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Abstract

In this paper we present R/SPLUS functions for the maximum likelihood estimation

of the parameters of bivariate and diagonal inflated bivariate Poisson regression models.

An Expectation - Maximization (EM) algorithm is facilitated. Inflated models allow

for modelling both over-dispersion (or under-dispersion) and negative correlation and

thus they are appropriate for a wide range of applications. Extensions of the algorithms

for several other models are also discussed. Detailed guidance and implementation on

simulated and real data sets using R/SPLUS functions is provided.
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1 Introduction

Bivariate Poisson models are appropriate for modelling paired count data exhibiting corre-

lation. Paired count data arise in a wide context including marketing (number of purchases

of different products), epidemiology (incidents of different diseases in a series of districts),

accident analysis (number of accidents in a site before and after infrastructure changes),

medical research (the number of seizures before and after treatment), sports (the number

of goals scored by each one of the two opponent teams in soccer), econometrics (number of

voluntary and involuntary job changes), just to name a few. Unfortunately the literature on

such models is sparse due to computational problems involved in their implementation.

Bivariate Poisson models can be expanded to allow for covariates, extending naturally

the univariate Poisson regression setting. Due to the complicated nature of the probability

function of the bivariate Poisson distribution, applications are limited. The aim of this

paper is to introduce and construct efficient Expectation-Maximization (EM) algorithms for

such models including easy-to-use R/SPLUS functions for their implementation. We further
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extend our methodology to construct inflated versions of the bivariate Poisson model. We

propose a model that allows inflation in the diagonal elements of the probability table.

Such models are quite useful when, for some reasons, we expect diagonal combinations with

higher probabilities than the fitted under a bivariate Poisson model. For example, in pre

and post treatment studies, the treatment may not have an effect on some specific patients

for unknown reasons. Another example arises in sports where, for specific cases, it has been

found that the number of draws in a game is larger than those predicted by a simple bivariate

Poisson model (Karlis and Ntzoufras, 2003).

In addition, an interesting property of inflated models is their ability to allow for mod-

elling both correlation between two variables and over-dispersion (or alternatively under-

dispersion) of the corresponding marginal distributions. Given their simplicity, such models

are quite interesting for practical purposes.

The remaining of the paper proceeds as follows: in Section 2 we introduce briefly the

bivariate Poisson and the diagonal inflated bivariate Poisson regression models. In Section

3 we provide a detailed description of the R/SPLUS functions. Several illustrative examples

(simulated and real) including guidance concerning the fitting of the models can be found

in section 4. Finally, we end up with some concluding remarks in Section 5. Detailed

description and presentation of the EM algorithms for maximum likelihood (ML) estimation

is provided at the Appendix.

2 Models for Bivariate Poisson Data

2.1 Bivariate Poisson Regression models

Consider random variables Xκ, κ = 1, 2, 3 which follow independent Poisson distributions

with parameters λκ, respectively. Then the random variables X = X1+X3 and Y = X2+X3

follow jointly a bivariate Poisson distribution, BP (λ1, λ2, λ3) , with joint probability function

fBP (x, y | λ1, λ2, λ3) = e−(λ1+λ2+λ3)
λx
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The above bivariate distribution allows for positive dependence between the two random vari-

ables. Marginally each random variable follows a Poisson distribution with E(X) = λ1 + λ3

and E(Y ) = λ2 + λ3. Moreover, Cov(X,Y ) = λ3, and hence λ3 is a measure of depen-

dence between the two random variables. If λ3 = 0 then the two variables are independent

and the bivariate Poisson distribution reduces to the product of two independent Poisson

distributions (referred as double Poisson distribution). For a comprehensive treatment of
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the bivariate Poisson distribution and its multivariate extensions the reader can refer to

Kocherlakota and Kocherlakota (1992) and Johnson et al. (1997).

More realistic models can be considered if we model λ1, λ2 and λ3 using covariates as

regressors. In such case, the Bivariate Poisson regression model takes the form

(Xi, Yi) ∼ BP (λ1i, λ2i, λ3i),

log(λ1i) = W T
1iβ1,

log(λ2i) = W T
2iβ2,

log(λ3i) = W T
3iβ3,

(2)

where i = 1, . . . , n, denotes the observation number, W κi denotes a vector of explanatory

variables for the i-th observation used to model λκi and βκ denotes the corresponding vector

of regression coefficients. The explanatory variables used to model each parameter λκi may

not be the same. Usually, we consider models with constant λ3 (no covariates on λ3) because

such models are easier to interpret. Although, assuming constant covariance term results

to models that are easy to interpret, using covariates on λ3 helps us to have more insight

regarding the type of influence that a covariate has on each pair of variables. To make

this understood recall that the marginal mean for Xi is equal (from equation 2) to E(Xi) =

exp(W T
1iβ1)+exp(W T

3iβ3). If a covariate is present in both W 1 and W 3, then a considerable

part of the influence of this covariate is through the covariance parameter that is common

for both X and Y variables. Moreover, such an effect is no longer multiplicative on the

marginal mean (additive on the logarithm) but much more complicated (multiplicative on

λ1 and λ3 and additive on the marginal mean).

Jung and Winkelmann (1993) introduced and implemented bivariate Poisson regression

model using a Newton-Raphson procedure. Ho and Singer (2001) and Kocherlakota and

Kocherlakota (2001) proposed a generalized least squares and Newton Raphson algorithm

for maximizing the loglikelihood respectively. Here we construct an EM algorithm to remedy

convergence problems encountered with the Newton Raphson procedure. The algorithm is

easily coded to any statistical package offering algorithms fitting generalized linear models

(GLM). Here, we provide R/SPLUS functions for implementing the algorithm. Standard

errors for the parameters can be calculated using the information matrix provided in Jung

and Winkelmann (1993) or using standard bootstrap methods. The latter is quite easy since

good initial values are available and the algorithm converges fairly quickly. Finally, Bayesian

inference has been implemented by Tsionas (2001).
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2.2 Diagonal Inflated Bivariate Poisson regression models

A major drawback of the bivariate Poisson model is its property to model data with positive

correlation only. Moreover, since its marginal distributions are Poisson they cannot model

over-dispersion/under-dispersion. As a remedy to the above problems, we may consider

mixtures of bivariate Poisson models like those of Munkin and Trivedi (1999) and Chib

and Winkelmann (2001). However, such models involve difficult computations regarding

estimation and can not handle under-dispersion. In this section, we propose diagonal inflated

models that are computationally tractable and allow for over-dispersion, (under-dispersion)

and negative correlation.

In the univariate setting, inflated models can be constructed by inflating the probabilities

of certain values of variable under consideration, X. Among them, zero-inflated models are

very popular (see, for example, Lambert, 1992, Bohning et al. , 1999). In the multivariate

setting, there are few papers discussing inflated model in bivariate discrete distributions.

Such models have been proposed by Dixon and Coles (1997) for modelling soccer games, Li

et al. (1999) and Wang et al. (2003) who considered inflation only for the (0,0) cell, Wahlin

(2001) who discussed zero-inflated bivariate Poison models and Gan (2000).

We propose a more general model formulation which inflates the probabilities in the

diagonal of the probability table. This model is an extension of the simple zero-inflated

model which allows only for an excess in (0, 0) cell. We consider, for generality, that the

starting model is the bivariate Poisson model. Under this approach a diagonal inflated model

is specified by

fIBP (x, y) =


 (1− p)fBP (x, y | λ1, λ2, λ3), x �= y

(1− p)fBP (x, y | λ1, λ2, λ3) + pfD(x | θ), x = y,
(3)

where fD(x | θ) is the probability function of a discrete distribution D(x;θ) defined on the

set {0, 1, 2, . . .} with parameter vector θ. Note that for p = 0 we have the simple bivariate

Poisson model defined in the previous section. Diagonal inflated models (3) can be fitted

using the EM algorithm provided at the Appendix.

Useful choices for D(x;θ) can be the Poisson, the Geometric or simple discrete distribu-

tions denoted by Discrete(J). The Geometric distribution might be of great interest since

it has mode at zero and decays quickly as one moves away from zero. As Discrete(J) we

consider the distribution with probability function

f(x|θ, J) =


 θx for x = 0, 1, . . . , J

0 for x �= 0, 1, . . . , J
(4)

where
∑J

x=0 θx = 1. If J = 0 then we end up with the zero-inflated model.
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Two are the most important and distinctive properties of such models. Firstly, the

marginal distributions of a diagonal inflated model are not Poisson distributions, but mix-

tures of distributions with one Poisson component. Namely the marginal for X is given

by

fIBP (x) = (1− p)fPo(x | λ1 + λ3) + pfD(x | θ), (5)

where fPo(x | λ) is the probability function of the Poisson distribution. For example, if we

consider a Geometric inflation then the resulting marginal distribution is a 2-finite mixture

with one Poisson and one geometric component. Thus the marginal mean is given by

E(X) = (1− p) (λ1 + λ3) + p ED(X)

where ED(X) denotes the expectation of the distribution D(x;θ). The variance is much

more complicated and is given by

V ar(X) = (1− p)
{
(λ1 + λ3)

2 + (λ1 + λ3)
}
+ pED(X

2)− {(1− p)(λ1 + λ3) + pED(X)}2 .

Since the marginals are not Poisson distributions, they can be either under-dispersed or

over-dispersed depending on the choices of D(x;θ). For example, if D(x;θ) is a degenerate

at one (that is, Discrete(1) with θT = (0, 1)) implying inflation only on the (1, 1) cell, then,

for λ1 + λ3 = 1 and p = 0.5, the resulting distribution is under-dispersed (variance equal

to 0.5 and mean equal to 1). On the other hand, if the inflation distribution has positive

probability on more points, for example a geometric or a Poisson distribution, the resulting

marginal distribution will be over-dispersed. In the simplest case of zero-inflated models, the

marginal distributions are also over-dispersed relative to the simple Poisson distribution.

Another important characteristic is that, even if λ3 = 0 (double Poisson distribution), the

resulting inflated distribution introduces a degree of dependence between the two variables

under consideration. In general, the simple bivariate Poisson models has EBP (XY ) = λ3 +

(λ1 + λ3)(λ2 + λ3). Thus for an inflated model we obtain

COVIBP (X,Y ) = (1− p) {λ3 + (λ1 + λ3)(λ2 + λ3)}+ pED(X
2)

−(1− p)2(λ1 + λ3)(λ2 + λ3)

−(1− p)pED(X)(λ1 + λ2 + 2λ3)− p2{ED(X)}2.

The above formulas are a generalization of simpler case where inflation is imposed only on

the (0, 0) cell given by Wang et al. (2003). If the data before introducing inflation are

independent, that is λ3 = 0, the covariance is given by

COVIBP (X,Y ) = p(1− p)λ1λ2 + pED(X
2)− p(1− p)ED(X)(λ1 + λ2)− p2{ED(X)}2
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which implies non-zero correlation between X and Y . Note that for certain combinations of

D(x;θ), the covariance can be negative as well. For example, if p = 0.5, λ1 = 0.5, λ2 = 2

and the inflation is a degenerate at one distribution then the covariance equals −0.125.

When inflation is added only on the cell (0, 0), we obtain that ED(X) = ED(X
2) = 0 and

COVIBP (X,Y ) = p(1 − p)λ1λ2 which is always positive. For this reason, diagonal inflation

can possibly correct both over/under-dispersion and correlation problems encountered in

modelling count data.

3 R/SPLUS Functions for Bivariate Poisson Models

3.1 Short description of Functions and Installation

In order to run the EM algorithm in R/SPLUS, you have to download the associated zipped

file: bivpois.zip from http://www.stat-athens.aueb.gr/∼jbn/papers/paper14.htm .

The zipped file contains the source files bivpois.r for R and bivpois.s for SPLUS (in-

cluding all the relevant functions) and some short help files. When you extract all files in a

directory, then you install the bivariate Poisson functions by typing in the R environment:

source(‘c:/directory/bivpois.r’) [ENTER]

or source(‘c:/directory/bivpois.s’) in SPLUS. Note that the differences between the

two source files are minor. The original version of the functions was written in SPLUS

but the authors strongly recommend using R mainly because the latter is much faster in

computations. Although the presentation below is focused and implemented in R, the same

analysis can be also implemented in SPLUS with minor differences.

The above procedure installs the following functions:

1. bivpois.table: Bivariate Poisson probability function (in tabular form) using recur-

sive relationships.

2. bivpois: Probability function of bivariate Poisson.

3. logbp: Logarithm of the probability function of bivariate Poisson.

4. simple.bp: EM for fitting a simple bivariate Poisson model with constant λ1, λ2 and

λ3 (no covariates are used).

5. glm.bp: EM for fitting a general linear bivariate Poisson model with covariates on

λ1, λ2 and λ3.
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6. glm.dibp: EM for fitting a diagonal inflated bivariate Poisson model with covariates

on λ1, λ2 and λ3.

3.2 The Function simple.bp

Function simple.bp implements the EM algorithm for fitting the simple bivariate Poisson

model of the form (xi, yi) ∼ BP (λ1, λ2, λ3) for i = 1, . . . , n. It produces a ‘list’ object which

gives various details regarding the fit of such a model. The function can be called using the

following syntax:

simple.bp(x, y, nmax = 300, pres = 1e-008, ini3 = 1)

• REQUIRED ARGUMENTS:

– x, y : vectors containing the data.

• OPTIONAL ARGUMENTS

– nmax: Maximum number of EM steps. The program terminates if the number

of iterations exceed this number and returns as result the values obtained by the

last iteration.

– pres: Precision used in log-likelihood improvement. If the relative log-likelihood

difference between two subsequent EM steps is lower than pres then the algorithm

stops.

– ini3: Initial value for λ3.

A list object is returned with the following output variables:

– parameters: Number of estimated parameters of the fitted model.

– iterations: Number of iterations of the EM algorithm.

– lambda1, lambda2, lambda3: Parameters of the model.

– loglikelihood: Log-likelihood of the fitted model. This argument is given in a vector

form of length equal to iterations with one value per iteration. This vector can be

used to monitor the log-likelihood improvement and the convergence of the algorithm.

– AIC, BIC: AIC and BIC values of the fitted model. Values of AIC and BIC are also

given for the double Poisson model and the saturated model.

During the run of the algorithm the following details are printed: the iteration number, λ1,

λ2, λ3, the log-likelihood and the relative difference of the log-likelihood. For an illustration

of using this function see example 1 in section 4.1.
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3.3 The Function glm.bp

Function glm.bp implements the EM algorithm for fitting the bivariate Poisson regression

model (2) with W 1 = [1n,0n,w1], W 2 = [0n,1n,w2], W 3 = [1n,w3] and β1 = β2 = β.

Hence the final form of the model is given by

(xi, yi) ∼ BP (λ1i, λ2i, λ3i) for i = 1, . . . , n,

l1 = [1n,0n,w1]β = β1 + β3w11 + . . .+ βp+2w1p

l2 = [0n,1n,w2]β = β2 + β3w21 + . . .+ βp+2w2p (6)

l3 = [1n,w3]β3 = β31 + β32w31 + . . .+ β3p2+1w3p2

lκ = (log λκ1, . . . , log λκn)
T for κ = 1, 2, 3;

where n is the sample size, 1n and 0n are n × 1 vectors of one’s and zero’s, w1 and w2

are n× p matrices containing the explanatory variables used for λ1 and λ2, respectively, w3

is a n × p2 matrix containing the explanatory variables used for λ3, wκj are n × 1 vectors

corresponding to j column of wκ matrix, β is the vector of length p + 2 with the model

coefficients for λ1 and λ2 (with elements βj) while β3 is the vector of length p2 + 1 with the

model coefficients for λ3 (with elements β3j). Here we use the same parameter vector β for

λ1 and λ2 in order to be able to fit models with common parameters between λ1 and λ2.

This function produces a ‘list’ object which gives various details regarding the fit of the

estimated model. The function can be called using the following syntax:

glm.bp(x, y, w1, w2, w3=0, l3=1, nmax=300, constant=c(1,1), pres=0.00000001)

• REQUIRED ARGUMENTS:

– x, y: vectors containing the response data.

– w1, w2: data frames (or matrices) with n rows and p columns. Names of columns

should be the same for both matrices and should correspond to the same variables.

Generally we have the following cases of effects on λ1 and λ2:

1. Common effect of a variable z on both λ1 and λ2: Set the same column j of

w1 and w2 equal to z.

2. Effect only on λ1: Set one column of w1 equal to z and exactly the same

column of w2 equal to a vector of zero’s.

3. Effect only on λ2: Set one column of w2 equal to z and exactly the same

column of w1 equal to a vector of zero’s.

4. Different effect on λ1 and λ2: Set the a column j of w1 equal to z and exactly

the same column j of w2 equal to a vector of zero’s (to define the effect of z
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on λ1). Further, set a different column k �= j of w2 equal to z and exactly the

same column k of w1 equal to a vector of zero’s (to define the effect of z on

λ2).

You should be careful on the definition of the names of each column. Different

names should be attributed to each column that corresponds to the effect of the

same variable z on λ1 and λ2. We propose to use the name of the variable and in

brackets the number indicating the linear predictor which is associated with the

corresponding parameter. For example in fourth case above we may use ‘Z(1)’

and ‘Z(2)’. For a detailed example of defining such matrices see example 1 in

section 4.1. Two common cases of w1 and w2 matrices are the following:

1. Use common effects for both x and y by setting w1=W.matrix, w2=W.matrix.

The first two components of the estimated parameters β (beta in R) are

the constant terms. Then each of the remaining components of beta vector

corresponds to the common effect on λ1 and λ2 of each column of W.matrix.

2. Use different effects for x and y on the same covariates by setting

w1=cbind(W.matrix, W.matrix*0), w2=cbind(W.matrix*0, W.matrix).

In this case, assuming that the dimension of the original W.matrix is n × p,

the dimension of w1 and w2 will be n × 2p. Hence the first two components

of the estimated parameters β (beta in R) are the constant terms (again),

while the components beta[j]for j = 3, . . . , p + 2 correspond to the effects

of W.matrix on λ1 while for j = p+3, . . . , 2p+2 correspond to the effects of

W.matrix on λ2.

• OPTIONAL ARGUMENTS

– l3=1: Indicator variable specifying which model we wish to fit. If l3=0 then we fit a

double Poisson model (λ3 = 0). If l3=1 then we fit a bivariate Poisson model with

λ3 constant (no covariates on λ3). In both cases w3 is not used. If l3=2 then we fit a

bivariate Poisson model with covariates on λ3 (given by w3).

– w3: data frame (or matrix) with n rows and p2 columns. This argument is required

only if l3=2.

– nmax=300: Maximum number of EM steps.

– constant=c(1,1): Includes constant terms for λ1, λ2 [1st value] and λ3 [2nd value].

– pres=0.00000001: Precision used in relative log-likelihood difference.
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A list object is returned with the following output variables:

– parameters: Number of estimated parameters of the fitted model.

– iterations: Number of iterations of the EM algorithm.

– beta: Vector β containing the estimates of the model parameters for modelling λ1

and λ2. When a column of w1 and w2 is factor then sum-to-zero constraints are used

by default. The first two parameters correspond to the constant terms of λ1 and λ2

respectively, while the rest of the parameters correspond to each column of w1 and w2

matrices.

– beta3: Vector β3 containing the estimates of the model parameters for modelling λ3. If

l1=0 then this vector is not calculated. If l3=1 then this vector contains only one value

(equal to the log of λ3). When a column of w3 is factor then sum-to-zero constraints

are used by default.

– lambda1, lambda2: vectors of length n containing the estimated λ1 and λ2.

– lambda3: vector containing the values of λ3. If l3=0 then λ3 is equal to zero. If l3=1

then λ3 contains only one value. If l3=2 then λ3 is a vector of length n.

– loglikelihood: Log-likelihood of the fitted model given in a vector form of length

equal to iterations (one value per iteration).

– AIC, BIC: AIC and BIC values of the model. Values are also given for the saturated

model.

During the run of the algorithm the following details are printed: the iteration number,

vector β, vector β3, the log-likelihood and the relative difference of the log-likelihood. For

an illustration using this function see examples in sections 4.1, 4.3 and 4.5.

3.4 The Function glm.dibp

Function glm.dibp implements the EM algorithm for fitting the simple diagonal inflated

bivariate Poisson model of the form

(xi, yi) ∼ DIBP ( xi, yi | λ1i, λ2i, λ3i, p,D(θ) ) for i = 1, . . . , n,

where λκi are specified as in (6), DIBP ( x, y | λ1, λ2, λ3, p,D(θ) ) is the density of the

diagonal inflated bivariate Poisson distribution with λ1, λ2, λ3 parameters of the bivariate



Bivariate Poisson regression models 11

Poisson component, inflated distribution D with parameter vector θ and mixing proportion

p evaluated at (x, y); see also equation (3).

This function produces a ‘list’ object which gives various details regarding the fit of such

a model. The function can be called using the following syntax:

glm.dibp(x, y, w1, w2, w3=0, l3=1, nmax=300, constant=c(1,1),

pres=0.00000001, distribution=1, jmax=2) .

• REQUIRED ARGUMENTS: Arguments x,y,w1,w2,w3 are exactly the same as in

glm.bp function.

• OPTIONAL ARGUMENTS

– Arguments l3, w3, nmax, constant, press: are exactly the same as in glm.bp

function.

– distribution=1: Specifies the type of inflated distribution; 1= Discrete(J =

jmax), 2= Poisson(θ), 3= Geometric(θ).

– jmax=2: Number of parameters used in Discrete distribution. This argument is

not used if distribution=2 or 3.

A list object is returned with the following output variables:

– Variables beta, beta3, lambda1, lambda2, lambda3 are the same as in glm.bp

function and correspond to the parameters of the bivariate Poisson component.

– Variables loglikelihood, AIC, BIC, parameters, iterations are also the same

as in glm.bp function.

– diagonal.distribution: Label stating which distribution was used for the inflation

of the diagonal.

– p: mixing proportion.

– theta: Estimated parameters of the diagonal distribution. If distribution=1 then

the variable is a vector of length jmax with θj=theta[j] for j = 1, . . . , jmax and θ0 =

1−∑jmax
j=1 θj; if distribution=2 then θ is the mean of the Poisson; if distribution=3

then θ is the success probability of the Geometric distribution.

During the run of the algorithm the following details are printed: the iteration number,

vector β, vector β3, the mixing proportion, parameter vector θ, the log-likelihood and the

relative difference of the log-likelihood. For an illustration of using this function see examples

in sections 4.2, 4.4 and 4.5.
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4 Examples

4.1 Simulated Example 1

In order to illustrate our algorithm, we have simulated 100 data points (xi, yi) from a bivariate

Poisson regression model of type (2) with λ1i, λ2i, λ3i given by

λ1i = exp(1.8 + 2Z1i − 3Z3i)

λ2i = exp(0.7− Z1i − 3Z3i + 3Z5i)

λ3i = exp(1.7 + Z1i − Z2i + 2Z3i − 2Z4i)

for i = 1, . . . , 100; where Zki (k = 1, . . . , 5 and i = 1, . . . , 100) have been generated from

a Normal distribution with mean zero and standard deviation equal to 0.1 . The sample

means were found equal to 11.8 and 7.9 for X and Y respectively. The correlation and the

covariance were found equal to 0.623 and 6.75 respectively indicating that a bivariate Poisson

model should be fitted.

We have fitted various models presented in Table 1 with their BIC and AIC values.

Estimated parameters are presented in Table 2.

Both AIC and BIC indicate that the best fitted model (among the ones we have tried) is

model 11 which is the actual model we have used to generate our data. Using asymptotic χ2

statistics based on the log-likelihood, we may also test the significance of specific parameters

and identify which model should be selected.

4.1.1 Fitting the Constant Bivariate Poisson Model in R

In order to fit the simple bivariate Poisson model and store the results in an object called

simple.ex1 we type the following:

simple.ex1<-simple.bp( v1, v2 )

where v1,v2 are vectors of length 100 containing our data. If we wish to monitor the

calculated arguments then we type names(simple.ex1) resulting to:

[1] "lambda1" "lambda2" "lambda3" "loglikelihood"

[5] "parameters" "AIC" "BIC" "iterations"

We may further monitor any of the above values by typing the name of the stored object

(here simple.ex1) followed by the dollar character ($) and the name of the output variable

we wish to monitor. For example simple.ex1$lambda1 will print the value of λ1:

> simple.ex1$lambda1

[1] 6.574695
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Model Details

λ1 λ2 λ3 Par. Log-like AIC BIC

1 DP Saturated 200 -405.05 1210.09 1869.76

2 DP Constant Constant - 2 -540.62 1085.25 1091.84

3 BP Constant Constant Constant 3 -516.73 1039.47 1049.36

4 DP Full Full - 12 -494.98 1013.96 1053.54

5 BP Full Full Constant 13 -478.26 982.52 1025.39

6 DP∗ Z1 + Z3 Z1 + Z3 + Z5 - 6 -527.05 1066.10 1085.89

7 BP∗ Z1 + Z3 Z1 + Z3 + Z5 Constant 7 -500.41 1014.83 1037.91

8 BP Full Full Full 18 -471.52 979.04 1038.41

9 BP Full Full Z1 + Z2 + Z3 + Z4 17 -472.52 979.03 1035.10

10 BP∗ Z1 + Z3 Z1 + Z3 + Z5 Full 12 -476.50 977.00 1016.58

11 BP∗ Z1 + Z3 Z1 + Z3 + Z5 Z1 + Z2 + Z3 + Z4 11 -476.81 975.62 1011.90

Table 1: Details for Fitted Models for Simulated Example 1 (Constant terms are included in

all models; Par.: Number of Parameters; Log-Like: Log-likelihood; Constant: no covariates

were used; Full: all covariates Zk, k = 1, . . . , 5 were used; (∗): Parameter of Z3 is common

for both λ1 and λ2).
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Actual 3 4 5 6 7 8 9 10 11

λ1 6.55

Constant 1.80 1.88 2.46 1.87 2.45 1.71 1.75 1.73 1.75 1.74

Z1 2.00 1.42 2.65 1.23 3.10 2.64 2.73 2.65 2.62

Z2 0.00 -0.57 -0.83 -0.56 -0.59

Z3 -3.00 -0.25 -0.83 0.18 -1.40 -2.33 -2.45 -2.43 -2.43

Z4 0.00 -1.15 -1.70 -0.46 -0.81

Z5 0.00 0.02 0.15 1.14 0.52

λ2 2.89

Constant 0.70 1.06 2.04 0.82 2.07 0.45 0.49 0.45 0.59 0.61

Z1 -1.00 0.20 0.70 0.46 2.47 0.36 0.33 0.57 0.50

Z2 0.00 -1.11 -2.82 -2.83 -3.00

Z3 -3.00 0.90 1.68 0.18 -1.40 -1.76 -1.98 -2.43 3.78

Z4 0.00 -2.03 -5.27 -2.62 -3.91

Z5 3.00 0.65 2.12 1.03 5.11 6.26 4.59 4.42 1.13

λ3 5.10 0.00 5.10 0.00 6.17

Constant 1.70 1.63 −∞∗ 1.63 −∞∗ 1.82 1.72 1.75 1.72 1.72

Z1 1.00 0.19 0.10 0.17 0.15

Z2 -1.00 -0.56 -0.58 -1.19 -1.22

Z3 2.00 1.83 1.85 1.94 1.95

Z4 -2.00 -1.87 -1.37 -2.58 -2.51

Z5 0.00 -0.96 -0.45

Table 2: Estimated Parameters for Fitted Models of Simulated Example 1 (Models 6,7,10,11:

Parameter of Z3 is common for both λ1 and λ2; Blank cells correspond to zero coefficients

(the corresponding covariate was not used); (∗): Corresponds to λ3 = 0).
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Similarly the command simple$BIC returns:

> simple.ex1$BIC

Saturated Double Poisson Bivar.Poisson

1869.759 1091.842 1049.359

From the above output, the BIC of our fitted model is equal to 1049.36 . For comparison, the

values of the simple double Poisson model and the saturated model are also given (1091.84 ad

1869.76 respectively). As saturated model we consider the double Poisson model with perfect

fit, that is the expected values are equal to the data. Here BIC indicates that the bivariate

Poisson model is better than both the simple double Poisson model and the saturated one.

Finally, all variables of simple.ex1 can be printed by simple typing its name:

> simple.ex1

$lambda1

[1] 6.574695

$lambda2

[1] 2.894695

$lambda3

[1] 5.125305

$loglikelihood

[1] -532.8476 -532.4675 -532.0811 -531.6893 -531.2928 -530.8926 -530.4895

........

[162] -516.7321 -516.7321 -516.7321

$parameters

[1] 3

$AIC

Saturated Double Poisson Bivar.Poisson

1210.095 1085.246 1039.464

$BIC

Saturated Double Poisson Bivar.Poisson

1869.759 1091.842 1049.359

$iterations

[1] 164

We may monitor the evolution of the log-likelihood by producing Figure 1 by typing

plot( 1:simple.ex1$iterations, simple.ex1$loglikelihood, xlab=’Iterations’,

ylab=’Log-likelihood’, type=’l’ )
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Figure 1: Log-likelihood Evolution for the Simple Bivariate Poisson Model Fitted on Data

of Simulated Example 1.

4.1.2 Fitting Bivariate Poisson Models Regression Models in R for Simulated

Example 1

Here we illustrate how we can fit models 3-11 for simulated example 1. All covariates were

stored in a z vector of dimension 100 × 5. Response variables are stored in vectors v1 and

v2. Each column indicates one variable. Before we proceed we calculate the following w

matrices:

# Matrices used when full model with non-common parameters is fitted

# (models 4,5,8,9)

w1full<- cbind( z , z*0 )

w2full<- cbind( z*0, z )

names(w1full)_c( paste( ’Z’,1:5,’(1)’,sep=’’), paste(’Z’,1:5,’(2)’,sep=’’) )

names(w2full)_c( paste( ’Z’,1:5,’(1)’,sep=’’), paste(’Z’,1:5,’(2)’,sep=’’) )

# Matrices used when the actual model with common and non-common parameters

# is fitted (models 6,7,10,11)

#

w1act<- as.data.frame(cbind( z[,1] , z[,1]*0, z[,3], z[,5]*0))

w2act<- as.data.frame(cbind( z[,1]*0, z[,1] , z[,3], z[,5] ))

names(w1act)_c( ’Z1(1)’, ’Z1(2)’, ’Z3’, ’Z5(2)’ )

names(w2act)_c( ’Z1(1)’, ’Z1(2)’, ’Z3’, ’Z5(2)’ )

Data matrices w1act and w2act and their names have been defined following the logic

described in section 3.3. Column labels used have the form ‘Zj(k)’; where j is the variable
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index and k denotes if the corresponding effect is linked with λ1 or λ2. If the effect is the

same on both λ1 and λ2 then we use simply the name of the variable. Hence the first column

of w1act and w2act corresponds to the effect of Z1 on λ1 (since w1act[,1]=z[,1] and

w2act[,1]=0) and is denoted as ‘Z1(1)’. Similarly the 2nd and the 4th column correspond

to the effect of Z1 and Z5 respectively on λ2 hence they are denoted by ‘Z1(2)’ and ‘Z5(2)’.

Finally, the 3rd column is the common effect of Z3 on both λ1 and λ2 (since w1act[,3]=z[,3]

and w2act[,3]=z[,3]) and is denoted by ‘Z3’. Using similar logic, we can specify the names

for models using w1full and w2full matrices. Columns 1-5 correspond to the effects of Zj

on λ1 (for j = 1, . . . , 5) and are denoted by ‘Zj(1)’ while columns 6-10 correspond to the

effects of Zj on λ2 (for j = 1, . . . , 5) and are denoted by ‘Zj(2)’.

After defining the data matrices we need we use the following commands to fit each model

presented in Table 1:

model3 <- simple.bp(v1, v2)

model4 <- glm.bp(v1,v2, w1full, w2full, l3=0)

model5 <- glm.bp(v1,v2, w1full, w2full)

model6 <- glm.bp(v1,v2, w1act , w2act , l3=0)

model7 <- glm.bp(v1,v2, w1act , w2act)

model8 <- glm.bp(v1,v2, w1full, w2full, z, l3=2)

model9 <- glm.bp(v1,v2, w1full, w2full, z[,1:4], l3=2)

model10<- glm.bp(v1,v2, w1act, w2act, z, l3=2)

model11<- glm.bp(v1,v2, w1act, w2act, z[,1:4], l3=2)

For model 11 we have the following estimates

> model11$beta

Intercept_1 Intercept_2 Z1(1) Z1(2) Z3 Z5(2)

1.7469566 0.6146818 2.6168688 0.4952161 -2.4263279 3.7773169

>

> model11$beta3

(Intercept) Z1 Z2 Z3 Z4

1.7163097 0.1470043 -1.2234779 1.9514278 -2.5065180

In the above results Intercept1, Intercept2 correspond to constant terms for λ1 and

λ2 while the rest of the parameters are identified according to their labels. From the above

results, the model can be summarized by the following equation

log(λ1i) = 1.75 + 2.62Z1i − 2.43Z3i

log(λ2i) = 0.61 + 0.50Z1i − 2.43Z3i + 3.78Z5i

log(λ3i) = 1.72 + 0.15Z1i − 1.22Z2i + 1.95Z3i − 2.51Z4i
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Model Details Sim.Example 2 Mix.Prop.

Diagonal Distribution Par. Log-Like AIC BIC (p)

1 BP No Diagonal Inflation 11 -476.81 975.61 1011.89 0.000

2 DIBP Discrete(0) 12 -551.27 1126.53 1166.11 0.019

3 DIBP Discrete(1) 13 -513.51 1053.01 1095.89 0.100

4 DIBP Discrete(2) 14 -495.93 1019.86 1066.03 0.139

5 DIBP Discrete(3) 15 -472.47 974.96 1023.93 0.198

6 DIBP Discrete(4) 16 -462.48 956.96 1009.74 0.237

7 DIBP Discrete(5) 17 -458.06 950.11 1006.19 0.265

8 DIBP Discrete(6) 18 -458.06 952.11 1011.48 0.265

9 DIBP Poisson 13 -460.00 945.99 988.87 0.268

10 DIBP Geometric 13 -465.70 957.39 1000.27 0.274

Table 3: Details for Fitted Models for Simulated Example 2 (Par.: Number of Parameters;

Log-like: Log-likelihood; Mix.Prop.: Mixing Proportion).

4.2 Simulated Example 2: Diagonal Inflated models

In simulated example 2 we have considered the data of example 1 which were contaminated in

the diagonal (for values of x = y) with values generated from a Poisson(2) distribution and

mixing proportion equal to 0.30. The contamination was completed by generating a binary

vector γ (of length 100) with success probability 0.30 and a Poisson vector d (of length 100)

with mean equal to 2. The new data (x′
i, y

′
i) were constructed by setting x′

i = xi(1−γi)+γidi

and y′i = yi(1− γi) + γidi for i = 1, . . . , n. Finally, 27 observations were contaminated with

sample mean equal to 2.4.

To illustrate our method we have implemented diagonal inflated models on both data

of simulated example 1 and 2. For the data of the previous section no improvement was

evident (estimated mixing proportion for all models was found equal to zero). For the data

of example 2, both BIC and AIC values indicate the Poisson distribution is the most suitable

for the diagonal inflation. Moreover, for the discrete distribution, we need to set at least

J = 4 in order to get values of BIC lower than the corresponding values of the bivariate

Poisson model with no inflation (see Table 3). Estimated parameters for the diagonal inflated

model with the best discrete distribution, Poisson and geometric distributions are provided

in Table 4. In all models we have used the actual underlying covariate set-up as given for

model 11 in section 4.1.
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λ1 λ2 λ3

Model Const. Z1 Z3 Const. Z1 Z3 Z5 Const. Z1 Z2 Z3 Z4

1 1.75 2.62 -2.43 0.61 0.50 -2.43 3.78 1.72 0.15 -1.22 1.95 -2.51

7 1.78 2.43 -2.06 0.67 -0.39 -2.06 3.03 1.67 0.17 -0.92 1.92 -3.18

9 1.78 2.42 -2.02 0.68 -0.35 -2.02 2.97 1.67 0.12 -0.96 1.91 -3.25

10 1.78 2.38 -1.96 0.67 -0.33 -1.96 3.15 1.66 0.15 -1.01 1.82 -3.35

Model p θ

7 0.265 θ̂ = (0.08, 0.30, 0.15, 0.22, 0.15, 0.10)

9 0.268 θ̂ = 2.43 (Poisson parameter)

10 0.274 θ̂ = 0.27 (Geometric parameter)

Table 4: Estimated Parameters for Fitted Models of Simulated Example 2. Parameter vector

for model 7 is given by θ = (θ0, θ1, θ2, θ3, θ4, θ5) .

4.2.1 Fitting Diagonal Inflated Bivariate Poisson Models Regression Models in

R for Simulated Example 2

Here we illustrate how we can fit models 2-10 for the data of the simulated example 2 using

the R/SPLUS function glm.bibp (see Table 3). Matrices w1act and w2act are defined as in

section 4.1.2. The following commands have been used to fit each model

sim2.model2 <-glm.dibp(d1,d2, w1act,w2act, z[,1:4], l3=2, distribution=1, jmax=0)
sim2.model3 <-glm.dibp(d1,d2, w1act,w2act, z[,1:4], l3=2, distribution=1, jmax=1)
sim2.model4 <-glm.dibp(d1,d2, w1act,w2act, z[,1:4], l3=2, distribution=1, jmax=2)
sim2.model5 <-glm.dibp(d1,d2, w1act,w2act, z[,1:4], l3=2, distribution=1, jmax=3)
sim2.model6 <-glm.dibp(d1,d2, w1act,w2act, z[,1:4], l3=2, distribution=1, jmax=4)
sim2.model7 <-glm.dibp(d1,d2, w1act,w2act, z[,1:4], l3=2, distribution=1, jmax=5)
sim2.model8 <-glm.dibp(d1,d2, w1act,w2act, z[,1:4], l3=2, distribution=1, jmax=6)
sim2.model9 <-glm.dibp(d1,d2, w1act,w2act, z[,1:4], l3=2, distribution=2 )
sim2.model10<-glm.dibp(d1,d2, w1act,w2act, z[,1:4], l3=2, distribution=3 )

For model 7 we have the following estimates

> sim2.model7$beta

Intercept_1 Intercept_2 Z1(1) Z1(2) Z3 Z5(2)

1.7792597 0.6696941 2.4328104 -0.3855074 -2.0553295 3.0287995

> sim2.model7$beta3

(Intercept) Z1 Z2 Z3 Z4

1.6685013 0.1665392 -0.9176112 1.9244447 -3.1781414

> sim2.model7$p

[1] 0.2648003

> sim2.model7$theta

[1] 0.3018781 0.1494186 0.2237955 0.1469628 0.1026400
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The logic for identifying β parameters is the same as in glm.bp function. The above results

can be summarized by the following model

fIBP (xi, yi) =


 0.735× fBP (xi, yi | λ1i, λ2i, λ3i), xi �= yi

0.735× fBP (xi, yi | λ1i, λ2i, λ3i) + 0.265× θxi
, xi = yi,

(θ1, θ2, θ3, θ4, θ5) = (0.302, 0.149, 0.224, 0.147, 0.103)

θj = 0 for j > 5

θ0 = 1−
∞∑

j=1

θj = 0.075

log(λ1i) = 1.78 + 2.43Z1i − 2.06Z3i

log(λ2i) = 0.67− 0.39Z1i − 2.06Z3i + 3.03Z5i

log(λ3i) = 1.67 + 0.17Z1i − 0.92Z2i + 1.92Z3i − 3.17Z4i.

Similarly model 9 produces the following results

> sim2.model9$beta

Intercept_1 Intercept_2 Z1(1) Z1(2) Z3 Z5(2)

1.7836971 0.6798381 2.4219333 -0.3491147 -2.0195228 2.9741247

> sim2.model9$beta3

(Intercept) Z1 Z2 Z3 Z4

1.6674222 0.1246431 -0.9613666 1.9132802 -3.2477915

> sim2.model9$p

[1] 0.2677973

> sim2.model9$theta

[1] 2.433656

which can be summarized by the following model

fIBP (xi, yi) =


 0.732× fBP (xi, yi | λ1i, λ2i, λ3i), xi �= yi

0.732× fBP (xi, yi | λ1i, λ2i, λ3i) + 0.268× e−2.434 (2.434)xi

xi!
, xi = yi,

log(λ1i) = 1.78 + 2.42Z1i − 2.02Z3i

log(λ2i) = 0.68− 0.35Z1i − 2.02Z3i + 2.97Z5i

log(λ3i) = 1.67 + 0.12Z1i − 0.96Z2i + 1.91Z3i − 3.25Z4i.

4.3 Example 3: Real Application

In this example, we have fitted bivariate Poisson models on data concerning the demand for

Health Care in Australia, reported by Cameron and Trivedi (1986). The data refer to the

Australian Health survey for 1977-1978. The sample size is quite large (n = 5190) although

they are only a subsample of the collected data. We will use two variables, namely the
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Number of Doctor Number of Prescribed medications (Y )

Consultations (X) 0 1 2 3 4 5 6 7 8

0 2789 726 307 171 76 32 16 15 9

1 224 212 149 85 50 35 13 5 9

2 49 34 38 11 23 7 5 3 4

3 8 10 6 2 1 1 2 0 0

4 8 8 2 2 3 1 0 0 0

5 3 3 2 0 1 0 0 0 0

6 2 0 1 3 1 2 2 0 1

7 1 0 3 2 1 2 1 0 2

8 1 1 1 0 1 0 1 0 0

9 0 0 0 0 0 0 0 0 1

Table 5: Cross Tabulation of Data from the Australian Health Survey (Cameron and Trivedi,

1986)

number of consultations with a doctor or a specialist (X) and the total number of prescribed

medications used in past 2 days (Y ) as the responses; see Table 5 for a cross-tabulation

of the data. The data are correlated (Pearson correlation equal to 0.308) indicating that a

bivariate Poisson model should be used. It is also interesting to examine the effect of the

correlation in the estimates.

Three variables have been used as covariates: namely the gender (1 female, 0 male), the

age in years divided by 100 (measured as midpoints of age groups) and the annual income

in Australian dollars divided by 1000 (measured as midpoint of coded ranges). More details

on the data and the study can be found in Cameron and Trivedi (1986).

Three competing models were fitted to the data: a) a model with constant covariance

term (no covariates on λ3), b) a model with covariates on the covariance term λ3 (only gender

was used which induces different covariance for each gender) and c) a model without any

covariance (double Poisson model); detailed results are given at Table 6.

Standard errors for the bivariate regression models have been calculated using 200 boot-

strap replications. This is easily implemented since, in this case, the convergence of the

algorithm is fast due to the use of good initial values.

Comparing models (a) and (c) we can conclude that the covariance term is significant

(p-value< 0.01). The effects of all covariates are statistically significant using asymptotic t-

tests. Furthermore, the effect of gender on the covariance term is significant. Similar results
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Model (a) Model (b) Model (c)

constant λ3 covariates on λ3 λ3 = 0

Covariate Coef. St.Er. Coef. St.Er. Coef. St.Er.

λ1 Constant -2.11 0.13 -2.08 0.13 -1.71 0.09

Gender (female) 0.22 0.08 0.05 0.08 0.22 0.06

Age 1.36 0.18 1.44 0.19 1.24 0.13

Income -0.34 0.11 -0.33 0.10 -0.28 0.08

λ2 Constant -2.19 0.08 -2.19 0.08 -1.87 0.07

Gender (female) 0.63 0.04 0.58 0.04 0.58 0.04

Age 3.25 0.10 3.29 0.10 2.96 0.09

Income -0.12 0.06 -0.11 0.06 -0.13 0.05

λ3 0.0922 0.0064 0.00

constant -2.38 0.12 -2.72 0.11

Gender (female) 0.69 0.14

Parameters 9 10 8

Log-likelihood -10030.26 -10015.48 -10233.21

AIC 20078.51 20050.96 20482.41

BIC 20143.74 20123.44 20540.39

Table 6: Results from Fitting Bivariate Poisson Models for the Data of Example 3.
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can be obtained using AIC and BIC values.

Let us now examine the estimated parameters. Concerning models (a) and (c), we observe

that covariate effects for the two models are quite different. This can be attributed to the

covariance λ3 which is present. Using a bivariate Poisson model we take into account the

covariance between the two variables and hence the effect of each variable on the other

including the effect of the covariates. This may indicates that a Double Poisson would

estimate incorrectly the true effect of each covariate on the marginal mean.

When comparing models (a) and (b), the covariate ‘gender’ in the covariance parameter

is significant indicating that males and females have different covariance term. Note that,

the gender effect on λ1 (mean of variable X: number of doctor consultations) has changed

dramatically, while this is not true for the rest parameters. This is due to the fact that the

marginal mean for X is now λ1 + λ3 (instead of λ1) and, since they share the same variate

(gender), we observe different estimates concerning the gender effect on the number of doctor

consultations. A plausible explanation might be that gender influences the number of doctor

consultations mainly through the covariance term. A final important comment is that the

gender effect in the bivariate Poisson model is no longer multiplicative on the mean (additive

on the logarithm) since the marginal mean is equal to λ1 + λ3.

4.3.1 Fitting Bivariate Poisson Models Regression Models in R for Example 3

The data were downloaded from the web page of the book of Cameron and Trivedi (1998),

(http://www.econ.ucdavis.edu/faculty/cameron/racd/racddata.html). All the data

are stored in data frame named ex3. The available variables are the following:

> names(ex3)

[1] "sex" "age" "agesq" "income" "levyplus" "freepoor"

[7] "freepera" "illness" "actdays" "hscore" "chcond1" "chcond2"

[13] "doctorco" "nondocco" "hospadmi" "hospdays" "medicine" "prescrib"

[19] "nonpresc" "constant"

Variables doctorco and prescrib represent the two response vectors (number of doctor

consultations and the total number of prescribed medications used in past 2 days) while the

variables sex, age and income are the regressors used. Variable sex here is used as a 0-1

dummy variable. First of all we create the design matrices.

w1<-as.data.frame(cbind(ex3$sex,ex3$age,ex3$income,0,0,0))

w2<-as.data.frame(cbind(0,0,0,ex3$sex,ex3$age,ex3$income))

w3<-as.data.frame(cbind(ex3$sex))

names(w1)<-c(’Gender(1)’,’Age(1)’,’Income(1)’,’Gender(2)’,’Age(2)’,’Income(2)’)
names(w2)<-c(’Gender(1)’,’Age(1)’,’Income(1)’,’Gender(2)’,’Age(2)’,’Income(2)’)
names(w3)<-c(’Gender’)
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Note that for each design matrix w1,w2 we have added columns with 0, according to the

guidelines provided in section 3.3. Hence the three first columns specify the effect of sex, age

and income on λ1 while the remaining three columns define the effect of the same variables

on λ2.

We fit model (a), (b) and (c) using the following commands:

ex3.model.a<-glm.bp(ex3$doctorco,ex3$medicine,w1,w2) # for model (a)

ex3.model.b<-glm.bp(ex3$doctorco,ex3$medicine,w1,w2,w3,l3=2) # for model (b)

ex3.model.c<-glm.bp(ex3$doctorco,ex3$medicine,w1,w2,l3=0) # for model (c)

The objects ex3.model.a, ex3.model.b, ex3.model.c contain all the results for models

(a), (b) and (c), respectively. For the best fitted model (b) we can monitor the estimated

parameters using the command ex3.model.b$beta resulting to

> ex3.model.b$beta

Intercept_1 Intercept_2 Gender(1) Age(1) Income(1) Gender(2)

-2.08426391 -2.18707826 0.05460993 1.44174038 -0.33472517 0.57959410

Age(2) Income(2)

3.29130665 -0.11112314

The coefficients for the regression in λ3 can be seen using the command

> ex3.model.b$beta3

(Intercept) Gender

-2.7248441 0.6892711

Bootstrap standard errors can be obtained easily using the following script for model (b)

and similarly for the rest models.

n<-length(x)

bootrep<-200

results<-matrix(NA,bootrep,10)

for (i in 1:bootrep) {

bootx1<-rpois(n,ex3.model.b$lambda1)

bootx2<-rpois(n,ex3.model.b$lambda2)

bootx3<-rpois(n,ex3.model.b$lambda3)

bootx<-bootx1+bootx3

booty<-bootx2+bootx3

testtemp<-glm.bp(bootx,booty,w1,w2,w3,l3=2)

betafound<-c(testtemp$beta,testtemp$beta3)

results[i,]<-betafound

}

At the end matrix results contains the bootstrap values of the parameters and thus boot-

strap standard errors can be obtained merely be taking the standard errors of the columns.

Note that objects bootx1, bootx2, bootx3 are used to simulate from the bivariate Poisson

model through the trivariate reduction scheme.
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4.4 Example 3 continued: Diagonal inflated models

Looking at the entries of Table 5 we can clearly see that the proportion of (0, 0) is quite

larger than the other frequencies. Hence it is reasonable to fit a model with diagonal inflation

described in Section 2.2. Three diagonal inflated models have been fitted to our data using

the same covariates for comparison purposes. As inflation distributions we have used the

Discrete(2), the Poisson and the geometric distribution. All fitted models led to Zero-inflated

model since we obtained: θ̂1 and θ̂2 < 10−6 for the Discrete(2) distribution, θ̂ < 10−6 for the

Poisson and θ̂ = 0.9999 for the geometric model. Therefore, only the estimated parameters

of the Zero-inflated model are presented as model (a) in Table 7.

Following the above analysis, two additional models have been fitted (models b and c of

Table 7). In model (b) we facilitate gender as a covariate of the covariance term (λ3) while in

model (c) we additionally introduce covariates at the mixing proportion p. The latter can be

achieved by using a logit link function for p, namely logit(pi) = w4iβ4; where w4i is a vector

the values of covariates corresponding to i observation and β4 denotes the corresponding

vector of coefficients. In order to fit such a model, at the M-step described in section A.3

we replace the estimation of p by fitting a logistic regression model assuming the Bernoulli

distribution with vi’s as response variable. Here, as a covariate on the modelling of p, we

have used only ‘gender’ for illustration.

From the results in Table 7, it is obvious that the inflation proportion is quite high

(p > 0.30) which has large effect on most of the estimated parameters. The model with

different mixing proportion for each gender (model c) exhibits much better values of the

log-likelihood, AIC and BIC. Moreover, females appear to have significantly lower number

of (0, 0) cells than males which indicates that the men either avoid to visit their doctor and

take any kind of medication or simply do not have the physical need to take such actions.

The rest of the parameters are also influenced by introducing gender as a covariate on the

mixing proportion, with most evident, the large change on the effect of gender on λ1.

Assuming a diagonal inflated model, we account for over-dispersion of both variables

(visits to a doctor and number of medications) since, according to our selected model, the

marginal distributions are zero-inflated Poisson distributions. Hence, we have that E(Xi) =

(1−pi)(λ1i+λ2i). The reduced effect of gender on λ1 is compensated with the increase in the

term (1−pi). Concluding, the model helps us to clarify the type of the effect of each variable

in the assumed model. Hence the increase in the marginal mean for Xi for the females is

due to the decreased frequency of (0, 0) cell which corresponds to lower rate of visits to the

doctor and medication taken.
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Model (a) Model (b) Model (c)

constant λ3 covariates on λ3 covariates on p

Covariate Coef. St.Er. Coef. St.Er. Coef. St.Er.

λ1 Constant -1.47 0.13 -1.48 0.13 -0.92 0.10

Gender (female) 0.11 0.07 0.02 0.08 -0.32 0.08

Age 1.18 0.19 1.26 0.17 0.86 0.15

Income -0.29 0.10 -0.29 0.10 -0.29 0.09

λ2 Constant -1.59 0.08 -1.61 0.09 -1.16 0.10

Gender (female) 0.52 0.04 0.49 0.04 0.20 0.05

Age 2.96 0.10 3.01 0.13 2.72 0.11

Income -0.08 0.06 -0.07 0.06 -0.08 0.06

λ3 0.09 0.01 0.09 0.01

constant -2.44 0.11 -2.71 0.19 -2.45 0.15

Gender (female) 0.52 0.22

p 0.32 0.01 0.31 0.01

constant -1.15 0.03 -1.16 0.03 0.27 0.07

Gender (female) -1.43 0.10

Parameters 10 11 11

Log-likelihood -9623.07 -9619.88 -9508.72

AIC 19266.15 19261.77 19039.44

BIC 19331.68 19333.86 19111.54

Table 7: Results from Fitting Diagonal Inflated Bivariate Poisson Models for the Data of

Example 3; The number of parameters, AIC and BIC measures refer to the zero inflated

version of models (a), (b) and (c).
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4.4.1 Fitting Diagonal Inflated Bivariate Poisson Models Regression Models in

R for Example 3

Again the diagonal inflated models were fitted using the functions described in section 3.

The three different models were fitted using:

ex3.diagmodel.a<-glm.dibp(ex3$doctorco,ex3$prescrib,w1,w2)

ex3.diagmodel.b<-glm.dibp(ex3$doctorco,ex3$prescrib,w1,w2,w3,l3=2)

The design matrices are the same to those used in section 4.3.1. With the above commands,

we can estimate diagonal models using Discrete(2) distribution. Since θ̂1 = θ̂2 = 0, it is

sensible to fit the reduced zero inflated model using Discrete(0) as inflation distribution.

This can be done if we add the argument jmax=0 in the above commands. For model (c)

we must intervene slightly in the function glm.dibp in order to allow for covariate effects on

the mixing proportion p.

4.5 Application to Sports Data.

In this section we briefly present applications of bivariate Poisson models on athletic data.

We have used the data of Italian football championship (Serie A) for season 1991-92 presented

in Karlis and Ntzoufras (2003) to illustrate how we can handle such data using our algorithms

and R/SPLUS functions. The data consist of pairs of counts indicating the number of goals

scored by each of the two competing teams. As covariates we have used dummy variables to

model the team strength. In modelling outcomes of football games, it has been observed an

excess of draws and small over-dispersion. Introducing diagonal inflated models we correct

for both the over-dispersion and the excess of draws.

We have fitted the same models and reproduced the results presented in Karlis and

Ntzoufras (2003). Note a misprint on the number of parameters concerning models 3, 4 and

5 presented in Table 1 of the original paper. The actual number of parameters are 54, 54

and 71 instead of 55, 55 and 72 and hence AIC and BIC measures are slightly lower given

by

model loglike AIC BIC

3 -758.92 1625.8 1864.3

4 -755.61 1619.2 1857.7

5 -745.87 1633.7 1947.3

The above changes do not affect the selection of the best model which is the diagonal inflated

Poisson model with Discrete(1) distribution as inflation. Note that λ3 was found equal

to 0.23 which is relatively low but statistically significant (p-value<0.001) and the mixing
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proportion p was found equal to 0.09 (p-value<0.001). The discrete distribution degenerates

at one since θ1 = 1. This indicates an excess of 1− 1 score which was very popular score in

Italian football during that period. Detailed results of this dataset can be found in Karlis

and Ntzoufras (2003).

4.5.1 Fitting Bivariate Poisson Models Regression Models in R for Italian Foot-

ball Data of Season 1991/92

Here we illustrate we can use our R/SPLUS functions to fit models implemented by Karlis

and Ntzoufras (2003). Data concerning the football data of Italian Serie A league for season

1991-92 were stored in a data frame object called ita91 with four variables: g1, g2, team1,

team2 corresponding to the goals scored by the home and away team and the coded level of

the home and the away team respectively. Sample of the data frame is given below:

> ita91

g1 g2 team1 team2

2 1 1 Atalanta Ascoli

3 2 1 Bari Ascoli

.........................

322 2 0 Sampdoria Verona

323 0 0 Torino Verona

Note that the team levels are given in the following alphabetical order:

>levels(ita91[,3])

[1] "Ascoli " "Atalanta " "Bari " "Cagliari " "Cremonese "

[6] "Fiorentina" "Foggia " "Genoa " "Inter " "Juventus "

[11] "Lazio " "Milan " "Napoli " "Parma " "Roma "

[16] "Sampdoria " "Torino " "Verona "

In order to fit the models presented in Karlis and Ntzoufras we use the following code:

# w matrices

w1ita91_ita91[,3:4]

w2ita91_ita91[,c(4,3)]

# names of w matrices

names(w1ita91)_c( ’att’, ’def’ )

names(w2ita91)_c( ’att’, ’def’ )

# Models

# Model 1: Double Poisson

ita91model1_glm.bp( ita91$g1, ita91$g2, w1ita91, w2ita91, l3=0 )

#

# Models 2-5: bivariate Poisson models

ita91model2_glm.bp(ita91$g1, ita91$g2, w1ita91, w2ita91 )
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ita91model3_glm.bp(ita91$g1, ita91$g2, w1ita91, w2ita91,

as.data.frame(ita91[,3]), l3=2)

ita91model4_glm.bp(ita91$g1, ita91$g2, w1ita91, w2ita91,

as.data.frame(ita91[,4]), l3=2)

ita91model5_glm.bp(ita91$g1, ita91$g2, w1ita91, w2ita91, ita91[,3:4], l3=2 )

#

# Model 6: Zero Inflated Model

ita91model6_glm.dibp(ita91$g1, ita91$g2, w1ita91, w2ita91, jmax=0 )

#

# Models 7-11: Diagonal Inflated Bivariate Poisson Models

ita91model7_glm.dibp(ita91$g1, ita91$g2, w1ita91, w2ita91, distribution=3 )

ita91model8_glm.dibp(ita91$g1, ita91$g2, w1ita91, w2ita91, jmax=1 )

ita91model9_glm.dibp(ita91$g1, ita91$g2, w1ita91, w2ita91, jmax=2 )

ita91model10_glm.dibp(ita91$g1, ita91$g2, w1ita91, w2ita91, jmax=3 )

ita91model11_glm.dibp(ita91$g1, ita91$g2, w1ita91, w2ita91, distribution=2 )

#

# Models 12: Diagonal Inflated Double Poisson Model

ita91model12_glm.dibp(ita91$g1,ita91$g2,w1ita91,w2ita91,distribution=2,l3=0)

Parameters of the best fitted diagonal inflated model (given in Table 3 of Karlis and Nt-
zoufras, 2003) follow:

> ita91model8$diagonal.distribution

[1] "Inflation Distribution: Discrete with J= 1"

>

> round(ita91model8$beta,2)

Intercept_1 Intercept_2 att1 att2 att3 att4

-0.07 -0.57 -0.64 -0.21 -0.50 -0.21

att5 att6 att7 att8 att9 att10

-0.36 0.29 0.57 -0.09 -0.37 0.22

att11 att12 att13 att14 att15 att16

0.28 0.84 0.51 -0.14 0.02 0.10

att17 def1 def2 def3 def4 def5

0.18 0.75 -0.11 0.33 -0.01 0.45

def6 def7 def8 def9 def10 def11

0.28 0.63 0.40 -0.29 -0.70 0.21

def12 def13 def14 def15 def16 def17

-1.17 0.19 -0.34 -0.17 -0.16 -0.86

>

> round(ita91model8$beta3,2)

(Intercept)

-1.47

> round(ita91model8$lambda3,2)

1

0.23

> ita91model8$p

[1] 0.09033478
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> ita91model8$theta

[1] 0.9999988

Note that Intercept2 indicates intercept µ reported in Karlis and Ntzoufras (2003) while

the home effect is given by the difference Intecept1 - Intercept2.

5 Concluding Remarks

In this article we have presented R/SPLUS functions implementing maximum likelihood

estimation for bivariate Poisson regression models and their diagonal inflated variations. Di-

agonal inflated models, also presented here, are useful in cases where excess of combinations

of pairs with equal x and y values appear (for example in sports data; see Karlis and Nt-

zoufras, 2003). All functions are based on EM algorithms constructed for such models; see

Appendix for details.

The software presented in this paper implements methodology which can be easily ex-

tended and implemented in several variations of models discussed in this article. For example,

the extension of the EM algorithm to the multivariate Poisson models is straightforward since

such models are obtained through similar multivariate reduction techniques and the same

data augmentation approach can be easily applied. Similarly, an EM algorithm can be easily

modified to cover the case of finite mixtures of bivariate Poisson regressions. Such a model

is a generalization of the approach presented by Wang et al. (1996). The inflated models

can be seen as a special case of finite mixtures of bivariate Poisson distributions.

Another generalization of the above algorithm can be constructed by considering a bi-

variate inflation distribution. Such a model is given by Dixon and Coles(1997) where the

cells (0,0), (0,1), (1,0) and (1,1) were inflated.

The algorithms can be even extended to cover the case of models with random effects. For

example, assuming gamma random effects, we obtain a bivariate negative binomial regression

model, as in Munkin and Trivedi (1999).

Finally, the trivariate reduction technique (used in the data augmentation approach here)

is useful for constructing multivariate models from simpler ones; see for example the bivari-

ate generalized Poisson model of Vernic (1997). Clearly, EM algorithms, identical to the

ones presented here, can be used to cover several other models arising by similar trivariate

technique.
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A APPENDIX: EM algorithms

A.1 Data Augmentation

The EM algorithm (Dempster et al. , 1977) is a powerful algorithm for maximum likelihood

(ML) estimation for data containing missing values or they can be considered as containing

missing values. EM algorithm is not only a numerical technique but also offers useful sta-

tistical insight (Meng and Van Dyk, 1997). The key idea is to augment the observed data

with some unobserved data so as the maximization of the complete likelihood is easier. More

details on the algorithm can be found in McLachlan and Krishnan (1997).

Here we facilitate the trivariate reduction of the bivariate Poisson distribution. Suppose

that for the i-th observation X1i, X2i, X3i represent the non-observable data, while Xi =

X1i+X3i and Yi = X2i+X3i are the observed data. If the unobserved data were available the

estimation would have been straightforward: we just had to fit Poisson regression models on

X1, X2 and X3 variables. Hence, in order to construct our EM-algorithm we need to estimate

the unobserved data by their conditional expectations and then fit Poisson regression models

to the pseudovalues obtained by the E-step. Denoting as φ the entire vector of parameters,

that is φ = (β′
1,β

′
2,β

′
3), the complete data loglikelihood is given by

L(φ) = −
n∑

i=1

3∑
κ=1

λκi +
n∑

i=1

3∑
κ=1

xκi log(λκi)−
n∑

i=1

3∑
κ=1

log(xκi!),

where λ’s are given by (2).

In the inflated case we need to introduce additional latent variables. Inflated models are in

fact mixtures of two distributions which in our case are the bivariate Poisson, BP (λ1, λ2, λ3),

and the distribution used to inflate the diagonal. Thus the standard EM approach for finite

mixture applies. We introduce further latent variables Vi, i = 1, . . . , n which take the values 1

or 0 according to whether the observation comes from the inflation or the original component

respectively. Now the complete data loglikelihood takes the form

L(φ, p,θ) =
n∑

i=1

vi {log(p) + log fD(xi;θ)}

+
n∑

i=1

(1− vi)

{
log(1− p)−

n∑
i=1

3∑
κ=1

λκi +
n∑

i=1

3∑
κ=1

xκi log(λκi)−
n∑

i=1

3∑
κ=1

log(xκi!)

}

Thus, at the E-step we also have to estimate Vi for i = 1, . . . , n using their conditional

expectations. Full details concerning the algorithm follow in the next sub-sections.

A.2 The Bivariate Poisson Model

The EM-algorithm for the bivariate Poisson model (2) is given by:
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E-step: Using the current parameter values of k iteration noted by φ(k), λ
(k)
1i , λ

(k)
2i

and λ
(k)
3i , calculate the conditional expected values of X3i, for i = 1, . . . , n,

by

si = E
(
X3i | Xi, Yi,φ

(k)
)

=




λ
(k)
3i

fBP

(
xi−1,yi−1|λ(k)

1i ,λ
(k)
2i ,λ

(k)
3i

)
fBP

(
xi,yi|λ(k)

1i ,λ
(k)
2i ,λ

(k)
3i

) if min(xi, yi) > 0

0 if min(xi, yi) = 0

(7)

where fBP (x, y | λ1, λ2, λ3) is given in (1).

M-step: Update the estimates by

β
(k+1)
1 = β̂(x − s,W 1),

β
(k+1)
2 = β̂(y − s,W 2),

β
(k+1)
3 = β̂(s,W 3),

λ
(k+1)
κi = exp

(
W T

κiβ̂
(k+1)

κ

)
for κ = 1, 2, 3;

where s = (s1, . . . , sn)
T is the n×1 vector calculated in the E-step, β̂(x,W )

are the maximum likelihood estimates of a Poisson model with response the

vector x and design or data matrix given by W . Each data matrix W κ

is a n × pκ matrix and W T
κi is its corresponding i row (for i = 1, . . . , n).

If we wish to have common (or equal) parameters among different λκ then

we should construct a common design matrix W and the corresponding

parameter vector β will be estimated as β(k+1) = β̂(u,W ), with uT =

(xT − sT ,yT − sT , sT ). In the functions provided, we have consider the

possibility to have common parameters only between λ1 and λ2. Note also

that standard GLM procedures can be used for the M-step despite the fact

that the responses are not any more integers. The latter does not cause any

numerical problems.

A.3 The Inflated Bivariate Poisson Model

For the EM-algorithm of inflated models, we introduced a binary latent indicator Vi for each

i = 1, . . . , n indicating the inflation when Vi = 1. The EM algorithm for the diagonal inflated

model (3) is now given by

E-step :

(a) Using the current parameter values of k iteration noted by φ(k), λ
(k)
1i ,
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λ
(k)
2i , λ

(k)
3i , p

(k) and θ(k), for i = 1, . . . , n calculate

vi = E
(
Vi | X = xi, Y = yi,φ

(k), p(k),θ(k)
)

=




p(k)fD

(
xi|θ

(k)
)

p(k)fD

(
xi|θ

(k)
)

+(1−p(k))fBP

(
xi,xi|λ(k)

1i ,λ
(k)
2i ,λ

(k)
3i

) , if xi = yi

0 if xi �= yi

(8)

where fD (x | θ) is the probability function of the inflation distribution with

parameter vector θ evaluated at the value of x.

(b) For i = 1, . . . , n, calculate si using (7).

M-step: Update the parameters by

p(k+1) =
1

n

n∑
i=1

vi

β
(k+1)
1 = β̂ṽ(x − s,W 1),

β
(k+1)
2 = β̂ṽ(y − s,W 2),

β
(k+1)
3 = β̂ṽ(s,W 3),

θ(k+1) = θ̂v,D,

λ
(k+1)
κi = exp

(
W T

κiβ̂
(k+1)

κ

)
for κ = 1, 2, 3;

where x, y, s, v and ṽ are n × 1 vectors with elements xi, yi, si, vi and

ṽi = 1− vi for i = 1, . . . , n, β̂v(y,W ) is the weighted maximum likelihood

estimates of β of a Poisson regression model with response y, data matrix

W and weight vector v, and θ̂v,D is the weighted maximum likelihood

estimates of θ for the distribution D(x;θ) and weights given by vector v.

The design matrices W κ, κ = 1, 2, 3 are defined as above.

For specific choices of the inflation distribution we obtain the following estimates:

• Geometric Distribution: For the geometric distribution, with probability function

f(x|θ) = (1− θ)xθ, 0 ≤ θ ≤ 1, x = 0, 1, . . ., θ is updated by

θ(k+1) =

∑n
i=1 vi∑n

i=1 vixi +
∑n

i=1 vi

.

Note that, if θ = 1 the zero-inflated model is deduced.

• Poisson distribution: For the Poisson distribution with probability function f(x|θ) =

e−θθx/x!, θ ≥ 0, x = 0, 1, . . ., θ is updated by θ(k+1) = (
∑n

i=1 vi)
−1∑n

i=1 vixi. Note

that if θ = 0 the zero-inflated model is deduced.
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• Discrete distribution: For any discrete distribution, Discrete(J), with probability func-

tion (4) then the model parameters are given by θj = (
∑n

i=1 vi)
−1∑n

i=1 I(Xi = Yi = j)vi

for j = 1, . . . , J and θ0 = 1−∑J
j=1 θj; where I(x) is the indicator function taking value

equal to one if x is true and zero otherwise.

• Zero-Inflated model: The zero inflated model is a special case of Discrete(J) with

J = 0 and θ0 = 1 which results to the inflation of cell (0, 0). Hence, there is no need to

estimate additional parameters except p which is the mixing proportion of the inflation

component. Further note that the zero-inflated model is a limiting case when either

the Poisson (with θ → 0) or the Geometric (with θ → 1) inflation is used.

In fact the M-step consists of several iterations of the iterated reweighted algorithm

used for GLM. Hence the algorithm is an Expectation Conditional Maximization (ECM)

algorithm. Usually the number of iterations needed to fit the GLM within each M-step can

be considerably reduced if we use as starting values the values obtained by the previous EM

step. Alternatively, we may constrain the number of iterations for fitting the GLM to a small

number. This will be still sufficient to improve the log-likelihood, despite the fact that the

fitted model may not be the best within each iteration of the EM algorithm.

Further complexity can be added to the model by imposing a additional covariate struc-

ture on parameters θ or p. EM-algorithms need to be slightly modified in order to incorporate

such extensions. Similarly, the model of Dixon and Coles (1997) can be fitted using an EM al-

gorithm identical to the one proposed here. The algorithm presented here, can be considered

as a generalization of the algorithm described in Wang et al. (2003). Finally, generalizations

of the models for multivariate versions can easily be derived.
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