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bivpois.table Probability of Bivariate Poisson Using Recursive relations

Description

Returns the probability of the bivariate Poisson distribution using recursive relations.

Usage

bivpois.table(x, y, lambda = c(1, 1, 1))

Arguments

x, y single values containing which values should evaluated (x and y should be
at least 1)

lambda Vector (of length 3) containing values of the parameters lambda1, lambda2
and lambda3 of the bivariate poisson distribution.
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Details

In order to calculate bivpoison probability values we use recursive relationships. This
function is much slower than pbivpois

Value

A matrix with dimension (x+1) X (y+1) is returned. Cell ij contains the probability P(X=i-
1, Y=j-1).

Author(s)

1. Dimitris Karlis, Department of Statistics, Athens University of Economics and Business,
Athens, Greece, 〈karlis@aueb.gr〉 .

2. Ioannis Ntzoufras, Department of Statistics, Athens University of Economics and Busi-
ness, Athens, Greece, 〈ntzoufras@aueb.gr〉 .

References

1. Karlis, D. and Ntzoufras, I. (2005). Bivariate Poisson and Diagonal Inflated Bivariate
Poisson Regression Models in R. Journal of Statistical Software (to appear).

2. Karlis, D. and Ntzoufras, I. (2003). Analysis of Sports Data Using Bivariate Poisson
Models. Journal of the Royal Statistical Society, D, (Statistician), 52, 381 - 393.

See Also

pbivpois. simple.bp. lm.bp. lm.dibp.

ex1.sim Bivpois Example 1 Dataset: Simulated Data

Description

The data has one pair (x, y) of bivariate Poisson variables and five variables (z1, . . . , z5)
generated from N(0, 0.01) distribution. Hence

Xi, Y i ∼ BP (λ1i, λ2i, λ3i) with

log λ1i = 1.8 + 2Z1i + 3Z3i

log λ2i = 0.7− Z1i − 3Z3i + 3Z5i

log λ3i = 1.7 + Z1i − 2Z2i + 2Z3i − 2Z4i.

Usage

data(ex1.sim)

Format

A data frame with 100 observations on the following 7 variables.

x,y Simulated Bivariate Poisson Variables used as response

z1,z2,z3,z4,z5 Simulated N(0,0.01) explanatory variables
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Details

This data is used as example one in Karlis and Ntzoufras (2004).

Source

1. Karlis, D. and Ntzoufras, I. (2005). Bivariate Poisson and Diagonal Inflated Bivariate
Poisson Regression Models in R. Journal of Statistical Software (to appear).

References

Karlis, D. and Ntzoufras, I. (2003). Analysis of Sports Data Using Bivariate Poisson Models.
Journal of the Royal Statistical Society, D, (Statistician), 52, 381 - 393.

Examples

#

# -------------------------------------------------------------------------------

# Double and Bivariate Poisson models can be fitted using the command

# demo(ex1, package='bivpois')
#

# Here we present the same commands but iterations of the EM were restricted to 2 to save time

library(bivpois) # load bivpois library

data(ex1.sim) # load data of example 1

# -------------------------------------------------------------------------------

# Simple Bivariate Poisson Model

ex1.simple<-simple.bp( ex1.sim$x, ex1.sim$y, maxit=2) # fit simple model of section 4.1.1

names(ex1.simple) # monitor output variables

ex1.simple$lambda # view lambda1

ex1.simple$BIC # view BIC

ex1.simple # view all results of the model

#

# -------------------------------------------------------------------------------

# Fit Double and Bivariate Poisson models ()

#

# Model 2: DblPoisson(l1, l2)

ex1.m2<-lm.bp(x~1 , y~1 , data=ex1.sim, zeroL3=TRUE)

# Model 3: BivPoisson(l1, l2, l3); same as simple.bp(ex1.sim$x, ex1.sim$y)

ex1.m3<-lm.bp(x~1 , y~1 , data=ex1.sim, maxit=2)

# Model 4: DblPoisson (l1=Full, l2=Full)

ex1.m4<-lm.bp(x~. , y~. , data=ex1.sim, zeroL3=TRUE)

# Model 5: BivPoisson(l1=full, l2=full, l3=constant)

ex1.m5<-lm.bp(x~. , y~. , data=ex1.sim, maxit=2)

# Model 6: DblPois(l1,l2)

ex1.m6<-lm.bp(x~z1 , y~z1+z5 , l1l2=~z3, data=ex1.sim, zeroL3=TRUE)

# Model 7: BivPois(l1,l2,l3=constant)

ex1.m7<-lm.bp(x~z1 , y~z1+z5 , l1l2=~z3, data=ex1.sim, maxit=2)

# Model 8: BivPoisson(l1=full, l2=full, l3=full)

ex1.m8<-lm.bp(x~. , y~. , l3=~., data=ex1.sim, maxit=2)

# Model 9: BivPoisson(l1=full, l2=full, l3=z1+z2+z3+z4)

ex1.m9<-lm.bp(x~. , y~. , l3=~.-z5, data=ex1.sim, maxit=2)

# Model 10: BivPoisson(l1, l2, l3=full)

ex1.m10<-lm.bp(x~z1 , y~z1+z5 , l1l2=~z3, l3=~., data=ex1.sim, maxit=2)

# Model 11: BivPoisson(l1, l2, l3= z1+z2+z3+z4)

ex1.m11<-lm.bp(x~z1 , y~z1+z5 , l1l2=~z3, l3=~.-z5, data=ex1.sim, maxit=2)

#
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ex1.m11$coef # monitor all beta parameters of model 11

#

ex1.m11$beta1 # monitor all beta parameters of lambda1 of model 11

ex1.m11$beta2 # monitor all beta parameters of lambda2 of model 11

ex1.m11$beta3 # monitor all beta parameters of lambda3 of model 11

ex2.sim Bivpois Example 2 Dataset: Simulated Data

Description

The data has one pair (x, y) of diagonal inflated bivariate Poisson variables and five variables
(z1, . . . , z5) generated from N(0, 0.12) distribution. Hence

Xi, Yi ∼ DIBP (λ1i, λ2i, λ3i, p = 0.30, Poisson(2)) with

log λ1i = 1.8 + 2Z1i + 3Z3i

log λ2i = 0.7− Z1i − 3Z3i + 3Z5i

log λ3i = 1.7 + Z1i − 2Z2i + 2Z3i − 2Z4i.

Usage

data(ex2.sim)

Format

A data frame with 100 observations on the following 7 variables.

x,y Simulated Bivariate Poisson Variables used as response

z1,z2,z3,z4,z5 Simulated N(0,0.01) explanatory variables

Details

This data is used as example one in Karlis and Ntzoufras (2004).

Source

1. Karlis, D. and Ntzoufras, I. (2005). Bivariate Poisson and Diagonal Inflated Bivariate
Poisson Regression Models in R. Journal of Statistical Software (to appear).

References

Karlis, D. and Ntzoufras, I. (2003). Analysis of Sports Data Using Bivariate Poisson Models.
Journal of the Royal Statistical Society, D, (Statistician), 52, 381 - 393.
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Examples

# Models of example 2 can be fitted using the command

# demo(ex2, package='bivpois')
#

# Here we present the same commands but iterations of the EM were restricted to 2 to save time

library(bivpois) # load bivpois library

data(ex2.sim) # load ex2.sim data from bivpois library

#

# Model 1: BivPois

ex2.m1<-lm.bp( x~z1 , y~z1+z5, l1l2=~z3, l3=~.-z5, data=ex2.sim, maxit=2 )

# Model 2: Zero Inflated BivPois

ex2.m2<-lm.dibp( x~z1 , y~z1+z5, l1l2=~z3, l3=~.-z5, data=ex2.sim , jmax=0, maxit=2 )

# Model 3: Diagonal Inflated BivPois with DISCRETE(1) diagonal distribution

ex2.m3<-lm.dibp( x~z1 , y~z1+z5, l1l2=~z3, l3=~.-z5, data=ex2.sim , jmax=1, maxit=2 )

# Model 4: Diagonal Inflated BivPois with DISCRETE(2) diagonal distribution

ex2.m4<-lm.dibp( x~z1 , y~z1+z5, l1l2=~z3, l3=~.-z5, data=ex2.sim , jmax=2, maxit=2 )

# Model 5: Diagonal Inflated BivPois with DISCRETE(3) diagonal distribution

ex2.m5<-lm.dibp( x~z1 , y~z1+z5, l1l2=~z3, l3=~.-z5, data=ex2.sim , jmax=3, maxit=2 )

# Model 6: Diagonal Inflated BivPois with DISCRETE(4) diagonal distribution

ex2.m6<-lm.dibp( x~z1 , y~z1+z5, l1l2=~z3, l3=~.-z5, data=ex2.sim , jmax=4, maxit=2 )

# Model 7: Diagonal Inflated BivPois with DISCRETE(5) diagonal distribution

ex2.m7<-lm.dibp( x~z1 , y~z1+z5, l1l2=~z3, l3=~.-z5, data=ex2.sim , jmax=5, maxit=2 )

# Model 8: Diagonal Inflated BivPois with DISCRETE(6) diagonal distribution

ex2.m8<-lm.dibp( x~z1 , y~z1+z5, l1l2=~z3, l3=~.-z5, data=ex2.sim , jmax=6, maxit=2 )

# Model 9: Diagonal Inflated BivPois with POISSON diagonal distribution

ex2.m9<-lm.dibp( x~z1 , y~z1+z5, l1l2=~z3, l3=~.-z5, data=ex2.sim ,

distribution="poisson", maxit=2 )

# Model 10: Diagonal Inflated BivPois with GEOMETRIC diagonal distribution

ex2.m10<-lm.dibp( x~z1 , y~z1+z5, l1l2=~z3, l3=~.-z5, data=ex2.sim ,

distribution="geometric", maxit=2 )

#

# printing parameters of model 7

ex2.m7$beta1

ex2.m7$beta2

ex2.m7$beta3

ex2.m7$p

ex2.m7$theta

#

# printing parameters of model 9

ex2.m9$beta1

ex2.m9$beta2

ex2.m9$beta3

ex2.m9$p

ex2.m9$theta

ex3.health Bivpois Example 3 Dataset: Health Care Data

Description

Demand for health care in Australia data (Cameron and Trivedi, 1986). The data refer to
the Australian Health survey for 1977-1978 with sample size equal to 5190.
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Usage

data(ex3.health)

Format

A data frame with 5190 observations on the following 20 variables.

doctorco Number of consultations with a doctor or specialist in the past 2 weeks
prescrib Total number of prescribed medications used in past 2 days
sex 1 if female, 0 if male
age Age in years divided by 100 (measured as mid-point of 10 age groups from 15-19 years

to 65-69 with 70 or more coded treated as 72)
agesq AGE squared
income Annual income in Australian dollars divided by 1000 (measured as mid-point of

coded ranges Nil, <200, 200-1000, 1001-, 2001-, 3001-, 4001-, 5001-, 6001-, 7001-,
8001-10000, 10001-12000, 12001-14000, with 14001- treated as 15000 ).

levyplus 1 if covered by private health insurance fund for private patient in public hospital
(with doctor of choice), 0 otherwise

freepoor 1 if covered by government because low income, recent immigrant, unemployed,
0 otherwise

freepera 1 if covered by government because low income, recent immigrant, unemployed,
0 otherwise

illness Number of illnesses in past 2 weeks with 5 or more coded as 5
actdays Number of days of reduced activity in past two weeks due to illness or injury
hscore General health questionnaire score using Goldberg’s method. High score indicates

bad health.
chcond1 1 if chronic condition(s) but not limited in activity, 0 otherwise
chcond2 1 if chronic condition(s) and limited in activity, 0 otherwise
nondocco Number of consultations with non-doctor health professionals (chemist, opti-

cian, physiotherapist, social worker, district community nurse, chiropodist or chiro-
practor) in the past 2 weeks

hospadmi Number of admissions to a hospital, psychiatric hospital, nursing or convales-
cent home in the past 12 months (up to 5 or more admissions which is coded as 5)

hospdays Number of nights in a hospital, etc. during most recent admission: taken, where
appropriate, as the mid-point of the intervals 1, 2, 3, 4, 5, 6, 7, 8-14, 15-30, 31-60,
61-79 with 80 or more admissions coded as 80. If no admission in past 12 months then
equals zero.

medicine Total number of prescribed and nonprescribed medications used in past 2 days
nonpresc Total number of nonprescribed medications used in past 2 days
constant Constant term

Details

Details can be found in Cameron and Trivedi (1986). This data is used as example three
in Karlis and Ntzoufras (2005). In this illustration two variables are used as response: the
number of consultations with a doctor or a specialist and the total number of prescribed
medications used in past 2 days (doctorco, prescrib). Three variables have been used as
covariates: the gender (1 female, 0 male), the age in years divided by 100 (measured as
midpoints of age groups) and the annual income in Australian dollars divided by 1000
(measured as midpoint of coded ranges) sex, age, income.
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Source

Cameron, A.C. and Trivedi, P.K. (1986). Econometric Models Based on Count Data: Com-
parisons and Applications of Some Estimators and Tests, Journal of Applied Econometrics,
1, 29 - 54.

References

1. Cameron, A.C., Trivedi, P.K., Milne, F. and Piggott, J. (1988). A Microeconomet-
ric Model of the Demand for Health Care and Health Insurance in Australia, Review of
Economic Studies, 55, 85 - 106.

2. Cameron, A.C. and Trivedi, P.K. (1993). Tests of Independence in Parametric Models
with Applications and Illustrations, Journal of Business & Economics Statistics, 11, 29 -
43.

3. Karlis, D. and Ntzoufras, I. (2005). Bivariate Poisson and Diagonal Inflated Bivariate
Poisson Regression Models in R. Journal of Statistical Software (to appear).

4. Karlis, D. and Ntzoufras, I. (2003). Analysis of Sports Data Using Bivariate Poisson
Models. Journal of the Royal Statistical Society, D, (Statistician), 52, 381 - 393.

Examples

# Models of example 3 can be fitted using the command

# demo(ex3, package='bivpois')
#

# Here we present the commands for the same models commented out in order to save time

#

#library(bivpois)

#data(ex3.health)

# Bivariate Poisson models

#ex3.model.a<-lm.bp(doctorco~sex+age+income, prescrib~sex+age+income,

# data=ex3.health)

#ex3.model.b<-lm.bp(doctorco~sex+age+income, prescrib~sex+age+income, l3=~sex,

# data=ex3.health)

# Double Poisson model

#ex3.model.c<-lm.bp(doctorco~sex+age+income, prescrib~sex+age+income,

# data=ex3.health, zeroL3=TRUE)

#

# diagonal inflated models

#ex3.dibp.a<-lm.dibp(doctorco~sex+age+income, prescrib~sex+age+income,

# data=ex3.health, jmax=0) # model (a)

#ex3.dibp.b<-lm.dibp(doctorco~sex+age+income, prescrib~sex+age+income,l3=~sex,

# data=ex3.health, jmax=0) # model (b)

ex4.ita91 Bivpois Example 4 Dataset: Italian Series A Football Scores for
Season 1991-92

Description

Italian Serie A football scores for season 1991-92.

Usage

data(ex4.ita91)
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Format

A data frame with 306 observations on the following 4 variables.

g1 Goals scored by the home team

g2 Goals scored by the away team

team1 a factor indicating the home team with levels Ascoli Atalanta Bari Cagliari
Cremonese Fiorentina Foggia Genoa Inter Juventus Lazio Milan Napoli
Parma Roma Sampdoria Torino Verona

team2 a factor indicating the away team with levels Ascoli Atalanta Bari Cagliari
Cremonese Fiorentina Foggia Genoa Inter Juventus Lazio Milan Napoli
Parma Roma Sampdoria Torino Verona

Details

Data were originally used in Karlis and Ntzoufras (2003). The data consist of pairs of counts
indicating the number of goals scored by each of the two competing teams. As covariates we
have used dummy variables to model the team strength. In modelling outcomes of football
games, it has been observed an excess of draws and small over-dispersion. Introducing
diagonal inflated models we correct for both the over-dispersion and the excess of draws.

Source

Karlis, D. and Ntzoufras, I. (2003). Analysis of Sports Data Using Bivariate Poisson Models.
Journal of the Royal Statistical Society, D, (Statistician), 52, 381 - 393.

References

1. Karlis, D. and Ntzoufras, I. (2005). Bivariate Poisson and Diagonal Inflated Bivariate
Poisson Regression Models in R. Journal of Statistical Software (to appear).

Examples

# Models 1-12 of example 4 can be fully reproduced using the command

# demo(ex4, package='bivpois')
#

# Here we present the same commands but iterations of the EM were restricted to 10 to save time

#

# Models 1-12 can be run using the demo command demo(ex4,package='bivpois')
#

library(bivpois) # loading of bivpois library

data(ex4.ita91) # loading ex4.ita91 data from bivpois library

#

# formula for modeling of lambda1 and lambda2

form1 <- ~c(team1,team2)+c(team2,team1)

#

# Model 1: Double Poisson

ex4.m1<-lm.bp( g1~1, g2~1, l1l2=form1, zeroL3=TRUE, data=ex4.ita91)

#

# Models 2-5: bivariate Poisson models

ex4.m2<-lm.bp(g1~1,g2~1, l1l2=form1, data=ex4.ita91, maxit=2)

ex4.m3<-lm.bp(g1~1,g2~1, l1l2=form1, l3=~team1, data=ex4.ita91, maxit=2)

ex4.m4<-lm.bp(g1~1,g2~1, l1l2=form1, l3=~team2, data=ex4.ita91, maxit=2)
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ex4.m5<-lm.bp(g1~1,g2~1, l1l2=form1, l3=~team1+team2, data=ex4.ita91, maxit=2)

#

# Model 6: Zero Inflated Model

ex4.m6 <-lm.dibp(g1~1,g2~1, l1l2=form1, data=ex4.ita91, jmax=0, maxit=2)

#

# Models 7-11: Diagonal Inflated Bivariate Poisson Models

ex4.m7 <-lm.dibp(g1~1,g2~1, l1l2=form1, data=ex4.ita91, distribution="geometric" , maxit=2)

ex4.m8 <-lm.dibp(g1~1,g2~1, l1l2=form1, data=ex4.ita91, jmax=1, maxit=2)

ex4.m9 <-lm.dibp(g1~1,g2~1, l1l2=form1, data=ex4.ita91, jmax=2, maxit=2)

ex4.m10<-lm.dibp(g1~1,g2~1, l1l2=form1, data=ex4.ita91, jmax=3, maxit=2)

ex4.m11<-lm.dibp(g1~1,g2~1, l1l2=form1, data=ex4.ita91, distribution="poisson" , maxit=2)

#

# Models 12: Diagonal Inflated Double Poisson Model

ex4.m12 <- lm.dibp( g1~1,g2~1, l1l2=form1, data=ex4.ita91, distribution="poisson",

zeroL3=TRUE , maxit=2)

# --------------------------------------------------------------------------

#

# --------------------------------------------------------------------------

# monitoring parameters for model 1: Dbl Poisson

ex4.m1$coef # all parameters

ex4.m1$beta1 # model parameters for lambda1

ex4.m1$beta2 # model parameters for lambda2.

# All are the same as in beta1 except the intercept

ex4.m1$beta2[1] # Intercpept for lambda2.

ex4.m1$beta2[1]-ex4.m1$beta2[2] # estimated home effect

# estimating the effect for 18th level of attack (team1..team2) [Verona]

-sum(ex4.m1$coef[ 2:18])

# estimating the effect for 18th level of defence(team2..team1) [Verona]

-sum(ex4.m1$coef[19:35])

#

# --------------------------------------------------------------------------

# monitoring parameters for model 2: BivPoisson(lamdba1,lambda2,constant lamdba3)

#

#

# monitoring parameters for model 1: Dbl Poisson

ex4.m2$beta1 # model parameters for lambda1

ex4.m2$beta2 # model parameters for lambda2.

# All are the same as in beta1 except the intercept

ex4.m2$beta3 # model parameters for lambda3 (Here only the intercept)

ex4.m2$beta2[1] # Intercpept for lambda2.

ex4.m2$beta2[1]-ex4.m2$beta2[2] # estimated home effect

# estimating the effect for 18th level of attack (team1..team2) [Verona]

-sum(ex4.m2$coef[ 2:18])

# estimating the effect for 18th level of defence(team2..team1) [Verona]

-sum(ex4.m2$coef[19:35])

#

# --------------------------------------------------------------------------

# --------------------------------------------------------------------------

# monitoring parameters for model 8: Biv.Poisson with Dis(1) diagonal distribution

#

#

# monitoring parameters for model 1: Dbl Poisson

ex4.m8$beta1 # model parameters for lambda1
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ex4.m8$beta2 # model parameters for lambda2.

# All are the same as in beta1 except the intercept

ex4.m8$beta3 # model parameters for lambda3. Here beta3 has only the intercept

ex4.m8$beta2[1] # Intercpept for lambda2.

ex4.m8$beta2[1]-ex4.m8$beta2[2] # estimated home effect

# estimating the effect for 18th level of attack (team1..team2) [Verona]

-sum(ex4.m8$coef[ 2:18])

# estimating the effect for 18th level of defence(team2..team1) [Verona]

-sum(ex4.m8$coef[19:35])

ex4.m8$beta3 # parameters for lambda3 (here the intercept)

exp(ex4.m8$beta3) # lambda3 (here constant)

ex4.m8$diagonal.distribution # printing details for the diagonal distribution

ex4.m8$p # mixing proportion

ex4.m8$theta # printing theta parameters

lm.bp General Bivariate Poisson Model

Description

Produces a ”list”object which gives details regarding the fit of a bivariate Poisson regression
model of the form

Xi, Yi ∼ BP (λ1i, λ2i, λ3i) for i = 1, 2, . . . , n, with

log λ1 = w1β1
, log λ2 = w2β2

and log λ3 = w3β3
;

where

– n is the sample size.

– λk = (λk1, λk2, . . . , λkn)T for k = 1, 2, 3 are vectors of length n with the estimated lambda
for each observation.

– w1,w2 are n× p data matrices containing explanatory variables for λ1 and λ2.

– w3 is a n× p2 data matrix containing explanatory variables for λ3.

– β
1
, β

2
, β

3
are parameter vectors used in the linear predictors of λ1, λ2 and λ3.

Usage

lm.bp( l1, l2, l1l2=NULL, l3=~1, data, common.intercept=FALSE,
zeroL3=FALSE, maxit=300, pres=1e-8, verbose=getOption("verbose") )

Arguments

l1 Formula of the form “x ∼ X1 + . . . + Xp” for parameters of log λ1.

l2 Formula of the form “y ∼ X1 + . . . + Xp” for parameters of log λ2.

l1l2 Formula of the form “∼ X1 + . . . + Xp” for the common parameters of
log λ1 and log λ2. If the explanatory variable is also found on l1 and/or l2
then a model using interaction type parameters is fitted (one parameter
common for both predictors [main effect] and differences from this for
the other predictor [interaction type effect] ). Special terms of the form
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“c(X1,X2)”can be also used here. These terms imply common parameters
of λ1 and λ2 on different variables. For example if c(x1,x2) is used then
use the same beta for the effect of x1 on log λ1 and the effect of x2 on
log λ2. For details see example 4 - dataset ex4.ita91.

l3 Formula of the form “∼ X1 + . . . + Xp” for the parameters of log λ3.
data Data frame containing the variables in the model.
common.intercept

Logical function specifying whether a common intercept on log λ1 and
log λ2 should be used. The default value is FALSE.

zeroL3 Logical argument controlling whether λ3 should be set equal to zero
(therefore fits a double Poisson model).

maxit Maximum number of EM steps. Default value is 300 iterations.
pres Precision used in stopping the EM algorithm. The algorithm stops when

the relative log-likelihood difference is lower than the value of pres.
verbose Logical argument controlling whether beta parameters will we printed

while EM runs. Default value is taken equal to the value of
options()$verbose. If verbose=FALSE then only the iteration number,
the loglikelihood and its relative difference from the previous iteration are
printed. If verbose=TRUE then the model parameters β1, β2 and β3 are
additionally printed

Value

A list object returned with the following variables.

coefficients Estimates of the model parameters for β1, β2 and β3. When a factor is
used then its default set of constraints is used.

fitted.values Data frame with n lines and 2 columns containing the fitted values for
x and y. For the bivariate Poisson model the fitted values are given by
λ1 + λ3 and λ2 + λ3 respectively.

residuals Data frame with n lines and 2 columns containing the residuals of the
model for x and y. For the bivariate Poisson model the residual values
are given by x − E(x) and y − E(y) respectively; where E(x) = λ1 + λ3

and E(y) = λ2 + λ3.
beta1,beta2, beta3

Vectors β1, β2 and β3 containing the coefficients involved in the linear
predictors of λ1, λ2 and λ3 respectively. When zeroL3=TRUE then beta3
is not calculated.

lambda1, lambda2

Vectors of length n containing the estimated λ1 and λ2 for each observa-
tion

lambda3 vector containing the values of λ3. If zeroL3=TRUE then lambda3 is equal
to zero and is not provided.

loglikelihood Maximized log-likelihood of the fitted model. This is given in a vector
form (one value per iteration). Using this vector we can monitor the
log-likelihood evolution in each EM step.

AIC, BIC AIC and BIC of the model. Values are also provided for the double
Poisson model and the saturated model.

parameters Number of parameters.
iterations Number of iterations.
call Argument providing the exact calling details of the lm.bp function.
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Author(s)

1. Dimitris Karlis, Department of Statistics, Athens University of Economics and Business,
Athens, Greece, 〈karlis@aueb.gr〉 .

2. Ioannis Ntzoufras, Department of Statistics, Athens University of Economics and Busi-
ness, Athens, Greece, 〈ntzoufras@aueb.gr〉 .

References

1. Karlis, D. and Ntzoufras, I. (2005). Bivariate Poisson and Diagonal Inflated Bivariate
Poisson Regression Models in R. Journal of Statistical Software (to appear).

2. Karlis, D. and Ntzoufras, I. (2003). Analysis of Sports Data Using Bivariate Poisson
Models. Journal of the Royal Statistical Society, D, (Statistician), 52, 381 - 393.

See Also

pbivpois, simple.bp, lm.dibp.

Examples

data(ex1.sim)

# Fit Double and Bivariate Poisson models ()

#

# Model 2: DblPoisson(l1, l2)

ex1.m2<-lm.bp(x~1 , y~1 , data=ex1.sim, zeroL3=TRUE)

#

# Model 3: BivPoisson(l1, l2, l3); same as simple.bp(ex1.sim$x, ex1.sim$y)

ex1.m3<-lm.bp(x~1 , y~1 , data=ex1.sim)

# Model 4: DblPoisson (l1=Full, l2=Full)

ex1.m4<-lm.bp(x~. , y~. , data=ex1.sim, zeroL3=TRUE)

#

# for models 4-11 maximum number of iterations is set to 2

#

# Model 5: BivPoisson(l1=full, l2=full, l3=constant)

ex1.m5<-lm.bp(x~. , y~. , data=ex1.sim, maxit=2)

# Model 6: DblPois(l1,l2)

ex1.m6<-lm.bp(x~z1 , y~z1+z5 , l1l2=~z3, data=ex1.sim, zeroL3=TRUE)

# Model 7: BivPois(l1,l2,l3=constant)

ex1.m7<-lm.bp(x~z1 , y~z1+z5 , l1l2=~z3, data=ex1.sim, maxit=2)

# Model 8: BivPoisson(l1=full, l2=full, l3=full)

ex1.m8<-lm.bp(x~. , y~. , l3=~., data=ex1.sim, maxit=2)

# Model 9: BivPoisson(l1=full, l2=full, l3=z1+z2+z3+z4)

ex1.m9<-lm.bp(x~. , y~. , l3=~.-z5, data=ex1.sim, maxit=2)

# Model 10: BivPoisson(l1, l2, l3=full)

ex1.m10<-lm.bp(x~z1 , y~z1+z5 , l1l2=~z3, l3=~., data=ex1.sim, maxit=2)

# Model 11: BivPoisson(l1, l2, l3= z1+z2+z3+z4)

ex1.m11<-lm.bp(x~z1 , y~z1+z5 , l1l2=~z3, l3=~.-z5, data=ex1.sim, maxit=2)

lm.dibp General Diagonal Inflated Bivariate Poisson Model
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Description

Produces a ”list” object which gives details regarding the fit of a bivariate diagonal inflated
Poisson regression model of the form

(Xi, Yi) ∼ DIBP (λ1i, λ2i, λ3i, D(θ)) which is equivalent to

(Xi, Y i) ∼ (1− p)BP (xi, yi|λ1i, λ2i, λ3i) if xi 6= yi

(Xi, Y i) ∼ (1−p)BP (xi, yi|λ1i, λ2i, λ3i)+pD(xi|θ) if xi = yi for i = 1, 2, . . . , n
with

log λ1 = w1β, log λ2 = w2β and log λ3 = w3β3
;

where

– n is the sample size.

– λk = (λk1, λk2, . . . , λkn)T for k = 1, 2, 3 are vectors of length n containing the estimated
lambda for each observation.

– w1, w2 are n× p data matrices containing explanatory variables for λ1 and λ2.

– w3 are n× p2 data matrix containing explanatory variables for λ3.

– β is a vector of length p which is common for λ1 and λ2 in order to allow for common
effects.

– β
3

vector of length p2.

– D(θ) is a discrete distribution with parameter vector θ used to inflate the diagonal.

– p is the mixing proportion.

Usage

lm.dibp( l1, l2, l1l2=NULL, l3=~1, data, common.intercept=FALSE,
zeroL3 = FALSE, distribution = "discrete", jmax = 2, maxit = 300,
pres = 1e-08, verbose=getOption("verbose") )

Arguments

l1 Formula of the form “x ∼ X1 + . . . + Xp” for parameters of log λ1.

l2 Formula of the form “y ∼ X1 + . . . + Xp” for parameters of log λ2.

l1l2 Formula of the form “∼ X1 + . . . + Xp” for the common parameters of
log λ1 and log λ2. If the explanatory variable is also found on l1 and/or l2
then a model using interaction type parameters is fitted (one parameter
common for both predictors [main effect] and differences from this for
the other predictor [interaction type effect] ). Special terms of the form
“c(X1,X2)”can be also used here. These terms imply common parameters
of λ1 and λ2 on different variables. For example if c(x1,x2) is used then
use the same beta for the effect of x1 on log λ1 and the effect of x2 on
log λ2. For details see example 4 - dataset ex4.ita91.

l3 Formula of the form “∼ X1 + . . . + Xp” for the parameters of log λ3.

data Data frame containing the variables in the model.
common.intercept

Logical function specifying whether a common intercept on log λ1 and
log λ2 should be used. The default value is FALSE.

zeroL3 Logical argument controlling whether λ3 should be set equal to zero
(therefore fits a double Poisson model).
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distribution Specifies the type of inflated distribution; ="discrete": Discrete(J=jmax),
="poisson" : Poisson(θ) ="geometric": Geometric(θ).

jmax Number of parameters used in Discrete distribution. This argument is
not used for the Poisson or the Geometric distributions are used as for
the inflation of the diagonal.

maxit Maximum number of EM steps. Default value is 300 iterations.
pres Precision used in stopping the EM algorithm. The algorithm stops when

the relative log-likelihood difference is lower than the value of pres.
verbose Logical argument controlling whether beta parameters will we printed

while EM runs. Default value is taken equal to the value of
options()$verbose. If verbose=FALSE then only the iteration number,
the loglikelihood and its relative difference from the previous iteration are
printed. If verbose=TRUE then the model parameters β1, β2 and β3 are
additionally printed

Value

A list object returned with the following variables.

coefficients Estimates of the model parameters for β1, β2 and β3, p and θ.
fitted.values Data frame with n lines and 2 columns containing the fitted values for x

and y.
residuals Data frame with n lines and 2 columns containing the residuals of the

model for x and y.
residuals Data frame with n lines and 2 columns containing the residuals of the

model for x and y given by x − E(x) and y − E(y) respectively; where
E(x) and E(y) are given by the fitted.values .

beta1,beta2, beta3

Vectors β1, β2 and β3 containing the coefficients involved in the linear
predictors of λ1, λ2 and λ3 respectively. When zeroL3=TRUE then beta3
is not calculated.

lambda1, lambda2

Vectors of length n containing the estimated λ1 and λ2 for each observa-
tion

lambda3 vector containing the values of λ3. If zeroL3=TRUE then lambda3 is equal
to zero and is not provided.

loglikelihood Maximized log-likelihood of the fitted model. This is given in a vector
form (one value per iteration). Using this vector we can monitor the
log-likelihood evolution in each EM step.

AIC, BIC AIC and BIC of the model. Values are also provided for the double
Poisson model and the saturated model.

diagonal.distribution

label for the diagonal inflated distribution used.
p mixing proportion.
theta Parameter vector of the diagonal distribution. For discrete distribu-

tion theta has length equal to jmax with θi =theta[i] and θ0 = 1 −∑JMAX
i=1 θi; for the Poisson distribution theta is the mean; for the Geo-

metric distribution theta is the success probability.
parameters Number of parameters.
iterations Number of iterations.
call Argument providing the exact calling details of the lm.dibp function.
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Author(s)

1. Dimitris Karlis, Department of Statistics, Athens University of Economics and Business,
Athens, Greece, 〈karlis@aueb.gr〉 .

2. Ioannis Ntzoufras, Department of Statistics, Athens University of Economics and Busi-
ness, Athens, Greece, 〈ntzoufras@aueb.gr〉 .

References

1. Karlis, D. and Ntzoufras, I. (2005). Bivariate Poisson and Diagonal Inflated Bivariate
Poisson Regression Models in R. Journal of Statistical Software (to appear).

2. Karlis, D. and Ntzoufras, I. (2003). Analysis of Sports Data Using Bivariate Poisson
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See Also

pbivpois, simple.bp, lm.bp.

Examples

data(ex2.sim)

#

# Model 1: BivPois

ex2.m1<-lm.bp( x~z1 , y~z1+z5, l1l2=~z3, l3=~.-z5, data=ex2.sim )

# Model 2: Zero Inflated BivPois

ex2.m2<-lm.dibp( x~z1 , y~z1+z5, l1l2=~z3, l3=~.-z5, data=ex2.sim , jmax=0)

#

# for models 3-10, the maximum number of iterations is set to 2

#

# Model 3: Diagonal Inflated BivPois with DISCRETE(1) diagonal distribution

ex2.m3<-lm.dibp( x~z1 , y~z1+z5, l1l2=~z3, l3=~.-z5, data=ex2.sim , jmax=1, maxit=2)

# Model 4: Diagonal Inflated BivPois with DISCRETE(2) diagonal distribution

ex2.m4<-lm.dibp( x~z1 , y~z1+z5, l1l2=~z3, l3=~.-z5, data=ex2.sim , jmax=2, maxit=2)

# Model 5: Diagonal Inflated BivPois with DISCRETE(3) diagonal distribution

ex2.m5<-lm.dibp( x~z1 , y~z1+z5, l1l2=~z3, l3=~.-z5, data=ex2.sim , jmax=3, maxit=2)

# Model 6: Diagonal Inflated BivPois with DISCRETE(4) diagonal distribution

ex2.m6<-lm.dibp( x~z1 , y~z1+z5, l1l2=~z3, l3=~.-z5, data=ex2.sim , jmax=4, maxit=2)

# Model 7: Diagonal Inflated BivPois with DISCRETE(5) diagonal distribution

ex2.m7<-lm.dibp( x~z1 , y~z1+z5, l1l2=~z3, l3=~.-z5, data=ex2.sim , jmax=5, maxit=2)

# Model 8: Diagonal Inflated BivPois with DISCRETE(6) diagonal distribution

ex2.m8<-lm.dibp( x~z1 , y~z1+z5, l1l2=~z3, l3=~.-z5, data=ex2.sim , jmax=6, maxit=2)

# Model 9: Diagonal Inflated BivPois with POISSON diagonal distribution

ex2.m9<-lm.dibp( x~z1 , y~z1+z5, l1l2=~z3, l3=~.-z5, data=ex2.sim ,

distribution="poisson", maxit=2)

# Model 10: Diagonal Inflated BivPois with GEOMETRIC diagonal distribution

ex2.m10<-lm.dibp( x~z1 , y~z1+z5, l1l2=~z3, l3=~.-z5, data=ex2.sim ,

distribution="geometric", maxit=2)

#

# printing parameters of model 7

ex2.m7$beta1

ex2.m7$beta2

ex2.m7$beta3

ex2.m7$p

ex2.m7$theta

#

# printing parameters of model 9
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ex2.m9$beta1

ex2.m9$beta2

ex2.m9$beta3

ex2.m9$p

ex2.m9$theta

newnamesbeta Internal Function of BIVPOIS Package

Description

This function was made only for internal use in Bivpois package and it should not be called
separately

Author(s)

1. Dimitris Karlis, Department of Statistics, Athens University of Economics and Business,
Athens, Greece, 〈karlis@aueb.gr〉 .

2. Ioannis Ntzoufras, Department of Statistics, Athens University of Economics and Busi-
ness, Athens, Greece, 〈ntzoufras@aueb.gr〉 .

pbivpois Probability Function of the Bivariate Poisson Distribution

Description

Returns the probability the probability (or the log) of the bivariate poisson distribution for
values x and y.

Usage

pbivpois(x, y=NULL, lambda = c(1, 1, 1), log = FALSE)

Arguments

x Matrix or Vector containing the data. If x is a matrix then we consider
as x the first column and y the second column. Additional columns and
y are ignored.

y Vector containing the data of y. It is used only if x is also a vector.
Vectors x and y should be of equal length.

lambda Vector (of length 3) containing values of the parameters λ1, λ2 and λ3 of
the bivariate Poisson distribution.

log Logical argument for calculating the log probability or the probability
function. The default value is FALSE.

Details

This function evaluates the probability function (or the log) of the bivariate Poisson dis-
tribution with parameters λ1, λ2 and λ3. Much faster than bivpois.table since it avoid
‘for-loops’ and does not use recursive relations.
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Value

A vector of values of the probabilities of PD(λ1, λ2, λ3) evaluated at (x, y) when log=FALSE
or the log-probabilities of PD(λ1, λ2, λ3) evaluated at (x, y) when log=TRUE.

Author(s)

1. Dimitris Karlis, Department of Statistics, Athens University of Economics and Business,
Athens, Greece, 〈karlis@aueb.gr〉 .

2. Ioannis Ntzoufras, Department of Statistics, Athens University of Economics and Busi-
ness, Athens, Greece, 〈ntzoufras@aueb.gr〉 .

References

1. Karlis, D. and Ntzoufras, I. (2005). Bivariate Poisson and Diagonal Inflated Bivariate
Poisson Regression Models in R. Journal of Statistical Software (to appear).

2. Karlis, D. and Ntzoufras, I. (2003). Analysis of Sports Data Using Bivariate Poisson
Models. Journal of the Royal Statistical Society, D, (Statistician), 52, 381 - 393.

See Also

bivpois.table, simple.bp, lm.bp, lm.dibp.

Examples

# probability function of (x,y)=(3,1) for lambda_1=1, lambda_2=1, lambda_3=1

pbivpois(3, 1)

# probability function of (x,y)=(3,1) for lambda_1=3, lambda_2=1, lambda_3=1

pbivpois(3, 1, lambda=c(3,1,1))

# log-probability function of (x,y)=(3,1) for lambda_1=1, lambda_2=1, lambda_3=1

pbivpois(3, 1, lambda=c(3,1,1), log=TRUE)

#

# evaluates f(1,1), f(1,3) and f(3,1) for PD(2,1,0.2)

pbivpois( c(1,3,1), c(1,1,3), c( 2,1,0.2 ) )

# same as above

pbivpois( cbind(c(1,3,1), c(1,1,3)), lambda=c( 2,1,0.2 ) )

simple.bp Simple Bivariate Poisson Model

Description

Produces a ”list” object which gives details regarding the fit of a simple bivariate Poisson
model of the form (X, Y ) ∼ BP (λ1, λ2, λ3).

Usage

simple.bp(x, y, ini3 = 1, maxit = 300, pres = 1e-08)
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Arguments

x Matrix or Vector containing the data. If x is a matrix then we consider
as x the first column and y the second column. Additional columns and
y are ignored.

y Vector containing the data of y. It is used only if x is also a vector.
Vectors x and y should be of equal length.

ini3 Initial value for λ3.

maxit Maximum number of EM steps.

pres Precision used in log-likelihood improvement.

Details

During the run of the algorithm the following details are printed: the iteration num-
ber, lambda1, lambda2, lambda3, the log-likelihood and the relative difference of the log-
likelihood.

Value

A list object returned with the following variables.

lambda Vector with parameter values λ1 , λ2, λ3

loglikelihood Ìaximized log-likelihood of the fitted model. This is given in a vector form
(one value per iteration).Using this we may monitor the log-likelihood
improvement and how EM algorithm works.

AIC, BIC AIC and BIC of the model. Values are also given for the double Poisson
model and the saturated model.

parameters Number of parameters.

iterations Number of iterations.

Author(s)

1. Dimitris Karlis, Department of Statistics, Athens University of Economics and Business,
Athens, Greece, 〈karlis@aueb.gr〉 .

2. Ioannis Ntzoufras, Department of Statistics, Athens University of Economics and Busi-
ness, Athens, Greece, 〈ntzoufras@aueb.gr〉 .

References

1. Karlis, D. and Ntzoufras, I. (2005). Bivariate Poisson and Diagonal Inflated Bivariate
Poisson Regression Models in R. Journal of Statistical Software (to appear).

2. Karlis, D. and Ntzoufras, I. (2003). Analysis of Sports Data Using Bivariate Poisson
Models. Journal of the Royal Statistical Society, D, (Statistician), 52, 381 - 393.

See Also

pbivpois, lm.bp, lm.dibp
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Examples

#

# Generation of BP(1,2,3) data

x3<-rpois(100, 3)

x1<-rpois(100, 1)+x3

x2<-rpois(100, 2)+x3

#

# fits the model

x<-simple.bp(x1, x2)

#

# Monitors parameters

x$lambda1

x$lambda2

x$lambda3

#

# alternatively (for 10 iterations)

x<-simple.bp( cbind(x1, x2), maxit=2 )

splitbeta Internal Function of BIVPOIS Package

Description

This function was made only for internal use in Bivpois package and it should not be called
separately

Author(s)

1. Dimitris Karlis, Department of Statistics, Athens University of Economics and Business,
Athens, Greece, 〈karlis@aueb.gr〉 .

2. Ioannis Ntzoufras, Department of Statistics, Athens University of Economics and Busi-
ness, Athens, Greece, 〈ntzoufras@aueb.gr〉 .


