larger by multiplicative factors of 30 and 20, respectively. In what follows, therefore, we used the
first and second schemes; in particular we employed the first scheme for Z-PEP and the second
scheme for J-PEP, holding the number of iterations constant at 1,000.

Table 1 presents the posterior model probabilities (with a uniform prior on the model space)
for the best models in the Nott-Kohn example, together with Bayes factors, for the Z-PEP and
J-PEP prior methodologies. The MAP model for the Z-PEP prior includes four of the five true
effects; the data-generating model is seventh in rank due to the small effect of X13. Moreover,
notice that when using the J-PEP prior the methodology is more parsimonious; the MAP model
is now X1 + X7 + X11, which is the second-best model under the Z-PEP approach. When we
focus on posterior inclusion probabilities (results omitted for brevity) rather than posterior model
probabilities and odds, J-PEP supports systematically more parsimonious models than Z-PEP, but
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Figure 1: Posterior marginal inclusion probabilities, for n∗ values from 17 to n = 50, with the
Z-PEP prior methodology, in the simulated example of Section 5.1.
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no noticeable differences between the inclusion probabilities using the two priors are observed (with
the largest difference seen in the inclusion probabilities of X5; these are about 0.5 for Z-PEP and
about 0.4 for J-PEP).

5.1.2 Sensitivity analysis for the imaginary/training sample size n∗

To examine the sensitivity of the PEP approach to the sample size n∗ of the imaginary/training
data set, we present results for n∗ = 17, . . . , 50: Figure 1 displays posterior marginal variable-
inclusion probabilities. As noted previously, to specify X∗ when n∗ < n we randomly selected a
subsample of the rows of the original matrix X. Results are presented for Z-PEP; similar results for
J-PEP have been omitted for brevity. It is evident that posterior inclusion probabilities are quite
insensitive to a wide variety of values of n∗, while more variability is observed for smaller values of
n∗; this arises from the selection of the subsamples used for the construction of X∗. The picture
for the posterior model probabilities shows similar stability.

Therefore, the principal conclusion is that, since the results are not sensitive to the choice of
n∗, we can use n∗ = n and dispense with training samples altogether; this yields the advantages
mentioned in the paper’s Summary and in Section 1 (increased stability of the resulting Bayes fac-
tors, removal of the arbitrariness arising from individual training-sample selections, and substantial
increases in computational speed, allowing many more models to be compared within a fixed CPU
budget).

One of the main advantages of using PEP is its unit-information property, an important feature
especially when p is a substantial fraction of n; as noted in Section 1, this situation arises with
some frequency in disciplines such as economics and genomics. In contrast to PEP, the EPP —
which is equivalent to the intrinsic prior — can be highly influential when n is not much larger
than p. For illustrative purposes, we kept the first n = 20 observations from our simulated data set
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Figure 2: Boxplots of the posterior distributions of the regression coefficients. For each coefficient,
the left-hand boxplot summarizes the EPP results and the right-hand boxplot displays the Z-PEP
posteriors; solid lines in both posteriors identify the MLEs. We used the first 20 observations from
the simulated data-set of the example of Section 5.1 and a randomly selected training sample of size
n∗ = 17.
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and considered a randomly selected training sample of minimal size (n∗ = 17). Figure 2 presents
the posterior distribution of the regression coefficients for PEP (δ = n∗) and for EPP (δ = 1), in
comparison with the MLEs (solid horizontal lines). From this figure it is clear that the PEP prior
produces posterior results identical to the MLEs, while EPP has a substantial unintended impact
on the posterior distribution (consider in particular the marginal posteriors for β2, β7, β9, β11 and
β12). Moreover, the variability of the resulting posterior distributions using the PEP approach is
considerably smaller (in this regard, consider especially the marginal posteriors for β5, β7 and β11).

5.1.3 Comparisons with the intrinsic-Bayes-factor (IBF) and J-EPP approaches

Here we compare the PEP Bayes factor between the two best models ((X1 + X5 + X7 + X11) and
(X1 + X7 + X11)) with the corresponding Bayes factors using J-EPP and IBF. For IBF and J-EPP
we randomly selected 100 training samples of size n∗ = 6 (the minimal training sample size for the
estimation of these two models) and n∗ = 17 (the minimal training sample size for the estimation
of the full model with all p = 15 covariates), while for Z-PEP and J-PEP we randomly selected
100 training samples of sizes n∗ = {6, 17, 30, 40, 50}. Each marginal-likelihood estimate in PEP
was obtained with 1,000 iterations, using the first and second Monte-Carlo schemes for Z-PEP and
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Figure 3: Boxplots of the Intrinsic Bayes Factor (IBF) and Bayes factors using the J-EPP, Z-PEP
and J-PEP approaches, on a logarithmic scale, in favor of model (X1 + X5 + X7 + X11) over model
(X1 + X7 + X11) in the simulated example of Section 5.1. For IBF and J-EPP, training samples of
size n∗ = 6 and 17 were used; for both PEP priors we used n∗ = {6, 17, 30, 40, 50}. In the boxplot
labels on the vertical axis, letters indicate methods and numbers signify training sample sizes.
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J-PEP, respectively, and in J-EPP with 1,000 iterations, using the second Monte-Carlo scheme.
Figure 3 presents the results as parallel boxplots, and motivates the following observations:

• For n∗ = 6 and 17, although there are some differences between the median log Bayes factors
across the four approaches, the variability across random training samples is so large as to
make these differences small by comparison; none of the methods finds a marked difference
between the two models.

• With modest n∗ values, which would tend to be favored by users for their advantage in
computing speed, the IBF method exhibited an extraordinary amount of instability across
the particular random training samples chosen: with n∗ = 6 the observed variability of IBF
estimated Bayes factors across the 100 samples was from e−5.16 .

= 0.005 to e+2.48 .
= 11.89, a

multiplicative range of more than 2,300, and with n∗ = 17 the corresponding span was from
e−2.90 .

= 0.055 to e+2.03 .
= 7.61, a multiplicative variation of about 138. The instability of the

J-EPP approach across training samples was smaller than with IBF but still large: for J-EPP
the range of estimated Bayes factors for n∗ = 6 was from e−2.72 .

= 0.065 to e+2.09 .
= 8.08

(a multiplicative span of about 125); the corresponding values for n∗ = 17 were from 0.61
to 4.51, a multiplicative range of 7.4. The analogous multiplicative spans for Z-PEP were

16



considerably smaller: 60.22, 2.41 and 1.24, respectively, for n∗ = 6, 17 and 50; similarly for
J-PEP the corresponding multiplicative ranges were 28.01, 2.21 and 1.30.

• Figure 3 highlights the advantage of using n∗ = n with the PEP approach over the IBF
and J-EPP methods with modest training samples: the Monte-Carlo uncertainty introduced
in the IBF and J-EPP methods by the need to choose a random training sample creates a
remarkable degree of sensitivity in those approaches to the particular samples chosen, and
this undesirable behavior is entirely absent with the n∗ = n version of the PEP method. The
observed variability for n∗ = n in the PEP approach is due solely to Monte-Carlo noise in
the marginal-likelihood computation.

5.2 Variable selection in the Breiman-Friedman ozone data set

In this section we use a data set often examined in variable-selection studies — the ozone data
of Breiman and Friedman (1985) — to implement the Z-PEP and J-PEP approaches and make
comparisons with other methods. The scientific purpose of gathering these data was to study the
relationship between ozone concentration and a number of meteorological variables, including tem-
perature, wind speed, humidity and atmospheric pressure; the data are from a variety of locations
in the Los Angeles basin in 1976. The data set we used was slightly modified from its form in
other studies, based on preliminary exploratory analyses we performed; our version of the data set
has n = 330. As a response we used a standardized version of the logarithm of the ozone variable
of the original data set. The standardized versions of 9 main effects, 9 quadratic terms, 2 cubic
terms, and 36 two-way interactions (a total of 56 explanatory variables) were included as possible
covariates. (Further details concerning the final data set used in this section are provided in Section
6 of the web Appendix.)

5.2.1 Searching the model space

Full-enumeration search for the full space with 56 covariates was computationally infeasible, so
we used a model-search algorithm (based on MC3), given in Section 5 of the web Appendix, for
the Z-PEP prior methodology and the EIBF approach. For Z-PEP we used the first Monte-Carlo
marginal-likelihood scheme with 1,000 iterations; for EIBF we employed 30 randomly-selected
minimal training samples (n∗ = 58).

With such a large number of predictors, the model space in our problem was too large for
the MC3 approach to estimate posterior model probabilities with high accuracy in a reasonable
amount of CPU time. For this reason, we implemented the following two-step method:

(1) First we used MC3 to identify variables with high posterior marginal inclusion probabilities
P (γj = 1|y), and we then created a reduced model space consisting only of those variables
whose marginal probabilities were above a threshold value. According to Barbieri and Berger
(2004), this method of selecting variables may lead to the identification of models with bet-
ter predictive abilities than approaches based on maximizing posterior model probabilities.
Although Barbieri and Berger proposed 0.5 as a threshold value for P (γj = 1|y), we used the
lower value of 0.3, since our aim was only to identify and eliminate variables not contributing
to models with high posterior probabilities. The inclusion probabilities were based on the
marginal-likelihood weights for the visited models.
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(2) Then we used the same model search algorithm as in step (1) in the reduced space to estimate
posterior model probabilities (and the corresponding odds).

Initially we ran MC3 for 100,000 iterations for both the Z-PEP and EIBF approaches. The
reduced model space was formed from those variables that had posterior marginal inclusion prob-
abilities above 0.3 in either run. With this approach we reduced the initial list of p = 56 available
candidates down to 22 predictors; Section 7 in the web Appendix lists these covariates.

In the reduced model space we then ran MC3 for 220,000 iterations for the J-PEP, Z-PEP and
EIBF approaches. For J-PEP we used the second Monte-Carlo scheme with 1,000 iterations, for
Z-PEP we employed the first Monte-Carlo scheme (also with 1,000 iterations), and for EIBF we
used 30 randomly-selected minimal training samples (n∗ = 24). The resulting posterior model odds
for the five best models under each approach are given in Table 2. The MAP model under the
Z-PEP approach was the only one that appeared in the five most probable models in all approaches
(with rank 2 in J-PEP and rank 5 in EIBF). From this table it is clear that the J-PEP approach
supports the most parsimonious models; at the other extreme, EIBF gives the least support to
the most parsimonious models. When attention is focused on posterior inclusion probabilities (not
shown here), the conclusions are similar: the three methods give approximately equal support
to the most prominent covariates, while for the less important predictors the posterior inclusion
probabilities are highest for EIBF, lower for Z-PEP, and lowest for J-PEP. This confirms that the
PEP methodology supports more parsimonious models than the EIBF approach.

5.2.2 Comparison of predictive performance

Here we examine the out-of-sample predictive performance of J-PEP, Z-PEP and J-EPP on the
full model and the three MAP models found by each method implemented in the previous analysis.
To do so, we randomly partitioned the data in half 50 times, referring to the partition sets as
modeling (M) and validation (V) subsamples. For each partition, we generated an MCMC sample
of T = 1, 000 iterations from the model of interest Mℓ (fit to the modeling data M) and then
computed the following measure of predictive accuracy:

RMSEℓ =

√√√√ 1

T

T∑

t=1

1

nV

∑

i∈V

(
yi − ŷ

(t)
i|Mℓ

)2
, (36)

the root mean squared error for the validation dataset V of size nV = ⌈ n
2
⌉; here ŷ

(t)
i|Mℓ

= Xℓ(i) β
(t)
ℓ

is the predicted value of yi according to the assumed model ℓ for iteration t, β
(t)
ℓ is the vector of

model Mℓ parameters for iteration t and Xℓ(i) is the ith row of the matrix Xℓ of model Mℓ.
Results for the full model and the MAP models are given in Table 3. For comparison purposes,

we have also included the split-half RMSE measures for these three models using predictions based
on direct fitting of model (2) with the independence Jeffreys prior f(βℓ , σ2

ℓ ) ∝ 1
σ2

ℓ

, which can be

viewed as a parametric bootstrap approach around the MLE for βℓ and the unbiased estimate of
σ2

ℓ , allowing for variability based on their standard errors.
Table 3 shows that all RMSE values for the PEP and Jeffreys-prior approaches are similar,

indicating that PEP provides predictive performance equivalent to that offered by the Jeffreys
prior; also note that the PEP and the Jeffreys-prior RMSEs for the two PEP MAP models are
close to the corresponding values for the full model, which has considerably higher dimension. (The
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Table 2: Posterior odds (PO1k) of the five best models within each analysis versus the current model
k, for the reduced model space of the ozone data set. Variables common in all three analyses were
X1 + X2 + X8 + X9 + X10 + X15 + X16 + X18 + X43.

J-PEP
Ranking Number of Posterior

J-PEP Z-PEP EIBF Additional Variables Covariates Odds PO1k

1 (>5) (>5) 9 1.00
2 (1) (5) X7 + X12 + X13 +X20 13 1.29
3 (>5) (>5) X7 + X13 +X20 12 1.46
4 (>5) (>5) X12 +X20 11 1.87
5 (>5) (>5) X12 10 2.08

Z-PEP
Ranking Number of Posterior

Z-PEP J-PEP EIBF Additional Variables Covariates Odds PO1k

1 (2) (5) X7 + X12 + X13 +X20 13 1.00
2 (>5) (>5) X5+ X7 + X12 + X13 +X20 14 1.19
3 (>5) (3) X5+ X7 + X12 + X13 +X20 +X42 15 1.77
4 (>5) (1) X7 + X12 + X13 +X20 +X42 14 1.94
5 (>5) (>5) X7 + X12 + X13 12 2.30

EIBF
Ranking Number of Posterior

EIBF J-PEP Z-PEP Additional Variables Covariates Odds PO1k

1 (>5) (4) X7 + X12 + X13 +X20 +X42 14 1.00
2 (>5) (>5) X5+ X7 + X12 + X13 +X20+X26 + X42 16 1.17
3 (>5) (3) X5+ X7 + X12 + X13 +X20 +X42 15 1.30
4 (>5) (>5) X7 + X12 + X13 +X20+X39 + X42 15 1.44
5 (2) (1) X7 + X12 + X13 +X20 13 1.58

point of this comparison is to demonstrate that the PEP approach, which can be used for variable
selection, achieves a level of predictive accuracy comparable to that of the Jeffreys-prior approach,
which cannot be used for variable selection because of its impropriety.)

In contrast, with the J-EPP approach the RMSE values of all four models are noticeably higher
than the corresponding values for the Jeffreys-prior and PEP approaches. Figure 4 provides the
explanation, by showing the distribution of RMSE values across the 50 random data splits, for
each of the four implementations in each of the four models examined in Table 3. The J-EPP
approach is predictively unstable as a function of its training samples, an undesirable behavior
that PEP’s performance does not share.

19



Table 3: Comparison of the predictive performance of the PEP and J-EPP methods, using the full
and MAP models in the reduced model space of the ozone data set.

RMSE∗

Model dℓ R2 R2
adj J-PEP Z-PEP J-EPP Jeffreys Prior

Full 22 0.8500 0.8392 0.5988 0.5935 0.6194 0.5972
(0.0087) (0.0097) (0.0169) (0.0104)

J-PEP MAP 9 0.8070 0.8016 0.5975 0.6161 0.7524 0.6165
(0.0063) (0.0051) (0.0626) (0.0052)

Z-PEP MAP 13 0.8370 0.8303 0.5994 0.5999 0.6982 0.5994
(0.0071) (0.0060) (0.0734) (0.0049)

EIBF MAP 14 0.8398 0.8326 0.6182 0.5961 0.6726 0.5958
(0.0066) (0.0072) (0.0800) (0.0061)

Comparison with the full model (percentage changes)

RMSE

Model dℓ R2 R2
adj J-PEP Z-PEP J-EPP Jeffreys Prior

J-PEP MAP −59% −5.06% −4.48% −0.22% +3.81% +21.5% +3.23%
Z-PEP MAP −41% −1.50% −1.06% +0.10% +1.01% +12.7% +0.37%
EIBF MAP −36% −1.20% −0.78% +3.24% +0.44% +10.9% −0.23%

Note:
∗Mean (standard deviation) over 50 different split-half out-of-sample evaluations.

6 Discussion

The major contribution of the research presented here is to simultaneously produce a minimally-
informative prior and sharply diminish the effect of training samples on previously-studied expected-
posterior-prior (EPP) methodology. By combining ideas from the power-prior approach of Ibrahim
and Chen (2000) and the unit-information prior of Kass and Wasserman (1995), we raise the
likelihood involved in EPP to a power proportional to the inverse of the training sample size,
resulting in prior information equivalent to one data point. In this way, with our power-expected-
posterior (PEP) methodology, the effect of the training sample is minimal, regardless of its sample
size, and we can choose training samples with size n∗ as big as the sample size n of the original data;
this choice promotes stability of the resulting Bayes factors, removes the arbitrariness arising from
individual training-sample selections, and avoids the computational burden of averaging over many
training samples. Additional advantages of our approach over methods that depend on training
samples include the following.

• In variable-selection problems in linear models, the training data refer to both y and X.
Under the base-model approach (see Section 1.1), we can simulate training data y∗ directly
from the prior predictive distribution of a reference model, but we still need to consider a
subsample X∗ of the original design matrix X. The number of possible subsamples of X

can be enormous, inducing large variability, since some of those subsamples can be highly
influential for the posterior analysis. By using our approach, and working with training-
sample sizes equal to the size of the full data set, we avoid the selection of such subsamples
by choosing X∗ = X.
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Figure 4: Distribution of RMSE across 50 random partitions of the ozone data set, for the Jeffreys-
prior, J-EPP, Z-PEP and J-PEP methods, in (a) the full model, (b) the Z-PEP MAP model, (c)
the J-EPP MAP model, and (d) the J-PEP MAP model.
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• The number p of covariates in the full model is usually regarded as specifying the minimal
training sample. This selection makes inference within the current data set coherent, but the
size of the minimal training sample will change if additional covariates are added, meaning
that the EPP distribution will depend incoherently on p. Moreover, if the data derive from
a highly structured situation (such as an analysis of covariance in a factorial design), most
choices of a small part of the data to act as a training sample would be untypical. Finally,
the effect of the minimal training sample will be large in settings where the sample size n is
not much larger than p. This type of data set is common in settings (in disciplines such as
bioinformatics and economics) in which (i) cases (rows in the data matrix) are expensive to
obtain (bioinformatics) or limited by the number of available quarters of data (economics)
but (ii) many covariates are inexpensive and readily available once the process of measuring
the cases begins.

It is worth noting that our method works in a totally different fashion than fractional Bayes
factors. In the latter, the likelihood is partitioned based on two data subsets; one is used for building
the prior within each model and the other is employed for model evaluation and comparison. In
contrast, with our approach, the original likelihood is used only once, for simultaneous variable
selection and posterior inference. Moreover, the fraction of the likelihood (power likelihood) —
used in the expected-posterior expression of our prior distribution — refers solely to the imaginary
data coming from a prior predictive distribution based on the reference model.

Our PEP approach can be implemented under any baseline prior choice; results using the g-
prior and the independence Jeffreys prior as baseline choices are presented here. The conjugacy
structure of the g-prior in Gaussian linear models makes calculations simpler and faster, and also
offers flexibility in situations in which non-diffuse parametric prior information is available. When,
by contrast, strong information about the parameters of the competing models external to the
present data set is not available, the independence Jeffreys baseline prior can be viewed as a natural
choice, and noticeable computational acceleration is provided by the fact that the posterior with
the Jeffreys baseline is a special case of the posterior with the g-prior as baseline. In the Jeffreys
case we have proven that the resulting variable-selection procedure is consistent; we conjecture that
the same is true with the g-prior, but the proof has so far been elusive.

From our empirical results we conclude that our method

• is systematically more parsimonious (under either baseline prior choice) than the EPP ap-
proach using the Jeffreys prior as a baseline prior and minimal training samples, while sacri-
ficing no desirable performance characteristics to achieve this parsimony;

• is robust to the size of the training sample, thus supporting the use of the entire data set as
a “training sample” and thereby promoting stability and fast computation;

• identifies maximum a-posteriori models that achieve good out-of-sample predictive perfor-
mance; and

• has low impact on the posterior distribution even when n is not much larger than p.

Our PEP approach could be applied to any prior distribution that is defined via imaginary
training samples. Additional future extensions of our method include implementation in generalized
linear models, where computation is more demanding.
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Supplementary material

The Appendix is available in a web supplement at http://stat-athens.aueb.gr/~jbn/papers/
paper27.htm.

Abbreviations used in the paper

BIC = Bayesian information criterion, EIBF = expected intrinsic Bayes factor, EPP = expected-
posterior prior, IBF = intrinsic Bayes factor, J-EPP = EPP with Jeffreys baseline prior, J-PEP
= PEP prior with Jeffreys-prior baseline, PEP = power-expected-posterior, Z-PEP = PEP prior
with Zellner g-prior baseline.
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