Bayesian Model Comparison

for the Order Restricted RC Association Model

George Iliopoulos, Maria Kateri \& Ioannis Ntzoufras

Department of Statistics and Insurance Science Department of Statistics
University of Piraeus Athens University of Economics and Business Piraeus, Greece; Athens, Greece;
e-mails: \{geh; mkateri\}@unipi.gr e-mail: ntzoufras@aueb.gr

6th June 2008, 1st Athens-Pavia Meeting on Statistics, Mati, Attica, Greece
The presentation and the paper are available at: http://stat-athens.aueb.gr/~jbn/papers/paper18.htm.

Iliopoulos, Kateri \& Ntzoufras: Bayesian Model Comparison for the Ordered RC Model

Synopsis

1. Introduction.
2. Modeling Details.
3. RJMCMC Algorithm.
4. Illustration using simulated and actual data.
5. Discussion and further work.

1 Introduction

- Let $\boldsymbol{y}=\left(y_{i j}\right)$ be the frequencies and
- $\boldsymbol{\Pi}=\left(\pi_{i j}\right)$ be the probabilities
of an $I \times J$ contingency table of two ordinal variables X and Y with I and J levels respectively.

Saturated log-linear model:

$$
\begin{array}{rc}
\log \pi_{i j}=\lambda+\lambda_{i}^{X}+\lambda_{j}^{Y}+ & \lambda_{i j}^{X Y} \\
\Downarrow & i=1, \ldots, I, j=1, \ldots, J . \tag{1}\\
\log \pi_{i j}=\lambda+\lambda_{i}^{X}+\lambda_{j}^{Y}+ & \phi \mu_{i} \nu_{j}
\end{array} \text { (Goodman, 1979, 1985) }
$$

where $\boldsymbol{\mu}=\left(\mu_{1}, \mu_{2}, \ldots \mu_{I}\right)$ and $\boldsymbol{\nu}=\left(\nu_{1}, \nu_{2}, \ldots \nu_{J}\right)$ be the scores assigned to the levels of X (rows) and Y (columns) respectively.

Iliopoulos, Kateri \& Ntzoufras: Bayesian Model Comparison for the Ordered RC Mode

Interpretation of

- ϕ is an intrinsic association parameter.
- The above formulation reveals the analogies to the classical correspondence analysis (CA) or canonical correlation model.
- Interpretation of $\phi: \log$ odds ratio of successive categories if the score distances are equal to one since $\log \left(\frac{\pi_{i j} \pi_{i+1, j+1}}{\pi_{i, j+1} \pi_{i+1, j}}\right)=\phi\left(\mu_{i+1}-\mu_{i}\right)\left(\nu_{j+1}-\nu_{j}\right)$.

USUAL CONSTRAINTS

- Sum-to-zero constraints on row and column main effects $\left(\lambda_{i}^{X}\right.$ and $\left.\lambda_{j}^{Y}\right)$.
- Sum-to-zero constraints on row and column scores (μ_{i} and ν_{j}).
- Two additional constraints on the row and column scores are needed in order to achieve the identifiability of the model (this due to the fact that (1) is multiplicative and not linear to its parameters).

$$
\begin{equation*}
\sum_{i=1}^{I} \mu_{i}=\sum_{j=1}^{J} \nu_{j}=0 \quad \text { and } \quad \sum_{i=1}^{I} \mu_{i}^{2}=\sum_{j=1}^{J} \nu_{j}^{2}=1 \tag{2}
\end{equation*}
$$

Why Use the Bayesian Approach in this Problem?

- They are not approximate and can be implemented even for samples with small size or with sparse contingency tables.
- Score merging in classical methods can be done using stepwise like methods and sequential implementation of significance tests (significance level is higher than the specified one, different model may selected if different starting points are selected).
- Using RJMCMC (or other varying dimension MCMC method) we automatically search the model space and estimate posterior model probabilities.
- Bayesian model averaging can be used in straightforward manner.

Iliopoulos, Kateri \& Ntzoufras: Bayesian Model Comparison for the Ordered RC Mode

Aim of this work

- Work with the order restricted RC model.
- Use the Bayesian approach to identify which scores μ_{i}, μ_{i+1} and ν_{j}, ν_{j+1} can be merged.
- Use Reversible jump MCMC to estimate posterior model probabilities (and odds) of each model
- Implement Bayesian model averaging

Iliopoulos, Kateri \& Ntzoufras: Bayesian Model Comparison for the Ordered RC Model

2 Modeling Details

- We focus on the order restricted version of the RC association model.
- X and Y ordinal \Rightarrow natural to assume that the ordinal structure for scores

$$
\mu_{1} \leq \mu_{2} \leq \cdots \leq \mu_{I} \text { and } \nu_{1} \leq \nu_{2} \leq \cdots \leq \nu_{J}
$$

- Which successive scores $\left(\mu_{i}, \mu_{i+1}\right)$ and $\left(\nu_{j}, \nu_{j+1}\right)$ are equal?
- In all models we assume that at least two row and two column scores are different.

Iliopoulos, Kateri \& Ntzoufras: Bayesian Model Comparison for the Ordered RC Mode

Proposed Constraints

- We propose to use an alternative set of constraints:

$$
\mu_{1}=\mu_{\min }<\mu_{I}=\mu_{\max } \text { and } \nu_{1}=\nu_{\min }<\nu_{J}=\nu_{\max }
$$

- Row and column scores take values in the intervals $\left[\mu_{\min }, \mu_{\max }\right.$] and [$\left.\nu_{\text {min }}, \nu_{\text {max }}\right]$ respectively.
- Sensible choices
$\diamond \mu_{\text {min }}=\nu_{\text {min }}=-1$ and $\mu_{\max }=\nu_{\max }=1$ [range similar to the parameters under constraints (2)]
\diamond We use: $\mu_{\min }=\nu_{\min }=0$ and $\mu_{\max }=\nu_{\max }=1$
* simplifies computations
* $\phi=\log \left(\frac{\pi_{11} \pi_{I J}}{\pi_{1 J J} \pi_{I 1}}\right)$
- Posterior distributions of scores under (2) can be obtained by transforming MCMC output of the proposed parametrization.

Let

$$
\Gamma_{i}=\sum_{k=1}^{i} \gamma_{k} \text { and } \Delta_{j}=\sum_{k=1}^{j} \delta_{k}
$$

be the distinct scores under estimation until row i or column j respectively.
Moreover the actual distinct unequal row and column scores will be denoted by the vectors $\boldsymbol{\mu}_{\gamma}$ and $\boldsymbol{\nu}_{\delta}$ of dimension Γ_{I} and Δ_{J} respectively given by

$$
\boldsymbol{\mu}_{\gamma}=\left(\left\{\mu_{i}: \gamma_{i}=1 ; i=1,2, \ldots, I\right\}\right)=\left(\mu_{\gamma}(1), \mu_{\gamma}(2), \ldots, \mu_{\gamma}\left(\Gamma_{I}\right)\right)^{T}
$$

and

$$
\boldsymbol{\nu}_{\delta}=\left(\left\{\nu_{j}: \delta_{j}=1 ; j=1,2, \ldots, J\right\}\right)=\left(\nu_{\delta}(1), \nu_{\delta}(2), \ldots, \nu_{\delta}\left(\Delta_{J}\right)\right)^{T}
$$

Then the original scores are given by

$$
\mu_{i}=\mu_{\gamma}\left(\Gamma_{i}\right) \text { and } \nu_{j}=\nu_{\delta}\left(\Delta_{j}\right)
$$

Prior Distributions on Scores

Equivalently, the scores are a priori distributed as ordered iid uniform random variables

$$
f\left(\boldsymbol{\mu}_{\gamma}\right)=\frac{\left(\Gamma_{I}-2\right)!}{\left(\mu_{\max }-\mu_{\min }\right)^{\Gamma_{I}-2}} \mathcal{I}\left(\mu_{\min }<\text { ordered different } \mu^{\prime} \mathrm{s}<\mu_{\max }\right)
$$

Similarly, for the column scores

$$
f\left(\boldsymbol{\nu}_{\delta}\right)=\frac{\left(\Delta_{J}-2\right)!}{\left(\nu_{\max }-\nu_{\min }\right)^{\Delta_{J}-2}} \mathcal{I}\left(\nu_{\min }<\text { ordered different } \nu ' \mathrm{~s}<\nu_{\max }\right)
$$

Prior Distributions on the rest of parameters

Normal with large variances for the rest of the parameters.
Bernoulli for γ_{i} and δ_{j} with prior probabilities equal to $1 / 2$.

Iliopoulos, Kateri \& Ntzoufras: Bayesian Model Comparison for the Ordered RC Model

3 RJMCMC algorithm

1. Update model structure: Sample $(\boldsymbol{\gamma}, \boldsymbol{\delta})$ using successive RJMCMC moves:

For $i=2, \ldots, I$, propose $\gamma^{\prime}: \gamma_{i}^{\prime}=1-\gamma_{i}, \gamma_{k}^{\prime}=\gamma_{k}$ for $k \neq i$.

Split: $\left(\gamma_{i}=0\right) \rightarrow\left(\gamma_{i}^{\prime}=1\right)$	Merge: $\left(\gamma_{i}=1\right) \rightarrow\left(\gamma_{i}^{\prime}=0\right)$
(a) Propose $\left(\mu_{i-1}=\mu_{i}\right) \rightarrow\left(\mu_{i-1}^{\prime}<\mu_{i}^{\prime}\right)$. (a) Propose $\left(\mu_{i-1}<\mu_{i}\right) \rightarrow\left(\mu_{i-1}^{\prime}=\mu_{i}^{\prime}\right)$. (b) Generate u from $q(u \mid \boldsymbol{\mu}, \boldsymbol{\gamma}, \boldsymbol{\gamma})$. (b) (No generation is needed). (c) Set $\boldsymbol{\mu}_{\gamma^{\prime}}^{\prime}=g\left(\boldsymbol{\mu}_{\gamma}, u\right)$. (c) Set $\left(\boldsymbol{\mu}_{\gamma^{\prime}}^{\prime}, u\right)=g^{-1}\left(\boldsymbol{\mu}_{\gamma}\right)$. (d) Calculate $\boldsymbol{\mu}^{\prime}$ by $\mu_{i}=\mu_{\gamma}\left(\Gamma_{i}\right)$ (e) Accept/reject the proposed move.	

δ is updated similarly.

2. Update model parameters $\left(\boldsymbol{\lambda}^{X}, \boldsymbol{\lambda}^{Y}, \phi, \boldsymbol{\mu}, \boldsymbol{\nu}\right)$, given the model structure $(\boldsymbol{\gamma}, \boldsymbol{\delta})$ using a metropolis within Gibbs scheme.

Iliopoulos, Kateri \& Ntzoufras: Bayesian Model Comparison for the Ordered RC Model

Merge Central Scores
 $\left(\gamma_{i}=1 \rightarrow \gamma_{i}^{\prime}=0, \quad i: 2<\Gamma_{i}=\ell<\Gamma_{I}\right)$

$$
(\ldots \leq \mu_{\gamma}(\ell-2)<\underbrace{\mu_{\gamma}(\ell-1)<\mu_{\gamma}(\ell)} \quad<\mu_{\gamma}(\ell+1) \leq \ldots)
$$

$$
\begin{array}{ccc}
\Downarrow & \Downarrow & \Downarrow \\
\left(\ldots \leq \mu_{\gamma^{\prime}}^{\prime}(\ell-2)<\right. & \mu_{\gamma^{\prime}}^{\prime}(\ell-1) & \left.<\mu_{\gamma^{\prime}}^{\prime}(\ell) \leq \ldots\right)
\end{array}
$$

\Downarrow
Usual transformation: $\quad \mu_{\gamma^{\prime}}^{\prime}(\ell-1)=\frac{\mu_{\gamma}(\ell-1)+\mu_{\gamma}(\ell)}{2}$
and leave the rest of the scores unchanged

$$
\mu_{\gamma^{\prime}}^{\prime}(k)= \begin{cases}\mu_{\gamma}(k) & \text { for } k<\ell-1 \\ \mu_{\gamma}(k+1) & \text { for } k>\ell-1\end{cases}
$$

Iliopoulos, Kateri \& Ntzoufras: Bayesian Model Comparison for the Ordered RC Model

$\left(\gamma_{i}=0 \rightarrow \gamma_{i}^{\prime}=1, \quad i: 2 \leq \Gamma_{i}=\ell<\Gamma_{I}\right)$

$$
\begin{aligned}
& \left(\ldots \leq \mu_{\gamma}(\ell-1)<\right. \\
& \mu_{\gamma}(\ell) \\
& \Downarrow \\
& \left.<\mu_{\gamma}(\ell+1) \leq \ldots\right) \\
& \Downarrow \\
& \downarrow \\
& (\ldots \leq \mu_{\gamma^{\prime}}^{\prime}(\ell-1)<\overbrace{\mu_{\gamma^{\prime}}^{\prime}(\ell)<\mu_{\gamma^{\prime}}^{\prime}(\ell+1)}<\mu_{\gamma^{\prime}}^{\prime}(\ell+2) \leq \ldots) \\
& \begin{array}{cc}
\downarrow & \downarrow \\
\mu_{\gamma}(\ell)-u & \mu_{\gamma}(\ell)+u
\end{array}
\end{aligned}
$$

- Generate $u \in\left(0, \min \left\{\mu_{\gamma}(\ell)-\mu_{\gamma}(\ell-1), \mu_{\gamma}(\ell+1)-\mu_{\gamma}(\ell)\right\}\right)$

Iliopoulos, Kateri \& Ntzoufras: Bayesian Model Comparison for the Ordered RC Mode

- Set $\mu_{\gamma^{\prime}}^{\prime}(\ell)=\mu_{\gamma}(\ell)-u$ and $\mu_{\gamma^{\prime}}^{\prime}(\ell+1)=\mu_{\gamma}(\ell)+u$.
- Leave the rest of the scores unchanged, i.e. set

$$
\mu_{\gamma^{\prime}}^{\prime}(k)= \begin{cases}\mu_{\gamma}(k) & \text { for } k<\ell \\ \mu_{\gamma}(k-1) & \text { for } k>\ell+1\end{cases}
$$

From the above we have

- In Split Move : $|J|=2$ and $u=\frac{\mu_{\gamma^{\prime}}^{\prime}(\ell+1)-\mu_{\gamma^{\prime}}^{\prime}(\ell)}{2}$
- Hence in Merge Move $\rightarrow|J|=\frac{1}{2}$ and $u=\frac{1}{2}\left\{\mu_{\gamma}(\ell)-\mu_{\gamma}(\ell-1)\right\}$.

Iliopoulos, Kateri \& Ntzoufras: Bayesian Model Comparison for the Ordered RC Mode
Using similar logic we apply the following transformations

$$
\begin{aligned}
& \underbrace{\mu_{\min }=\mu_{\gamma}(1)<\mu_{\gamma}(2)} \\
& <\quad \mu_{\gamma}(3 \\
& \mu_{\gamma}(3) \\
& <\ldots<\mu_{\gamma}\left(\Gamma_{I}\right)=\mu_{\max } \\
& \begin{array}{c}
\Downarrow \\
\frac{\mu_{\min }+\mu_{\gamma}(2)}{2}
\end{array} \\
& \begin{array}{l}
2 \\
\Downarrow
\end{array} \\
& \Downarrow \\
& \mu_{\gamma}(3) \\
& \Downarrow \\
& \mu_{\gamma}(3)-\frac{\mu_{\min }+\mu_{\gamma}(2)}{2} \\
& <\ldots<\mu_{\gamma}\left(\Gamma_{I}\right)=\mu_{\max } \\
& \Downarrow \\
& <\ldots<\mu_{\max }-\frac{\mu_{\min }+\mu_{\gamma}(\ell)}{2} \\
& \Downarrow \\
& 1 \\
& \Downarrow \\
& <\mu_{\text {min }}+\frac{2 \mu_{\gamma}(3)-\mu_{\min }-\mu_{\gamma}(2)}{2 \mu_{\text {max }}-\mu_{\text {min }}-\mu_{\gamma}(2)}\left(\mu^{2}\right. \\
& \mu_{\text {max }} \\
& \downarrow \\
& \mu_{\gamma^{\prime}}^{\prime}\left(\Gamma_{I}^{\prime}\right)
\end{aligned}
$$

Iliopoulos, Kateri \& Ntzoufras: Bayesian Model Comparison for the Ordered RC Model

PROBLEM

The above transformation cannot be applied for merging/spliting the lowest or the highest scores.

(VIOLATES THE CONSTRAINT $\mu_{\gamma^{\prime}}^{\prime}(1)=\mu_{\text {min }}$)

Iliopoulos, Kateri \& Ntzoufras: Bayesian Model Comparison for the Ordered RC Model

Merge the Lowest Scores $\mu_{\gamma}(1)$ and $\mu_{\gamma}(2)$ $\left(\gamma_{i}=1 \rightarrow \gamma_{i}^{\prime}=0, \quad i: \Gamma_{i}=2\right)$

Final transformation
$\mu_{\gamma^{\prime}}^{\prime}(k)= \begin{cases}\mu_{\min }, & k=1, \\ \mu_{\min }+\left(\mu_{\max }-\mu_{\min }\right) \frac{2 \mu_{\gamma}(k+1)-\mu_{\min }-\mu_{\gamma}(2)}{2 \mu_{\max }-\mu_{\min }-\mu_{\gamma}(2)}, & k>1 .\end{cases}$

Iliopoulos, Kateri \& Ntzoufras: Bayesian Model Comparison for the Ordered RC Model

Split the Lowest Score $\mu_{\gamma}(1)$ (reverse move)

 $\left(\gamma_{i}=0 \rightarrow \gamma_{i}^{\prime}=1, \quad i: \Gamma_{i}=1\right)$$$
\left(\begin{array}{ccc}
\left(\mu_{\text {min }}=\mu_{\gamma}(1)\right. & \left.<\mu_{\gamma}(2)<\ldots\right) \\
\Downarrow \\
\Downarrow & (\overbrace{\mu_{\min }=\mu_{\gamma^{\prime}}^{\prime}(1)<\mu_{\gamma^{\prime}}^{\prime}(2)}^{\prime}<\mu_{\gamma^{\prime}}^{\prime}(3)<\ldots)
\end{array}\right.
$$

Set $\mu_{\gamma^{\prime}}^{\prime}(2)=u$

- Generate u in the interval

$$
u \in\left(\mu_{\min }, \mu_{\gamma}(2)+\frac{\left(\mu_{\gamma}(2)-\mu_{\min }\right)\left[\mu_{\max }-\mu_{\gamma}(2)\right]}{\mu_{\gamma}(2)+\mu_{\max }-2 \mu_{\min }}\right)
$$

Iliopoulos, Kateri \& Ntzoufras: Bayesian Model Comparison for the Ordered RC Model

- In Split Move $\rightarrow|J|=\left(1-\frac{1}{2} \frac{u-\mu_{\text {min }}}{\mu_{\text {max }}-\mu_{\text {min }}}\right)^{\Gamma_{I}-2}$
- In Merge Move $\rightarrow u=\mu_{\gamma}(2)$ and
$|J|=\left[\left(1-\frac{1}{2} \frac{u-\mu_{\min }}{\mu_{\max }-\mu_{\min }}\right)^{\Gamma_{I}^{\prime}-2}\right]^{-1}=\left(1-\frac{1}{2} \frac{\mu_{\gamma}(2)-\mu_{\min }}{\mu_{\max }-\mu_{\min }}\right)^{3-\Gamma_{I}}$.

Reminder:

- Γ_{I} is the number of scores of the current model (In split "smaller", In merge: "larger" model)
- Γ_{I}^{\prime} is the number of scores of the proposed model (In split "larger", In merge: "smaller" model)

Finally obtain the new proposed scores by
$\mu_{\gamma^{\prime}}^{\prime}(k)= \begin{cases}\mu_{\text {min }}, & k=1, \\ u, & k=2, \\ \frac{1}{2}\left\{\mu_{\min }+u+\left(2 \mu_{\max }-\mu_{\min }-u\right) \frac{\mu_{\gamma}(k-1)-\mu_{\min }}{\mu_{\max }-\mu_{\min }}\right\}, & k>2 .\end{cases}$
(4)
(Inverse transformation of equation (3) - given in the corresponding merge move)

Additional Details

Iliopoulos, Kateri \& Ntzoufras: Bayesian Model Comparison for the Ordered RC Model

- In practice we have used $\mu_{\text {min }}=\nu_{\text {min }}=0$ and $\mu_{\max }=\nu_{\max }=1$.
- When $\Gamma_{I}=2$ then only two scores are different and set equal to $\mu_{\text {min }}$ and $\mu_{\max }$. No further splitting is allowed. Similar is the case for column scores ν_{j}.
- Rescaled Beta proposals can be used for proposing values for u.
- In practice we have used Uniform proposal which has been proved sufficient for datasets we have implemented the methodology.
- Further investigation is needed in order to construct proposals leading to more efficient RJMCMC schemes.

Iliopoulos, Kateri \& Ntzoufras: Bayesian Model Comparison for the Ordered RC Mode

4 Illustrative Examples.

4.1 Simulated data.

- Monte Carlo study following Galindo-Garre and Vermunt (2004, Psychometrika).
- 1000 simulated datasets for a 5×3 contingency table with $\pi_{i j}=\exp \left(\phi^{*} \mu_{i}^{*} \nu_{j}^{*}\right)$. For the three models we have

1. Model m_{1} : Different but equidistant Row + Column scores.
2. Model $m_{2}: \mu_{1}^{*}=\mu_{2}^{*}$; rest of the scores are equidistant.
3. Model $m_{3}: \mu_{1}^{*}=\mu_{2}^{*}$ and $\nu_{2}^{*}=\nu_{3}^{*}$; rest of the scores are equidistant.

Furthermore we have
$-\phi^{*}, \mu_{i}^{*}, \nu_{j}^{*}$ satisfy SSTO constraints.

- Three different values of $\phi^{*}=1,2,3$.
- Two sample sizes $n=100,1000$

Iliopoulos, Kateri \& Ntzoufras: Bayesian Model Comparison for the Ordered RC Model

4.2 Application to Data

The method is also implemented in three datasets

1. Dreams Disturbance Data
5×4 table; $n=223$ children
(Agresti et al., 1987, Ritov and Gilula, 1993).
2. Student Survey based Schizotypal Personality Questionnaire data 7×6 table; 202 students.
3. Family size and happiness data
5×4 table; $n=1517$ families
(see Clogg, 1982, Table 2, Galindo-Garre and Vermunt, 2004).
see for more details in http://stat-athens.aueb.gr/~jbn/papers/paper18.htm.

Iliopoulos, Kateri \& Ntzoufras: Bayesian Model Comparison for the Ordered RC Mode

5 Work in progress and future work

1. Comparison of the above models with the Uniform association, Independence and Saturated models [use different prior for ϕ].
2. Incorporate selection between unrestricted RC, Row, Column association models (can we use similar parametrization?)
3. Use similar approach in unrestricted RC model for merging/grouping scores
4. Expand methodology to high dimensional tables
5. Use different priors for scores; for example power prior and imaginary data.

Iliopoulos, Kateri \& Ntzoufras: Bayesian Model Comparison for the Ordered RC Model

References

Agresti, A., Chuang, C. and Kezouh, A. (1987). Order-Restricted Score Parameters in Association Models for Contingency Tables. Journal of the American Statistical Association, 82, 619-623.

Goodman, L.A. (1979). Simple models for the analysis of association in cross-classifications having ordered categories. Journal of the American Statistical Association, 74, 537-552.
Goodman, L.A. (1985). The analysis of cross-classified data having ordered and/or unordered categories: Association models, correlation models and asymmetry models for contingency tables with or without missing entries. Annals of Statistics, 13, 10-69.
Maxwell, A.E. (1961). Analyzing Qualitative Data. London: Methuen.
Ritov, Y. and Gilula, Z. (1993). Analysis of Contingency Tables by Correspondence Models Subject to Order Constraints. Journal of the American Statistical Association, 88, 1380-1387.

Publications by the same Group

Kateri, M., Nicolaou, A. and Ntzoufras, I. (2005). Bayesian Inference for the RC(m) Association Model. Journal of Computational and Graphical Statistics, 14, 116-138.

Iliopoulos, G., Kateri, M. and Ntzoufras, I. (2007). Bayesian Estimation of Unrestricted and Order-Restricted Association Models for a Two-Way Contingency Table. Computational Statistics and Data Analysis, 51, 4643-4655.
Iliopoulos, G., Kateri, M. and Ntzoufras, I. (2007). Bayesian Model Comparison for the Order Restricted RC Association Model. Technical Report, Dep. of Statistics, Athens University of Economics and Business. 1st Draft: 23/6/2007.

Related Work

Tarantola, C., Consonni, G. and Dellaportas, P. (2007) Bayesian clustering for row effects models. Technical Report, University of Pavia (submitted).

