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1 Introduction

• Let y = (yij) be the frequencies and

• Π = (πij) be the probabilities

of an I × J contingency table of two ordinal variables X and Y with I and J levels
respectively.

Saturated log-linear model:

log πij = λ + λX
i + λY

j + λXY
ij i = 1, . . . , I, j = 1, . . . , J.

⇓
log πij = λ + λX

i + λY
j + φµiνj (Goodman, 1979, 1985) (1)

where µ = (µ1, µ2, . . . µI) and ν = (ν1, ν2, . . . νJ ) be the scores assigned to the
levels of X (rows) and Y (columns) respectively.
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Interpretation of φ

• φ is an intrinsic association parameter.

• The above formulation reveals the analogies to the classical correspondence
analysis (CA) or canonical correlation model.

• Interpretation of φ: Odds ratio of successive categories if the score distances
are equal to one since log

(
πijπi+1,j+1
πi,j+1πi+1,j

)
= φ(µi+1 − µi)(νj+1 − νj).
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USUAL CONSTRAINTS

• Sum-to-zero constraints on row and column main effects (λX
i and λY

j ).

• Sum-to-zero constraints on row and column scores (µi and νj).

• Two additional constraints on the row and column scores are needed in order
to achieve the identifiability of the model (this due to the fact that (1) is
multiplicative and not linear to its parameters).

I∑
i=1

µi =
J∑

j=1

νj = 0 and
I∑

i=1

µ2
i =

J∑
j=1

ν2
j = 1. (2)
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Aim of this work

• Work with the order restricted RC model.

• Use the Bayesian approach to identify which scores µi, µi+1 and νj , νj+1 can be
merged.

• Use Reversible jump MCMC to estimate posterior model probabilities (and
odds) of each model

• Implement Bayesian model averaging
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Why Use the Bayesian Approach in this Problem?

• They are not approximate and can be implemented even for samples with
small size or with sparse contingency tables.

• Score merging in classical methods can be done using stepwise like methods
and sequential implementation of significance tests (significance level is higher
than the specified one, different model may selected if different starting points
are selected).

• Using RJMCMC (or other varying dimension MCMC method) we
automatically search the model space and estimate posterior model
probabilities.

• Bayesian model averaging can be used in straightforward manner.
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2 Modeling Details

• We focus on the order restricted version of the RC association model.

• X and Y ordinal ⇒ natural to assume that the ordinal structure for scores

µ1 ≤ µ2 ≤ · · · ≤ µI and ν1 ≤ ν2 ≤ · · · ≤ νJ

• Which successive scores (µi, µi+1) and (νj , νj+1) are equal?

• In all models we assume that at least two row and two column scores are
different.
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Proposed Constraints

• We propose to use an alternative set of constraints:

µ1 = µmin < µI = µmax and ν1 = νmin < νJ = νmax

• Row and column scores take values in the intervals [µmin, µmax] and
[νmin, νmax] respectively.

• Sensible choices:

� µmin = νmin = −1 and µmax = νmax = 1 [range similar to the parameters
under constraints (2)]

� We use: µmin = νmin = 0 and µmax = νmax = 1
∗ simplifies computations
∗ φ = log

(
π11πIJ

π1JπI1

)
• Posterior distributions of scores under (2) can be obtained by transforming

MCMC output of the proposed parametrization.
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Model Formulation

• We introduce latent binary indicators

γ = (1, γ2, . . . , γI) and δ = (1, δ2, . . . , δJ) and

which are equal to

γi = 1 when µi > µi−1 (or δj = 1 when νj > νj−1)

γi = 0 when µi = µi−1 (or δj = 0 when νj = νj−1)

• The vectors γ and δ :

– specify which scores are equal

– are used instead of the usual model indicator m

• Estimate posterior model probabilities f(γ, δ|y).
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Let

Γi =
i∑

k=1

γk and ∆j =
j∑

k=1

δk

be the distinct dinstinct scores under estimation until row i or column j

respectively.

Moreover the actual distinct unequal row and column scores will be denoted by the
vectors µγ and νδ of dimension ΓI and ∆J respectively given by

µγ =
(
{µi : γi = 1; i = 1, 2, . . . , I}

)
=

(
µγ(1), µγ(2), . . . , µγ(ΓI)

)T

and

νδ =
(
{νj : δj = 1; j = 1, 2, . . . , J}

)
=

(
νδ(1), νδ(2), . . . , νδ(∆J)

)T

.

Then the original scores are given by

µi = µγ(Γi) and νj = νδ(∆j)
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Example of the Notation

i 1, 2, 3, 4, 5

µi µ1 = µ2 = 0 µ3 = µ4 = 0.6 µ5 = 1

γi 1, 0, 1, 0, 1

Γi 1, 1, 2, 2, 3

µγ(	) 0 0.6 1

µi µγ(Γ1) = µγ(1) = 0, µγ(Γ3) = µγ(2) = 0.6, µγ(Γ5) = µγ(3) = 1

µγ(Γ2) = µγ(1) = 0, µγ(Γ4) = µγ(2) = 0.6,
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Differences and Variable Selection Representation

Consider the row and column score differences

Dµi = µi − µi−1 and Dνj = νj − νj−1

instead or the original parameters. Then

µi =
i∑

k=1

γkDµk
and νj =

j∑
k=1

δkDνk
; i = 1, . . . , I, j = 1, . . . , J .

For scores of range one (Rµ = µmax − µmin = 1) ⇒ ∑I
i=2 γiDµi = 1 ⇒ we may use

Dγ =
(
{Dµi : γi = 1}

)
∼ D(1ΓI−1)

(Dirichlet prior of dimension ΓI − 1 with all parameters equal to one )

as non informative prior for row score differences.

Similarly, for column scores → Dδ =
( {

Dνj : δj = 0
})

∼ D(1∆J−1).
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Prior Distributions on Scores

Equivalently, the scores are a priori distributed as ordered iid uniform random
variables

f(µγ) =
(ΓI − 2)!

(µmax − µmin)ΓI−2
I(µmin < ordered different µ’s < µmax)

Similarly, for the column scores

f(νδ) =
(∆J − 2)!

(νmax − νmin)∆J−2
I(νmin < ordered different ν’s < νmax)

Prior Distributions on the rest of parameters

Normal with large variances for the rest of the parameters.

Bernoulli for γi and δj with prior probabilities equal to 1/2.
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3 RJMCMC algorithm

1. Update model structure: Sample (γ, δ) using successive RJMCMC moves:

• For i = 2, . . . , I, propose γ′: γ′
i = 1 − γi, γ′

k = γk for k �= i.
– Split: if (γi = 0) → (γ′

i = 1) then propose (µi−1 = µi) → (µ′
i−1 < µ′

i).
(a) Generate u from q(u|µ, γ, γ′).
(b) Set µ′

γ′ = g(µγ , u).
(c) Obtain µ′ from µ′

γ′ via µi = µγ(Γi) & accept/reject the proposed move.
– Merge: if (γi = 1) → (γ′

i = 0) then propose (µi−1 < µi) → (µ′
i−1 = µ′

i).
(a) Set (µ′

γ′ , u) = g−1(µγ).
(b) Obtain µ′ from µ′

γ′ via µi = µγ(Γi) & accept/reject the proposed move.

• The updating scheme for the components of δ is similar.

2. Generate model parameters (λX , λY , φ, µ, ν), given the model structure (γ, δ):

• Sample row and column effects.

• Sample φ using a simple random walk Metropolis.

• Use random walk on logits of column and row scores’ differences.
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The probability of acceptance of the proposed move (γ, µ) → (γ′, µ′) in each
RJMCMC step equals α = min(1, A), where

A =
f(y|λX , λY , φ, µ′, ν)
f(y|λX , λY , φ, µ, ν)

f(µ′
γ′ |γ′)f(γ′)

f(µγ |γ)f(γ)
q(u|µ′

γ′ , γ′, γ)γi

q(u|µγ , γ, γ′)1−γi
|J |1−2γi .

|J | is the absolute value of the RJMCMC Jacobian used in the split move and is
given by

|J | =
∣∣∣∣∂g(µγ , u)

∂(µγ , u)

∣∣∣∣ .

Remains to specify ...

• the linking function g(µγ , u)

• the proposal density q(u| )
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Merge Central Scores

(γi = 1 → γ′
i = 0, i : 2 < Γi = � < ΓI)

(
. . . ≤ µγ(	 − 2) < µγ(	 − 1) < µγ(	)︸ ︷︷ ︸ < µγ(	 + 1) ≤ . . .

)
⇓ ⇓ ⇓(

. . . ≤ µ′
γ′(	 − 2) < µ′

γ′(	 − 1) < µ′
γ′(	) ≤ . . .

)
⇓

Usual transformation: µ′
γ′(	 − 1) = µγ(�−1)+µγ(�)

2

and leave the rest of the scores unchanged

µ′
γ′(k) =

⎧⎨
⎩ µγ(k) for k < 	 − 1

µγ(k + 1) for k > 	 − 1
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Split Central Scores (inverse move)

(γi = 0 → γ′
i = 1, i : 2 ≤ Γi = � < ΓI)

(
. . . ≤ µγ(	 − 1) < µγ(	) < µγ(	 + 1) ≤ . . .

)
⇓ ⇓ ⇓(

. . . ≤ µ′
γ′(	 − 1) <

︷ ︸︸ ︷
µ′

γ′(	) < µ′
γ′(	 + 1) < µ′

γ′(	 + 2) ≤ . . .
)

↓ ↓
µγ(	) − u µγ(	) + u

• Generate u ∈
(
0, min

{
µγ(	) − µγ(	 − 1), µγ(	 + 1) − µγ(	)

})
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• Set µ′
γ′(	) = µγ(	) − u and µ′

γ′(	 + 1) = µγ(	) + u.

• Leave the rest of the scores unchanged, i.e. set

µ′
γ′(k) =

⎧⎨
⎩ µγ(k) for k < 	

µγ(k − 1) for k > 	 + 1

From the above we have

• In Split Move : |J | = 2 and u =
µ′

γ′ (�+1)−µ′
γ′(�)

2

• Hence in Merge Move → |J | =
1
2

and u =
1
2

{
µγ(	) − µγ(	 − 1)

}
.
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PROBLEM

The above transformation cannot be applied for merging/spliting the lowest or
the highest scores.

Merge the Lowest Scores µγ(1) and µγ(2)

(γi = 1 → γ′
i = 0, i : Γi = 2)

µmin = µγ(1) < µγ(2)︸ ︷︷ ︸ < µγ(3) < . . .

⇓ ⇓
µmin = µ′

γ′(1) < µ′
γ′(2) < . . .

⇓ ⇓
Usual Transformation

µmin+µγ(2)
2 < µγ(3) < . . .

Not Valid Since �= µmin

(VIOLATES THE CONSTRAINT µ′
γ′(1) = µmin)
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Using similar logic we apply the following transformations

µmin = µγ(1) < µγ(2)︸ ︷︷ ︸ < µγ(3) < . . . < µγ(ΓI) = µmax

⇓ ⇓ ⇓
µmin+µγ(2)

2
< µγ(3) < . . . < µγ(ΓI) = µmax

⇓ ⇓ ⇓
0 < µγ(3) − µmin+µγ(2)

2
< . . . < µmax − µmin+µγ(2)

2

⇓ ⇓ ⇓
0 <

µγ(3)− µmin+µγ (2)
2

µmax− µmin+µγ (2)
2

< . . . < 1

⇓ ⇓ ⇓
µmin < µmin +

2µγ(3)−µmin−µγ (2)

2µmax−µmin−µγ (2)
(µmax − µmin) < . . . < µmax

↓ ↓ ↓
µ′

γ′(1) < µ′
γ′(2) < . . . < µ′

γ′(Γ ′
I)

Iliopoulos, Kateri & Ntzoufras: Bayesian Score Merging for the Ordered RC Model 22

Merge the Lowest Scores µγ(1) and µγ(2)

(γi = 1 → γ′
i = 0, i : Γi = 2)

Final transformation

µ′
γ′(k) =

⎧⎪⎨
⎪⎩

µmin, k = 1,

µmin + (µmax − µmin)
2µγ(k + 1) − µmin − µγ(2)

2µmax − µmin − µγ(2)
, k > 1.

(3)
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Split the Lowest Score µγ(1) (reverse move)

(γi = 0 → γ′
i = 1, i : Γi = 1)

(
µmin = µγ(1) < µγ(2) < . . .

)
⇓ ⇓( ︷ ︸︸ ︷

µmin = µ′
γ′(1) < µ′

γ′(2) < µ′
γ′(3) < . . .

)

• Set µ′
γ′(2) = u .

• Generate u in the interval

u ∈
(

µmin, µγ(2) +
(µγ(2) − µmin)[µmax − µγ(2)]

µγ(2) + µmax − 2µmin

)
.
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Finally obtain the new proposed scores by

µ′
γ′(k) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

µmin, k = 1,

u, k = 2,
1
2

{
µmin + u + (2µmax − µmin − u)

µγ(k − 1) − µmin

µmax − µmin

}
, k > 2.

(4)

(
Inverse transformation of equation (3) - given in the corresponding merge move

)
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• In Split Move → |J | =
(
1 − 1

2
u−µmin

µmax−µmin

)ΓI−2

• In Merge Move → u = µγ(2) and

|J | =

[(
1 − 1

2
u − µmin

µmax − µmin

)Γ ′
I−2

]−1

=
(

1 − 1
2

µγ(2) − µmin

µmax − µmin

)3−ΓI

.

Reminder:

• ΓI is the number of scores of the current model (In split “smaller”, In merge:
“larger” model)

• Γ ′
I is the number of scores of the proposed model (In split “larger”, In merge:

“smaller” model)
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Merge the Highest Scores µγ(ΓI − 1) and µγ(ΓI)

(γi = 1 → γ′
i = 0, i : Γi = ΓI )

µmin = µγ(1) < . . . < µγ(ΓI − 2) < µγ(ΓI − 1) < µγ(ΓI) = µmax︸ ︷︷ ︸
⇓ ⇓ ⇓

µmin = µ′
γ′(1) < . . . < µ′

γ′(ΓI − 2) < µ′
γ′(ΓI − 1) = µmax

Note: Γ ′
I = ΓI − 1 since we merge two scores into one.
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µmin = µγ(1) < . . . < µγ(ΓI − 2) < µγ(ΓI − 1) < µγ(ΓI) = µmax︸ ︷︷ ︸
⇓ ⇓ ⇓

µmin = µγ(1) < . . . < µγ(ΓI − 2) <
µγ(ΓI)+µγ(ΓI−1)

2

⇓ ⇓ ⇓
0 < . . . < µγ(ΓI − 2) − µmin <

µγ(ΓI)+µγ(ΓI−1)
2 − µmin

⇓ ⇓ ⇓
0 < . . . <

µγ(ΓI−2)−µmin
µγ (ΓI )+µγ (ΓI−1)

2 −µmin
< 1

⇓ ⇓ ⇓
µmin < . . . < µmin + 2 (µmax−µmin)(µγ(ΓI−2)−µmin)

µγ(ΓI)+µγ(ΓI−1)−2µmin
< µmax
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Merge the Highest Scores µγ(ΓI − 1) and µγ(ΓI)

(γi = 1 → γ′
i = 0, i : Γi = ΓI )

Final transformation

µ′
γ′(k) =

⎧⎪⎨
⎪⎩

µmin + 2(µmax − µmin)
µγ(k) − µmin

µγ(ΓI − 1) + µmax − 2µmin
, k � Γ ′

I − 1 = ΓI − 2,

µmax, k = Γ ′
I = ΓI − 1.

(5)
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Split the Highest Score µγ(ΓI) (reverse move)

(γi = 0 → γ′
i = 1, i : Γi = ΓI )

µmin = µγ(1) < . . . < µγ(ΓI − 1) < µγ(ΓI) = µmax

⇓ ⇓ ⇓

µmin = µ′
γ′(1) < . . . < µ′

γ′(ΓI − 1) <
︷ ︸︸ ︷
µ′

γ′(ΓI) < µ′
γ′(ΓI + 1) = µmax

• Generate u in the interval

u ∈
⎛
⎝0, 2

(
µmax − µmin

)(
µmax − µγ(ΓI − 1)

)
(
µmax − µmin

)
+

(
µmax − µγ(ΓI − 1)

)
⎞
⎠

• and set µ′
γ′(Γ ′

I − 1) = µ′
γ′(ΓI) = µmax − u .
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Split the Highest Score µγ(ΓI) (reverse move)

(γi = 0 → γ′
i = 1, i : Γi = ΓI )

Final transformation

µ′
γ′(k) =

⎧⎪⎪⎨
⎪⎪⎩

µγ(k) − u
2

µγ(k)−µmin
µmax−µmin

, k � Γ ′
I − 2 = ΓI − 1

µmax − u, k = Γ ′
I − 1 = ΓI

µmax, k = Γ ′
I = ΓI + 1.

(6)
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• In Split move

– Determinant of the Jacobian: |J | =
(
1 − 1

2
u

µmax−µmin

)ΓI−2

– ΓI is the number of scores in the smaller (current) model.

• In the Merge move

– u = µmax − µγ(ΓI − 1) and

– Det. of Jacobian:

|J | =
(
1 − 1

2
u

µmax−µmin

)2−Γ ′
I

=
(
1 − 1

2
µmax−µγ(ΓI−1)

µmax−µmin

)3−ΓI

– Here:

∗ ΓI is the number of scores in the “bigger” (current) model.
∗ Γ ′

I is the number of scores in the “smaller” (proposed) model.
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Additional Details

• In practice we have used µmin = νmin = 0 and µmax = νmax = 1.

• When ΓI = 2 then only two scores are different and set equal to µmin and
µmax. No further splitting is allowed. Similar is the case for column scores νj .

• Rescaled Beta proposals can be used for proposing values for u.

• In practice we have used Uniform proposal which has been proved sufficient
for datasets we have implemented the methodology.

• Further investigation is needed in order to construct proposals leading to more
efficient RJMCMC schemes.
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4 Illustrative Example.

Classical dataset of Maxwell (1961) concerning the severity of dreams’ disturbance
of 223 boys aged from 5 to 15 years.

Disturbance

(from low to high)

Age Group 1 2 3 4 Total

5– 7 7 4 3 7 21
8– 9 10 15 11 13 49

10–11 23 9 11 7 50
12–13 28 9 12 10 59
14–15 32 5 4 3 44
Total 100 42 41 40 223
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Results: Most frequently visited models

k Model (scores) Post. prob. PO1k AIC BIC DIC pm dm

1 µ1 = µ2 < µ3 = µ4 < µ5 0.1620 1.00 1265.0 1295.7 1265.0 9.0 9

ν1 < ν2 = ν3 = ν4

2 µ1 = µ2 < µ3 = µ4 < µ5 0.1540 1.05 1265.9 1300.0 1265.1 9.6 10

ν1 < ν2 = ν3 < ν4

3 µ1 = µ2 < µ3 < µ4 < µ5 0.0877 1.85 1267.6 1301.6 1266.3 9.4 10

ν1 < ν2 = ν3 = ν4

4 µ1 = µ2 < µ3 < µ4 < µ5 0.0725 2.23 1268.6 1306.1 1266.4 9.9 11

ν1 < ν2 = ν3 < ν4

5 µ1 = µ2 < µ3 = µ4 < µ5 0.0609 2.66 1269.0 1306.5 1266.4 9.7 11

ν1 < ν2 < ν3 < ν4

6 µ1 = µ2 < µ3 = µ4 < µ5 0.0579 2.80 1267.6 1301.7 1266.5 9.4 10

ν1 < ν2 < ν3 = ν4

7 µ1 < µ2 < µ3 = µ4 < µ5 0.0541 2.99 1269.0 1306.5 1266.7 9.9 11

ν1 < ν2 = ν3 < ν4

8 µ1 < µ2 < µ3 = µ4 < µ5 0.0522 3.10 1268.3 1302.4 1266.8 9.2 10

ν1 < ν2 = ν3 = ν4

Single RJMCMC (R RESULTS): 100,000 iterations + additional burn-in of 10,000 iterations.
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Results: Marginal Probabilities f(γi = 1|y) and f(δj = 1|y)

Posterior Posterior
Row Scores Probability Column Scores Probability
f(γ2 = 1|y) = 0.285 f(δ2 = 1|y) = 0.996
f(γ3 = 1|y) = 0.940 f(δ3 = 1|y) = 0.286
f(γ4 = 1|y) = 0.391 f(δ4 = 1|y) = 0.484
f(γ5 = 1|y) = 0.964

Single RJMCMC (R RESULTS): 100,000 iterations + additional burn-in of 10,000 iterations.
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Some Comments on the Results

• Negative association between age and severity of dreams’ distrurbance (φ < 0).

• Age:

– Categories 2-3 (8–9, 10–11 years old) and 4-5 (12–13, 14–15 years old) ⇒
different in terms of the association (marginal post.prob. = 0.94 and 0.96

respectively).

– Categories 1-2 (5–7, 8–9 years old) and 3-4 (10–11, 12–13years old) ⇒
indistinguishable concerning the association (mild evidence with marginal

post.probab.= 0.715 and 0.609 respectively).

• Severity of dreams’ disturbance: More uncertainty is involved:

� Clear evidence that the first category differs than the rest [f(δ2 = 1|y) = 0.996].

� Model with the highest posterior probability ⇒ all the other three scores equal

(ν2 = ν3 = ν4).

� Model with the 2nd highest posterior probability ⇒ ν2 = ν3 < ν4.

• The algorithm was highly mobile visiting 69, 86 and all 105 models in 10, 100

iterations 400 thousand iterations respectively.
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Comparison to Previous Results

• RJMCMC indicated a more parsimonious model (according to highest
posterior probability) than the one (2nd in rank) indicated by our previous
analysis (see Iliopoulos et al. 2007).

• Agresti et al. (1987) proposed an order restricted C model under which
ν̂1 < ν̂2 = ν̂3 < ν̂4.

• Ritov and Gilula (1993) suggested an order restriction model with
ν̂1 < ν̂2 = ν̂3 < ν̂4 and µ̂1 = µ̂2 < µ̂3 = µ̂4 < µ̂5 which is the second highest
probability according to our method
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5 Work in progress and future work

1. Comparison of the above models with the Uniform association, Independence
and Saturated models [use different prior for φ].

2. Incorporate selection between unrestricted RC, Row, Column association
models (can we use similar parametrization?)

3. Use similar approach in unrestricted RC model for merging/grouping scores

4. Expand methodology to high dimensional tables

5. Use different priors for scores; for example power prior and imaginary data.
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