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Abstract

This paper deals with the Bayesian analysis of graphical models of marginal in-

dependence for three way contingency tables. We use a marginal log-linear parame-

trization, under which the model is defined through suitable zero-constraints on the

interaction parameters calculated within marginal distributions. We undertake a

comprehensive Bayesian analysis of these models, involving suitable choices of prior

distributions, estimation, model determination, as well as the allied computational

issues. The methodology is illustrated with reference to two real data sets.

Keywords: graphical models, marginal log-linear parametrization, Monte Carlo com-

putation, order decomposability, power prior approach.

1 Introduction

Graphical models of marginal independence were originally introduced by Cox and

Wermuth (1993) for the analysis of multivariate Gaussian distributions. They compose

a family of multivariate distributions incorporating the marginal independences repre-

sented by a bidirected graph. The nodes in the graph correspond to a set of random
∗Address for correspondence: Ioannis Ntzoufras, Department of Statistics, Athens University of
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variables and the bidirected edges represent the pairwise associations between them.

A missing edge from a pair of nodes indicates that the corresponding variables are

marginally independent. The complete list of marginal independences implied by a

bidirected graph were studied by Kauermann (1996) and by Richardson (2003) using

the so-called Markov properties.

The analysis of the Gaussian case can be easily performed both in classical and

Bayesian frameworks since marginal independences correspond to zero constraints in

the variance-covariance matrix. The situation is more complicated in the discrete case,

where marginal independences correspond to non linear constraints on the set of pa-

rameters. Only recently parameterizations for these models have been proposed by

Lupparelli (2006), Lupparelli et al. (2008) and Drton and Richardson (2008). In this

paper we use the parameterization proposed by Lupparelli (2006) and Lupparelli et

al. (2008) based on the class of marginal log-linear models of Bergsma and Rudas

(2002). Each log-linear parameter is calculated within the appropriate marginal distri-

bution and a graphical model of marginal independence is defined by zero constraints

on specific higher order log-linear parameters. Alternative parameterizations have been

proposed by Drton and Richardson (2008) based on the Moebius inversion and by Lup-

parelli et al. (2008) based on multivariate logistic representation of the models of

Glonek and McCullagh (1995).

We present a comprehensive Bayesian analysis of discrete graphical models of mar-

ginal independence, involving suitable choices of prior distributions, estimation, model

determination as well as the allied computational issues. Here we focus on the three

way case where the joint probability of each model under consideration can be ap-

propriately factorized. We work directly in terms of the vector of joint probabilities

on which we impose the constraints implied by the graph. Then we consider a mini-

mal set of probability parameters expressing marginal/conditional independences and

sufficiently describe the graphical model of interest. We introduce a conjugate prior

distribution based on Dirichlet priors on the appropriate probability parameters. The

prior distribution factorize similarly to the likelihood. In order to make the prior distri-

butions ‘compatible’ across models we define all probability parameters (marginal and

conditional ones) of each model from the parameters of the joint distribution of the full
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table. In order to specify the prior parameters of the Dirichlet prior distribution, we

adopt ideas based on the power prior approach of Ibrahim and Chen (2000) and Chen

et al. (2000).

The plan of the paper is as follows. In Section 2 we introduce graphical models of

marginal independence, we establish the notation, we present Markov properties and

we explain in detail their log-linear parameterization. Section 3 illustrates a suitable

factorization of the likelihood function for all models of marginal independence in three-

way tables. In Section 4, we consider conjugate prior distributions, we present an

imaginary data approach for prior specification and we compare alternative prior set-

ups. Section 5 provides posterior model and parameter distributions which can be

easily calculated via conjugate analysis. Two illustrative examples are presented in

Section 6. Finally, we end up with a discussion and some final comments regarding our

current research on the topic.

2 Preliminaries

2.1 Graphical Models of Marginal Independence

A bidirected graph G = (V, E) is characterized by a vertex set V and an edge set E with

the property that (vi, vj) ∈ E if and only if (vj , vi) ∈ E. We denote each bidirected

edge by (←−→vi, vj) =
{
(vi, vj), (vj , vi)

}
and we represent it with a bidirected arrow. If a

vertex vi is adjacent to another vertex vj , then vj is said to be spouse of vi, and we

write vj ∈ sp(vi). For a set A ⊆ V, we define sp(A) = ∪ (sp(v)|v ∈ A). The degree d(v)

of a vertex v is the cardinality of the spouse set. A path connecting two vertices, v0 and

vm, is a finite sequence of distinct vertices v0, . . . vm such that (vi−1, vi), i = 1, . . . ,m,

is an edge of the graph. A vertex set C ⊆ V is connected if every two vertexes vi and vj

are joined by a path in which every vertex is in C. Two sets A,B ∈ V are separated by

a third set S ∈ V if any path from a vertex in A to a vertex in B contains a vertex in

S. It can be shown that, if a subset of the nodes D is not connected then there exist a

unique partition of it into maximal (with respect to inclusion) connected set C1, . . . , Cr

D = C1 ∪ C2 ∪ . . . ∪ Cr. (1)
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The graph is used to represent marginal independences between a set of discrete

random variables XV =
(
Xv, v ∈ V), each one taking values iv ∈ Iv. The cross-

tabulation of variables XV produces a contingency table of dimension |V| with cell

frequencies n =
(
n(i), i ∈ I

)
where I = ×v∈VIv. Similarly for any marginal M ⊆ V,

we denote with XM =
(
Xv , v ∈ M

)
the set of variables which produce the marginal

table with frequencies nM =
(
nM (iM ), iM ∈ IM

)
where IM = ×v∈MIv. The marginal

cell counts are the sum of specific elements of the full table and are given by

nM (iM ) =
∑

j∈IM|iM

n(j)

where M = V \M and IM |iM = {j ∈ I : jM = iM}. Therefore IM |iM refers to all

cells of the full table for which the variables of the M marginal are constrained to the

specific value iM .

A graphical model of marginal independence is constructed via the following Markov

properties.

Definition 1 : Connected Set Markov Property (Richardson, 2003). The distribution

of a random vector XV is said to satisfy the connected set Markov property if

XC⊥⊥XV\(C∪sp(C)) (2)

whenever ∅ �= C ⊆ V is a connected set.

A more exhaustive Markov property is the global Markov property, which requires

all the marginal independences in (2), but also additional conditional independences.

Definition 2 : Global Markov Property (Kauermann, 1996 and Richardson, 2003).

The distribution of a random vector XV = {Xv, v ∈ V } satisfies the Global Markov

property if

A is separated from B by V \ (A ∪B ∪ C) in G implies XA⊥⊥XB|XC , (3)

with A, B and C disjoint subsets of V , and C may be empty.

Despite the global Markov property is more exhaustive (in the sense that indicates

both marginal and conditional independences), Drton and Richardson (2008) pointed

4



out that a distribution satisfies the global Markov property if and only if it satisfies the

connected set Markov property.

From the global Markov property, we directly derive that if two nodes i and j are

disconnected, then Xi⊥⊥Xj that is the variables are marginal independent. The same is

true for any two sets A ⊂ V and B ⊂ V that are disconnected, implying that A⊥⊥B (are

marginal independent). This can be easily generalized for any given disconnected set

D satisfying (1). Then the global Markov property for the bidirected graph G implies

XC1⊥⊥XC2⊥⊥ . . .⊥⊥XCr .

According to Drton and Richardson (2008), a discrete marginal graphical model,

associated to a bidirected graph G, is a family P (G) of joint distributions for a cate-

gorical random vector XV satisfying the global Markov property (or equivalently the

connected set Markov property). Following the above, for every not connected set

D ⊆ V, it holds that

P (XD = iD) =
r∏

k=1

P (XCk
= iCk

) (4)

where C1, . . . , Cr are the inclusion maximal connected sets satisfying (1).

2.2 A Parameterization for Marginal Log-Linear Models

Lupparelli (2006) and Lupparelli et al. (2008) show that it is possible to define a

parameterization for any set XV of categorical variables, by using the marginal log-

linear model by Bersgma and Rudas (2002).

Bergsma and Rudas (2002) suggested to work in terms of log-linear parameters λ

obtained from a specific set of marginal tables. They consider the following model

λ = C log
(
Mvec(π)

)
(5)

where π =
(
π(i), i ∈ I

)
is the joint probability distribution of XV and vec(π) is

a vector of dimension |I| obtained by rearranging the elements π in a reverse lexico-

graphical ordering of the corresponding variable levels with the level of the first variable

changing first (or faster). For example in a 2 × 2 table the vector of probabilities will

be given by vec(π) =
(
π(1, 1), π(2, 1), π(1, 2), π(2, 2)

)T
. In this paper we assume that

the parameter vector λ satisfies sum-to-zero constraints and we indicate with C the
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corresponding contrast matrix. Finally M is the marginalization matrix which specifies

from which marginal we calculate each element of λ. An algorithm for constructing C

and M matrices is given in the Appendix ( for additional details see Appendix A in

Lupparelli, 2006).

2.2.1 Properties of Marginal Log-Linear Parameters

Let M ⊆ V be a generic marginal, and indicate with S(M) the class of all subsets of

M and with EM ∈ S(M) the set of effects obtained from marginal M .

Given M = {M1,M2, . . . ,M|M|} the set of marginals used to calculate the log-

linear parameters λ, we denote by λM
e =

(
λM
e (ie), ie ∈ Ie, M ∈ M

)
, the set of

parameters for effect e ⊆ M estimated by the marginal M and by λM the set of all

parameters estimated by the same marginal.

According to Bersgma and Rudas (2002), in order to obtain a well-defined param-

eterization, it is important to allocate the interaction parameters λ among the chosen

marginals to get a complete and hierarchical set of parameters.

Definition 3 : Complete and hierarchical set of parameters. A set of marginal log-

linear parameters λ is called hierarchical and complete if:

i) The elements of M are ordered in a non decreasing order, which means that no

marginal is a subset of any preceding one, i.e. Mi �⊆ Mj if i > j (hierarchical

ordering).

Furthermore, we require the last marginal in the sequence to be the set all vertices

under consideration, therefore M|M| = V .

ii) From each marginal Mi we can calculate only the effects that was not possible to

get from the ones preceding it in the ordering under consideration; hence the sets

EMi of the effects under consideration are given by

EM1 = S(M1) and EMi = S(Mi) \
{∪i−1

k=1S(Mk)
}

for i = 1, . . . , |M| .

The above set of parameters define a parametrization of the distribution on the

contingency table (see Bergsma and Rudas, 2002, for a formal definition). It is called
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complete since each parameter is estimated from one and only one marginal and hierar-

chical because the full set of parameters is generated by marginals in a non decreasing

ordering (Bersgma and Rudas, 2002, p 143-144).

For every complete and hierarchical set of parameters, the inverse transformation of

(5) always exists but it cannot be analytically calculated (Lupparelli, 2006, p. 39). Iter-

ative procedures have been used to calculate π for any given values of λ and hence the

likelihood of the graph under consideration (Rudas and Bergsma, 2004 and Lupparelli,

2006).

An important problem when working with marginal log-linear parameters λ is that

we may end up with the definition of non-existing joint marginal probabilities. A way to

avoid this is to consider the parameters’ variation independence property; see Bergsma

and Rudas (2002). A set of parameters is variation independent when the range of pos-

sible values of one of them does not depend on the other’s value. Hence the joint range

of the parameters is the Cartesian product of the separate ranges of the parameters

involved. This property ensures the existence of a common joint distribution deriving

from the marginals of the model under consideration. Moreover, variation indepen-

dence ensures strong compatibility which implies both compatibility of the marginals

and existence of a common joint distribution. Compatibility of the marginals means

that from different distributions we will end up to the same distribution for the common

parameters, for example from marginals AB and AC we get the same marginal for A.

To assure variation independence of hierarchical log-linear parameters, a generalization

of the classical decomposability concept is needed.

Definition 4 : Decomposable set of Marginals. A class of incomparable (with respect

to inclusion) marginalsM is called decomposable if it has at most two elements (|M| ≤
2) or if there is an ordering M1, . . . ,M|M| of its elements such that, for k = 3, . . . , |M|
there exist at least one jk < k for which the running intersection property is satisfied,

that is (
∪k−1

i=1 Mi

)
∩Mk = Mjk

∩Mk .

Definition 5 : Ordered decomposable set of marginals. A class of marginals M is

ordered decomposable if it has at most two elements or if there is a hierarchical ordering
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M1, . . . ,M|M| of the marginals and, for k = 3, . . . , |M|, the maximal elements (in terms

of inclusion) of {M1, . . . ,Mk} form a decomposable set.

The importance of the above property is due to the theorem 4 of Bergsma and

Rudas (2002) where they proved that a set of complete and hierarchical marginal log-

linear parameters is variation independent if and only if the ordering of the marginals

involved is ordered decomposable. Hence order decomposability ensures the existence

of a well defined joint probability.

2.3 Construction of Marginal Log-Linear Graphical Models

Based on the results of the previous subsection, Lupparelli (2006) and Lupparelli et al.

(2008) proposed a strategy to construct a marginal log-linear parametrization for the

family of discrete bidirected graphical.

Initially we need to consider a set of a parameters λ derived from a hierarchical

ordering of the marginals in D(G) ∪ V; where D(G) is the set of all disconnected

components of the bidirected graph G. Then, we must set the highest order log-linear

interaction parameters of D(G) equal to zero.

More precisely, we need to consider the following steps:

i) Construct a hierarchical ordering of the marginals Mi ∈ D(G).

ii) Append the marginal M = V (corresponding to the full table under consideration)

at the end of the list if it is not already included.

iii) For every marginal table Mi ∈ D(G) ∪ V estimate all parameters of effects in Mi

that have not already estimated from the preceding marginals.

iv) For every marginal table Mi ∈ D(G), set the highest order log-linear interaction

parameter equal to zero; see Proposition 4.3.1 in Lupparelli (2006).

In the three way case the log-linear parameters the marginals are always obtained

from a set of order of order decomposable marginals, hence the parameters are variation

independent.
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3 Likelihood Decomposition

In this paper we propose to use a different approach from the one by Rudas and

Bergsma (2004) and Lupparelli (2006) in order to estimate the joint distribution π of

a graph G. We impose the constraints implied by the graph G directly on the joint

probabilities π. We work with a minimal set of probability parameters πG expressing

marginal/conditional independences and sufficiently describe the graphical model G

under investigation. By this way we can always reconstruct the joint distribution π for

a given graph G via πG and then simply calculate the marginal log-linear parameters

directly using (5). Here we focus on the three way case where the joint probability of

each model can be appropriately factorized for any graph G.

For every three way contingency table eight possible graphical models models exist

which can be represented by four different types of graphs: the independence, the

saturated, the edge and the gamma structure graph (see Figure 1). The independence

graph is the one with the empty edge set (E = ∅), the saturated is the one containing

all possible edges
[
E =

(←−−→
(v,w) : v �= w ∈ V)], an edge graph is the one having only one

single edge and a gamma structure graph is one represented by a single path of length

two. In a three way table, three ‘edge’ and three ‘gamma’ graphs are available.

A

B C

A

B C

A

B C

A

B C

(a) Independence Model (b) Saturated Model (c) Edge Model (d) Gamma Model

Figure 1: Type of Graphs in Three Way Tables

For the saturated model GS , we get all parameters from the full table, i.e. πGS = π.

Thus, the likelihood is directly written as

f(n|π, GS) =
Γ(N + 1)∏

i∈I
Γ
(
n(i) + 1

) ∏
i∈I

π(i)n(i)
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where N =
∑

i∈I n(i) is the total sample size.

The joint distributions for the independence and the edge models can be easily

expressed using the equation

f(n|πG, G) =
Γ(N + 1)∏

i∈I
Γ
(
n(i) + 1

) ∏
d∈D(G)

∏
id∈Id

πd(id)n(id)

where πG =
(
πd, d ∈ D(G)

)
and πd =

(
πd(id), id ∈ Id

)
is the vector of probabilities

corresponding to the table of the marginal d. The above equation derives directly from

(4) since the graph is disconnected.

Finally, the decomposition of the gamma structures is not as straightforward as in

the previous case. In addition to specific marginal probability parameters we also need

to use some conditional ones. Let us denote by “c” the corner node, that is the vertex

with degree 2 and by c = V \ c the end-points of the path. The set of disconnected

marginals is equal to the end-point vertices of the graph, hence c = D(G). Then the

likelihood can be written as

f(n|πG, G) =
Γ(N + 1)∏

i∈I
Γ
(
n(i) + 1

) ∏
ic ∈Ic

⎛⎝∏
ic∈Ic

πc|c(ic|ic)n(ic,ic)

⎞⎠⎡⎣ ∏
d∈D(G)

∏
id∈Id

πd(id)n(id)

⎤⎦ ,

where πG =
(
πc|c, πd, d ∈ D(G)

)
, here D(G) = V \ c and

πc|c =
(
πc|c(ic|ic), ic ∈ Ic, ic ∈ Ic

)
are all the conditional probabilities of c given c.

The above factorization can be easily adopted to get maximum likelihood estimates

analytically and avoid the iterative procedure used by Rudas and Bersgma (2004) and

Lupparelli (2006). In this paper we work using conjugate priors on the appropriate

probability parameters of the above parametrization and then calculate the correspond-

ing log-linear parameters.

4 Prior distributions on cell probabilities

4.1 Conjugate Priors

For the specification of the prior distribution of the probability parameter vector we

initially consider a Dirichlet distribution with parameters α =
(
α(i), i ∈ I ) for the
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vector of the joint probabilities of the full table π =
(
π(i), i ∈ I), where I is the set of

all cells of the table under consideration. Hence, for the full table the prior density is

given by

f(π) =
Γ (α)∏

i∈I
Γ
(
α(i)
) ∏

i∈I
π(i)α(i)−1 = fDi(π; α) (6)

where fDi

(
π; α

)
is the density function of the Dirichlet distribution evaluated at π

with parameters α and α =
∑

i∈I α(i).

Under this set-up, the marginal prior of π(i) is a Beta distribution with parameters

α(i) and α − α(i), i.e. π(i) ∼ Beta
(
α(i), α − α(i)

)
. The prior mean and variance of

each cell is given by

E
[
π(i)
]

=
α(i)
α

and V
[
π(i)
]

=
α(i){α − α(i)}

α2(α + 1)
.

When no prior information is available then we usually set all α(i) = α
|I| resulting to

E
[
π(i)
]

=
1
|I| and V

[
π(i)
]

=
|I| − 1
|I|2(α + 1)

.

Small values of α increase the variance of each cell probability parameter. Usual

choices for α are the values |I|/2 (Jeffrey’s prior), |I| and 1 (corresponding to α(i)

equal to 1/2, 1 and 1/|I| respectively); for details see Dellaportas and Forster (1999).

The choice of this prior parameter value is of prominent importance for the model

comparison due to the well known sensitivity of the posterior model odds and the

Bartlett-Lindley paradox (Lindley, 1957, Bartlett, 1957). Here this effect is not so

adverse, as for example in usual variable selection for generalized linear models, for two

reasons. Firstly even if we consider the limiting case where α(i) = α
|I| with α → 0,

the variance is finite and equal to (|I| − 1)/|I|2. Secondly, the distributions of all

models are constructed from a common distribution of the full model/table making

the prior distributions ‘compatible’ across different models (Dawid and Lauritzen, 2000

and Roverato and Consonni, 2004).

The model specific prior distributions are defined by the constraints imposed by the

model’s graphical structure and the adopted factorization. The prior distribution also

factorizes in same manner as the likelihood described in section 3. Thus, the prior for

the saturated model is the usual Dirichlet (6).
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For the independence and edge models the prior is given by

f
(
πG
∣∣G) =

∏
d∈D(G)

⎡⎢⎢⎣ Γ (α)∏
id∈Id

Γ
(
α(id)

) ∏
id∈Id

πd(id)α(id)−1

⎤⎥⎥⎦ =
∏

d∈D(G)

fDi(πd; αd)

with parameter vector πG =
(
πd, d ∈ D(G)

)
. We denote the above density which is a

simple product (over all disconnected sets) of Dirichlet distributions by

f
(
πG
)

= fPD
(
πd; αd, d ∈ D(G)

)
. (7)

For the gamma structure the prior is given by

p
(
πG
)

=
∏

ic ∈Ic

⎧⎪⎪⎨⎪⎪⎩
Γ
(
α(ic)

)
∏

ic∈Ic

Γ
(
α(ic, ic)

)
⎛⎝∏

ic∈Ic

πc|c(ic, ic)α(ic,ic)−1

⎞⎠
⎫⎪⎪⎬⎪⎪⎭ (8)

× fPD
(
πd; αd, d ∈ D(G)

)
with parameter vector πG

(
πc|c, πd, d ∈ D(G)

)
. The fist part of equation (8), that is

the product for all level of c of Dirichlet distributions of the conditional probabilities,

can be denoted by fCPD
(
πc|c ; α

)
. Then, the prior density (8) can be written as

f
(
πG
)

= fCPD
(
πc|c ; α

)
fPD
(
πd; αd, d ∈ D(G)

)
. (9)

In order to make the prior distributions ‘compatible’ across models, we define the

prior parameters of πG from the corresponding parameters of the prior distribution

(6) imposed on the probabilities π of the full table; see Dawid and Lauritzen (2000),

Roverato and Consonni (2004).

Let us consider a marginal M ∈M(G) for which we wish to estimate the probability

parameters πM = (πM (iM ), iM ∈ IM). The resulting prior is πM ∼ Di
(
αM

)
, that is a

Dirichlet distribution with parameters αM = (αM (iM ), iM ∈ IM) given by

αM (iM ) =
∑

j∈IM |iM

α(j),

see (i) of Lemma 7.2 in Dawid and Lauritzen (1993, p.1304).
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For example, consider a three way table with V = {A,B,C} and the marginal

M = C. Then the prior imposed on the parameters πC of the marginal C is given by

πC ∼ Di
(
αC

)
with αC(iC) =

|IA|∑
iA=1

|IB|∑
iB=1

α(iA, iB , iC) for iC = 1, 2, . . . , |IC |,

where πC =
(
πC(1), . . . , πC(|IC |)

)
.

For the conditional distribution of M1|M2 with M1 �= M2 ∈ M(G) we work in a

similar way. The vector πM1|M2
(·|iM2) =

(
πM1|M2

(iM1 |iM2), iM1 ∈ IM1

)
a priori follows

a Dirichlet distribution

πM1|M2
(·|iM2) ∼ Di

(
αM1∪M2(iM1∪M2), iM1∪M2 ∈ IM1|iM2

)
.

The above structure derives from the decomposition of a Dirichlet as a ratio of Gamma

distributions; see also Lemma 7.2 (ii) in Dawid and Lauritzen (1993, p.1304).

For example, consider marginals M1 = A and M2 = B in a three way contingency

table with V = {A,B,C}. Then, for a specific level of variable B, say iB = 2,

πA|B(·|iB = 2) ∼ Di
(
αAB(·, 2))

where αAB(·, 2) =
(
αAB(1, 2), αAB(2, 2), . . . , αAB(|IA|, 2)

)
and

αAB(iA, 2) =
|IC |∑
iC=1

αABC(iA, 2, iC).

4.2 Specification of Prior Parameters Using Imaginary Data.

In order to specify the prior parameters of the Dirichlet prior distribution, we adopt

ideas based on the power prior approach of Ibrahim and Chen (2000) and Chen et al.

(2000). We use their approach to advocate sensible values for the Dirichlet prior param-

eters on the full table and the corresponding induced values for the rest of the graphs as

described in the previous sub-section. Let us consider imaginary set of data represented

by the frequency table n∗ = (n∗(i), i ∈ I) of total sample size N∗ =
∑

i∈I n∗(i) and

a Dirichlet ‘pre-prior’ with all parameters equal to α0. Then the unnormalized prior

distribution can be obtained by the product of the likelihood of n∗ raised to a power
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w multiplied by the ‘pre-prior’ distribution. Hence

f(π) ∝ f(n∗|π)w × fDi

(
π; α(i) = α0, i ∈ I

)
∝
∏
i∈I

π(i)w n∗(i)+α0−1

= fDi

(
π; α(i) = w n∗(i) + α0, i ∈ I

)
. (10)

Using the above prior set up, we expect a priori to observe a total number of

w N∗ + |I|α0 observations. The parameter w is used to specify the steepness of the

prior distribution and the weight of belief on each prior observation. For w = 1 then

each imaginary observation has the same weight as the actual observations. Values of

w < 1 will give less weight to each imaginary observation while w > 1 will increase

the weight of believe on the prior/imaginary data. Overall the prior will account for

the (w N∗ + |I|α0)/(w N∗ + N + |I|α0) of the total information used in the posterior

distribution. Hence for w = 1, N∗ = N and α0 → 0 then both the prior and data will

account for 50% of the information used in the posterior.

For w = 1/N∗ then α(i) = p∗(i) + α0 with p∗(i) = n∗(i)/N∗, the prior data n∗

will account for information of one data point while the total weight of the prior will

be equal to (1 + |I|α0)/(1 + N + |I|α0). If we further set α0 = 0, then the prior

distribution (10) will account for information equivalent to a single observation. This

prior set-up will be referred in this paper as the unit information prior (UIP). When no

information is available, then we may further consider the choice of equal cell frequencies

n∗(i) = n∗ for the imaginary data in order to support the simplest possible model under

consideration. Under this approach N∗ = n∗ × |I| and w = 1/N∗ = 1
n∗×|I| resulting to

π ∼ Di
(
α(i) = 1/|I|, i ∈ I

)
.

The latter prior is equivalent to the one advocated by Perks (1947). It has the nice

property that the prior on the marginal parameters does not depend on the size of

the table; for example, for a binary variable, this prior will assign a Beta(1/2, 1/2)

prior on the corresponding marginal regardless the size of the table we work with (for

example if we work with 23 or 2 × 4 × 5 × 4 table). This property is retained for any

prior distribution of type (10) with w∗ = 1/N∗, p∗(i) = 1/|I| and α0 ∝ 1/|I|.
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4.3 Comparison of Prior Set-ups

Since Perks’ prior (with α(i) = 1/|I|) has a unit information interpretation, it can

be used as a yardstick in order to identify and interpret the effect of any other prior

distribution used. Prior distribution with α(i) < 1/|I|, or equivalently α < 1, results in

larger variance than the one imposed by our proposed unit information prior and hence

it a posteriori supports more parsimonious models. On the contrary, prior distributions

with α(i) > 1/|I|, or α > 1, result in lower prior variance and hence it a posteriori

support models with more complicated graph structure. So the variance ratio between

a Dirichlet prior with α(i) = α/|I| and Perks prior is equal to

V R =
V
(
πi

∣∣ α(i) = α
|I|
)

V
(
πi

∣∣ α(i) = |I|−1
) =

2
α + 1

.

A comparison of the information used from some standard choices is provided in

Table 1. From this Table, we observe that Jeffreys’ prior variance is lower than the

corresponding Perks’ prior reaching a reduction of about 60% and 85% for a 23 and

a 2 × 3 × 4 table respectively. The reduction is even greater for the prior of the Unit

Expected Cell mean (α(i) = 1) reaching 78% and 92% respectively.

Finally, we use for comparison an Empirical Bayes prior based on the UIP approach.

Hence we set the imaginary data n∗(i) = n(i), w = 1/N and α0 = 0. Then the

resulting prior parameters are given by α(i) = p(i), where p(i) = n(i)/N is the sample

proportion. Under this set-up, the prior variance for each π(i) is equal to V [π(i)] =
1
2p(i)

(
1 − p(i)

)
. Thus the above prior assumes that we have imaginary data with the

same frequency table as the observed one but they accounts for information equal to

one data point (Empirical UIP).

5 Posterior Model and Parameter Distributions

Since the prior is conjugate to the likelihood the posterior can be derived easily as fol-

lows. For the saturated model the posterior distribution is also a Dirichlet distribution

π
∣∣n, GS ∼ Di

(
α̃
)

with parameters

α̃ =
(
α̃(i) = α(i) + n(i), i ∈ I).
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For the independence and the edge structure the density of the posterior distribution

is is equivalent to (7), f(πG
∣∣n, G) = fPD

(
πG; α̃G) with

α̃G =
(
α̃d, d ∈ D(G)

)
and α̃d =

(
α̃d(id) = αd(id) + nd(id), id ∈ Id

)
.

Finally, for the gamma structure f(πG|n, G) = fCPD
(
πc|c ; α̃

)× fPD
(
πd; α̃d, d ∈ D(G)

)
i.e. a distribution with density equivalent to the corresponding prior (8) with parame-

ters

α̃G =
(
α̃, α̃d, d ∈ D(G)

)
.

From the properties of the Dirichlet distribution, it derives that each element of πG

follows a Beta distribution with the appropriate parameters.

For model choice we need to estimate the posterior model probabilities f(G|n) ∝
f(n|G)f(G), with f(n|G) marginal likelihood of the model and f(G) prior distribution

on G. Here we restrict to the simple case where f(G) is uniform, hence the posterior

will depend only on the marginal likelihood f(n|G) of the model under consideration.

The marginal likelihood can be calculated analytically since the above prior set-up is

conjugate.

For the saturated model the marginal likelihood is given by

f(n|G) = K(n)× DK
(
α
)

DK
(
α̃
)

where K(n) and DK(α) are given by

K(n) =
Γ(N + 1)∏

i∈I
Γ
(
n(i) + 1

) and DK
(
α
)

=
Γ
(∑

i∈I
α(i)
)

∏
i∈I

Γ
(
α(i)
) .

respectively.

For the independence and the edge models the marginal likelihood is given by

f(n|G) = K(n)
∏

d∈D(G)

DK
(
αd

)
DK

(
α̃d

) (11)

where

DK
(
αd

)
=

Γ

( ∑
id∈Id

αd(id)

)
∏

id∈Id

Γ
(
αd(id)

) .
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Finally, for the gamma structure the marginal likelihood f(n|G) is given by

f(n|G) = K(n)
∏

ic ∈Ic

DK
(
α(·, ic)

)
DK

(
α̃(·, ic)

) ∏
d∈D(G)

DK
(
αd

)
DK

(
α̃d

) . (12)

where

DK
(
α(·, ic)

)
=

Γ

( ∑
ic∈Ic

α(ic, ic)

)
∏

ic∈Ic

Γ
(
α(ic, ic)

) .

The posterior distribution of the marginal log-linear parameters λG can be es-

timated in a straightforward manner using Monte Carlo samples from the posterior

distribution of πG. Specifically, a sample from the posterior distribution of λG can be

generated by the following steps.

i) Generate a random sample πG, (t)(t = 1, . . . , T ) from the posterior distribution of

πG.

ii) At each iteration t, calculate the the full table of probabilities π(t) from πG, (t).

iii) The vector of marginal log linear parameters, λG, (t), can be easily obtained from

π(t) via equation (5) which becomes

λG, (t) = CG log
(
MGvec

(
π(t)
))

where CG and MG are the contrast and marginalization matrices under graph

G. Note that some elements of λG will automatically be constrained to zero for

all generated values due to the graphical structure of the model G and the way

we calculate log-linear parameters using the previous equation.

Finally, we can use the generated values
(
λG, (t); t = 1, 2, . . . , T

)
to estimate summaries

of the posterior distribution f(λG|G) or obtain plots fully describing this distribution.

6 Illustrative examples

The methodology described in the previous sections is now illustrated on two real data

sets, a 2×2×2 and a 3×2×4 tables. In both example we compare the results obtained

18



with our yardstick prior, the UIP-Perks’ prior (α(i) = 1/|I|), with those obtained using

Jeffrey’s (α(i) = 1/2), Unit Expected Cell (α(i) = 1), and Empirical Bayes (α(i) = p(i))

priors.

6.1 A 2× 2× 2 Table: Antitoxin Medication Data

We consider a data set presented by Healy (1988) regarding a study on the relationship

between patient condition (more or less severe), assumption of antitoxin (yes or not)

and survival status (survived or not); see Table 2. In Table 3 we compare posterior

model probabilities under the four different prior set-ups.

Table 2: Antitoxin data

Survival (S)

Condition (C) Antitoxin (A) No Yes

More Severe Yes 15 6

No 22 4

Less Severe Yes 5 15

No 7 5

Under all prior assumptions the maximum a posteriori model (MAP) is SC+A (we

omit the conventional crossing (*) operator between variables for simplicity), assuming

the marginal independence of Antitoxin from the remaining two variables.

Under Empirical Bayes and UIP-Perks’ priors the posterior distribution is concen-

trate on the MAP model (it takes into account 93.4% and 91.7% respectively of the

posterior model probabilities). The posterior distributions under the Jeffreys’ and the

unit expected prior set-ups are more disperse, supporting the three models (SC+A,

AS+SC and ASC) with posterior weights higher than 10% and accounting around the

94% of the posterior model probabilities. Model AS +SC is also the model with the se-

cond highest posterior probability under UIP-Perks’ prior but its weight is considerably

lower than the corresponding probability of the MAP model.

Figure 2 presents boxplots summarizing 2.5%, 97.5% posterior percentiles and quan-

tiles of the joint probabilities for the MAP model (SC+A) for the four prior set-ups.
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Table 3: Posterior model probabilities (%) for the Antitoxin data.

Model

A+S+C AS+C AC+S SC+A AS+AC AS+SC AC+SC ASC

Prior Distribution (1) (2) (3) (4) (5) (6) (7) (8)

Jeffreys’ α(i) = 1/2 0.3 1.5 0.2 59.7 0.1 21.7 3.0 13.4

Unit Expected Cell α(i) = 1 0.2 1.1 0.2 37.2 0.1 30.2 4.7 26.2

Empirical Bayes α(i) = p(i) 1.6 2.4 0.3 93.4 0.0 1.7 0.2 0.4

UIP-Perks’ α(i) = 1/|I| 1.2 2.1 0.3 91.7 0.0 3.5 0.4 0.8

Since direct calculation from the posterior distribution is not feasible, we estimated the

posterior summaries via Monte Carlo simulation (1000 values). From this figure, we

observe minor differences between the posterior distributions obtained under the UIP-

Perks’ and the empirical Bayes prior. More differences are observed between Perks’

UIP and the posterior distributions under the two other prior set-ups. Differences are

higher for the first two cell probabilities, i.e. for π(1, 1, 1) and π(2, 1, 1).

Figure 2: Antitoxin data: Boxplots summarizing 2.5%, 97.5% posterior percentiles and

quantiles of the joint probabilities πABC(i, j, k) for the MAP model (SC+A) for all

prior set-ups (J=Jeffreys’, U=Unit Expected Cell, E=Empirical Bayes, P=Perks’) .
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Similarly in Figure 3 we present boxplots providing posterior summaries for models

SC + A, AS + SC and ASC under the UIP-Perks’ prior set-up. The first two models
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are the ones with highest posterior probabilities and all of their summaries have been

calculated using Monte Carlo simulation (1000 values). The saturated was used mainly

as reference model since it is the only one for which the posterior distributions are

available analytically. From the figure we observe that the posterior distributions on

the joint probabilities π of the full table are quite different highly depending on the

assumed model structure.

Figure 3: Antitoxin data: Boxplots summarizing 2.5%, 97.5% posterior percentiles and

quantiles of the joint probabilities πABC(i, j, k) for models SC+A, AS+SC and ASC

(4, 6 and 8 respectively) under the UIP-Perks’ prior set-up.
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Finally, posterior summaries for the probability parameters πG and the marginal

log-linear parameters λG for models SC + A, AS + SC and ASC (as described above)

under the UIP-Perks’ prior are provided in Tables 4 and 5 respectively. All summaries

of each element of πG are obtained analytically based on the Beta distribution induced

by the corresponding Dirichlet posterior distributions of πG. Posterior summaries of

λG are estimated using the Monte Carlo strategy (1000 values) discussed in section 5.

As commented in this section, some elements of λG for graphs SC+A and AS+SC are

constrained to zero due the way we have constructed our model. Hence for SC +A, the

maximal interaction terms for the disconnected sets AS, AC and ASC, i.e. parameters

λAS(2, 2), λAC(2, 2) and λASC(2, 2, 2), are constrained to be zero for all generated
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observations. Similar is the picture for model AS + SC, but now only marginals AC

and ABC correspond to disconnected sets implying that λAC(2, 2) = λASC(2, 2, 2) = 0.

6.2 A 3× 2× 4 table: Alcohol Data

We now examine a well known data set presented by Knuiman and Speed (1988) re-

garding a small study held in Western Australia on the relationship between Alcohol

intake (A), Obesity (O) and High blood pressure (H); see Table 6.

In Table 7 we report posterior model probabilities and corresponding Log-marginal

likelihoods for each models. Under all prior set-ups the posterior model probability is

concentrated on models H+A+O, HA+O and HO+A. Empirical Bayes and UIP-Perks’

support the independence model (with posterior model probability of 0.878 and 0.807

respectively) whereas Jeffreys’ and Unit Expected support a more complex structure,

HO+A (with posterior model probability of 0.837 and 0.859 respectively).

To save space we do not report here posterior summaries for model parameters,

they can be found in a separate appendix on the web page:

http://stat-athens.aueb.gr/~jbn/papers/paper21.htm.

7 Discussion and Final Comments

In this paper we have dealt with the Bayesian analysis of graphical models of marginal

association for three way contingency tables. We have worked using the probability

parameters of marginal tables required to fully specify each model. The proposed

parametrization and the corresponding decomposition of the likelihood simplifies the

problem and automatically imposes the marginal independences represented by the

considered graph. By this way, the posterior model probabilities and the posterior

distributions for the used parameters can be calculated analytically. Moreover, the

posterior distributions of the marginal log-linear parameters λG and the probabilities

π of the full table can be easily obtained using simple Monte Carlo schemes. This

approach avoids the problem of the inverse calculation of π when the marginal associ-

ation log-linear parameters λ are available which can be only achieved via an iterative

procedure; see Rudas and Bergsma (2004) and Lupparelli (2006) for more details.
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Table 4: Posterior summaries of model parameters for models SC + A, AS + SC and

ASC in Antitoxin data under the UIP-Perks’ prior set-up; ã and b̃ are the parameters

of the resulted Beta marginal posterior distribution.

Model 4: SC + A Beta Posterior

Parameters

Parameter Mean St.dev. Q0.025 Q0.975 ã b̃

πSC(1, 1) 0.47 0.055 0.36 0.57 37.25 42.75

πSC(2, 1) 0.13 0.037 0.06 0.21 10.25 69.75

πSC(1, 2) 0.15 0.040 0.08 0.24 12.25 67.75

πA(1) 0.52 0.056 0.41 0.63 41.50 38.50

Model 6: AS + SC

Parameter Mean St.dev. Q0.025 Q0.975 ã b̃

πS|AC(1|1, 1) 0.71 0.096 0.51 0.88 15.12 6.12

πS|AC(1|2, 1) 0.84 0.070 0.68 0.95 22.12 4.12

πS|AC(1|1, 2) 0.25 0.094 0.09 0.46 5.12 15.12

πS|AC(1|2, 2) 0.58 0.136 0.31 0.83 7.12 5.12

πA(1) 0.52 0.056 0.41 0.63 41.50 38.50

πC(1) 0.59 0.055 0.48 0.70 47.50 32.50

Model 8: ASC (Saturated)

Parameter Mean St.dev. Q0.025 Q0.975 ã b̃

π(1, 1, 1) 0.19 0.044 0.11 0.28 15.12 64.88

π(2, 1, 1) 0.28 0.050 0.18 0.38 22.12 57.88

π(1, 2, 1) 0.08 0.030 0.03 0.14 6.12 73.88

π(2, 2, 1) 0.05 0.025 0.01 0.11 4.12 75.88

π(1, 1, 2) 0.06 0.027 0.02 0.13 5.12 74.88

π(2, 1, 2) 0.09 0.032 0.04 0.16 7.12 72.88

π(1, 2, 2) 0.19 0.044 0.11 0.28 15.12 64.88

π(2, 2, 2) 0.06 0.027 0.02 0.13 5.12 74.88
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Table 5: Antitoxin data: Posterior summaries for lambda for models SC+A, AS+SC

and ASC under the UIP-Perks’ prior set-up

Model 4: SC + A

Parameter Marginal table Mean St.dev. Q0.025 Q0.975

λ∅ MAS -1.429 0.032 -1.513 -1.388

λA(2) MAS -0.040 0.113 -0.258 0.181

λS(2) MAS -0.245 0.118 -0.480 -0.021

λAS(2, 2) MAS 0.000 0.000 0.000 0.000

λC(2) MAC -0.194 0.116 -0.426 0.027

λAC(2, 2) MAC 0.000 0.000 0.000 0.000

λSC(2, 2) MASC 0.460 0.134 0.199 0.735

λASC(2, 2, 2) MASC 0.000 0.000 0.000 0.000

Model 6: AS + SC

Parameter Marginal table Mean St.dev. Q0.025 Q0.975

λ∅ MAC -1.418 0.025 -1.483 -1.388

λA(2) MAC -0.042 0.114 -0.261 0.173

λC(2) MAC -0.195 0.110 -0.414 0.020

λAC(2, 2) MAC 0.000 0.000 0.000 0.000

λS(2) MASC -0.238 0.137 -0.493 0.044

λAS(2, 2) MASC -0.291 0.137 -0.554 -0.019

λSC(2, 2) MASC 0.437 0.137 0.178 0.712

λASC(2, 2, 2) MASC -0.086 0.143 -0.370 0.207

Model 8: ASC (Saturated)

Parameter Marginal table Mean St.dev. Q0.025 Q0.975

λ∅ MASC -2.325 0.079 -2.504 -2.191

λA(2) MASC -0.106 0.134 -0.379 0.152

λS(2) MASC -0.246 0.131 -0.510 0.004

λAS(2, 2) MASC -0.292 0.139 -0.576 -0.033

λC(2) MASC -0.136 0.143 -0.402 0.151

λAC(2, 2) MASC -0.084 0.139 -0.355 0.202

λSC(2, 2) MASC 0.450 0.135 0.207 0.705

λASC(2, 2, 2) MASC -0.074 0.143 -0.368 0.209
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Table 6: Alcohol Data

Alcohol intake

(drinks/days)

Obesity High BP 0 1-2 3-5 6+

Low Yes 5 9 8 10

No 40 36 33 24

Average Yes 6 9 11 14

No 33 23 35 30

High Yes 9 12 19 19

No 24 25 28 29

Table 7: Alcohol data: Posterior model probabilities and the corresponding Log

marginal likelihoods; empty cell in posterior probabilities means that it is lower than

0.0001

Posterior model probabilities (%)

Model

H+A+O HA+O HO+A AO+H HA+HO HA+AO HO+AO HAO

Prior Distribution (1) (2) (3) (4) (5) (6) (7) (8)

Jeffreys’ 11.56 4.76 83.68

Unit Expected Cell 6.91 7.21 85.88

Empirical Bayes 87.81 0.07 12.12

Perks’ 80.67 0.15 19.18

Log-marginal likelihood for each model

Model

H+A+O HA+O HO+A AO+H HA+HO HA+AO HO+AO HAO

Prior Distribution (1) (2) (3) (4) (5) (6) (7) (8)

Jeffreys (α(i) = 1/2) -79.22 -80.11 -77.24 -87.73 -90.44 -100.93 -98.06 -98.95

UEC (α(i) = 1) -78.51 -78.47 -75.99 -84.70 -85.27 -93.99 -91.51 -91.46

Emprirical Bayes (α(i) = p(i)) -86.96 -94.10 -88.94 -107.26 -124.75 -143.06 -137.91 -145.04

Perks (a(i) = 1/|I|) -86.90 -93.19 -88.33 -107.10 -121.13 -139.89 -135.03 -141.33
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An obvious extension of this work is to implement the same approach in tables of

higher dimension starting from four way tables. Although most of the models in a four

way contingency table can be factorized and analyzed in a similar manner, two type

of graphs (the 4-chain and the cordless four-cycle graphs) cannot be decomposed in

the above way. These models are not Markov equivalent to any directed acyclic graph

(DAG). In fact each bidirected graph (which corresponds to a marginal association

model) is equivalent to a DAG, i.e. a conditional association model, with the same

set of variables if and only if it does not contain any 4-chain, see Pearl and Wermuth

(1994). We believe that also in higher dimensional problems our approach can be

applied to bidirected graphs that admit a DAG representation. For the graph that do

not factorize, more sophisticated techniques must be adopted in order to obtain the

posterior distribution of interest and the corresponding marginal likelihood needed for

the model comparison (work in progress by the authors).

Another interesting subject is how to obtain the posterior distributions in the case

that someone prefers to work directly with marginal log-linear parameters λG defined by

(5). Using our approach, we impose a prior distribution on the probability parameters

πG. The prior of λG cannot be calculated analytically since we cannot have the inverse

expression of (5) in closed form. Nevertheless, we can obtain a sample from the imposed

prior on λG using a simple Monte Carlo scheme. More specifically, we can generate

random values of πG from the Dirichlet based prior set-ups described in this paper. We

calculate the joint probability vector π according to the factorization of the graph under

consideration and finally use (5) to obtain a sample from the imposed prior f(λG|G).

This will give us an idea of the prior imposed on the log-linear parameters.

If prior information is expressed directly in terms of the log-linear parameters, see

e.g Knuiman and Speed (1988) and Dellaportas and Forster (1999), the prior and

the corresponding posterior distribution of πG can be obtained using two alternative

strategies.

One possibility is to approximate the distribution imposed on the elements of πG via

Dirichlet distributions with the parameters obtained in the following way. Firstly we

generate random values from the prior imposed on the standard log-linear parameters

for models of conditional association. For each set of generated values, we calculate
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the corresponding probabilities π for the full table. Finally we obtain a sample for

πG via marginalization from each set of generated probabilities π. For every element

of πG, we use the corresponding generated values to approximate the imposed prior

by a Dirichlet distribution with the parameters estimated using the moment-matching

approach. Note that this approach can only provide us a rough picture of the correct

posterior distribution since the priors are only matched in terms of the mean and the

variance while their shape can be totally different due to the properties of the Dirichlet

distribution.

Similar will be the approach if the prior distributions f(λG|G) for the marginal

log-linear parameters λG are available. The only problem here, in comparison to the

simpler approach described in the previous paragraph, is the calculation of π from

each λG. In order to achieve that we need to use iterative procedures; see Rudas and

Bergsma (2004) and Lupparelli (2006).

A second approach is to directly calculate the prior distribution imposed on the

probability parameters πG starting from the prior f(λG|G) using equation (5). Note

that the probabilities π of the full table involved in (5) are simply a function of πG

depending on the structure G. Hence, the prior on π will be given by

f(πG|G) = f(λG|G)
∣∣∣∣∂λG

∂pG

∣∣∣∣
where pG is vec(πG) after removing the last element of each set of probability parame-

ters and vec(πG) refers to πG arranged in a vector form. The elements of the Jacobian

are given by

∂λG
k

∂pG
l

=
col(C)∑

i=1

⎧⎨⎩Cki

⎛⎝ |I|∑
j=1

Mijvec(π)j

⎞⎠−1 |I|∑
j=1

Mij
∂vec(π)j

∂pG
l

⎫⎬⎭
where col(C) is the number of columns of C matrix. For the saturated model the above

equation simplifies to

∂λG
k

∂pl
=

col(C)∑
i=1

Cki(Mil −Mi|I|)∑|I|
j=1 Mijvec(π)j

since vec(π)j = pG
j for j < |I| and vec(π)|I| = 1 − ∑|I|−1

j=1 pG
j . After calculating

the corresponding prior distribution f(πG|G), we can work directly on πG using an

MCMC algorithm to generate values from the resulted posterior. A sample of λG
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can be again obtained in a direct way using (5). When no strong prior information is

available, an independence Metropolis algorithm can be applied using as a proposal the

Dirichlet distributions resulted from the likelihood part. Otherwise more sophisticated

techniques might be needed. The authors are also exploring the possibility to extend

the current work in this direction.
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Appendix

1. Construction of Matrix M

Let M = {M1,M2, . . . ,M|M|} be the set of considered marginals. Let B be

a binary matrix of dimension |M| × |V| with elements Biv indicating whether

a variable v belongs to a specific marginal Mi. The rows of B correspond to

the marginals in M whereas the columns to the variables. The variables follow

a reverse ordering, that is column 1 corresponds to variable X|V|, column 2 to

variable X|V|−1 and so on. Matrix B has elements

Biv =

⎧⎨⎩ 1 if v ∈Mi

0 otherwise.
,

for every v ∈ V.

The marginalization matrix M can be constructed using the following rules.

(a) For each marginal Mi, the probability vector of the corresponding marginal

table is given by Miπ; where Mi is calculated as a Kronecker product of

matrices Aiv

Mi =
⊗
v∈V

Aiv
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with

Aiv =

⎧⎨⎩ I�v if Biv = 1

1T
�v

if Biv = 0

where �v is the number of levels for v variable, I�v is the identity matrix of

dimension �v × �v and 1�v is a vector of dimension �v × 1 with all elements

equal to one.

(b) Matrix M is constructed by stacking all the Mi matrices

M =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

M1

...

Mi

...

M|M|

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

2. Construction of Matrix C

Firstly we need to construct the design matrix X for the saturated model corre-

sponding to sum to zero constraints. It has has dimension
(∏

v
�v

)
×
(∏

v
�v

)
and can be obtained as

X =
⊗

v∈VR

J�v

with

J�v(r, c) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if c = 1 or r = c

−1 if r = 1 and c > 1

0 otherwise.

In matrix notation

J�v =

⎛⎝ 1 −1T
(�v−1)

1(�v−1) I(�v−1)×(�v−1)

⎞⎠
where 1(�v−1) is (�v − 1)×1 vector of ones while I(�v−1)×(�v−1) is an identity matrix

of dimension (�v − 1)× (�v − 1).

The contrast matrix C can be constructed by using the following rules.
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(a) For each margin Mi construct the design matrix Xi corresponding to the

saturated model (using sum to zero constraints) and invert it to get the

contrast matrix for the saturated model Ci = X−1 . Let C∗
i be a submatrix

of Ci obtained by deleting rows not corresponding to elements of EMi (the

effects that we wish to estimate from margin Mi) .

(b) The contrast matrix C is obtained by direct sum of the C∗
i matrices as follow

C =
⊕

i: Mi∈M

C∗
i

that is it is a block diagonal matrix with (C∗
1;Mi ∈ M) as the blocks. For

example C∗
i

⊗
C2 =

⊕2
i=1 C∗

i is the block diagonal matrix with C1 and C2

as blocks.
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