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Summary: In the field of quality of health care measurement, patient sickness at admission is
traditionally assessed by using logistic regression of mortality within 30 days of admission on a
fairly large number of sickness indicators (perhaps on the order of 100) to construct a sickness scale,
employing classical variable selection methods to find an “optimal” subset of 10–20 indicators.
Such “benefit-only” methods ignore the considerable differences among the sickness indicators in
cost of data collection, an issue that is crucial when admission sickness is used to drive programmes
(now implemented or under consideration in several countries, including the U.K. and U.S.) that
attempt to identify substandard hospitals by comparing observed and expected mortality rates
(given admission sickness). When both data-collection cost and accuracy of prediction of 30-day
mortality are considered, a large variable-selection problem arises in which costly variables that
do not predict well enough should be omitted from the final scale. In this paper we use posterior
model odds for the evaluation of models and variables. We propose a prior setup which accounts
for the cost of each variable and results in a set of posterior model probabilities which correspond
to a generalised cost-modified version of BIC. We use reversible-jump Markov chain Monte Carlo
(MCMC) methods to search the model space and check the stability of our findings with two
variants of the MCMC model composition (MC3) algorithm. Initially we reduce our model space
by dropping variables with low marginal posterior probabilities and we then estimate posterior
model probabilities in the reduced space. Our cost-benefit approach results in a set of models
with a noticeable reduction in cost and dimensionality, and only a minor decrease in predictive
performance, when compared with models arising from the standard benefit-only analysis. Our
results are phrased in the language of health policy but apply with equal force to other quality
assessment settings with dichotomous outcomes, such as the examination of drop-out rates in
education, the study of retention rates in the workplace and the creation of cost-effective credit
scores in business.

Keywords: Input-output analysis; Quality of health care; Sickness at hospital admission; Cost-
benefit analysis; Laplace approximation; Reversible-jump Markov chain Monte Carlo (MCMC)
methods; MCMC model composition (MC3); Bayesian Information Criterion (BIC); Cost-modi-
fied BIC.

1 Introduction

An important topic in health policy is the assessment of the quality of health care offered to
hospitalised patients. Quality of care is usually thought to depend mainly on three ingredients
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(e.g., Donabedian and Bashshur, 2002): (i) process, which is what health care providers do on
behalf of patients, (ii) outcomes, which are what happens to patients as a result of the care they
receive, and (iii) patient sickness at admission, because the appropriateness of outcomes cannot
be judged without taking account of the burden of illness brought to the hospital by its patients.

A direct audit of the processes of care is usually regarded as the single most informative
component in an evaluation of quality, but process is much more expensive to measure than
outcomes or admission sickness (e.g., Kahn, Rogers, et al., 1990). Interest has therefore focused
in recent years, in countries such as the United Kingdom and the United States, on an indirect
method of assessment—which might be termed the input-output approach1 (e.g., Draper, 1995;
Goldstein and Spiegelhalter, 1996)—in which hospital outcomes (for instance, death within 30
days of admission) are compared after adjusting for differences in inputs (sickness at admission).
The idea is to treat what goes on inside the hospital—process—as a black box, with the contents
of the box inferred by examining its outputs after taking account of its inputs.

1.1 Indirect measurement of quality of health care

In practice, to indirectly measure quality of care at any given moment in time, this strategy
proceeds by (a) taking a sample of hospitals and a sample of patients in the chosen hospitals, (b)
obtaining mortality outcomes for the sampled patients (for example, from central government data
bases), (c) extracting information on admission sickness from the medical records of these patients,
(d) forming an expected mortality rate for each hospital based on (c), and (e) comparing observed
and expected mortality rates to identify unusual hospitals (on both the “good” and “bad” ends
of the spectrum). Since this would involve abstracting data from the charts of many thousands of
patients if it were attempted on a large scale, the cost-effective measurement of admission sickness
is crucial to this approach. Progress is being made in the U.S. (see, e.g., CMS, 2004, for details on
Medicare’s plans to compile a Uniform Clinical Data Set) and elsewhere on routine (automated)
data collection of clinically richer sets of process and sickness variables for hospital patients than
those previously available from administrative data bases, but it is likely to remain true for at
least the next decade that cost-effective collection of primary data will be relevant to the design
of quality of care studies in health policy (see, e.g., NDNQI, 2004, and CalNOC, 2004, for current
examples, in the field of nursing quality assessment, where extensive non-automated primary data
collection is both ongoing and planned).

Quality of care assessment is a highly disease-specific activity: for instance, the right admission
sickness variables to examine for pneumonia would be quite different from those for heart attack.
With any given disease there will be on the order of 100 separate variables potentially available
in the medical record that are directly or indirectly related to admission sickness. In the case of
pneumonia, for example, on which we focus in this paper, a list of the important variables from
a clinical perspective would include such things as systolic blood pressure on day 1 of admission,
the presence or absence of shortness of breath, and the blood urea nitrogen level (a measure of
kidney functioning).

1.2 Standard benefit-only variable-selection approach

The standard method for creating an expected mortality rate from these admission sickness inputs
is logistic regression, with 30-day death as the outcome, and using a nationally-representative
sample of patients to normalise the expectation to average care across the nation. Typically
a frequentist variable-selection method—such as all-subsets regression—is employed to find a
parsimonious and clinically reasonable subset of the available sickness variables. In a major

1In the U.K. this approach is also referred to as league-table quality assessment, by analogy with the process of
ranking football teams; in the U.S. and elsewhere it is also called provider profiling (e.g., Normand, et al., 1997).
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Table 1: The Rand admission sickness scale for pneumonia (p = 14 variables), with the marginal
data collection costs per patient for each variable (in minutes of abstraction time).

Variable Cost (Minutes)
Total APACHE II Score (36–point scale) 10.0

Age 0.5
Systolic Blood Pressure Score (2–point scale) 0.5

Chest X-Ray Congestive Heart Failure Score (3–point scale) 2.5
Blood Urea Nitrogen 1.5

APACHE II Coma Score (3–point scale) 2.5
Serum Albumin (3–point scale) 1.5
Shortness of Breath (yes, no) 1.0
Respiratory Distress (yes, no) 1.0
Septic Complications (yes, no) 3.0

Prior Respiratory Failure (yes, no) 2.0
Recently Hospitalised (yes, no) 2.0

Ambulatory Score (3–point scale) 2.5
Temperature 0.5

U.S. study conducted by the Rand Corporation, of quality of hospital care for n = 2, 532 elderly
patients in the late 1980s (Kahn, Rubenstein, et al., 1990), this approach was used to reduce the
initial list of p = 83 available sickness indicators for pneumonia down to a core of 14 predictors
(Keeler et al., 1990).

As good as the resulting scale may be on grounds of simplicity and ease of clinical communica-
tion, we take the view in this paper that—when the goal is the creation of a sickness scale that may
be used prospectively to measure quality of care on a new set of patients not yet examined—the
original Rand approach is sub-optimal, because it takes no account of differences in the cost of
data collection among the available predictors (which varied for pneumonia from 30 seconds to 15
minutes of abstraction time per variable). The Rand approach represents a kind of benefit-only
analysis; we propose a cost-benefit analysis, in which variables are chosen for the final scale only
when they predict mortality well enough given how much they cost to collect. The relevance of
this cost-benefit perspective is seen by noting that in practice the amount of money devoted to
quality assessment will almost invariably be constrained, so that money wasted on excess data
collection costs could be better spent on obtaining (for example) a larger sample size at the patient
and/or hospital levels.

Table 1 lists the 14 variables chosen by the benefit-only Rand approach, together with their
marginal data collection costs per patient (expressed in minutes of data abstraction time; this
could be linearly transformed to a monetary scale using the prevailing wage rate for qualified data
abstraction personnel, but there is nothing to be gained from such a transformation). The full list
of all 83 sickness indicators for pneumonia, together with their costs, can be found in Fouskakis
(2001).

1.3 Cost-benefit analysis

Weighing data-collection costs against the accuracy of prediction creates a large variable-selection
problem. With p = 83 it is necessary to compare 283 .= 9.7 · 1024 subsets of sickness variables
in order to find the optimal subset. Solving this problem by brute-force examination of all 1025

models is deeply infeasible given contemporary computing resources.
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Following Fouskakis (2001), suppose (a) the 30-day mortality outcome Yi and data on p sickness
indicators (Xi1, . . . , Xip) have been collected on n individuals sampled randomly from a population
P of patients with a given disease, and (b) the goal is to predict the death outcome for n∗ new
patients who will in the future be sampled randomly from P, (c) on the basis of some or all of
the predictors Xj , when (d) the marginal costs of data collection per patient c1, . . . , cp for the Xj

vary considerably. What is the best subset of the Xj to choose based on both the quality and the
cost of obtaining the predictions?

Draper and Fouskakis (2000) and Fouskakis and Draper (2002, 2006) proposed a solution to
this problem based on Bayesian decision theory. They used stochastic optimisation methods—
including simulated annealing, genetic algorithms, and tabu search—to find (near-) optimal sub-
sets of predictor variables that maximise an expected utility function which trades off data col-
lection cost against predictive accuracy. They concluded that optimal subsets of variables that
achieve a cost-benefit compromise have the potential to generate large cost savings in quality as-
sessment programmes. (Brown et al., 1998, presented an application of decision theory to variable
selection in multivariate regression which is motivated by somewhat similar cost-benefit consid-
erations in a quite different setting; Lindley, 1968, used squared-error loss to measure predictive
accuracy while recommending a cost-benefit tradeoff in variable selection in a less problem-specific
framework than the one presented here.)

In this paper we investigate an alternative approach, based on posterior model odds for the
evaluation of models and variables. In order to incorporate preferences based on costs of the
variables we use a Laplace approximation to obtain cost-based penalties for each variable. After
setting up the prior model and variable probabilities we use reversible-jump Markov chain Monte
Carlo to search the model space. The data on which we demonstrate our method in this paper
consist of the representative sample of 2,532 elderly American patients hospitalised in the period
1980–86 with pneumonia taken from the Rand study described above.

The plan of the paper is as follows. In Section 2 we describe the approach we investigate in
this paper, and Section 3 provides details concerning the computation. Section 4 illustrates the
experimental results on the pneumonia data set using the proposed cost-benefit analysis, and in
Section 5 we conclude the paper with a brief discussion of some statistical and quality assessment
implications of our work.

2 A Bayesian approach to cost-effective variable selection

Bayesian model comparison and variable selection are based on specifying a model m, its likelihood
f(y|θm,m), the prior distribution of model parameters f(θm|m) and the corresponding prior
model weight (or probability) f(m), where θm is a parameter vector under model m and y is
the data vector. Parametric inference is based on the posterior distribution f(θm|y,m), and
quantifying model uncertainty by estimating the posterior model probability f(m|y) is also an
important issue. Hence, when we consider a set of competing models M = {m1,m2, · · · ,m|M|},
we focus on the posterior probability of model m ∈M, defined as

f(m|y) =
f(y|m)f(m)∑

ml∈M f(y|ml)f(ml)
=

 ∑
ml∈M

POml,m

−1

=

 ∑
ml∈M

Bml,m
f(ml)
f(m)

−1

, (1)

where POmi,mj = f(mi|y)/f(mj |y) is the posterior model odds and Bmi,mj is the Bayes factor for
comparing models mi and mj . When we limit ourselves in the comparison of only two models we
typically focus on POmi,mj and Bmi,mj , which have the desirable property of insensitivity to the
selection of the model spaceM. By definition the Bayes factor is the ratio of the posterior model
odds over the prior model odds; thus large values of Bmi,mj (usually greater than 12, say) indicate
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strong posterior support of model mi against model mj (for details see, e.g., Raftery, 1996).
The posterior model probabilities and integrated likelihoods f(y|mi) in (1) are rarely analytically
tractable; we use a combination of Laplace approximations (e.g., Bernardo and Smith, 1994) and
Markov Chain Monte Carlo (MCMC) methodology (e.g., Green, 1995; Han and Carlin, 2001;
Chipman et al., 2001; Dellaportas et al., 2002; Lopes, 2002) to approximate posterior odds and
Bayes factors.

In the problem described in Section 1, we use a simple logistic regression model with response
Yi = 1 if patient i dies and 0 otherwise. We further denote by Xij the sickness predictor variable
j for patient i and by γj an indicator, often used in Bayesian variable selection problems (e.g.,
George and McCulloch, 1993; Kuo and Mallick, 1998; Brown et al., 1998; Dellaportas et al.,
2002), taking the value 1 if variable j is included in the model and 0 otherwise. Thus in this case
M = {0, 1}p, where p is the total number of variables. In order to map the set of binary model
indicators γ onto a model m we can use a representation of the form m(γ) =

∑p
i=1 2i−1γi. Hence

the model formulation can be summarised as

(Yi | γ)
indep∼ Bernoulli[pi(γ)],

ηi(γ) = log
[

pi(γ)
1− pi(γ)

]
=

p∑
j=0

βjγjXij , (2)

η(γ) = X diag(γ)β = Xγ βγ

defining Xi0 = 1 for all i = 1, . . . , n and γ0 = 1 with prior probability one since here the intercept
is always included in all models. Here pi(γ) is the death probability (which may be thought of as
the sickness score) for patient i under model γ, η(γ) = [η1(γ), . . . , ηn(γ)]T , γ = (γ0, γ1, . . . , γp)T ,
β = (β0, β1, . . . , βp)T , and X = (Xij , i = 1, . . . , n; j = 0, 1, . . . , p); the vector βγ stands for the
subvector of β which is included in the model specified by γ, i.e., βγ = (βi : γi = 1, i = 0, 1, . . . , p),
and is equivalent to the θm vector defined at the beginning of this section. Similarly Xγ is the
submatrix of X with columns corresponding to variables included in the model specified by γ.

In the remainder of this section we illustrate how to build a prior distribution to accommo-
date in the posterior distribution a penalty function for the increased cost of expensive predictor
variables. To this end we first build a minimally informative prior for the model parameters based
on the ideas of Ntzoufras et al. (2003). Then we employ a Laplace approximation (e.g., Tierney
and Kadane, 1986) to examine the penalty (indirectly) imposed upon the model likelihood using
the Bayesian approach. Finally, we specify prior model weights (probabilities) in such a way that
the posterior model probabilities in effect result from a likelihood penalised according to the cost
of each variable in the model.

2.1 Prior on model parameters

One important problem in Bayesian model evaluation using posterior model probabilities is their
sensitivity to the prior variance of the model parameters: large variance of the βγ (used to
represent prior ignorance) will increase the posterior probabilities of the simpler models considered
in the model spaceM (Bartlett, 1957; Lindley, 1957; Shafer, 1982; Robert, 1993; Kass and Raftery,
1995; Sinharay and Stern, 2002). Therefore, specifying the prior distribution is pivotal for the
a posteriori support of the models examined. We address this issue by using ideas proposed by
Ntzoufras et al. (2003): we use a prior distribution of the form

f(βγ |γ) = N(µγ ,Σγ) (3)

with prior covariance matrix given by Σγ = n
[
I(βγ)

]−1
, where n is the total sample size and

I(βγ) is the information matrix
I(βγ) = XTγWγXγ ;

5



here Wγ is a diagonal matrix which in the Bernoulli case (e.g., McCullagh and Nelder, 1983)
takes the form

Wγ = diag {pi(γ)[1− pi(γ)]} .

This is the unit information prior introduced by Kass and Wasserman (1996), which corresponds
to adding one data point to the data. Here we use this prior as a base, but we specify pi(γ) in the
information matrix according to our prior information. In this manner we avoid (even minimal)
reuse of the data in the prior.

When little prior information is available, a reasonable prior mean for βγ is µγ = 0. This
corresponds to a prior mean on the log-odds scale of zero, from which a sensible prior estimate
for all model probabilities is pi(γ) = 1/2; with this choice (3) becomes

f(βγ |γ) = N

[
0, 4n

(
XT
γXγ

)−1
]
. (4)

This prior distribution can also be motivated by combining the idea of imaginary data with the
power prior approach of Chen et al. (2000). After observing the design matrixXγ for any model γ,
we consider a set of imaginary data y∗i = (y∗i1 = 1, y∗i2 = 0), i = 1, . . . , n that assigns probabilities
1/2 for all i and therefore supports the simplest (constant) model. We consider a prior that is
generated using the likelihood of these imaginary data,

f(βγ |γ,y∗) ∝
{

n∏
i=1

pi(γ)[1− pi(γ)]

}(2n)−1

, (5)

where y∗ = (y∗1, . . . ,y
∗
n). Using the above prior the posterior becomes

f(βγ |γ,y) ∝
n∏
i=1

pi(γ)yi+
1

2n [1− pi(γ)](1+ 1
n

)−(yi+
1

2n
);

therefore this is equivalent to obtaining information from
∑n
i=1(1 + 1

n) = n + 1 data points,
instead of n data points when using a flat prior. Thus the proposed prior (5) introduces additional
information to the posterior equivalent to adding one data point to the likelihood and therefore
we support a priori the simplest model with a weight of one data point.

Using a Laplace approximation to (5) (see, e.g., Bernardo and Smith, 1994, p. 286), we obtain

f(βγ |γ,y∗)
·∼ N

[
β̂γ , 2n I(β̂γ)−1

]
,

where β̂γ is the maximum likelihood estimate if the imaginary data y∗i were observed and I(β̂γ)
is the observed information matrix given by

I(β̂γ) = XT
γ diag {2 p̂∗i (γ)[1− p̂∗i (γ)]}Xγ ,

in which p̂∗i (γ) =
[
1 + exp(−Xiβ̂γ)

]−1
is the fitted success probability for all i under model γ

when observing data y∗. Under the above imaginary data, β̂γ = 0 and p̂i(γ) = 1/2 for all i,

yielding I(β̂γ) = 1
2

(
XT
γXγ

)
and therefore leading to the prior given by (4). This approach

is also sensible in terms of the parsimony principle. Posterior model odds (and Bayes factors)
penalise the model likelihood for deviations of the actual data from the prior distribution (see
Raftery, 1996, equation 12). Since the above prior can be generated using a set of minimally-
weighted imaginary data that fully support the constant model, it will provide sensible a priori
support for more parsimonious models.
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2.2 A cost-penalised prior on model space

The aim of this section is to specify a set of prior model probabilities (or odds) that accounts
for the prior preference based on the cost of each variable. To make this more explicit we use
two subsections. In the first we describe some preliminary results concerning the posterior model
probabilities f(γ|y) and the corresponding model odds using the prior distribution (4) specified
in the previous section, when no assumption is made for the prior model probability f(γ). In the
second subsection we specify a prior on the model space which takes into account prior preferences
based on the cost of the variables. In order to achieve this we use a penalty-based interpretation of
the prior f(γ) imposed on the log-likelihood which directly results from the first subsection. We
then use this cost-penalised model prior to calculate the posterior model probabilities and odds.

2.2.1 Preliminary results: posterior probabilities and model odds in the general
setup

Let us denote by POk` the posterior odds of model γ(k) versus model γ(`). Then we have

−2 logPOk` = −2
[
log f(γ(k)|y)− log f(γ(`)|y)

]
. (6)

Following the approach of Raftery (1996), we can approximate the posterior distribution of a
model γ using the following Laplace approximation:

−2 log f(γ|y) = −2 log f(y|β̃γ ,γ)− 2 log f(β̃γ |γ)− dγ log(2π)

− log |Ψγ | − 2 log f(γ) +O(n−1), (7)

where β̃γ is the posterior mode of f(βγ |y,γ), dγ =
∑p
j=0 γj is the dimension of the model γ, and

Ψγ is minus the inverse of the Hessian matrix of h(βγ) = log f(y|βγ ,γ) + log f(βγ |γ) evaluated
at the posterior mode β̃γ . Under the model formulation given by equation (2) and the prior
distribution (4) we have that

Ψγ =

− ∂2 log f(y|βγ ,γ)

∂β2
γ

∣∣∣∣∣
βγ=β̃γ

−
∂2 log f(βγ |γ)

∂β2
γ

∣∣∣∣∣
βγ=β̃γ


−1

=

XT
γ diag


exp

(
Xγ,i β̃γ

)
[
1 + exp

(
Xγ,i β̃γ

)]2 +
1

4n

Xγ

−1

, (8)

where Xγ,i is row i of the matrix Xγ for i = 1, . . . , n.
By substituting the prior (4) in expression (7) we get

−2 log f(γ|y) = −2 log f(y|β̃γ ,γ) + φ(γ)− 2 log f(γ) +O(n−1), (9)

where

φ(γ) =
1

4n
β̃
T
γX

T
γXγβ̃γ + dγ log(4n) + log

|Ψ−1
γ |

|XT
γXγ |

. (10)

From the above expression it is clear that the logarithm of a posterior model probability can be
regarded as a penalised log-likelihood evaluated at the posterior mode of the model, in which
the term φ(γ)− 2 log f(γ) can be interpreted as the penalty imposed upon the log-likelihood. In

7



pairwise model comparisons, we can directly use the posterior model odds (6), which can now be
written as

−2 logPOk` = −2 log

f(y|β̃γ(k) ,γ(k))

f(y|β̃γ(`) ,γ(`))

+ φ
(
γ(k)

)
− φ

(
γ(`)

)
− 2 log

f(γ(k))
f(γ(`))

+O(n−1). (11)

Therefore, the comparison of the two models is based on a penalised log-likelihood ratio, where
the penalty is now given by

ψ(γ(k),γ(`)) = φ(γ(k))− φ(γ(`))− 2 log
f(γ(k))
f(γ(`))

;

for more details see Ntzoufras (1999, chapter 6).
Each penalty term is divided into two parts: φ(γ) and −2 log f(γ). The first term, φ(γ), has

its source in the marginal likelihood f(y|γ) of model γ and can be thought of as a measure of
discrepancy between the data and the prior information for the model parameters. The second
part comes from the prior model probabilities f(γ). Indifference on the space of all models, usually
expressed by the uniform distribution (i.e., f(γ) ∝ 1), eliminates the second term from the model
comparison procedure, since the penalty term in (11) will then be based only on the difference of
the first penalty terms φ(γ(k)) − φ(γ(`)). For this reason the penalty term φ(γ) is the imposed
penalty which appears in the penalised log-likelihood expression of the Bayes factor BFk` with a
uniform prior on model space.

A simpler but less accurate approximation of logPOk` can be obtained following the arguments
of Schwartz (1978):

−2 logPOk` = −2 log

f(y|β̂γ(k) ,γ(k))

f(y|β̂γ(`) ,γ(`))

+
(
dγ(k) − dγ(`)

)
log n− 2 log

f(γ(k))
f(γ(`))

+O(1)

= BICk` − 2 log
f(γ(k))
f(γ(`))

+O(1), (12)

where BICk` is the Bayesian Information Criterion (e.g., Kass and Wasserman, 1996; Raftery,
1996) for choosing between models γ(k) and γ(`) and β̂γ is the vector of maximum likelihood
estimates of βγ . Since BICk` is an O(1) approximation, it might diverge from the exact value
of the logarithm of the Bayes factor even for large samples. Even so, it has often been shown
to provide a reasonable measure of evidence (for finite n) and its straightforward calculation has
encouraged its widespread use in practice (see Kass and Raftery, 1995, for details).

2.2.2 Accounting for the cost of variables via prior model weights

Following the previous section and equations (9) and (11) it is clear that an additional penalty can
be directly imposed on the posterior model probabilities and odds via the prior model probabilities
f(γ). Therefore we may use prior model probabilities to induce prior preferences for specific
variables depending on their costs. For this reason we propose to use prior model probabilities of
the form

f(γj) ∝ exp
[
γj
2

(
c0 − cj
c0

)
log n

]
for j = 1, . . . , p, (13)

where cj is the differential cost per observation for variable Xj and c0 is a baseline cost per variable
for each collected observation. We further assume that the constant term is included in all models
by specifying f(γ0 = 1) = 1, resulting in

−2 log f(γ) =
p∑
j=1

γj
cj
c0

log n− dγ log n+ 2
p∑
j=1

log

[
1 + n

− 1
2

(
1−

cj
c0

)]
. (14)
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If all variables have the same cost or we are indifferent concerning the cost then we can set cj = c0

for j = 1, . . . , p, which reduces to the uniform prior on model space (f(γ) ∝ 1) and posterior odds
equal to the Bayes factor. When we set unequal costs, a natural choice for the baseline cost is
c0 = min{cj , j = 1, . . . , p}.

When comparing two models γ(k) and γ(`), the additional penalty imposed on the log-likelihood
ratio due to the cost-adjusted prior model probabilities is given by

−2 log
f(γ(k))
f(γ(`))

=
p∑
j=1

(
γ

(k)
j − γ

(`)
j

) cj
c0

log n−
(
dγ(k) − dγ(`)

)
log n

=

[
Cγ(k) − Cγ(`)

c0
−
(
dγ(k) − dγ(`)

)]
log n, (15)

where Cγ =
∑p
j=1 γjcj is the total cost of model γ; thus two models of the same dimension and

cost will have the same prior weight. In the simpler case where we compare two nested models
that differ only on the status of variable j, the prior model ratio simplifies to

−2 log
f(γj = 1,γ\j)
f(γj = 0,γ\j)

=
(
cj
c0
− 1

)
log n, (16)

where γ\j is the vector of γ excluding element γj . The above expression can be viewed as a prior

penalty for including the variable j in the model, while the term
(
cj
c0
− 1

)
can be interpreted as

the proportional additional penalty imposed upon (−2 logBF ) if the variable Xj is included in
the model due to its increased cost.

Using the prior model odds (15) in the approximate posterior model odds (11) we obtain

−2 logPOk` = −2 log

f(y|β̃γ(k) ,γ(k))

f(y|β̃γ(`) ,γ(`))

+ ψ(γ(k),γ(`)) +O(n−1), (17)

where the penalty term is given by

ψ(γ(k),γ(`)) =
1

4n

(
β̃Tγ(k)X

T
γ(k)Xγ(k) β̃γ(k) − β̃Tγ(`)X

T
γ(`)Xγ(`) β̃γ(`)

)
+
(
dγ(k) − dγ(`)

)
log(4)

+ log
|Ψ−1
γ(k) |

|XT
γ(k)Xγ(k) |

− log
|Ψ−1
γ(`) |

|XT
γ(`)Xγ(`) |

+
Cγ(k) − Cγ(`)

c0
log n. (18)

Finally we consider the BIC-based approximation (12) to the logarithm of the posterior model
odds with the prior model odds (15), yielding

−2 logPOk` = −2 log

f(y|β̂γ(k) ,γ(k))

f(y|β̂γ(`) ,γ(`))

+
Cγ(k) − Cγ(`)

c0
log n+O(1). (19)

The penalty term dγ log n of model γ used in (12) has been replaced in the above expression by
the cost-dependent penalty c−1

0 Cγ log n; when no costs are considered, cj = c0 for all j, yielding
c−1

0 Cγ = dγ , the original BIC expression. Therefore, we may interpret the quantity log n as the
imposed (baseline) penalty for each variable included in the model γ when having no costs (or
when having equal costs). Moreover, this baseline penalty term is inflated proportionally to the
cost ratio cj

c0
for each variable Xj ; for example, if the cost of a variable Xj is twice the baseline cost

(cj = 2c0) then the imposed penalty is equivalent to adding two variables with the baseline cost.
For this reason, (19) can be considered as a cost-modified generalization of BIC when cost-adjusted
prior model probabilities of type (13) are adopted.
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3 MCMC implementation

As noted earlier, in our quality of care study with p = 83 predictors there are on the order of 1025

possible models. In such situations, sampling algorithms will not be able to estimate posterior
model probabilities with high accuracy in a reasonable amount of CPU time due to the large
model space. For this reason, we implemented the following two-step method:

(1) First we use a model search tool to identify variables with high marginal posterior inclusion
probabilities f(γj |y), and we create a reduced model space consisting only of those variables
whose marginal probabilities are above a threshold value. According to Barbieri and Berger
(2004) this method of selecting variables based on their marginal probabilities may lead
to the identification of models with better predictive abilities than approaches based on
maximising posterior model probabilities. Although Barbieri and Berger proposed 0.5 as a
threshold value for f(γj = 1|y), we used the lower value of 0.3, since our aim was only to
identify and eliminate variables not contributing to models with high posterior probabilities.

(2) Then we use a model search tool in the reduced model space to estimate posterior model
probabilities (and the corresponding odds).

To ensure stability of our findings we explored the use of two model search tools in step (1):

• a reversible-jump MCMC algorithm (RJMCMC; Green, 1995), as implemented for variable
selection in generalised linear models by Dellaportas et al. (2002) and Ntzoufras et al.(2003);
and

• the MCMC model composition (MC3) algorithm (Madigan and York, 1995).

More specifically, we implemented reversible-jump moves within Gibbs for the model indicators
γi, by proposing the new model to differ from the current one in each step by a single term i with
probability one (see Dellaportas et al., 2002, for details). The algorithm can be summarized as
follows:

1. For j = 1, . . . , p, use RJMCMC to compare the current model γ with the proposed one γ ′

with components γ′j = 1 − γj and γ′k = γk for k 6= j with probability one. The updating
sequence of γj is randomly determined in each step.

2. For j = 0, . . . , p, if γj = 1 then generate model parameters βj from the corresponding
posterior distribution f(βj |β\j ,γ,y), otherwise set βj = 0.

In our context the MC3 algorithm may be summarised by the following steps:

1. For j = 1, . . . , p, propose a move from the current model γ to a new one γ ′ with components
γ′j = 1 − γj and γ′k = γk for k 6= j with probability one. The updating sequence of γj is
randomly determined in each step.

2. Accept the proposed model γ ′ with probability

α = min
[
1,
f(γ ′|y)
f(γ|y)

]
= min

(
1, POγ,γ ′

)
.

Since the posterior model odds POγ,γ ′ used in MC3 are not analytically available here, we
also explored two methods for calculating them—approximating the acceptance probabilities with
Laplace (equation 17) and with BIC (equation 19; cf. Raftery, 1995; Hoeting et al., 1999)—and in
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Table 2: Preliminary results: variables with marginal posterior probabilities f(γj = 1|y) above
0.30; costs are expressed in minutes of abstraction time.

Marginal Posterior Probabilities
Variable Benefit-Only Cost-Benefit

Index Name Cost Analysis Analysis
1 Systolic Blood Pressure Score 0.50 0.99 0.99
2 Age 0.50 0.99 0.99
3 Blood Urea Nitrogen 1.50 1.00 0.99
4 Apache II Coma Score 2.50 1.00
5 Shortness of Breath 1.00 0.97 0.79
8 Septic Complications 3.00 0.88

12 Temperature 0.50 0.98 0.96
13 Heart Rate 0.50 0.34
14 Chest Pain 0.50 0.39
15 Cardiomegaly Score 1.50 0.71
27 Hematologic History Score 1.50 0.45
37 Apache Respiratory Rate Score 1.00 0.95 0.32
46 Admission SBP 0.50 0.68 0.90
49 Respiratory Rate 0.50 0.81
51 Confusion 0.50 0.95
70 Apache PH Score 1.00 0.98 0.98
73 Morbid + Comorbid 7.50 0.96
78 Musculoskeletal Score 1.00 0.54

addition we further explored one additional form of sensitivity analysis: initializing the MCMC
runs at the null model (with no predictors) and the full model (with all predictors). All of this
was done both for the benefit-only analysis and the cost-benefit approach.

In moving from the full to the reduced model space to implement step (1) of our two-
step method, for both the benefit-only and cost-benefit analyses we found a striking level of
agreement—across (a) the two model search tools, (b) the two methods to approximate the ac-
ceptance probabilities in MC3, and (c) the two choices for initializing the MCMC runs—in the
subset of variables defining the reduced model space; this made it unnecessary to perform a sim-
ilar sensitivity analysis in step (2). Results in the next section are therefore presented only for
RJMCMC (starting from the full model). Convergence of the RJMCMC algorithm was checked
using ergodic mean plots of the marginal inclusion probabilities for the full model space and the
posterior model probabilities for the reduced space. Additional computing details are available in
the Appendix.

4 Experimental results

Table 2 presents the marginal posterior probabilities of the variables that exceeded the threshold
value of 0.30, in each of the benefit-only and cost-benefit analyses, together with their data collec-
tion costs. In both the benefit-only and cost-benefit situations our methods reduced the initial list
of p = 83 available candidates down to 13 predictors. Note from Table 2 that expensive variables
with high marginal posterior probabilities in the benefit-only analysis were absent from the set
of promising variables in the cost-benefit analysis (e.g., the Apache II Coma Score, variable 4).
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Table 3: Reduced model space: posterior model probabilities above 0.03, posterior odds (PO1k) of
the best model within each analysis versus the current model k, and model costs.

Benefit-Only Analysis
Common Variables Additional Model Posterior

k Within Each Analysis Variables Cost Probabilities PO1k

1 X4 +X15 +X37 +X73 +X8 +X27+X46 22.5 0.3066 1.00
2 +X8 +X27 22.0 0.1969 1.56
3 +X8 20.5 0.1833 1.67
4 +X27+X46 19.5 0.0763 4.02
5 17.5 0.0383 8.00

Cost-Benefit Analysis
Common Variables Additional Model Posterior

k Within Each Analysis Variables Cost Probabilities PO1k

1 X46 +X51 +X49+X78 7.0 0.1460 1.00
2 +X14 +X49+X78 7.5 0.1168 1.27
3 +X13 +X49+X78 7.5 0.0866 1.69
4 +X13+X14 +X49+X78 8.0 0.0665 2.20
5 +X14 +X49 7.0 0.0461 3.17
6 +X49 6.5 0.0409 3.57
7 +X37 +X78 7.5 0.0382 3.82
8 +X13+X14 +X49 7.5 0.0369 3.96
9 +X13 6.5 0.0344 4.25

Common variables in both analyses: X1 +X2 +X3 +X5 +X12 +X70

Similarly, some inexpensive variables with low marginal posterior probabilities in the benefit-only
analysis were included in most of the models visited in the cost-benefit analysis (e.g., Confusion,
variable 51). Note that there is not a strong degree of overlap between the 14 variables chosen
in the original Rand benefit-only analysis summarised in Table 1 and the 13 variables with high
marginal posterior probabilities in the benefit-only part of Table 2; we return to this point below.

Table 3 presents models with posterior model probabilities above 0.03 (in descending order),
as well as posterior odds of the model with the highest posterior probability compared to the
remaining ones. In both types of analysis, the variables Systolic Blood Pressure Score (X1), Age
(X2), Blood Urea Nitrogen (X3), Shortness of Breath (X5), Temperature (X12) and Apache PH Score
(X70) were included in all the highest probability models, with costs (in minutes) 0.5, 0.5, 1.5,
1.0, 0.5 and 1.0 respectively.

For the cost-benefit analysis, 9 models had posterior probabilities above 0.03. In all of these
models Admission Systolic Blood Pressure (SBP; X46) and Confusion (X51) were present (both
having the lowest cost of 0.5 minutes). Predictors Respiratory Rate (X49) and Musculoskeletal Score
(X78) were frequently included in the top nine models (in 7 and 5 of the 9 cases, respectively). Both
of these variables were present in the four highest probability models with quite close posterior
probabilities and therefore with no substantial differences between them. This latter conclusion
arises from the fact that models 2–4 (see the cost-benefit analysis of Table 3) have posterior odds
compared to the highest probability model less than 3, indicating evidence “not worth more than
a bare mention” in favor of model 1 (cf. Raftery, 1996). All variables included in the highest
probability models had costs of at most one minute with the exception of Blood Urea Nitrogen
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Table 4: Comparison of measures of fit, cost and dimensionality between the visited models in
the reduced model space of the benefit-only and cost-benefit analysis; percentage difference is in
relation to benefit-only.

Analysis Percentage
Benefit-Only Cost-Benefit Difference

Min Deviance 1553.2 1616.1 +4.1
Median Deviance 1572.0 1643.8 +4.6

Median Cost 22.0 7.5 –65.9
Median Dimension 13 11 –15.4

(X3), which had a cost of 1.5. These cost-benefit results are in rough, but not perfect, agreement
with those of Fouskakis and Draper (2006) using the decision-theoretic approach described in
Section 1.3; we intend to report elsewhere on a detailed analysis of the differences between the
two approaches in both health policy conclusions and computational efficiency.

In the benefit-only analysis, 5 models had posterior probabilities above 0.03. In all of these
models Apache II Coma Score (X4), Cardiomegaly Score (X15), Apache Respiratory Rate Score (X37)
and Morbid + Comorbid (X73) were present, having costs of 2.5, 1.5, 1.0 and 7.5 minutes (respec-
tively). Note that the costs of the best models in the benefit-only analysis are 2.2 to 3.5 times
higher than the costs of the best models from the cost-benefit analysis.

Since in the cost-benefit analysis we increase the penalty of relatively expensive variables in
the prior, we end up selecting more parsimonious models in terms of both dimensionality and cost.
It is therefore interesting to examine the loss in terms of prediction and goodness of fit. We use
the posterior distribution of the deviance statistic

D(βγ ,γ) = −2
n∑
i=1

log f(yi|βγ ,γ)

(Dempster, 1974; Spiegelhalter et al., 2002) as a measure of model fit. Usually attention focuses on
the minimum value of this posterior distribution (which sometimes is poorly estimated by MCMC
runs), but other posterior descriptive measures such as the median or mean provide adequate
measures of fit (Spiegelhalter et al., 1996).

In Table 4, we present the minimum and median values of the posterior distribution of the
deviance statistic, together with the median cost and dimension of all visited models in both types
of analysis. Two main points are worth noting.

• The deviance statistic for the benefit-only Rand model summarised in Table 1 turned out
to be 1587.3 (achieved with 14 predictors), substantially worse than the median deviance
(1572.0, achieved with a median of 13 predictors) of the models visited by the benefit-only
approach examined in this paper, i.e., in this case study, all-subsets regression (the Rand
approach) was substantially out-performed by Bayesian RJMCMC.

• The minimum and median values of the posterior distribution of the deviance statistic
for the benefit analysis were lower by a relatively modest 4% and 4.5% compared to the
corresponding values of the cost-benefit analysis, but the median cost of the visited models
for the cost-benefit analysis was almost 66% lower than that for the benefit-only analysis.
Similarly, the median dimensionality of the visited models for the cost-benefit analysis was
about 15% lower than that for the benefit-only analysis. These values indicate that the
loss of predictive accuracy that we face when choosing to perform the proposed cost-benefit
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analysis is small compared to the substantial gain we achieve in terms of cost and reduced
model complexity.

An alternative predictive measure of fit is the cross-validation log score LSCV , following ideas
of Geisser and Eddy (1979) (also see, e.g., Draper and Krnjajić 2006). It is based on leave-one-out
predictive distributions f(yi|y\i) and is given by

LSCV (γ|y) =
1
n

n∑
i=1

log f(yi|y\i,γ),

where y\i is the vector of data y without observation i (larger values of LSCV indicate greater
predictive accuracy). This measure can be estimated directly from a single MCMC run using the
formula

L̂SCV (γ|y) =
1
n

n∑
i=1

log f−1(yi|βγ ,γ)

where f−1(yi|βγ ,γ) is the posterior mean of the inverse of the predictive density for observation
i (for details see, e.g., Gelfand, 1996, pp. 154–155). We calculated L̂SCV for the models with
the highest posterior probability for each analysis and obtained a value of −0.312 for the best
model of the benefit-only analysis and −0.327 for that of the cost-benefit analysis; the latter is
4.8% smaller than the former, in line with the last column of Table 4, and as before this small
loss in predictive accuracy is accompanied by the 66% drop in cost and 15% decrease in model
complexity achieved by the cost-benefit approach.

5 Discussion

In this paper we have examined a relatively new perspective on Bayesian variable selection, when
data collection costs need to be traded off against predictive accuracy in choosing an optimal
subset of predictors. We propose a prior setup which accounts for the cost of each variable and we
utilize traditional posterior model odds for the evaluation of models. This leads to a set of posterior
model probabilities which approximately correspond to a generalised cost-modified version of BIC.
Computation is performed using reversible-jump MCMC in two stages: firstly to reduce the model
space by dropping variables with low marginal posterior probabilities and secondly to estimate
posterior model probabilities in the reduced space. We have applied our methodology to the
problem of cost-effective input-output quality measurement in a health policy setting, with a
binary outcome and a large number (p = 83) of predictors which differ substantially in data-
collection costs. The resulting models achieve dramatic gains in cost and noticeable improvement
in model simplicity at the price of a small loss in predictive accuracy, when compared to the results
of a more traditional benefit-only analysis.

Our proposed methodology appears to hold significant promise for cost-effective input-output
quality and performance assessment. It can be applied in any setting where the outcome is binary,
such as in education (with outcomes such as drop-out during university study and employment
following graduation) and business (with outcomes such as retention in the workplace and the de-
fault status of a loan), and can be implemented with minor modifications for any other generalised
linear model. We believe that the scope of applications of regression methodology in which

(a) the purpose of the model-building is to create a predictive scale and

(b) future use of the scale created in (a) will take place in a cost-constrained environment

is sufficiently broad that methods like those examined here are worthy both of consideration now
for practical adoption and of further study to promote, e.g., additional computational efficiency
gains.
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Appendix: computing details

With reference to the MCMC methods described in Section 3, it is worth noting that both the coding time
and the running time of RJMCMC were substantially higher than with either variant of MC3 to achieve
comparable MCMC accuracy. All MC3 runs in the full model space were based on 10,000 monitoring
iterations after a burn-in (from either the null model or the full model) of 1,000 iterations; each of these
runs took 2–3 days (on a Pentium 4 machine at 2.8 GHz with 512MB RAM) for the Laplace variant of MC3

and 1–2 days for the BIC variant. To achieve reasonable running times for RJMCMC it was necessary to
implement the algorithm in C. RJMCMC runs were based on 100,000 iterations, after discarding an initial
10,000 iterations as a burn-in; each of these runs took 2–3 days in in the full model space and 9 hours in the
reduced space. The resulting R and C programs are available upon request from the first or second authors
of this paper.
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