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ABSTRACT

Association models constitute an attractive alternative to the usual log-linear mo-

dels for modeling the dependence between classification variables. They impose special

structure on the underlying association by assigning scores on the levels of each clas-

sification variable, which can be fixed or parametric. Under the general row-column

(RC) association model, both row and column scores are unknown parameters without

any restriction concerning their ordinality. However, when the classification variables

are ordinal, order restrictions on the scores arise naturally. Under such restrictions, we

adopt an alternative parametrization and we infer for the equality of subsequent scores

using the Bayesian approach. In order to achieve that, we have constructed a reversible

jump Markov chain Monte Carlo algorithm for moving across models of different dimen-

sion and estimate accurately the posterior model probabilities which can be used either

for model comparison or for model averaging. The proposed methodology is illustrated

using two datasets.

Key Words: Contingency tables, ordinal variables, Reversible jump MCMC algorithm,

Equality of Odds, Bayesian model averaging.

1 Introduction

In the context of two-way contingency tables, the association models, mainly developed by Good-

man (cf. Goodman, 1985) play a predominant role in the relevant literature, especially when the
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classification variables are ordinal. In the framework of these models, scores are assigned to the

categories of both classification variables of the table. According to the assumptions made about

these scores (i.e., whether they are fixed, prespecified or parameters to be estimated), different pos-

sible association models occur. A natural choice for a set of fixed scores is a sequence of increasing

scores, usually equidistant for successive categories. This particular choice results to the so-called

uniform (U) association model which is the simplest association model having just one parameter

additional to the independence model. When the scores of just the column (row) classification

variable are fixed, the derived model is the row (R) effect (column effect, C) association model.

Finally, when both sets of scores are parametric, then the Row-Column (RC) effect association

model arises. The RC model is the most computationally involved in terms of its estimation and

fit, due to the fact that its systematic component is not linear (but multiplicative) in its parameters

while the corresponding component in U, R and C models are linear in their parameters.

In case of parametric scores, their monotonicity is not ensured by the standard estimation

procedures. Since monotonicity of the scores is related to stochastic ordering of the corresponding

classification variable (Goodman, 1981), it is natural to expect the scores for an ordinal classification

variable, to be monotonic. Estimation procedures subject to order constraints for the parametric

scores have been developed initially for the R (or C) model by Agresti et al. (1987) and for the RC

model by Ritov and Gilula (1991). Recently, alternative estimation methods have been proposed

and compared by Galindo et al. (2002) and Galindo and Vermunt (2004, 2005).

In the Bayesian framework, the estimation of the RC association model has been considered by

Chuang (1982) and Evans et al. (1993). The Bayesian analysis of the RC model can also be achieved

through the procedure proposed in Kateri et al. (2005), who dealt with the Bayesian estimation of

the more general RC(K) association model, since the RC model is the RC(K) with K = 1. Recently,

Tarantola et al.(2006) used methodology adopted from product partition models to infer on the

clustering of scores in the row effect models. None of these procedures considered order constraints

for the parametric scores. Galindo and Vermunt (2005) facilitated posterior p-values to compare

alternative association models. A first attempt for full Bayesian inference concerning the order

constrained association models has been provided by Iliopoulos et al. (2007). Their approach for

identifying possible score equalities was based on calculating the posterior probabilities of possible

order violations for successive categories in the unrestricted model. These probabilities were used

in an isotonic regression type logic, indicating which scores should be merged. Nevertheless, this
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approach can not be considered as a formal Bayesian evaluation in favor or against merging specific

scores.

In the present work we focus on the estimation of posterior model probabilities of the RC order

constrained model, in a formal way, by allowing for ties in the prior distribution level. A trans-

dimensional MCMC algorithm (reversible jump MCMC, Green, 1995) is constructed for assessing

the equality of successive row and column scores. Variations of the corresponding algorithm can

be used for the simpler R and C models.

The RC model is presented in Section 2 under a new parametrization convenient for the needs

of our procedure. This new parameterization exhibits also interpretational advantages, which are

highlighted. Section 3 deals with models’ Bayesian formulation including the description of addi-

tional latent indicators used in the proposed algorithm to identify equal scores. A reversible jump

MCMC algorithm for the estimation of the order restricted row or/and column scores, subject also

to possible ties, is introduced in Section 4. Two illustrative examples are presented in Section 5

while the final section summarizes results and discusses related issues.

2 Modelling Details

Let y = (yij), i = 1, . . . , I and j = 1, . . . , J , be a frequency I × J contingency table, produced by

the cross-classification of two ordinal variables X (rows) and Y (columns). We assume

vec(y) ∼ Multinomial


 I∑

i=1

J∑
j=1

yij, vec(Π)


 ,

where Π = (πij) is the underlying probability table. Under the saturated log-linear model, it holds

log πij = λ + λX
i + λY

j + λXY
ij , i = 1, . . . , I, j = 1, . . . , J.

For identifiability purposes, the sum-to-zero constraints are imposed on the parameters, i.e.,
I∑

i=1

λX
i =

J∑
j=1

λY
j =

I∑
i=1

λXY
ij =

J∑
j=1

λXY
ij = 0. (2.1)

Assigning parametric scores to the categories of X and Y , denoted by µ = (µ1, µ2, . . . µI) and

ν = (ν1, ν2, . . . νJ) respectively and substituting the interaction terms λXY
ij by the product φµiνj ,

the multiplicative row–column association (RC) model (Goodman, 1979, 1985) is achieved

log πij = λ + λX
i + λY

j + φµiνj, i = 1, . . . , I, j = 1, . . . , J. (2.2)
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The parameter φ is a global measure of association. The above formulation reveals the analogies

to the classical correspondence analysis (CA) or canonical correlation model. The physical inter-

pretation of the parameter φ is straightforward. It reflects the odds ratio of successive categories

with score distances equal to one, since

log
(

πijπi+1,j+1

πi,j+1πi+1,j

)
= φ(µi+1 − µi)(νj+1 − νj).

In order to ensure identifiability of the parameters, certain constraints have to be imposed on

the above model parameters. Additional to the natural constraint
∑I

i=1

∑J
j=1 πij = 1 and the sum-

to-zero (STZ) constraints on the row and column main effects in (2.1), four additional constraints

are imposed on the row and column scores (µi and νj). Usually, these restrictions are the STZ and

the sum of squares equal to one (SSTO) constraints

I∑
i=1

µi =
J∑

j=1

νj = 0 and
I∑

i=1

µ2
i =

J∑
j=1

ν2
j = 1. (2.3)

In the context of Bayesian analysis of association models, the SSTO constraints complicate the

structure of the posterior distribution, compared to the usual generalized linear models case.

This paper is restricted to the case of ordinal X and Y and consequently focus on the order

restricted version of the RC association model. Thus, we assume an ordinal structure for the

corresponding scores:

µ1 � µ2 � · · · � µI and ν1 � ν2 � · · · � νJ (2.4)

with µ1 < µI and ν1 < νJ , i.e. at least two distinct and unequal row and column scores are

assumed. The aim of the current work is the Bayesian estimation of the order restricted RC model

with simultaneous identification of possible score equalities over successive scores µi, µi+1 and

νj, νj+1.

For the needs of our procedure, we introduce a new parameterization of the scores (subject

to a different set of constraints). This parameterization is suitable for building a reversible jump

MCMC algorithm (RJMCMC) for assessing the equality of successive row and column scores and

simplifies further the MCMC scheme as well.
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2.1 The proposed parametrization

In order to avoid the complicated structure of the posterior, we propose, instead the standard (2.3)

constraints, to fix the minimum and maximum score for each classification variable. Thus, for

pre-specified constants µmin, µmax, νmin and νmax, with µmin < µmax and νmin < νmax, we set

µ1 = µmin, µI = µmax, ν1 = νmin and νJ = νmax. (2.5)

Use of this approach results to row and column scores taking values in the intervals [µmin, µmax]

and [νmin, νmax] respectively. Typical choices for these intervals could be [−1, 1] or [0, 1].

The imposed constraints (2.5) on the extreme categories arise in a more natural way than the

standard ones in (2.3) for the order resticted version of the model. For instance, the zero-one interval

induces a proportion-like interpretation to the scores. Moreover, under this parametrization, the

association parameter φ also has a straightforward interpretation since

φ = log
(

π11πIJ

πI1π1J

)

i.e., it is equal to the log-odds ratio that results from the extreme categories of the contingency

table.

3 Bayesian model formulation

In order to accommodate uncertainty concerning the equality of succesive scores, the model is

further extented by introducing the latent binary indicators γi (for i = 2, . . . , I) and δj (for j =

2, . . . , J), which are equal to 1 when µi − µi−1 > 0 (or νj − νj−1 > 0 respectively) and 0 when

µi − µi−1 = 0 (or νj − νj−1 = 0 respectively). The indicator vectors γ = (1, γ2, . . . , γI) and

δ = (1, δ2, . . . , δJ ) specify which successive scores are equal and can be used as a model indicator.

Without loss of generality, we set γ1 = δ1 = 1 in order to retain the same dimension between the

indicator and the corresponding score vectors. The above approach are analogous to the binary

indicators used in Bayesian variable selection techniques (see George and McCulloch, 1993, Kuo

and Mallick, 1998, Dellaportas et al., 2002).

Let us further define Γi =
∑i

k=1 γk, i = 1, . . . , I, and ∆j =
∑j

k=1 δk, j = 1, . . . , J and denote

by µγ the ΓI -dimensional vector corresponding to the distinct µ-scores. Similarly we denote by

νδ the ∆J -dimensional vector corresponding to the distinct ν-scores. In order to avoid multiple
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indices, we denote by µγ(i) and νδ(j) the i-th and j-th components of µγ and νδ respectively. In

this setting, the original scores can be obtained as

µi = µγ(Γi) and νj = νδ(∆j). (3.6)

Note that always µγ(1) = µmin, µγ(ΓI) = µmax (νδ(1) = νmin, νδ(∆J) = νmax). Thus, there exist

ΓI − 2 and ∆J − 2 free parameters respectively.

3.1 Prior distributions

It is more convenient to set a prior distribution to the positive score differences rather than on the

scores themselfs. When no prior information is available, a convenient choice for the prior is the

Dirichlet distribution D(1, . . . , 1︸ ︷︷ ︸
ΓI−2

) for the row scores and D(1, . . . , 1︸ ︷︷ ︸
∆J−2

) for the column scores when

they are rescaled to the [0, 1] interval. Equivalently, the (distinct) scores are a priori distributed as

ordered iid uniform random variables with joint density

f(µγ|γ) =

(
ΓI − 2

)
!

(µmax − µmin)ΓI−2
I(µmin < ordered distinct µ’s < µmax),

f(νδ|δ) =

(
∆J − 2

)
!

(νmax − νmin)∆J−2
I(νmin < ordered distinct ν’s < νmax),

Normal prior distributions of vague variances are assigned to the main effects for rows and columns.

A normal prior distribution with large prior variance is also considered for the association parameter

φ. The effect of this choice on the posterior model probabilities will be minimal due to the presence

of these parameters in all compared models (see for details Kass and Raftery, 1995, section 5.3).

To complete the prior specification, Bernoulli priors with success probabilities equal to 1/2 are

assigned to the γi’s and δj ’s.

3.2 Posterior Inference and Model Comparison

Since interest lies on the interaction terms of our model, focus will be given on the posterior

distributions of the row and column scores as well as on the intrinsic association parameter φ.

Moreover, since the latent indicators γ, δ specify the interaction and the model structure, the

posterior distribution of f(γ, δ|y) and the marginal distributions f(γi|y) and f(δj|y) for i = 1, . . . , I,

j = 1, . . . , J are also of special interest. The above posterior probabilities will identify the best
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models and indicate ties among the scores. Further on, the posterior distribution of the parameters

conditional on a specific model structure will be also considered. Hence, we will focus on f(φ|γ, δ),

f(µ|γ, δ) and f(ν|γ, δ) as well, for those (γ, δ)’s having the highest posterior probabilities.

The above quantities will be estimated using reversible jump Markov chain Monte Carlo tech-

niques introduced by Green (1995). Details concerning the implementation of this algorithm follow

in the next section.

4 RJMCMC for row and column score merging

We proceed by describing the general MCMC algorithm and details about the matching functions

and the proposal distributions are povided. In what follows, notation is similar to the one used in

variable selection (see Dellaportas et al. 2002).

4.1 The MCMC Algorithm

The RJMCMC scheme can be summarized by the following steps

1. Update model structure by sampling γ and δ using successive RJMCMC moves for each

component:

• For i = 2, . . . , I, propose γ′ such that γ′
i = 1 − γi, γ′

k = γk for k �= i.

– Splitting two scores (γi = 0 → γ′
i = 1): if γi = 0 then we propose to split µi−1

and µi scores (i.e. µ′
i−1 < µ′

i).

(a) Generate a scalar u from a specified proposal density q(u|µ, γ, γ′) which is used

to equalize the dimensions of the compared models (see Green, 1995 for details).

(b) Set µ′
γ′ = g(µγ , u), where g(µγ , u) can be any invertible function that matches

the two models.

(c) Obtain µ′ from µ′
γ′ using (3.6).

– Merging two scores (γi = 1 → γ′
i = 0): if γi = 1 then we propose to move from

µi−1 < µi to µ′
i−1 = µ′

i.

(a) Set (µ′
γ′ , u) = g−1(µγ).

(b) Obtain µ′ from µ′
γ′ using (3.6).
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– The probability of acceptance of the proposed move (γ, µ) → (γ′, µ′) in each RJM-

CMC step equals α = min(1, A), where

A =
f(y|λX , λY , φ, µ′, ν)
f(y|λX , λY , φ, µ, ν)

f(µ′
γ′ |γ′)f(γ′)

f(µγ |γ)f(γ)

q(u|µ′
γ′ , γ′, γ)γi

q(u|µγ , γ, γ′)1−γi
|J |1−2γi .

Here |J | is the absolute determinant value of the Jacobian matrix for the matching

function g(µγ , u), used in the split move, given by

|J | =
∣∣∣∣∂g(µγ , u)

∂(µγ , u)

∣∣∣∣ .

• For j = 2, . . . , J , propose δ′ such that δ′j = 1 − δj , δ′k = δk for k �= j.

Similarly to the row scores, if δj = 1 → δ′j = 0 then we merge the j and j − 1 successive

column scores while if the move δj = 0 → δ′j = 1 is proposed then we split two successive

column scores (i.e., set ν ′
j−1 < ν ′

j). The sampling scheme will be analogous to the one

described above for the row scores.

2. Update the model parameters (λX , λY , φ, µ, ν), given the model structure (γ, δ), using the

following steps:

• Sample row and column effects (as in Iliopoulos et al. 2007).

• Sample φ using a simple random walk Metropolis.

• Use random walk for the logits of column and row scores’ differences.

More details concerning the matching function and the proposal function follow. Technicalities

concerning the domain of the proposed parameter and the Jacobian are given in Appendices A and

B. A more detailed description of the split and merge moves is provided in Appendix C.

4.2 Specification of the Matching Function.

The split and merge moves are directly defined by a three-armed function g(), each arm corre-

sponding to a different type of move. A common function used to specify a merge move can be

obtained by simply considering the mean (arithmetic or geometric) of the successive scores that we

wish to merge and leave the rest of the parameters unchanged (see for example in Richardson and

Green, 1997; Iliopoulos et al., 2005).
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Direct implementation of the above matching function on the first and last category scores leads

to violation of the model constraints (2.5). Thus, when merging the two lowest or the two highest

scores, we use a rescaled version of the above considered matching function so that the required

constraints are satisfied. The same comments are also true for the inverse move (split of two scores)

since they are directly defined by the inverse of the function for the merge moves.

In the following, we provide details concerning the split and merge moves only for the row

scores, since the corresponding moves for the column scores are derived analogously.

4.2.1 Split and Merge Moves for the ‘Central’ Scores.

The definition of central scores depends on the type of the proposed move. When splitting is

proposed, we define as central scores the second to the last but one components of µγ . On the

other hand, in merge, we define as central scores the third to the last but one components of µγ .

Hence, central scores are parameters µγ(�) such that s ≤ � = Γi ≤ ΓI − 1; where s = 3 for merging

moves and s = 2 for splitting moves. Concerning the vector of the original row scores µi, we define

as central scores the ones such that s ≤ Γi ≤ ΓI − 1.

Merging of µγ(� − 1) < µγ(�) leads to a new parameter vector µ′
γ′ of dimension Γ ′

I = ΓI − 1

through the following transformation:

µ′
γ′(k) =




µγ(k), k < � − 1,
1
2

{
µγ(i − 1) + µγ(i)

}
, k = � − 1,

µγ(k + 1), k > � − 1.

(4.1)

The above merge move implies the following split move: when splitting µγ(i), the new vector of

row scores µ′
γ′ of dimension ΓI + 1, is derived as

µ′
γ′(k) =




µγ(k), k < �,

µγ(i) − u, k = �,

µγ(i) + u, k = � + 1,

µγ(k − 1), k > � + 1.

(4.2)

From (4.2) it follows that the pseudo-parameter u, which is used to generate the additional param-

eters in the split move, is given by

u =
µ′

γ′(�) − µ′
γ′(� − 1)

2
.
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4.2.2 Merging the Lowest Two Scores and/or Splitting the Lowest Score.

Here we consider the case of merging the two lowest scores µγ(1) and µγ(2) or splitting the lowest

score µγ(1). Imposing the above “central” scores transformation when merging the lowest two

scores will result to µ′
γ′(1) = 1

2{µmin + µγ(2)} �= µmin. In order to obtain a set of parameters that

satisfy (2.5) we rescale the above parameters in the [0, 1] interval and then rescale them again to the

desired [µmin, µmax] interval. So, we subtract from all parameters the quantity c = 1
2{µmin +µγ(2)},

multiply them by (µmax − µmin)/(µmax − c) and finally add µmin.

The above procedure results to the matching function

µ′
γ′(k) =




µmin, k = 1,

µmin + (µmax − µmin)
2µγ(k + 1) − µmin − µγ(2)

2µmax − µmin − µγ(2)
, k > 1.

(4.3)

The above move is proposed for scores µi with Γi = 2. Moreover, for the additional pseudo-

parameter u we set u = µγ(2) (see below in the split move for details).

The corresponding split move is applicable for µi with Γi = 1 and the new vector µ′
γ′ of

dimension Γ ′
I = ΓI + 1 is given by

µ′
γ′(k) =




µmin, k = 1,

u, k = 2,
1
2

{
µmin + u + (2µmax − µmin − u)

µγ(k − 1) − µmin

µmax − µmin

}
, k > 2.

(4.4)

4.2.3 Merging the Highest Two Scores and/or Splitting the Highest Score.

The last move is performed when we wish to merge the two highest scores, µγ(ΓI − 1) and µγ(ΓI)

or split the last one, µγ(ΓI). Following similar arguments as above, when merging, the new highest

score is firstly set equal to {µγ(ΓI − 1) + µmax}/2 and then rescaled appropriately. All other scores

are modified accordingly. Hence the new vector µ′
γ′ of dimension Γ ′

I = ΓI − 1 is given by

µ′
γ′(k) =




µmin + 2(µmax − µmin)
µγ(k) − µmin

µγ(ΓI − 1) + µmax − 2µmin
, k � Γ ′

I − 1 = ΓI − 2,

µmax, k = Γ ′
I = ΓI − 1.

(4.5)

For the additional parameter u, we set u = µmax − µγ(ΓI − 1).
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The reverse split move is given by the vector µ′
γ′ of dimension Γ ′

I = ΓI + 1

µ′
γ′(k) =




µγ(k) − u

2
µγ(k) − µmin

µmax − µmin
, k � Γ ′

I − 2 = ΓI − 1,

µmax − u, k = Γ ′
I − 1 = ΓI ,

µmax, k = Γ ′
I = ΓI + 1.

(4.6)

4.2.4 The Jacobian Matrix

The Jacobian matrix in any case will be a (ΓI − 1) × (ΓI − 1) matrix corresponding to the ΓI − 2

free score parameters and the proposed parameter u.

The Jacobian for the split moves is given by

|J | =




2 for the central score(
1 − 1

2
u − µmin

µmax − µmin

)ΓI−2

for the lowest score

(
1 − 1

2
u

µmax − µmin

)ΓI−2

for the highest score

while for the merge moves by

|J | =




1/2 for central scores(
1 − 1

2
µγ(2) − µmin

µmax − µmin

)3−ΓI

for lowest scores

(
1 − 1

2
µmax − µγ(ΓI − 2)

µmax − µmin

)3−ΓI

for highest scores

Details concerning their computation are provided in Appendix A.

4.3 Proposal Distribution of Parameter u.

In all three proposed moves, the pseudo-parameter u lies within an interval of the type (L,U). The

values of L and U for each case as well as their derivation are provided in Appendix B. A natural

choice for the proposal distribution is the uniform distribution U(L,U), which has the advantage

of avoiding any additional parameter specification. For an illustration, we refer to our illustrative

examples, where it performed satisfactorily.
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Alternatively, we can use a rescaled Beta distribution. In this case, we sample u∗ ∼ Beta(a, b)

and then set u = L + u∗(U − L). The parameters a and b can be obtained by matching the mean

and variance of this density with values taken from a pilot study (see for example in Dellaportas

et al., 2002).

5 Illustrative Examples

5.1 Example 1: Dreams’ Disturbance Data

The classical dataset by Maxwell (1961) on the severity of dreams’ disturbance for boys aged 5 to

15, has been used to illustrate the order restricted maximum likelihood estimation of association

and correlation models by Agresti et al. (1987) and Ritov and Gilula (1993) respectively. A first

Bayesian ordered restricted estimation of the association model for the same data set has been

provided in Iliopoulos et al. (2007). The data are listed in Table 1.

Disturbance

(from low to high)

Age Group 1 2 3 4 Total

5– 7 7 4 3 7 21
8– 9 10 15 11 13 49

10–11 23 9 11 7 50
12–13 28 9 12 10 59
14–15 32 5 4 3 44
Total 100 42 41 40 223

Table 1: Cross–classification of 223 boys by severity of disturbances of dreams and age (Example

1: Dream’s disturbance data).

In all the above publications, negative association between age and severity of disturbances was

identified. In particular, Agresti et al. (1987) proposed an order restricted C model under which

ν̂1 < ν̂2 = ν̂3 < ν̂4 while Ritov and Gilula (1993) suggested order restriction on the age classification

variable as well. Thus, they concluded to the correlation model (CARG) with ν̂1 < ν̂2 = ν̂3 < ν̂4

and µ̂1 = µ̂2 < µ̂3 = µ̂4 < µ̂5.

After implementing the proposed methodology, posterior probabilities of the models under
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consideration are calculated and summarized in Table 2. The marginal posterior probabilities for

the γ and δ indicators, given in Table 3, provide direct information about merging or not specific

row or/and column scores according to the differences of the corresponding categories in terms of

the underlying association structure.

According to Table 2, the highest probability model (16.2%) sets equal the scores of rows 1-

2 and 3-4, indicating that the age categories 5-7 and 8-9 (as well as ages 10-11 and 12-13) do

not differentiate in terms of association to severity of dream disturbance. Concerning the dreams

disturbance level, the highest probability model suggests that only the first column category of

lowest disturbance level distinguishes from the remaining categories since it sets ν1 < ν2 = ν3 = ν4.

This model is more parsimonious than the ones suggested by athors previously analyzed the same

data.

The estimated posterior probability for the second highest model equals 0.154 and is very close to

the first one. The corresponding posterior model odds between the two highest probability models

is just 1.05 which suggests no clear separation between them. The second highest probability model

is the one identified and proposed by Iliopoulos et al. (2007) as well as by Ritov and Gilula (1993).

Further on, Table 2 indicates that eight models were found with posterior probability higher than

5%. All these models, when compared with the model of highest probability, provide ‘not worth

than a bare mention’ evidence in favor of the latter according to Kass and Raftery (1995) evaluation

table for Bayes factors.

The marginal posterior probabilities f(γi|y) and f(δj |y) given in Table 3 provide a detailed

insight to the structure of the supported model. Hence, there is a clear evidence that the scores

for the row categories 2 and 3 (ages 8–9 and 10–11) as well as 4 and 5 (ages 12–13 and 14–15)

are different, since their marginal posterior probabilities are higher than 0.95 . Similarly, posterior

model probability f(δ2|y) > 0.99 suggests that the first and the second categories of ‘dreams

disturbance’ are different. For the rest of the row and column scores, we observe an increased

uncertainty concerning their equality. Indeed, their marginal probabilities provide evidence in

favor of merging the subsequent scores. Thus, merging of row scores 1-2 and column scores 2-3 are

supported with posterior probability of about 0.715. Finally, for row scores 3-4 (10–11, 12–13 years

old) and column scores 4-5 (highest levels of dreams’ disturbance) posterior probabilities indicate

mild evidence in favor of their equality with values 0.606 and 0.516 respectively.

By analyzing the posterior distribution over all visited models (Bayesian model averaging, BMA,
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Posterior Summaries of φ

Model Posterior Percentiles Odds Ratio

k (score structure) Probability PO1k Mean St.Dev. (2.5%, 97.5%) (emean of φ)

1 µ1 = µ2 < µ3 = µ4 < µ5 0.1620 1.00 -2.06 0.44 (-2.94, -1.21) 0.127

ν1 < ν2 = ν3 = ν4

2 µ1 = µ2 < µ3 = µ4 < µ5 0.1540 1.05 -2.55 0.61 (-3.87, -1.46) 0.078

ν1 < ν2 = ν3 < ν4

3 µ1 = µ2 < µ3 < µ4 < µ5 0.0877 1.85 -1.98 0.45 (-2.86, -1.12) 0.138

ν1 < ν2 = ν3 = ν4

4 µ1 = µ2 < µ3 < µ4 < µ5 0.0725 2.23 -2.42 0.60 (-3.73, -1.33) 0.089

ν1 < ν2 = ν3 < ν4

5 µ1 = µ2 < µ3 = µ4 < µ5 0.0609 2.66 -2.52 0.61 (-3.85, -1.44) 0.081

ν1 < ν2 < ν3 < ν4

6 µ1 = µ2 < µ3 = µ4 < µ5 0.0579 2.80 -2.16 0.48 (-3.12, -1.25) 0.115

ν1 < ν2 < ν3 = ν4

7 µ1 < µ2 < µ3 = µ4 < µ5 0.0541 2.99 -2.71 0.66 (-4.15, -1.52) 0.067

ν1 < ν2 = ν3 < ν4

8 µ1 < µ2 < µ3 = µ4 < µ5 0.0522 3.10 -2.17 0.48 (-3.13, -1.23) 0.114

ν1 < ν2 = ν3 = ν4

Weighted Estimate using BMA -2.26 0.62 (-3.62 , -1.16) 0.104

Table 2: Estimated Posterior Model Probabilities for Most Frequently Visited Models and Posterior

Summaries of φ for Example 1 (dreams disturbance data); Single RJMCMC Using R: 100,000

iterations and additional burn-in of 10,000 iterations.
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Posterior Posterior

Row Scores Probability Column Scores Probability

f(γ2 = 1|y) = 0.285 f(δ2 = 1|y) = 0.996

f(γ3 = 1|y) = 0.940 f(δ3 = 1|y) = 0.286

f(γ4 = 1|y) = 0.391 f(δ4 = 1|y) = 0.484

f(γ5 = 1|y) = 0.964

Table 3: Estimated Posterior Probabilities for γ and δ ‘Split’ Indicators for Example 1 (dreams

disturbance data); single RJMCMC Using R: 100,000 iterations and additional burn-in of 10,000

iterations.

estimate) provided in Table 2, we observe a clear negative association between age and severity of

dreams’ distrurbance (φ < 0) with posterior mean and median equal to -2.26 and -2.21 respectively.

The above values correspond to odds ratio equal to 0.10 having a direct interpretation using our

proposed parametrization. Thus, we can argue that the odds of severe dreams’ disturbance versus

lower disturbances for an older children (aged between 14 and 15 years old) is 90% lower than the

corresponding odds for younger children. The posterior standard deviation was found equal to 0.62

while 95% and 99% intervals lie between -3.62 and -1.16, -4.17 and -0.88 respectively supporting

the strong negative association assumption for this table (corresponding intervals for odds ratios

are given by (0.027, 0.314) and (0.015, 0.416) respectively).

The posterior distribution of φ for the a-posteriori highest probable model, indicates that we

expect under this model the odds of high versus low dreams disturbances to be 7.87 times higher

for children aged 14-15 than for children aged 5-9. On the other hand, under the a-posteriori

second highest probable model this odds is 12.8 times higher for the older children compared to

the younger. Plot of the posterior distribution of φ for the best eight models (given in Table 2)

and the corresponding weighted distribution over these models is provided in Figure 1.

Concerning the row and column scores, graphical representation of their posterior distributions

is provided in Figure 2. The posterior summaries of the related estimated odds ratios can be

extracted directly by the MCMC output. In the context of odds ratios, note that in case of no

equality restrictions among the scores, there exist (I −1)(J −1) odds ratios (comparing each cell of

the table with i ≥ 2, j ≥ 2 to the baseline cell (i = 1, j = 1). For the highest probability model, the
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Figure 1: Posterior Distributions of φ over models with highest posterior probabilities for Example

1 (dreams’ distrurbance data).

equalities on row and column scores impose restrictions on the odds ratios and hence their number

is reduced just to two (including φ itself commented above) while for the second highest probable

model we need to calculate four odds ratios. Posterior geometric means using model averaging

for the two highest probability models are provided in Table 4. For the two highest probability

proposed models, the odds ratios for the second row are equal to one, since the corresponding first

and second row scores are equal. Note that the odds ratios for all models are decreasing in each

column, indicating negative association between dreams’ disturbance severity and age.

16



Highest 2nd Highest

Bayesian model averaging Prob. Model Prob. Model

i j = 2 j = 3 j = 4 i j = 2, 3, 4 i j = 2, 3 j = 4

2 0.93 0.93 0.91 2 1.00 2 1.00 1.00

3 0.46 0.43 0.37 3, 4 0.38 3, 4 0.47 0.35

4 0.40 0.38 0.32

5 0.17 0.15 0.10 5 0.13 5 0.20 0.10

Table 4: Estimated posterior odds ratios (posterior geometric means) using model averaging for

the two highest probability models for example 1 (dream’s disturbance data).
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Figure 2: Boxplots of the posterior distribution of the row and column scores for model averaging

and the two a-posteriori most probable models (dream’s disturbance data).
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5.2 Example 2: Association of Schizotypal Personality Subscales in a Student

Survey

The data analyzed here are part of a student survey in Greece with aim to assess the association

between schizotypal traits and impulsive and compulsive buying behavior of University students

(Iliopoulou, 2004).

Social Odd Behavior Score

Anxiety 0 1 2 3 4 5–7

Score i j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 Total

0 1 11 5 1 0 1 0 18

1 2 13 8 8 2 2 3 36

2 3 8 9 4 1 4 0 26

3 4 6 7 5 4 4 1 27

4 5 6 9 5 3 2 4 29

5 6 3 13 5 4 1 5 31

6–8 7 0 11 5 10 3 6 35

Total 47 62 33 24 17 19 202

Table 5: Cross–classification of 202 Students by Social Anxiety and Odd Behavior sub-scales (Ex-

ample 2: Schizotypy data).

The cross-classification of 202 students of the survey according to ‘social anxiety’ and ‘odd

behavior’ is given in Table 5. These variables refer to two of the nine specific characteristics of a

‘schizotypal personality’, as they are defined in the DSM-III-R diagnostic and statistical manual

of mental disorders, edited by the American Psychiatric Association (1987). Social anxiety refers

to excessive stress, nervousness or feeling extremely uncomfortable when being with other people

which does not disappear with familiarity. Odd behavior is related to eccentric appearance, unusual

habits and peculiar actions that may not be acceptable in society.

Note that a ‘schizotype’ suffers from minor episodes of pseudoneurotic problems. In general, the

prevalence rate of schizotypy is about 10% in the general population. The importance of schizotypal

personality in psychiatric research is prominent for two reasons: Firstly, shizotypal subjects have

increased risk to develop schizophrenia during their life. Secondly, since they are healthy persons,
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they can participate in psychiatric/psychological research studies (by completing questionnaires -

psychometric instruments) in which schizophrenia cases are unable to do. Although several scales

have been proposed in the literature, Raine’s (1991) SPQ scale, a 74-item self-administered ques-

tionnaire, is the most popular questionnaire used to measure the concepts of schizotypal personality.

The questionnaire consists of binary zero-one (yes-no) items. It provides subscales for nine schizo-

typal features as well as an overall scale for schizotypy. Each subscale is calculated as the sum of

the questionnaire items that refer to each schizotypal subscale.

Since both classification variables of Table 5 are ordinal, we shall apply the order restricted

RC model. Details for the most probable table are summarized in Table 6. Note that, for this

example, traditional asymptotic inference cannot be applied due to the small cell entries of the

resulted contingency table.

Model Posterior

k (score structure) Probability (%) PO1k

1 µ1 < µ2 = µ3 < µ4 = µ5 < µ6 < µ7 3.011 1.00

ν1 < ν2 = ν3 < ν4 = ν5 = ν6

2 µ1 < µ2 < µ3 < µ4 = µ5 < µ6 < µ7 1.937 1.55

ν1 < ν2 = ν3 < ν4 = ν5 = ν6

3 µ1 < µ2 = µ3 < µ4 = µ5 = µ6 < µ7 1.914 1.57

ν1 < ν2 = ν3 < ν4 = ν5 = ν6

4 µ1 < µ2 = µ3 < µ4 = µ5 < µ6 < µ7 1.688 1.78

ν1 < ν2 = ν3 < ν4 = ν5 < ν6

5 µ1 < µ2 < µ3 = µ4 = µ5 < µ6 < µ7 1.684 1.79

ν1 < ν2 = ν3 < ν4 = ν5 = ν6

6 µ1 < µ2 = µ3 < µ4 < µ5 < µ6 < µ7 1.614 1.87

ν1 < ν2 = ν3 < ν4 = ν5 = ν6

Table 6: Estimated Posterior Model Probabilities for Most Frequently Visited Models for Example

2 (schizotypy data); Single RJMCMC Using R (500,000 iterations and additional burn-in of 10,000

iterations).

According to the information provided in Table 6, the most probable model (3%) is the one
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Posterior Posterior

Row Scores Probability Column Scores Probability

f(γ2 = 1|y) = 0.8358 f(δ2 = 1|y) = 0.9997

f(γ3 = 1|y) = 0.4734 f(δ3 = 1|y) = 0.2746

f(γ4 = 1|y) = 0.6129 f(δ4 = 1|y) = 0.6921

f(γ5 = 1|y) = 0.4878 f(δ5 = 1|y) = 0.1653

f(γ6 = 1|y) = 0.6750 f(δ6 = 1|y) = 0.4432

f(γ7 = 1|y) = 0.8930

Table 7: Estimated Posterior Probabilities for γ and δ ‘Split’ Indicators for Example 2 (schizotypy

data); single RJMCMC Using R (500,000 iterations and additional burn-in of 10,000 iterations).

with just three distinguished values for column and five distinguished values for the row scores.

Namely, it sets µ2 = µ3, µ4 = µ5 for the row scores and ν2 = ν3, ν4 = ν5 = ν6 for the column

scores, with the analoguous interpretation. The posterior odds ratios, presented in Table 8, are

increasing with row and column levels, indicating an underlying positive association between the

two clasiffication variables. Moreover, values of last row and column scores are much higher than

the rest ones indicating that the association between the two sub-scales is stronger at the higher

levels of the variables under consideration.

Highest

Bayesian model averaging Prob. Model

i j = 2 j = 3 j = 4 j = 5 j = 6 j = 2, 3 j = 4, 5, 6

2 2.25 2.36 2.94 2.99 3.43 2,3 2.72 3.95

3 2.79 2.95 3.87 3.95 4.66

4 3.95 4.25 6.07 6.24 7.78 4,5 5.16 9.38

5 5.05 5.49 8.22 8.49 11.14

6 8.85 9.82 16.25 16.93 24.19 6 11.19 25.71

7 61.18 71.82 162.04 172.18 278.61 7 115.17 469.00

Table 8: Estimated posterior odds ratios (posterior geometric means) for Example 2 (schizotypy

data), using model averaging and the highest probability model .
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Figure 3: Boxplots of the posteriors of the row and column scores for model averaging and the

a-posteriori most probable model for Example 2 (schizotypy data).
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5.3 Computational Details

In order to implement the proposed algorithms the authors have developed R functions and stand

alone Fortran software. These two versions were used for crosschecking of results. Software is

available by the authors upon request.

Results illustrated in this paper have been generated using R functions. For example 1, results

were generated using a sample of 100,000 iterations after discarding additional initial 10,000 itera-

tions as burn-in period. Running time was approximately equal to 10 minutes, in a Pentium duo

cure 2.0 PC using version 2.0.1 of R. For example 2, results were based on 500,000 iterations after

discarding initial 10,000 iterations as burn-in period. Running time for 100 thousand iteration was

approximately equal to 18 minutes in the same machine.

Both examples were also run extensively using the corresponding Fortran program which was

considerably faster. For both cases, samples of 500 thousand iteration were generated and compared

with the corresponding R results to ensure convergence and the lack of programming bugs.

The algorithm was highly mobile in both examples. In example 1 the algorithm visited 69, 86

and all 105 models in 10, 100 iterations 400 thousand iterations respectively. In example 2 the

algorithm visited 358, 730 and 894 models in 1, 10 and 100 thousand iterations respectively (out

of 1953 models).

6 Discussion and Further Research

In this paper we dealt with the problem of the Bayesian score merging for the ordered restricted

association models used in two-way contingency tables. We have focused on the comparison of scores

using trans-dimensional methods (RJMCMC, Green, 1995). In order to achieve that, we propose

an alternative parametrization which is convenient in terms of interpretation and computation.

We used order-restricted uniform prior for the model scores and constructed a flexible RJMCMC

algorithm to explore the model space. Our approach can easily handle sparse tables since it is

not based on asymptotic results and avoids sequential pairwise testing (and stepwise procedures)

making our method automatic in the sense that the best a-posteriori models are directly available

by ordering the estimated posterior model probabilities.

The approach presented in this paper assumes that a log-multiplicative structure between the
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ordinal variables exists. Comparison of the order-restricted association model with other standard

models, such as the independence and the saturated model, can be done in a straightforward

manner using the deviance information criterion (DIC), Bayesian or standard versions of AIC

and BIC (Spiegelhalter et al. 2002, Brooks, 2002) or other Bayesian measures as the posterior

p-values used by Galindo and Vermunt (2005) and the ones proposed for association models (in a

more general context) by Kateri et al. (2005). For a relevant illustration in RC models, see also

Iliopoulos et al. (2007).

An obvious extension of our proposed method is to embody to our algorithm other association

models such as, for example, the U, R and C models. This will considerably complicate the

algorithm, due to the appearance of additional issues, such as, for example, the construction of a

set of sensible and compatible priors across different models. We did not pursued this issue further

within this paper, since this work was focused on inference concerning the merging of parametric

scores for ordinal variables.

Other interesting issues for future research may include the prior elicitation and how we should

incorporate prior information in such models. An interesting prior can be constructed by using

the power prior distribution proposed by Chen et al. (2000) based on imaginary data which will

express our prior beliefs. By this way, prior distributions that are compatible across models can be

constructed in a straightforward manner.

Finally, future research on the area can be focused on the extension of such types of association

models (with identification of sets of classification variables’ categories with equal scores) to high-

dimensional contingency tables.

APPENDIX

A. Calculation of the Jacobians

The Jacobian matrix is a (ΓI − 1) × (ΓI − 1) matrix with the derivatives of the new scores with

respect to the old.
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When splitting a “central” score µγ(�), we have

∂µ′
γ′(k)

∂µγ(l)
= I(k � i)δk,l + I(k > i)δk,l+1,

∂µ′
γ′(k)

∂u
= δk,i+1 − δk,i,

where I(·) is the indicator function and δk,l = I(k = l) is Kronecker’s delta. The corresponding

Jacobian determinant is given by

|J | =

∣∣∣∣∣∣∣∣∣∣∣

Ik1 01×2 01×k2

01×k1 (1, 1) 01×k2

0k2×k1 0k2×2 Ik2

01×k1 (−1, 1) 01×k2

∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣
1 1

−1 1

∣∣∣∣∣∣ = 2.

where Ik is the identity matrix of order k, 0k×l is the k × l matrix of zeros and k1 = Γ� − 2,

k2 = ΓI − Γ� − 1.

When merging two central scores, the Jacobian is simply the inverse of the above quantity,

i.e. |J | = 1/2.

For the split move of lowest scores, the partial derivatives occurring in the Jacobian are

∂µ′
γ′(k)

∂µγ(l)
=

(
1 − u − µmin

2Rµ

)
δk,l+1I(k > 2),

∂µ′
γ′(k)

∂u
=

1
2

(
1 − µγ(k − 1) − µmin

Rµ

)
I(k > 2) + I(k = 2),

where Rµ = µmax − µmin. Hence, the absolute value of the Jacobian determinant is given by

|J | =

∣∣∣∣∣∣∣
diag

(
∂µ′

γ′ (k)

∂µγ (k−1)

)
∂µ′

γ′
∂u

01×ΓI−2 1

∣∣∣∣∣∣∣ =
(

1 − u − µmin

2Rµ

)ΓI−2

,

where
∂µ′

γ′
∂u denotes the vector of the corresponding ΓI − 2 partial derivatives with respect to u.

The inverse (merge) move of the lowest scores is obtained by inverting the above quantity and

substituting u, ΓI by µγ(2), ΓI − 1 respectively. Therefore, in this case the absolute value of the

Jacobian determinant is

|J | =
(

1 − µγ(2) − µmin

2Rµ

)−(ΓI−1)+2

=
(

1 − µγ(2) − µmin

2Rµ

)3−ΓI

.

24



Similarly, for splitting the highest scores we obtain

∂µ′
γ′(k)

∂µγ(l)
=

(
1 − u

2Rµ

)
δk,lI(k < ΓI),

∂µ′
γ′(k)

∂u
= −µγ(k) − µmin

2Rµ
I(k < ΓI) − I(k = ΓI)..

Finally, the absolute value of the Jacobian determinant for the split move of the highest scores

is given by

|J | =

∣∣∣∣∣∣∣
diag

(
∂µ′

γ′ (k)

∂µγ(k)

)
∂µ′

γ′
∂u

01×ΓI−2 −1

∣∣∣∣∣∣∣ =
(

1 − u

2Rµ

)ΓI−2

,

whilst for the merge move of the highest scores it becomes

|J | =
(

1 − µmax − µγ(ΓI − 2)
2Rµ

)3−ΓI

.

B. Domains of the Proposal Parameter u

In order to identify appropriate proposal distributions we first need to identify the domain of the

additional parameter u.

Let us first consider a split move for the “central” scores. In case we wish to split µγ(�) into

the new scores µ′
γ′(�) and µ′

γ′(� + 1), the proposed scores satisfy

µ′
γ′(� − 1) < µ′

γ′(�) < µ′
γ′(� + 1) < µ′

γ′(� + 2)

for every � such that 2 � � � ΓI − 1. Through (4.2), this leads to

µγ(� − 1) < µγ(�) − u < µγ(�) + u < µγ(� + 1).

It follows that

L = 0 < u < min
{
µγ(�) − µγ(� − 1), µγ(� + 1) − µγ(�)

}
= U.

Analogously, for the lowest scores we have the constraint

µmin < u <
1
2

{
µmin + u + (Rµ + µmax − u)

µγ(2) − µmin

Rµ

}
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resulting in

L = µmin < u < µγ(2) +
(µγ(2) − µmin){µmax − µγ(2)}

Rµ + µγ(2) − µmin
= U.

Finally, for the highest scores we have that

µγ(ΓI − 1) − {µγ(ΓI − 1) − µmin}u
2Rµ

< µmax − u < µmax

leading to

L = 0 < u <
2Rµ{µmax − µγ(ΓI − 1)}
Rµ + µmax − µγ(ΓI − 1)

= U.

The above values are needed also for the calculation of the acceptance probability α in the

inverse merge moves of RJMCMC. The only difference is that we need to substitute µγ by µ′
γ′ ; see

Table 9 for the corresponding expressions.

Scores L U

Lowest 0 µ′
γ′(2) + {µ′

γ′(2) − µmin}{µmax − µ′
γ′(2)}/{Rµ + µ′

γ′(2) − µmin}
Central µmin min{µ′

γ′(� − 1) − µ′
γ′(� − 2), µ′

γ′(� + 1) − µ′
γ′(�)}

Highest 0 2Rµ{µmax − µ′
γ′(Γ ′

I − 1)}/{Rµ + µmax − µ′
γ′(Γ ′

I − 1)}

Table 9: Limits of the pseudo parameter u for the inverse merge move (Rµ = µmax − µmin).

C. Summarizing the Split and Merge Moves

From the above we summarize the RJMCMC details, for i = 2, . . . ,ΓI using the following steps.

In what follows we denote by LR the likelihood ratio between the likelihood of the proposed and

the current state of the chain. Hence

LR =
f(y|λX , λY , φ, µ′, ν)
f(y|λX , λY , φ, µ, ν)

,

where µ′ is the proposed value of µ.

1. If γi = 0 → γ′
i = 1 (split move) then:

(a) For Γi = 1 (lowest scores) we proceed with the following steps:

i. Generate u from U
(

µmin, µγ(2) +
(µγ(2) − µmin)(µmax − µγ(2))

Rµ + µγ(2) − µmin

)
.

26



ii. Calculate µ′
γ′ by (4.4).

iii. Accept the proposed move with probability α = min{1, A} with A given by

A = LR × 2(ΓI − 1)(µγ(2) − µmin)
Rµ + µγ(2) − µmin

×
(

1 − u − µmin

2Rµ

)ΓI−2

.

(b) For 2 � Γi � ΓI − 1 (central scores):

i. Set � = Γi.

ii. Generate u from U(0,max{µγ(�) − µγ(� − 1), µγ(� + 1) − µγ(�)}).
iii. Calculate µ′

γ′ by (4.2).

iv. Accept the proposed move with probability α = min{1, A} with A given by

A = LR × ΓI − 1
Rµ

× max{µγ(�) − µγ(� − 1), µγ(� + 1) − µγ(�)} × 2.

(c) For Γi = ΓI (highest scores):

i. Generate u from U
(

0,
2Rµ{µmax − µγ(ΓI − 1)}
Rµ + µmax − µγ(ΓI − 1)

)
.

ii. Calculate µ′
γ′ by (4.6) .

iii. Accept the proposed move with probability α = min{1, A} with A given by

A = LR × 2(ΓI − 1){µmax − µγ(ΓI − 1)}
Rµ + µmax − µγ(ΓI − 1)

×
(

1 − u

2Rµ

)ΓI−2

.

2. If γi = 1 → γ′
i = 0 (merge move) then:

(a) For Γi = 2 (lowest scores) we proceed with the following steps:

i. Set u = µγ(2).

ii. Calculate µ′
γ′ by (4.3).

iii. Accept the proposed move with probability α = min{1, A} with A given by

A = LR × Rµ + µ′
γ′(2) − µmin

2(ΓI − 2)(µ′
γ′(2) − µmin)

×
(

1 − µγ(2) − µmin

2Rµ

)3−ΓI

.

(b) For 3 � Γi � ΓI − 1 (central scores):

i. Set � = Γi.

ii. Set u = {µγ(�) − µγ(� − 1)}/2.
iii. Calculate µ′

γ′ by (4.2).
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iv. Accept the proposed move with probability α = min{1, A} with A given by

A = LR × Rµ

2(ΓI − 2)min{µ′
γ′(� − 1) − µ′

γ′(� − 2), µ′
γ′(� + 1) − µ′

γ′(�)} .

(c) For Γi = ΓI (highest scores):

i. Set u = µmax − µγ(ΓI − 1).

ii. Calculate µ′
γ′ by (4.6).

iii. Accept the proposed move with probability α = min{1, A} with A given by

A = LR × Rµ + µmax − µ′
γ′(ΓI − 2)

2(ΓI − 2){µmax − µ′
γ′(ΓI − 2)} ×

(
1 − µmax − µγ(ΓI − 2)

2Rµ

)3−ΓI

.
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portamiento, 4, 325-337.

28



George, E.I. and McCulloch, R.E. (1993). Variable Selection via Gibbs Sampling. Journal of the American

Statistical Association, 88, 881–889.

Green, P. (1995). Reversible Jump Markov Chain Monte Carlo Computation and Bayesian Model Deter-

mination. Biometrika, 82, 711–732.

Goodman, L.A. (1979). Simple models for the analysis of association in cross-classifications having ordered

categories. Journal of the American Statistical Association, 74, 537–552.

Goodman, L.A. (1981). Association Models and Canonical Correlation in the Analysis of Cross-Classifications

Having Ordered Categories. Journal of the American Statistical Association, 76, 320–334.

Goodman, L.A. (1985). The analysis of cross-classified data having ordered and/or unordered categories:

Association models, correlation models and asymmetry models for contingency tables with or without

missing entries. Annals of Statistics, 13, 10–69.

Iliopoulos, G., Karlis, D. and Ntzoufras, I. (2005) Bayesian estimation in Kibble’s bivariate gamma distri-

bution. Canadian Journal of Statistics, 33, 571-589 .

Iliopoulos, G., Kateri, M. and Ntzoufras, I. (2007). Bayesian Estimation of Unrestricted and Order-

Restricted Association Models for a Two-Way Contingency Table. Computational Statistics and Data

Analysis, 51, 4643-4655.

Iliopoulou, K. (2004). Schizotypy and Consumer Behavior (in Greek). M.Sc. Thesis, Department of Busi-

ness Administration, University of the Aegean, Chios, Greece, http://stat-athens.aueb.gr/∼jbn/

courses/diplomatikes/business/Iliopoulou(2004).pdf

Kass, R.E. and Raftery, A.E. (1995). Bayes Factors. Journal of the American Statistical Association 90,

773–795.

Kateri, M., Nicolaou, A. and Ntzoufras, I. (2005). Bayesian Inference for the RC(m) Association Model.

Journal of Computational and Graphical Statistics, 14, 116–138.

Kuo, L. and Mallick, B. (1998). Variable Selection for Regression Models. Sankhyã B, 60, 65–81.
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