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Abstract

The US Food and Drug Administration has recommended statistical guide-

lines that introduce two new bioequivalence criteria: population bioequivalence

(PBE) and individual bioequivalence (IBE). In this paper we propose a hierar-

chical Bayesian methodology for evaluating these recently introduced criteria. We

derive the joint posterior distribution of the parameters involved in a crossover de-

sign and propose two Bayesian testing procedures for bioequivalence. The method

is also extended to incorporate the t distribution in order to facilitate a more robust

approach. All methods are illustrated using a popular dataset.
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1 Introduction

Bioequivalence studies are performed in order to demonstrate that a test (T) and a reference

(R) drug products are equivalent in terms of efficacy and safety (Patterson, 2001). Thus, bioe-

quivalence plays an important role in the drug development process. Until recently, bioequiva-

lence has been assessed based on average bioequivalence (ABE). However, ABE has limitations

since it focuses only on the comparison of population means between test and reference drugs.

Therefore, neither the intra-subject variance of the formulation under study, nor the subject-

by-formulation interaction is taken into account. Hence, under average bioequivalence, it is

of major concern to know whether approved generic drug products can be used safely and

interchangeably. Drug interchangeability is usually classified as drug prescribability or drug

switchability. Drug prescribability is defined as the physician’s available choice to prescribe

either a reference or a test formulation when a patient starts receiving a treatment. On the

other hand, drug switchability is related to the possibility of changing one drug product to an

alternative one during the patient’s treatment without observing any side effects or noticeable

variations concerning the treatment’s efficacy and the patient’s safety. While prescribability

requires that the test and reference formulations are population bioequivalent (PBE), switcha-

bility refers to individual bioequivalence (IBE) between formulations.

Anderson and Hauck (1990) first demonstrated that ABE may be insufficient to guarantee

switchability between formulations. Later on, in 1997 the US Food and Drug Administration

(FDA) put forward a draft “Guidance” and has been updated regularly by FDA (1999, 2002),

proposing means of addressing these limitations of ABE. A considerable amount of work has

been done since then on IBE and PBE (Chow and Liu, 2000; Hsuan and Reeve, 2003; Carrasco

and Jover, 2003; McNally, et al. , 2003; also see the special issue of Statistics in Medicine

on individual bioequivalence, 2000, vol 20, issue 19). These two criteria (IBE and PBE) allow

the assessment of subject-by-formulation interaction and compare the population means and
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variances of the test and the reference drugs. IBE and PBE can provide flexible equivalence cri-

teria for different types of drugs based on their therapeutic windows. Moreover, they encourage

pharmaceutical companies to produce less variable formulations.

FDA (2001) recommends a statistical test procedure for IBE and PBE based on the method-

ology proposed by Hyslop et al. (2000) under a crossover design. The method of Hyslop et al.

(2001) is based on finding a 95% upper confidence bound using an approximate methods. How-

ever, their approach does not account for the uncertainty of the parameter estimates. In this

paper we focus on assessing IBE and PBE using the Bayesian approach which overcomes such

problems. A fully Bayesian approach has important advantages. For example, it accounts for

various sources of parameter uncertainty, especially for variance components, while classical

frequentist approach considers only sampling uncertainty (Gill, 2002; Gelman et al. , 2004). In

addition, inference is based on the whole posterior distribution of model parameters which can

be assessed accurately enough by generating samples using Markov chain Monte Carlo method-

ology (Bernardo and Smith, 1994, p.353). Hence, all descriptive measures including credible

intervals can be obtained from the estimated posterior distribution of the parameters of interest

and can be estimated accurately and reliably regardless of the size of the data (Agresti, 1996).

Another advantage is the ability to incorporate “background” information thought pertinent

to the clinical question being addressed (Ghosh and Khattree, 2003). Bayesian inference thus,

offers substantial benefit not only in terms of model understanding in bioequivalence assessment

but also in terms of data exploration (Patterson, 2001). All the above points as well as the

comment of Breslow (1990) make us agree that bioequivalence is a natural field to be assessed

using Bayesian methods.

The Bayesian approach has been adopted by several researchers in order to assess ABE (Rodda

and Davis, 1980; Mandallaz and Mau, 1981; Grieve, 1985; Racine-Poon et al. , 1987; Ghosh

and Khattree, 2003). However, the application and usefulness of the Bayesian methods in IBE

and PBE are not fully explored. Oh et al. (2003) develops a Bayesian testing for PBE and
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Wellek (2000) developed a Bayesian test for a probability based IBE criteria. However, in both

the above cases the approaches are different than the IBE and PBE criteria proposed by FDA.

In this paper we propose Bayesian methods of assessing IBE and PBE using the criteria

proposed by FDA. We facilitate posterior model odds and probabilities in order to examine the

hypotheses of IBE and PBE. These quantities have a direct probability interpretation which p-

values do not have (Carlin and Louis, 2000, p.38-39). Moreover, they can be directly calculated

from the output of a single MCMC run. Finally, we use the t distribution to construct a robust

version of the proposed model and base the IBE/PBE inference.

In section which follows, we present the underlying statistical model and the FDA based

criteria for individual and population bioequivalence. In section 3 we describe the Bayesian

procedure including the specification of prior distributions and the evaluation of IBE and PBE

using posterior model probabilities. A detailed numerical example based on a published bioe-

quivalence study is provided in section 4. In Section 5 we introduce the use of IBE/PBE model

based on the t−distribution and how it can be compared to the standard Normal model. Final

comments and conclusions are provided in section 6.

2 Statistical Model and Criteria

2.1 Model Formulation

The FDA draft guidance (1999), suggests the use of two-period replicate crossover designs for

assessing IBE. However, standard two-period crossover designs may be used for PBE. But, for

uniformity we use a two-period replicate crossover design for both IBE and PBE throughout this

article. In this paper we consider the following linear mixed-effects model with the assumption

of no carryover effect, (Chinchilli and Esinhart, 1996; Hyslop et al. , 2000).

yijkl = µk + γikl + δijk + eijkl, (1)
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where i = 1, · · · s indicates the sequence, j = 1, · · ·ni indicates the subject within sequence

i, k = R, T indicates the treatment and l = 1, · · · pik indicates the replicate number, and pik

represents the number of replicates for the kth treatment in the i th sequence. Thus, yijkl is the

logarithm of the response for replicate l on treatment k for subject j in sequence i, µk is the

population average response for the kth formulation, γikl represents the fixed effect for replicate

l on treatment k in sequence i. This fixed effect includes the period effect and sequence effects.

δijk is the random subject effect for subject j in sequence i on treatment k and eijkl is the

random error for subject j within sequence i on replicate l of treatment k. In a typical four

period design for two treatments one have two replications for each treatment. Thus we assume

in our model piT = piR = 2. The minimum number of sequence is 2 (s ≥ 2).

To avoid model over parametrization we need to impose constraints on the location parameters

γikl. For model formulation (1) parameters γikl represent the sequence by period interaction.

Usually, sum-to-zero constraints
∑s

i=1

∑pik

l=1 γikl = 0 are implemented.

Furthermore, the 2× 1 vectors of random subject effects δij=(δijR, δijT )T are mutually inde-

pendent bivariate normal with zero means and variance-covariance matrix Ω:

δij = (δijR, δijT )T ∼ N2 (0,Ω) with Ω =

 σ2
BR ρσBT σBR

σ2
BT

 . (2)

Here σ2
BT and σ2

BR are the between subject variance components for test and reference for-

mulations, respectively, and ρ is the correlation between the responses on the same subject

corresponding to the two formulations.

To complete the model formulation, errors eijkl are assumed to be mutually independent and

distributed normally with mean 0 and intra-individual variance σ2
Wk

(k = R, T ), hence

eijkl ∼ N(0, σ2
Wk

). (3)

Furthermore, δij and eijkl are assumed to be mutually independent. Therefore yijkl are normally

distributed random variables.
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2.2 FDA Criteria

Based on the above model let us define the following parameters:

µT = mean for test formulation

µR = mean for reference formulation

σ2
WT = within-subject variance for test drug

σ2
WR = within-subject variance for reference drug

σ2
BT = between-subject variance for test formulation

σ2
BR = between-subject variance for reference formulation

ρ = correlation coefficient between individual average test and reference formulation

σ2
TT = total variance for test formulation

σ2
TR = total variance for reference formulation

σ2
D = (σBT − σBR)2 + 2(1− ρ)σBT σBR

Let us now denote by yR, yR′ the responses on two randomly selected subjects receiving the

reference drug and by yT the response of a third independently selected subject receiving the

test drug. Then drug prescribability can be measured by

E(yT − yR)2 − E(yR − y
′
R)2

max{1
2
E(yR − y

′
R)2, σ2

T0}
. (4)

Under model (1) and the prescribability criteria (4) the parameter of interest for PBE is given

by

ΘPBE =


(µT−µR)2+σ2

TT−σ2
TR

σ2
TR

when σ2
TR > σ2

T0 (Reference scaled criterion)

(µT−µR)2+σ2
TT−σ2

TR

σ2
T0

when σ2
TR ≤ σ2

T0 (Constant scaled criterion)

, (5)

where σ2
T0 is a specified constant. At present, the FDA recommended value of σ2

T0 is 0.04. In
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order to identify PBE we test for

HPBE
0 : ΘPBE ≥ θP vs. HPBE

1 : ΘPBE < θP . (6)

PBE is concluded if HPBE
1 is accepted. The FDA recommended the value of 1.7448 for θP . Of

course, the demonstration of PBE from the data requires that ΘPBE < θP ; for details, see FDA

(1999) and appendix A therein.

A similar justification like (4) can be given for switchability for IBE. The parameter of interest

for IBE is

ΘIBE =


(µT−µR)2+σ2

D+σ2
WT−σ2

WR

σ2
WR

when σ2
WR > σ2

W0 (Reference scaled criterion)

(µT−µR)2+σ2
D+σ2

WT−σ2
WR

σ2
W0

when σ2
WR ≤ σ2

W0 (Constant scaled criterion)

. (7)

Here σ2
W0 is a constant. As earlier, the FDA recommended value for σ2

W0 is 0.04. We identify

IBE by testing

HIBE
0 : ΘIBE ≥ θI vs. HIBE

1 : ΘIBE < θI . (8)

IBE is concluded if ΘIBE < θI is accepted. Currently, the FDA recommended value for θI is

2.4948.

3 Bayesian Analysis of the Normal Bioequivalence Model

In the following, we describe in detail the Bayesian model and the procedures used to test for

individual and population bioequivalence. The model likelihood, the prior distributions, the

posterior simulation and the testing procedures for each hypothesis is described in detail.
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3.1 Model Likelihood

The above model formulation can be summarized by the following:

f(yijkl|mijkl, σWk
) ∼ N(mijkl, σ

2
Wk

)

mijkl = µk + γikl + δijk

f(δij|Ω) ∼ N2(0,Ω),

where δij and Ω are given by (2). The model likelihood of the above model is given by

f(y|µ,γ, δ, σ2
WR, σ2

WT ,Ω) =

= exp

(
−1

2

{
s∑

i=1

ni(piR + piT )

}
log(2π)−

s∑
i=1

nipiR log σWR −
s∑

i=1

nipiT log σWT

−1
2

s∑
i=1

ni∑
j

∑
k∈{R,T}

pik∑
l=1

(
yijkl − µk − γikl − δijk

σWk

)2

− n

2
log(2π)− n

2
log |Ω|

−1
2

s∑
i=1

ni∑
j=1

δT
ijΩ

−1δij

 I

(
s∑

i=1

piR∑
l=1

γiRl = 0

)
I

(
s∑

i=1

piT∑
l=1

γiT l = 0

)

where n =
∑s

i=1 ni is the total number of subjects , µ = (µT , µR)T , γ is a vector containing

all γikl parameters and I(x) is a indicator function taking the value of one if x true and zero

otherwise.

3.2 Prior Distributions

To complete the Bayesian specification of the model, we must assign priors to the unknown

fixed effect parameters µk, γikl, within subject variances σ2
Wk

and the random effect precision

parameter Ω−1. For convenience, we represent all parameters by θ and the prior distribution of

(µk, γikl, σ
2
WT , σ2

WR,Ω−1) is broadly decomposed as

f(θ) = f(µ, γ, σ2
WR, σ2

WT ,Ω−1) = f(γ)f(Ω−1)
∏

k∈{R,T}

f(µk)f(σ2
Wk

).
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We will use conditionally conjugate prior distributions for each of the above parameters. This

choice simplifies computations since the conditional distributions involved in the Gibbs sampler

are of known form and hence easy to generate from. In the absence of any expert opinion or

generally prior information, we choose the parameters of the prior distributions in such way that

reflect high uncertainty about the quantities of interest. We thus, use proper prior distributions

(ensuring proper posteriors) but, in order to express minimal or low information, we specify

large prior variance which ensures that they are flat over a realistic range of parameter values.

In particular, we assume the following prior distributions for the unknown parameters.

3.2.1 Prior for µk

For the treatment effects µk we use a two stage hierarchical prior given by

f(µk) ∼ N(µ0k, σ
2
0k). (9)

The above prior is assumed to vary with treatment effect. We assign a second stage prior

distribution for the hyperparameters µ0k and σ2
0k, which creates the second stage of the prior

structure:

f(µ0k) ∼ N(µ00, σ
2
00) and f(σ2

0k) ∼ IG(a, b) , (10)

where x ∼ IG(c, d) denotes the inverse gamma distribution with mean and variance of x−1

equal to c/d and c/d2 respectively. The parameter d of the inverse gamma distribution has an

interpretation as measuring the strength of prior belief in terms of an equivalent ‘sample size’

(Gelman, Carlin, Stern and Rubin, 1995).

3.2.2 Prior for γikl

Under the usual sum-to-zero constraints we use prior distributions:

γikl ∼ N(0, σ2
k) for (i, l) 6= (1, 1)
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and

γ1k1 = −
p1k∑
l=2

γ1kl −
s∑

i=2

pik∑
l=2

γikl.

3.2.3 Prior distributions for σ2
Wk

To stabilize the treatment specific variance parameter we assume the following prior distribution

for σ2
Wk

:

f(σ2
Wk

) ∼ IG(ak, bk).

3.2.4 Prior distributions for Ω

Concerning Ω, we propose to use a set of univariate prior distributions for the components of

Ω: σ2
BT , σ2

BR and ρ. Therefore we propose to use univariate inverse gamma distributions for

σ2
BT , σ2

BR and a transformed beta based distribution for ρ. Hence

σ2
BT ∼ IG(aσBT

, bσBT
) (11)

σ2
BR ∼ IG(aσBR

, bσBR
) (12)

ρ = 2 U − 1 with U ∼ Beta(aρ, bρ) (13)

This prior setup offers great insight to the practitioner concerning the marginal prior distri-

butions. They can be easily specified if the expert can express his prior information in terms

of expected values and the degree of their accuracy. For example, if we need a-priori support

for the independence between the test and reference individual random effects then we can set

the prior mean for ρ equal to zero by aρ = bρ. Then we can control the degree that we believe

this prior assumption by the variance given by (2aρ + 1)−1.

When no prior information is available, relatively non-informative priors can be selected

using the prior parameters aσBT
= bσBT

= 10−4, aσBR
= bσBR

= 10−4 and aρ = bρ = 1. The
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latter imposes a uniform prior for ρ defined on the interval [−1, 1] which can be thought non-

informative in the sense that any interval of the same length which is included in [−1, 1] has

the same probability.

An alternative natural choice for the prior of Ω is an inverse Wishart distribution: f(Ω−1) ∼

W2(α, S) with Wq(α, S) representing a q dimensional Wishart distribution with α degrees of

freedom and mean αS−1. For our analysis, diffuse priors can be chosen so that the analysis

is dominated by the data likelihood. Specifically, to represent the vague prior knowledge, we

propose to set the degrees of freedom for the Wishart distribution to be the minimum possible

namely, to the rank of Ω (here α = 2). We choose S = I2. This prior seems to be a priori sensible

since S can be thought as a prior belief concerning the magnitude of the covariance matrix Ω

for the random effects δij (Lindley, 1970, Spiegelhalter et al. , 1996, p.56). However, for our

example, using this prior distribution has resulted to quite sensitive results highly depending

on the choices of α and S and hence we will not use it to the subsequent of the paper.

Note that both of the above priors are fairly natural choices of prior distributions giving some

of the advantages of conjugacy. The hierarchical prior model has the advantage that it does not

rely on the fixing of the prior parameters at indirectly estimated values. Instead, the specified

family of the prior distributions is integrated over, with integration measures being determined

by the hyperprior specification (e.g., µ0k ∼ N(µ00, σ
2
00) and σ2

0k ∼ IG(a, b) in section 2.1.1),

allowing a full propagation of uncertainty concerning the values of the prior parameters. The

values of all the hyper-hyperparameters are taken to be weakly informative.

3.3 Posterior Inference via Gibbs Sampling

In order to estimate model parameters we use Markov chain Monte Carlo approach to estimate

each model parameter θ. Gibbs sampler is used to iteratively generate random samples of θ from

the corresponding conditional posterior distributions. Let (θi|rest) denote the full conditional
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distribution of parameter θi given the current values of all other quantities in the model. Then,

we generate l = 1, 2, . . . , T , random numbers from the conditional distributions f(µk|rest),

(γikl|rest), (σ2
Wk
|rest) and (Ω−1|rest). In order to avoid possible effect of the initial starting

point (µ
(0)
k , γ

(0)
ikl , σ

(0)
Wk

,Ω(0)) we remove the initial B iterations which are called burn-in period.

Note that the total number of iterations kept (T −B) should be as large as possible to ensure

convergence of the chain and reduce the Monte Carlo error. Computationally, the model can

be implemented using WinBUGS software (Spiegelhalter et al. , 2003) which facilitates Gibbs

sampling to obtain samples from the posterior distribution. Convergence of the generated

samples can be assessed using standard tools within WinBUGS software (trace plots, ACF plots,

as well as Gelman-Rubin convergence diagnostic) or use CODA software available for Splus and

R (Best et al. , 1995).

3.4 Evaluating Population and Individual Bioequivalence

In practice, we estimate the posterior distribution of model parameters θ and then for any

functions of these parameters such as ΘPBE and ΘIBE which are of main interest. Usually the

posterior distribution is difficult to calculate hence we use MCMC algorithms as described in

section 3.3. Parameters ΘPBE and ΘIBE are simply calculated as functions of the generated

values of the model parameters.

The most natural approach in the Bayesian set up to evaluate evidence in favor of a hypothesis

H is to use the posterior probability f(H|y) of the hypothesis of interest and the corresponding

posterior hypothesis odds which is given by

POHH =
f(H|y)

f(H|y)
=

f(H|y)

1− f(H|y)

where H is the complementary hypothesis of H.

Using this approach we are interested in the calculation of f(HIBE
1 |y) and the corresponding
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posterior odds

POIBE
10 =

f(HIBE
1 |y)

f(HIBE
0 |y)

=
f(HIBE

1 |y)

1− f(HIBE
1 |y)

. (14)

We can interpret the POIBE
10 as the odds in favor of HIBE

1 against HIBE
0 given the data y.

Calculation of the above quantity from the MCMC output in our case is straightforward.

Since we can draw T values from the posterior distribution of ΘIBE and discarding the initial

B values as burn-in period, we can estimate this probability f(HIBE
1 |y) by

f̂(HIBE
1 |y) =

1

T −B

T∑
l=B+1

I
(
Θ

(l)
IBE < θI

)
,

where Θ
(l)
IBE is the value of ΘIBE generated in the l-th iteration of the algorithm. Therefore an

MCMC estimate of POIBE
10 will be given by

P̂O
IBE

10 =
f̂(HIBE

1 |y)

f̂(HIBE
0 |y)

=

∑T
l=B+1 I

(
Θ

(l)
IBE < θI

)
∑T

l=B+1 I
(
Θ

(l)
IBE ≥ θI

) .

Similarly we can evaluate the evidence in favor of HPBE
1 by calculating f̂(HPBE

1 |y) and P̂O
PBE

10 .

Alternatively, we may use the following approach for testing hypotheses (6) and (8) in the

spirit of a frequentist analysis. Wang and Ghosh (2004) have developed this kind of test in an

autoregressive models. Under this approach we use MCMC to estimate the posterior distribu-

tion of ΘIBE and ΘPBE and compute α and 1 − α percentile values of the posterior distribu-

tions of ΘIBE and ΘPBE, respectively, noted by (ΘIBE;α, ΘIBE;1−α) and (ΘPBE;α, ΘPBE;1−α).

Thus, when we wish to test for HPBE
0 versus HPBE

1 then we reject H0 if ΘPBE,1−α < θp and

hence we have evidence in favor of PBE. If H0 is not rejected then we can try for the inverse

test (HPBE
1 versus HPBE

0 ). If ΘPBE,α > θp then we reject HPBE
1 (PBE). Therefore, when

ΘPBE,α ≤ θp ≤ ΘPBE,1−α there is not enough evidence in favor of either of the two hypotheses

tested for. Using similar arguments we can construct the corresponding comparison for IBE.

Wang and Ghosh (2004) have shown that this simple rule performs reasonably well in the sense

of maintaining good frequentist properties, such as high power with low total error rates.
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4 Illustrative Example

4.1 MAO Inhibitor Data

In this section, we use one of FDA’s data set 14c (published on their website,

http://www.fda.gov/cder/bioequivdata). The data come from a bioequivalence study be-

tween two MAO inhibitor drugs. We analyze the area under the curve (AUC) as the pharma-

cokinetic measure in this example. This is a 2×4 crossover design (RTRT,TRTR) with 18 and

20 subjects per sequence. Here R stands for reference drugs and T stands for test drug. Thus,

there are two replication for each drug.

For our analysis, diffuse priors are chosen so that the analysis is dominated by the data

likelihood. Specifically, for µk we use the prior distribution defined by equations (9) and (10)

with µ00 = 0, σ2
00 = 10−4 and a = b = 10−4. The intra-subject variance components σ2

Wk
is

assumed to follow IG(10−4, 10−4). For Ω−1 we have tried both prior setups presented in 3.2.3.

For the multivariate prior, following the arguments of section 3.2.3 we have assumed Ω−1 ∼

Wishart(2, S = I2). Unfortunately, results were quite sensitive in terms of the specification

of S hence we decided to focus on the prior setup using univariate beta and inverse gamma

distributions given by equations (11 – 13) with aσBT
= bσBT

= aσBR
= bσBR

and aρ = bρ = 1.

These choices result to relatively low-information priors for σ−2
BT and σ−2

BR with prior means

equal to one and large variances equal to 104. Moreover, the choice of aρ = bρ = 1 leads to

uniform prior for ρ which can be thought as non-informative in the sense that puts the same

probability to any subinterval of [−1, 1] of the same length.

Details concerning the posterior probabilities of IBE and PBE given in Table 1 while posterior

summaries are provided in Table 2. The posterior probabilities of individual and population

bioequivalence are both very high since f(HIBE
0 ) and f(HPBE

0 ) < 10−4 (P̂O
IBE

10 and P̂O
PBE

10 >

104) strongly supporting that the two drug formulations are IBE and PBE. We reach to the

15



same conclusion using the alternative procedure proposed in Section 3.4 since ΘPBE;0.95
=

0.18(< ΘP = 1.745) rejecting HPBE
0 . The high posterior probability of PBE can be attributed

to the fact that the estimates of treatment means and marginal variances are very close for the

two formulations. Similarly for individual bioequivalence, we observe that ΘIBE;0.95 = 0.63 <

θI = 2.49 which rejects the null hypothesis of no IBE. It should be noted here that the two

formulations are found to IBE and PBE in the FDA’s method also.

The estimates of the two treatment effects are quite close. The posterior mean of parameter

ρ was found to be equal to 0.95 indicating strong correlation between the responses within a

subject to different formulation of the same drug. The correlation ρ of the responses within

subjects is a key parameter for assessing IBE. When two formulations of the same drug are

truly IBE, we expect that the responses of a subject to the two formulations will be highly

correlated. Also note that σ2
D is inversely related to ρ. The subject by formulation interaction

σ2
D is not substantial (posterior mean equal to 0.006). The subject by formulation interaction,

expresses the lack of consistency of subject’s true bioavailabilities on the test and reference

formulations. The estimates of the between formulation variances are higher than the within

subject variances, which is a usual case in crossover design (Schumaker and Metzler, 1998).

The correlation does not have any direct effect to PBE.

4.2 Sensitivity analysis

We performed sensitivity analysis for various choices of prior parameters. In all the results we

have focused our attention on the posterior means of ΘPBE, ΘIBE and ρ. Results seem to be

generally robust for all choices of prior parameters we have tried. All the results were obtained

by changing only one parameter at a time and keeping all other parameters constant to their

default values given above.

For σ2
k we have considered values ∈ {10ξ : ξ ∈ {−4,−3,−2,−1, 0, 1, 2}} while for parameters
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σ2
0k, and σ2

Wk
we have used priors of type IG(a, a) with a = 10ξ for ξ ∈ {−4,−3,−2,−1, 0, 1, 2}.

For all values of σ2
0k and σ2

k results were robust, while for σ2
Wk

results were robust for a ≤ 1.

We have considered similar values for σ2
BT and σ2

BR. Results were robust for values of a ≤ 10.

In all the above cases the hypotheses of both IBE and PBE were strongly supported with the

exception of the prior IG(100, 100) for σ2
BT and σ2

BR.

The above analysis indicates that the proposed priors are quite robust on prior values (at

least for this dataset). Moreover, in our example both IBE and PBE assumptions are strongly

supported for most of the prior choices used.

5 Using Student’s t Distribution for Bioequivalence

The bioequivalence model given by equations (1-3), which is widely used in bioequivalence

trials (Chow et al. , 2000), heavily depends on the assumption of normality. Although model

presented in section (2.1) offers great flexibility for modeling the within-subject correlation,

frequently it suffers from the lack of robustness against outliers and skewness (Chow and Tse,

2000; Bolton ,1991). Actual bioavailability data tend to have outliers and often considerable

skewness and thus a log-transformation of the response may not be sufficient. Hence, it is

of practical interest, to examine alternative models that are more robust than the normal

distribution. An appealing alternative is to use a distribution with thicker tail areas than the

Normal distribution and similar bell shaped behavior like the Student’s t distribution. Therefore

we propose to use a mixed model (1) with robust distributions for the errors. In this paper, we

consider Student’s t distribution for modeling the measurement error distribution. Note that,

to our knowledge, the effect of such robust distributions has not been examined in the context

of bioequivalence. In particular, we assume,

eijkl|ν ∼ t(0, σ2
Wk, ν)
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here, t(0, σ2
Wk, ν) is the univariate t distribution with degrees of freedom ν, with within subject

variance σ2
Wk.

For the parameter ν we have used several prior set-ups. We propose to restrict our choices to

a range of values 2−w and hence implement a uniform prior of type U(2, w). In order to stay

within the t-model we can argue that a choice of w = 30 will be good enough to leave space for

the model to decide and moreover to distinguish from the Normal model. In our examples we

have used various Uniform setups for choices w = 30, 50, 100 and 200.

5.1 Evaluation of the t-distribution Using Posterior Model Odds.

In this section , we use posterior model odds to test various hypotheses concerning the assump-

tion of the t-distribution for the Bioequivalence model used to estimate PBE and IBE.

In the first approach we consider a prior of type Uniform(2, w) and we split the interval

in K subintervals of type [ck, ck+1] for k = 1, 2, . . . , K with c1 = 2 and cK+1 = w. Two

crucial points for the values of ν can be thought the values of 30 and 50 since for ν > 30 or

ν > 50 the t-distribution gets sufficiently close to the normal distribution. Therefore as k → K

intervals should approximate the normal distribution and hence have similar posterior model

probabilities. We propose two choices of hyperparameters:

a) for w = 194 and c
[1]
k+1 = 2 + 48k for k = 1, 2, 3, 4 such that (c1, c2) = (2, 50) and

b) for w = 198 and c
[2]
k+1 = 2 + 28k for k = 1, 2, 3, 4, 5, 6, 7 such that (c1, c2) = (2, 30).

Using this approach, the posterior probability of each hypothesis Hk : cj ≤ ν < ck+1 will be
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given by

f(Hk|y) =

∫ ck+1

ck

f(ν|y)dν =

∫ ck+1

ck

∫
Θ∗

f(ν,θ∗|y)dθ∗dν

=

∫ ck+1

ck

∫
Θ∗

f(y|ν, θ∗)f(ν, θ∗)dθ∗dν

(∫ w

2

∫
Θ∗

f(y|ν, θ∗)f(ν, θ∗)dθ∗dν

)−1

=

∫ ck+1

ck

∫
Θ∗

f(y|ν, θ∗)f(θ∗)f(ν)dθ∗dν

(∫ w

2

∫
Θ∗

f(y|ν,θ∗)f(θ∗)f(ν)dθ∗dν

)−1

=
(ck+1 − ck)

−1
∫ ck+1

ck

∫
Θ∗ f(y|ν, θ∗)f(θ∗)dθ∗dν∑K

k=1(ck+1 − ck)−1
∫ ck+1

ck

∫
Θ∗ f(y|ν,θ∗)f(θ∗)dθ∗dν

. (15)

where θ∗ is the model parameter vector θ excluding the degrees of freedom ν and Θ∗ is the

corresponding parameter space. Using MCMC, the above quantity can be estimated in a

straightforward manner using

f̂(Hk|y) =
1

T −B

T∑
l=B+1

I
(
ck ≤ ν(l) < ck+1

)
where ν(l) is the value of ν generated at the l-th iteration of the MCMC algorithm.

The second approach is similar to the above but it is more model oriented in the sense that

we specify different prior f(ν|Hk) where Hk is the same as in the first approach. We select

f(Hk) = 1/K in order to give equal prior probabilities in all hypotheses considered. Notice

that posterior probabilities will be sensitive to the choice of w but not the posterior model odds

provided that the two hypotheses have the same interval length. Furthermore, for each model
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we define f(ν|Hk) ∼ Uniform(ck, ck+1). Posterior model probabilities will be now given by

f(Hk|y) = =

∫ ck+1

ck

∫
Θ∗

f(Hk, ν, θ
∗|y)dθ∗dν

=

∫ ck+1

ck

∫
Θ∗ f(y|Hk, ν, θ

∗)f(θ∗|Hk)f(ν|Hk)f(Hk)dθ∗dν∑K
k=1

∫ ck+1

ck

∫
Θ∗ f(y|Hk, ν, θ

∗)f(θ∗|Hk)f(ν|Hk)f(Hk)dθ∗dν

=
K−1(ck+1 − ck)

−1
∫ ck+1

ck

∫
Θ∗ f(y|Hk, ν, θ

∗)f(θ∗|Hk)dθ∗dν

K−1
∑K

k=1(ck+1 − ck)−1
∫ ck+1

ck

∫
Θ∗ f(y|Hk, ν, θ

∗)f(θ∗|Hk)dθ∗dν

=
(ck+1 − ck)

−1
∫ ck+1

ck

∫
Θ∗ f(y|Hk, ν, θ

∗)f(θ∗|Hk)dθ∗dν∑K
k=1(ck+1 − ck)−1

∫ ck+1

ck

∫
Θ∗ f(y|Hk, ν, θ

∗)f(θ∗|Hk)dθ∗dν
.

Considering the same prior distributions for θ∗ under all hypotheses (that is f(θ∗|Hk) = f(θ∗))

and that the model likelihood does not directly depends on Hk we end up with posterior model

odds equal to the posterior model odds of the first approach (see equation 15). Following the

2nd approach, estimation of the posterior model probabilities and the corresponding odds is

more computationally demanding since we need to construct more advanced MCMC samplers

based on the ideas of reversible jump MCMC (Green, 1995) or Gibbs based model and variable

selection techniques (see for examples in Dellaportas et al. , 2002, Ntzoufras, 2002, Katsis and

Ntzoufras, 2005).

Finally, in our last approach, we use different t-distributions with degrees of freedom ν taking

integer values from 2 to w which are a priori equally probable. We use mν for ν = 2, . . . , w

to denote a t-distributed model with ν degrees of freedom and with m1 we denote the normal

model. We use a discrete uniform distribution for the prior probability of each model. Hence

f(mν) = 1/(w − 1) for all ν = 2, . . . , w. Using this approach, the posterior model probabilities

will be given by

f(mk|y) =

∫
Θ∗

f(mk, ν = k,θ∗|y)dθ∗

(
K∑

k=1

∫
Θ∗

f(mk, ν = k,θ∗|y)dθ∗

)−1

=

∫
Θ∗

f(y|mk, ν = k, θ∗)f(θ∗|mk)dθ∗

(
K∑

k=1

∫
Θ∗

f(y|mk, ν = k,θ∗)f(θ∗|mk)dθ∗

)−1

.
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All posterior model probabilities f(mk|y) (for k = 2, . . . , w − 1) are compared with the corre-

sponding posterior probability of mw with ν = w. Posterior model odds POkw > 3 indicate

positive evidence in favor of mk model with ν = k.

Concerning our dataset, comparisons using the first two approaches were close as expected;

see Table 3 for detailed results. All chains were run 100,000 iterations in order to achieve

Monte Carlo error lower than 2.5% for the a-posteriori most probable hypothesis. Using both

priors specified above, the hypothesis H1 of the t-distribution was supported. For w = 194

and K = 4, the posterior probability of H1 : 2 ≤ ν < 50 (which favors the t-distribution) was

found equal to 0.51 and 0.47 indicating an increase of 102% (and 87%) due to the likelihood

since this interval was a-priori supported by 0.25 . The posterior odds PO14 was found equal

to 3.30 (or 2.84 for the 2nd approach) indicating positive evidence in favor of H1; see Kass

and Raftery (1995). Hypotheses H2, H3 and H4 were close in terms of posterior probabilities

indicating that the data do not carry enough information in order to discriminate between these

hypotheses. Results using the two different sampling approaches slightly differ but departures

of posterior model probabilities are within Monte Carlo error precision. The choice of w = 198

and K = 7 gave similar results. The hypothesis H1 : 2 ≤ ν < 30 of the t-distribution was also

supported with posterior probabilities 0.41 and 0.44 and posterior model odds PO16 = 4.34

and 4.71 indicating positive evidence in favor of H1. All other hypotheses had similar posterior

probabilities with corresponding posterior odds close to one, indicating minor or no differences

between them. Similar results were extracted when we have further divided the interval [2, 198]

in 14 sub-intervals of equal length. The posterior probability of the first interval [2, 16) was

found equal to 6.7 times the posterior probability of the last interval [184, 198) (which can be

thought as an approximation of the Normal distribution). All other intervals have posterior

odds lower than 2.1 indicating minor differences between them.

Finally, when a discrete prior on ν with w = 30 was used, we found that for ν = 3, 4, . . . , 10

the posterior odds POν,30 ≥ 3 with the highest values (6.68 and 6.70) corresponding to ν = 4
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and ν = 5.

To sum up, from the above comparisons we conclude that there is clear evidence in favor

of small values of ν indicating that t − distribution is more appropriate than the Normal

distribution, at least for this example.

6 Conclusion

In this article we present Bayesian estimation and testing procedures for bioequivalence models.

In particular, we have developed two testing procedures, whose results are consistent. We go

beyond normality by modeling the error distribution with t distribution. Moreover, we use

posterior odds to compare various hypotheses concerning the values of the degrees of freedom (ν)

of the t distribution. These comparisons help us to infer in favor of the Student’s t-distribution

and/or against the normal assumption. However, this is still an ongoing research. We are

investigating the impact of other distributions like skew normal and skew t distribution in a

bioequivalence trial as well. Our proposed methods are general, flexible and easily applicable

using standard Bayesian software such as WINBUGS (code is available by the authors upon

request). The Bayesian approach provides a reliable alternative to the existing FDA tests using

posterior probabilities with straightforward interpretation rather than using p-values which do

not have a direct probability interpretation.
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percentiles

Parameter mean St.Dev. 5% 95% θ f(H0|y)

PBE -0.113 0.16 -0.35 0.18 1.74 0.0000

IBE 0.327 0.18 0.06 0.63 2.49 0.0000

Table 1: Bioequivalence Testing Results for MAO Inhibitor Data Using Univariate Priors for

Ω (1,000 burn-in; 10,000 iterations kept).
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percentiles

Parameter mean St.Dev. 2.5% median 97.5%

σ2
BR 0.048 0.013 0.028 0.047 0.078

σ2
BT 0.034 0.011 0.018 0.032 0.060

σ2
D 0.006 0.005 0.001 0.005 0.017

σ2
TR 0.062 0.013 0.041 0.060 0.092

σ2
TT 0.053 0.011 0.037 0.052 0.079

σ2
WR 0.013 0.003 0.008 0.013 0.021

σ2
WT 0.019 0.004 0.013 0.019 0.029

γ111 -0.049 0.042 -0.131 -0.049 0.034

γ112 -0.007 0.042 -0.088 -0.007 0.075

γ121 -0.044 0.040 -0.122 -0.045 0.035

γ122 -0.002 0.040 -0.081 -0.002 0.077

γ211 0.065 0.042 -0.017 0.065 0.148

γ212 -0.010 0.042 -0.092 -0.009 0.074

γ221 -0.012 0.041 -0.092 -0.012 0.066

γ222 0.059 0.041 -0.023 0.059 0.140

µ1 5.640 0.037 5.567 5.641 5.711

µ2 5.631 0.034 5.562 5.631 5.695

ρ 0.945 0.050 0.816 0.956 0.999

Table 2: Posterior Summaries of Model Parameters for MAO Inhibitor Data Using Univariate

Priors for Ω (1,000 burn-in; 10,000 iterations kept).
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1st Approach 2nd Approach

w k ck − ck+1 f(Hk|y) MC Error POk4 f(Hk|y) MC Error POk4

194 2 50 0.505 0.020 3.30 0.467 0.021 2.84

50 98 0.182 0.007 1.18 0.196 0.009 1.19

98 146 0.160 0.007 1.05 0.172 0.008 1.04

146 194 0.153 0.008 1.00 0.165 0.008 1.00

198 2 30 0.399 0.021 4.34 0.411 0.021 4.71

30 58 0.123 0.006 1.33 0.121 0.006 1.38

58 86 0.106 0.005 1.15 0.103 0.005 1.17

86 114 0.096 0.004 1.04 0.098 0.004 1.11

114 142 0.093 0.005 1.01 0.092 0.004 1.04

142 170 0.092 0.005 1.00 0.087 0.004 0.99

170 198 0.092 0.005 1.00 0.088 0.005 1.00

Table 3: MCMC Estimates of Posterior Probabilities for t-distributions defined on different

intervals of degrees of freedom.
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percentiles

Parameter mean St.Dev. 2.5% median 97.5%

σ2
BR 0.051 0.016 0.028 0.047 0.098

σ2
BT 0.036 0.011 0.020 0.034 0.063

σ2
D 0.006 0.004 0.001 0.005 0.017

σ2
TR 0.061 0.016 0.039 0.058 0.108

σ2
TT 0.050 0.011 0.033 0.049 0.078

σ2
WR 0.011 0.003 0.005 0.010 0.018

σ2
WT 0.014 0.004 0.006 0.014 0.024

γ111 -0.046 0.043 -0.129 -0.047 0.041

γ112 -0.004 0.042 -0.085 -0.005 0.080

γ121 -0.036 0.039 -0.111 -0.037 0.042

γ122 -0.006 0.040 -0.081 -0.007 0.076

γ211 0.061 0.042 -0.023 0.062 0.142

γ212 -0.011 0.043 -0.099 -0.010 0.071

γ221 -0.012 0.040 -0.091 -0.012 0.065

γ222 0.054 0.041 -0.029 0.056 0.132

µ1 5.645 0.036 5.573 5.646 5.712

µ2 5.630 0.033 5.565 5.630 5.693

ρ 0.946 0.050 0.819 0.959 1.000

Degrees of freedom (df) 13.11 7.73 2.86 11.49 28.91

Table 4: Posterior Summaries of t − model Parameters for MAO Inhibitor Data (Prior of df:

Uniform(2, 30); 1,000 burn-in; 10,000 iterations kept).
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