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Summary: In this paper we focus on the variable selection problem in normal regression models,
using the expected-posterior prior methodology. We provide a straightforward MCMC scheme for
the derivation of the posterior distribution, as well as Monte Carlo estimates for the computation
of the marginal likelihood and posterior model probabilities. Additionally, for large model spaces, a
model search algorithm based on MC3 is constructed. The proposed methodology is implemented
in two real life examples, already used in the relevant literature of objective variable selection. In
both illustrated examples, uncertainty over different training samples is also considered.
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1 Introduction

In this paper we focus on the variable selection problem for normal regression models. Let us
denote by M the model space, consisting of all combinations of the available covariates, then for
every mℓ ∈ M with parameters (βℓ , σ2) the likelihood is specified by

Y |Xℓ,βℓ, σ
2,mℓ ∼ Nn(Xℓ βℓ , σ2In)

where Y = (Y1, . . . , Yn) is a multivariate random variable expressing the response for each subject,
Xℓ is a n×dℓ design/data matrix containing the values of the explanatory variables in its columns,
In is the n× n identity matrix, βℓ is a vector of length dℓ with the effects of each covariate on the
response data Y and σ2 is the error variance of any model.

When using improper prior distributions to express prior ignorance for the model parameters,
Bayes factors cannot be evaluated, because of the presence of the unknown normalizing constants.
This has urged the Bayesian community to develop various methodologies to overcome the prob-
lem of prior specification in variable selection problems. One of the proposed approached is the
intrinsic Bayes factors (IBF), introduced by Berger & Pericchi (1996). In order to provide a full
Bayesian interpretation of IBFs, they also define intrinsic prior (IP) distributions. The intrinsic
prior methodology has been applied for objective variable selection problems in normal regression
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models, by Casella & Moreno (2006), Moreno & Girón (2008), Girón, Moreno & Mart́ınez (2006)
and Casella, Girón, Mart́ınez & Moreno (2009).

Intrinsic priors are closely related with the expected-posterior prior distributions of Pérez &
Berger (2002) which have nice interpretation based on imaginary training data coming from prior
predictive distributions. In this paper we implement the expected-posterior prior methodology on
variable selection problems in normal regression models. By this way, we construct a straightfor-
ward MCMC scheme for the derivation of the posterior distribution, as well as, a Monte Carlo
estimate for the computation of the Bayes factors and posterior model probabilities under the
intrinsic prior. The proposed methodology is applied to a variety of random training samples; by
this way the uncertainty over different training samples is considered.

2 Expected posterior priors

Pérez & Berger (2002) provided a different viewpoint of the intrinsic priors. They have defined
the expected posterior prior (EPP) as the posterior distribution of a parameter vector of the
model under consideration averaged over all possible imaginary data y∗ coming from the predictive
distribution f(y∗|m0) of a reference model m0 (Pérez & Berger 2002, def. 1, p. 493). Hence the
EPP for the parameters of any model mℓ ∈ M is given by

πI
ℓ (βℓ , σ2|X∗

ℓ) =

∫
πN

ℓ (βℓ , σ2|y∗; X∗

ℓ)m
N
0 (y∗|X∗

0)dy∗, (1)

where X∗

ℓ and X∗

0 are the design matrices for the imaginary data under models mℓ and m0

respectively, πN
ℓ (βℓ , σ2|y∗; X∗

ℓ) is the posterior of (βℓ , σ2) for model mℓ using an improper reference
prior πN

ℓ (βℓ , σ2) and mN
0 (y∗|X∗

0) is the prior predictive distribution, evaluated at y∗, for model
m0 under the prior πN

0 (βℓ , σ2). For the reference model (mℓ = m0) this prior degenerates to
πN

0 (βℓ , σ2).
In the above equation, if we use the Bayes theorem to replace πN

ℓ (βℓ , σ2|y∗; X∗

ℓ) by the cor-
responding likelihood-prior product and write the marginal likelihood mN

0 (y∗) as an integral of
the likelihood over the prior of the parameters of the reference model, then we end up with the
intrinsic prior as defined in Berger & Pericchi (1996).

A question that naturally arises is which model must be selected as a reference model. In order
(1) to coincide with the intrinsic prior, m0 must be nested to all models mℓ under consideration.
Therefore, in variable selection problems, a natural choice for the reference model is the constant
model.

3 Prior Specification

We use the Jeffreys prior as the baseline prior distribution. Hence for mℓ ∈ M, where M is the
model space, we have

πN
ℓ (βℓ , σ2) =

cℓ

σ2
,

where cℓ is an unknown normalizing constant.
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Under the above setup, for every mℓ ∈ M, if we suppose we have imaginary data y∗, of size
n∗, and design matrix X∗

ℓ , the intrinsic prior πI
ℓ (βℓ , σ2|X∗

ℓ) has the following form:

πI
ℓ (βℓ , σ2|X∗

ℓ) =

∫
mN

0 (y∗|X∗

0)

mN
ℓ (y∗|X∗

ℓ)
f(y∗|βℓ , σ2,mℓ ; X∗

ℓ)π
N
ℓ (βℓ , σ2)dy∗, (2)

where f(y∗|βℓ , σ2,mℓ ; X∗

ℓ) is the likelihood of model mℓ with parameters (βℓ , σ2) evaluated at y∗

and mN
ℓ (y∗|X∗

ℓ) is the prior predictive distribution (or the marginal likelihood), evaluated at y∗,
of model mℓ under the baseline prior πN

ℓ (βℓ, σ
2), i.e.

mN
ℓ (y∗|X∗

ℓ ) =

∫ ∫
f(y∗|βℓ , σ2,mℓ ; X∗

ℓ )πN
ℓ (βℓ , σ2)dβℓ dσ2

= cℓ (π)
dℓ−n

∗

2 |X∗
T

ℓ X∗

ℓ |
−

1

2

Γ
(

n∗
−dℓ

2

)

RSS∗

n∗
−dℓ
2

ℓ

(3)

with
RSS∗

ℓ = (y∗ − X∗

ℓ β̂
∗

ℓ)
T (y∗ − X∗

ℓ β̂
∗

ℓ) = y∗T
(
In∗ − X∗

ℓ(Xℓ
∗T X∗

ℓ)
−1Xℓ

∗T
)
y∗ (4)

being the residual sum of squares using (y∗, X∗

ℓ) as data and β̂
∗

ℓ = (X∗
T

ℓ X∗

ℓ)
−1X∗

T

ℓ y∗. For a detailed
derivation of the marginal likelihood see at the Appendix of this article.

4 Computation of the Posterior Distribution

Under the intrinsic prior distribution described in Section 3, the posterior distribution of model
parameters (βℓ , σ2) is now given by

πI
ℓ (βℓ, σ

2|y; Xℓ , X∗

ℓ) ∝ f(y|βℓ , σ2,mℓ ; X∗

ℓ)π
I
ℓ (βℓ, σ

2|X∗

ℓ)

∝

∫
f(y|βℓ , σ2,mℓ ; Xℓ)f(βℓ , σ2|y∗,mℓ ; X∗

ℓ)m
N
0 (y∗|X∗

0)dy∗

∝

∫
f(βℓ , σ2|y,y∗,mℓ ; Xℓ, X

∗

ℓ)m
N
ℓ (y|y∗; Xℓ, X

∗

ℓ)m
N
0 (y∗|X∗

0)dy∗

∝

∫
fNdℓ

(
βℓ ; β̃

N
, Σ̃Nσ2

)
fIG(σ2 ; ãN

ℓ , b̃N
ℓ )mN

ℓ (y|y∗; Xℓ, X
∗

ℓ)m
N
0 (y∗|X∗

0)dy∗

where

β̃
N

= Σ̃N
(
XT

ℓ y + Xℓ
∗T y∗

)
, Σ̃N =

{
Xℓ

∗T X∗

ℓ + XT
ℓ Xℓ

}
−1

,

ãN
ℓ = n/2 + n∗/2 − dℓ/2, and b̃N

ℓ = RSSN
ℓ /2 + RSS∗

ℓ /2

with
RSSN

ℓ =
(
y − Xℓβ̂

∗

ℓ

)T (
In + Xℓ(X

T
ℓ Xℓ)

−1XT
ℓ

)(
y − Xℓβ̂

∗

ℓ

)
.

Therefore we can construct an MCMC scheme to sample from the join posterior

f(βℓ, σ
2,y∗|y; Xℓ, X

∗

ℓ) ∝ fNdℓ

(
βℓ ; β̃

N
, Σ̃Nσ2

)
fIG(σ2 ; ãN

ℓ , b̃N
ℓ )mN

ℓ (y|y∗; Xℓ, X
∗

ℓ)m
N
0 (y∗|X∗

0).

Thus, we can write the following MCMC scheme:
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1. Generate y∗ from

f(y∗|y; Xℓ, X
∗

ℓ) ∝
mN

ℓ (y∗|y; Xℓ, X
∗

ℓ)m
N
ℓ (y|Xℓ, X

∗

ℓ)

mN
ℓ (y∗|Xℓ, X∗

ℓ)
mN

0 (y∗|X∗

0).

2. Generate σ2 from IG(ãN
ℓ , b̃N

ℓ ).

3. Generate βℓ from Ndℓ

(
β̃

N
, Σ̃Nσ2

)
.

We can generate the imaginary data y∗ by using a Metropolis-Hastings algorithm with proposal

q(y∗
′

) = mN
ℓ (y∗

′

|y, Xℓ, X
∗

ℓ) = fStn∗

(
y∗

′

; n − dℓ , X∗

ℓ β̂ℓ ,
RSSℓ

n − dℓ

(
In∗ + X∗

ℓ(X
T
ℓ Xℓ)

−1X∗
T

ℓ

))
(5)

and acceptance probability

α = min

{
1,

mN
0 (y∗

′

|X∗

0)m
N
ℓ (y∗|X∗

ℓ)

mN
ℓ (y∗

′ |X∗

ℓ)m
N
0 (y∗|X∗

0)

}

= min

{
1,

(
RSS∗

′

ℓ

RSS∗

ℓ

)(n∗
−dℓ)/2

×

(
RSS∗

′

0

RSS∗

0

)−(n∗
−d0)/2

}
(6)

where RSSℓ = (y −Xℓβ̂ℓ)
T (y −Xℓβ̂ℓ) being the residual sum of squares using (y, Xℓ) as data and

RSS∗
′

ℓ is given in (4) using (y∗
′

, X∗

ℓ) as data.

5 Variable Selection Computation

In this Section we provide two alternative approaches for the evaluation of the models under
consideration. In Section 5.1 we construct an efficient Monte Carlo scheme for the estimation of
the marginal likelihood for any given training sample X∗, while in Section 5.2 we introduce an
MCMC algorithm, more appropriate for large model spaces, which directly estimates the posterior
model probabilities over all possible training subsamples.

5.1 Monte Carlo estimation of the marginal likelihood

The marginal likelihood of any model mℓ ∈ M is given by

mI
ℓ(y|Xℓ , X∗

ℓ ) =

∫ ∫
f(y|βℓ , σ2,mℓ ; Xℓ)π

I
ℓ (βℓ , σ2|X∗

ℓ )dβℓ dσ2

=

∫ ∫ ∫
f(y|βℓ , σ2,mℓ ; Xℓ)f(βℓ , σ2|y∗,mℓ ; X∗

ℓ )mN
0 (y∗|X∗

0 )dβℓ dσ2dy∗

=

∫ ∫ ∫
f(y|βℓ, σ

2,mℓ ; Xℓ)f(y∗|βℓ , σ2,mℓ ; X∗

ℓ )πN
ℓ (βℓ , σ2)

mN
0 (y∗|X∗

0 )

mN
ℓ (y∗|X∗

ℓ )
dβℓ dσ2dy∗
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=

∫ {∫ ∫
f(y∗|βℓ , σ2,mℓ ; X∗

ℓ )f(βℓ, σ
2|y,mℓ ; Xℓ)dβℓ dσ2

}
mN

ℓ (y|Xℓ )
mN

0 (y∗|X∗

0 )

mN
ℓ (y∗|X∗

ℓ )
dy∗

=

∫
mN

ℓ (y∗|y; Xℓ, X
∗

ℓ )mN
ℓ (y|Xℓ )

mN
0 (y∗|X∗

0 )

mN
ℓ (y∗|X∗

ℓ )
dy∗

=

∫
mN

ℓ (y∗|y; Xℓ, X
∗

ℓ )mN
ℓ (y|Xℓ )

mN
0 (y∗|y; X0, X

∗

0 )mN
0 (y|X0 )/mN

0 (y|y∗; X0, X
∗

0 )

mN
ℓ (y∗|y; Xℓ, X∗

ℓ )mN
ℓ (y|Xℓ)/mN

ℓ (y|y∗; Xℓ, X∗

ℓ )
dy∗

= mN
0 (y|X0 )

∫
mN

0 (y∗|y; X0, X
∗

0 )/mN
0 (y|y∗; X0, X

∗

0 )

mN
ℓ (y∗|y; Xℓ, X∗

ℓ )/mN
ℓ (y|y∗; Xℓ, X∗

ℓ )
mN

ℓ (y∗|y; Xℓ, X
∗

ℓ )dy∗ . (7)

In the above expression we can calculate the predictive densities mN
ℓ (y∗|y; Xℓ, X

∗

ℓ ) and
mN

ℓ (y|y∗; Xℓ, X
∗

ℓ ) for any model ℓ, under the baseline prior πN
ℓ (βℓ, σ

2), which are given by

mN
ℓ (y|y∗; Xℓ, X

∗

ℓ ) = fStn

(
y ; n∗ − dℓ, Xℓβ̂

∗

ℓ ,
(
In + Xℓ(X

∗
T

ℓ X∗

ℓ)
−1XT

ℓ

)
σ̂∗2

U

)
(8)

and
mN

ℓ (y∗|y; Xℓ, X
∗

ℓ ) = fStn∗

(
y∗ ; n − dℓ, X

∗

ℓ β̂ℓ,
(
In∗ + X∗

ℓ(X
T
ℓ Xℓ)

−1X∗T
ℓ

)
σ̂2

U

)
, (9)

where β̂
∗

ℓ is the maximum likelihood estimate of βℓ , σ̂∗2
U = RSS∗

ℓ /(n
∗−dℓ) is the unbiased residual

variance for mℓ with RSS∗

ℓ being the corresponding residual sum of squares using (y∗, X∗

ℓ) as data;

β̂ℓ, σ̂2
U and RSSℓ are the corresponding measures using (y, Xℓ) as data. The quantity mN

0 (y|X∗

0 )
denotes the marginal likelihood of the reference model m0, as derived in (3). The appearance of
this quantity in (7) does not cause any problem in our setup since it is common in all marginal
likelihoods and it is cancelled out when we compare models using Bayes factors, posterior model
odds or probabilities.

We can now use (7) to setup a Monte Carlo scheme and estimate the marginal likelihood up
to the common constant mN

0 (y|X0 ). Thus we generate y∗(t), t = 1, . . . , T, from mN
ℓ (y∗|y; Xℓ , X∗

ℓ )
given in (9) and estimate the unnormalized marginal likelihood

mIU
ℓ (y|Xℓ , X∗

ℓ ) = mI
ℓ(y|Xℓ , X∗

ℓ )/mN
0 (y|X0 ) (10)

by

m̂IU
ℓ (y|Xℓ , X∗

ℓ , δ) =
1

T

T∑

t=1

mN
ℓ (y|y∗(t); Xℓ, X

∗

ℓ )

mN
0 (y|y∗(t); X0, X∗

0)

mN
0 (y∗(t)|y; X0, X

∗

0 )

mN
ℓ (y∗(t)|y; Xℓ, X∗

ℓ)
. (11)

For small model spaces it is easy to estimate the unnormalized marginal likelihoods (10) for
all models under consideration using the above sampling scheme. For large spaces, it is possible
to implement an MC3 algorithm (Madigan & York 1995, Kass & Raftery 1995) by estimating (10)
for each model that is evaluated for the first time within the iterative scheme.

5.2 Computation of the posterior model weights over different training

samples

An alternative approach is to use an MC3 scheme by generating y∗ for the given model mℓ and
then move to a model mℓ ′ (by proposing to add or delete a specific set of covariates). If we denote
by X the (n × d) design/data matrix of the full model, the algorithm can be summarized by
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• For k = 1, . . . , K (training samples):

1. Randomly consider a submatrix X∗ of X with dimension (n∗ × d).

2. For t = 1, . . . , T (iterations):

(a) For a given model mℓ , propose y∗ from (5) and accept it with probability (6).

(b) For j = 1, . . . , p , propose with probability one to move to model mℓ ′ by changing
the status of the j covariate and accept the proposed model with probability α =
min{1, A}, where

A =
f(y∗|y,mℓ ′)

f(y∗|y,mℓ)
×

f(mℓ ′)

f(mℓ)
=

mN
ℓ ′(y|y∗; Xℓ, X

∗

ℓ)

mN
ℓ (y|y∗; Xℓ, X∗

ℓ)
×

f(mℓ ′)

f(mℓ)

and f(mℓ) is the prior probability of model mℓ .

3. Calculate the posterior weights for each training sample k.

From the above MC3 scheme we can produce summaries of the posterior model weights over
the K different training samples. This might be more efficient in large model spaces since we
avoid implementing the Monte Carlo computation presented in Section 5.1 for each newly visited
model. Nevertheless, in such cases, the number of iterations T within each training sample must
be increased to ensure that the model space is satisfactorily explored for each training sample.

6 Experimental results

In this section the proposed methodology is illustrated on two real life examples. In both examples
we use a uniform prior on model space.

6.1 Hald’s data

We consider the Hald’s cement data (Montgomery & Peck 1982) to illustrate the proposed ap-
proach. This dataset consists of n = 13 observations and p = 4 covariates and it was previously
used by Girón et al. (2006) for illustrating objective variable selection methods. The response
variable y is the heat evolved in a cement mix and the explanatory variables are the tricalcium alu-
minate (X1), the tricalcium silicate (X2), the tetracalcium alumino ferrite (X3) and the dicalcium
silicate (X4). An important feature of these data is that variables X1 and X3 are highly correlated
(corr(X1, X3) = −0.824), as well as the variables X2 and X4 (with corr(X1, X4) = −0.975).

Table 1 presents posterior model probabilities summaries for the best models over 100 different
training sub-samples, after performing a full enumeration search, together with their corresponding
Bayes factors. For estimating the marginal likelihood we have used 1000 iterations. Figures 1 and
2 provide a pictorial representation of the distributions of posterior model probabilities (for the
five best models) and the marginal inclusion probabilities, respectively, across different training
samples. We note that the MAP model is X1+X2 with posterior probabilities ranging in (0.31, 0.55)
and median value equal to 0.40, which is 2.5 times the corresponding value from the second best
model. Averages of posterior model probabilities were very close to the median values presented
in Table 1; the latter is preferred since median posterior model probability values correspond to
median Bayes factors. The boxplots of the inclusion probabilities indicate that covariates X1 and
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Table 1: Summaries of posterior model probabilities for the best models over 100 different training
sub-samples together with Bayes factors of the MAP (m1) vs. mj < 5 for Hald’s data (Example
6.1).

Posterior Model Probabilities
Model Percentiles Median Based

mj Formula Mean Median SD 2.5% 97.5% Bayes Factors
1 X1 + X2 0.411 0.405 0.074 0.309 0.554 1.000
2 X1 + X4 0.167 0.160 0.040 0.107 0.278 2.529
3 X1 + X2 + X4 0.132 0.138 0.034 0.061 0.183 2.930
4 X1 + X2 + X3 0.128 0.132 0.033 0.062 0.185 3.061
5 X1 + X3 + X4 0.105 0.106 0.027 0.051 0.148 3.807

X2 should be included in the model formulation with posterior probabilities clearly above 0.5 for
all training samples.

We have also performed the same task with 1000 different training samples, instead of 100;
results were almost identical.

Furthermore, for illustrative reasons and in order to evaluate the efficiency of our approach,
we implemented the proposed MC3 scheme of Section 5.2 for 1000 iterations, considering 100
different training samples. Results were very similar to the ones from the full enumeration run
with some increased variability across samples which may be eliminated by increasing the number
of iterations. Graphical comparison of the results obtained using MC3 and the Monte Carlo full
enumeration results are presented in Figures 1 and 2.

Figure 1: Boxplots comparing the posterior model probabilities over 100 training samples for the
full enumeration (Full) using Monte Carlo estimates and the MC3 for Hald’s data (Example 6.1).
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Figure 2: Boxplots comparing the posterior marginal inclusion probabilities over 100 training
samples for the full enumeration (Full) using Monte Carlo estimates and the MC3 for Hald’s data
(Example 6.1).
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6.2 Prostate cancer data

In this Section, we present results of our methodology in the prostate cancer data (Stamey,
Kabakin, McNeal, Johnstone, Freiha, Redwine & Yang 1989), which was also used by Girón et al.
(2006) and Moreno & Girón (2008) to illustrate their approach. This dataset consists of n = 97
observations and p = 8 covariates. The response variable y is the level of prostate-specific antigen,
and the covariates are the logarithm of cancer volume (X1), the logarithm of prostate weight (X2),
the age of the patient (X3), the logarithm of the amount of benign prostatic hyperplasia (X4), the
seminal vesicle invasion (X5), the logarithm of capsular penetration (X6), the Gleason score (X7)
and the percent of Gleason scores 4 and 5 (X8).

Table 2: Summaries of posterior model probabilities for the best models over 100 different training
sub-samples together with Bayes factors of the MAP for prostate cancer data (Example 6.2).

Posterior Model Probabilities
Model Percentiles Median Based

mj Formula Mean Median SD 2.5% 97.5% Bayes Factors
1 X1 + X2 + X5 0.299 0.296 0.062 0.199 0.446 1.000
2 X1 + X2 + X4 + X5 0.107 0.104 0.036 0.054 0.177 2.845
3 X1 + X2 + X3 + X5 0.076 0.069 0.032 0.035 0.148 4.300
4 X1 + X2 + X5 + X8 0.067 0.066 0.021 0.033 0.110 4.472

The structure as well as the results of this illustration are similar as in Section 6.1. Results
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are summarized in Table 2 and Figures 3 and 4. To be more specific, the MAP model includes
covariates X1, X2 and X5 with posterior probabilities taking values in (0.20, 0.45) and median
value equal to 0.3, which is 2.8 times the corresponding value from the second best model. The
boxplots of the inclusion probabilities indicate that the same covariates should be included in the
model formulation with posterior probabilities clearly above 0.5 for all training samples.

Furthermore, we implemented the proposed MC3 algorithm of Section 5.2 for 2000 iterations,
considering 100 different training samples. Results from the two methods were equivalent; see
Figures 3 and 4 for a graphical comparison.

Figure 3: Boxplots comparing the posterior model probabilities over 100 training samples for
the full enumeration (Full) using Monte Carlo estimates and the MC3 for prostate cancer data
(Example 6.2).
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Figure 4: Boxplots comparing the posterior marginal inclusion probabilities over 100 training
samples for the full enumeration (Full) using Monte Carlo estimates and the MC3 for prostate
cancer data (Example 6.2).
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7 Discussion

We have presented a computational approach for variable selection in normal regression models,
based on the expected-posterior prior methodology. We have constructed efficient MCMC schemes
for the estimation of the parameters within each model, based on data augmentation of the imagi-
nary data, coming from the prior predictive distribution of a reference model. Exploiting this data
augmentation scheme, we have also constructed an efficient Monte Carlo estimate of the marginal
likelihood of each competing model. Variable selection is then attained by estimating posterior
model weights in the full space, or by considering an alternative MC3 scheme. The proposed
methodology has been implemented on two real life examples.

All results are presented over different training samples, in contrast to relevant research work,
where uncertainty due to the training sample selection is ignored. Selection of “good” models can
be based on the posterior inclusion probabilities which are more robust across training sample, in
comparison to posterior model probabilities.
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Appendix

Calculation of the Marginal Likelihood

mN
ℓ (y∗|X∗

ℓ ) =

∫ ∫
f(y∗|βℓ , σ2,mℓ ; X∗

ℓ )πN
ℓ (βℓ , σ2)dβℓ dσ2

= cℓ

∫ ∫
(2πσ2)−

n
∗

2 exp

{
−

1

2σ2
(y∗ − X∗

ℓ βℓ)
T (y∗ − X∗

ℓ βℓ)

}
1

σ2
dβℓ dσ2

= cℓ (2π)−
n
∗

2

∫ (
σ2

)
−

n
∗
+2

2 exp

{
−

y∗
T

y∗

2σ2

}∫
exp

{
−

1

2σ2

[
βT

ℓ X∗
T

ℓ X∗

ℓβℓ − 2βT
ℓ X∗

T

ℓ y∗

]}
dβℓ dσ2

= cℓ (2π)−
n
∗

2

∫ (
σ2

)
−

n
∗
+2

2 exp

{
−

y∗
T

y∗

2σ2
+

1

2σ2
β̂

T

ℓ X∗
T

ℓ X∗

ℓ β̂ℓ

}

×

∫
exp

{
−

1

2σ2

(
βℓ − β̂

∗

ℓ

)T

X∗
T

ℓ X∗

ℓ

(
βℓ − β̂

∗

ℓ

)}
dβℓ dσ2

= cℓ (2π)−
n
∗

2

∫ (
σ2

)
−

n
∗
+2

2 exp

{
−

y∗
T

y∗

2σ2
+

1

2σ2
β̂

T

ℓ X∗
T

ℓ X∗

ℓ β̂ℓ

}
(2π)

dℓ

2 |X∗
T

ℓ X∗

ℓ |
−

1

2

(
σ2

) dℓ

2 dσ2

= cℓ (2π)
dℓ−n

∗

2 |X∗
T

ℓ X∗

ℓ |
−

1

2

∫ (
σ2

)
−

(
n
∗
−dℓ

2
+1

)

exp



−

y∗
T

y∗
−β̂

T

ℓ X∗
T

ℓ
X∗

ℓ
β̂ℓ

2

σ2



 dσ2

= cℓ (2π)
dℓ−n

∗

2 |X∗
T

ℓ X∗

ℓ |
−

1

2

Γ
(

n∗
−dℓ

2

)

(
y∗

T
y∗

−β̂
T

ℓ X∗
T

ℓ
X∗

ℓ
β̂ℓ

2

)n∗
−dℓ

2

= cℓ (π)
dℓ−n

∗

2 |X∗
T

ℓ X∗

ℓ |
−

1

2

Γ
(

n∗
−dℓ

2

)

RSS∗

n∗
−dℓ
2

ℓ

.
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