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Addendum: Bayesian analysis of paired count data using the
Poisson difference distribution
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SUMMARY

Paired count data usually arise in medicine when before and after treatment measurements are
considered. In the present paper we assume that the correlated paired count data follow a bivariate
Poisson distribution in order to derive the distribution of their difference. The derived distribution is
shown to be the same as the one derived for the difference of the independent Poisson counts, thus
recasting interest on the distribution introduced by Skellam (1946). Using this distribution we remove
correlation, which naturally exists in paired data, and we improve the quality of our inference by
using exact distributions instead of normal approximations. The zero-inflated version is considered
to account for an excess of zero counts. Bayesian estimation and hypothesis testing for the models
considered are discussed. An example from dental epidemiology is used to illustrate the proposed
methodology. Copyright c© 2005 John Wiley & Sons, Ltd.

7. Chib’s ‘Marginal Likelihood’ method for Poisson Difference Data

7.1. Calculation of Marginal Likelihood

The calculation of marginal likelihood is based on the equation

f(y|m) =
f(y|θm)f(θm)

f(θm|y,m)

which holds for every θ. Here we consider θ∗ as the posterior mode or mean. Hence the above
can be rewritten as

log f(y|m) = log f(y|θ∗m) + log f(θ∗m)− log f(θ∗m|y,m).

The quantities f(y|θ∗m) and f(θ∗m) can be calculated directly but f(θ∗m|y,m) should be
estimated by the MCMC output.
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In our example we have f(θ∗1 , θ∗2 , p∗|y) which can be given by

f(θ∗1 , θ∗2 , p∗|y) = f(θ∗1 |θ∗2 , p∗,y)f(θ∗2 |p∗,y)f(p∗|y)

which can be estimated by

f(θ∗1 |θ∗2 , p∗,y) = G−1
G∑

g=1

Gamma(θ∗1 ;nv̄(g) − S
(g)
δv + a1, n− nδ̄(g) + b1) (1)

f(θ∗2 |p∗,y) = G−1
G∑

g=1

Gamma(θ∗2 ;nū(g) − S
(g)
δu + a2, n− nδ̄(g) + b2) (2)

f(p∗|y) = G−1
G∑

g=1

Beta(p∗;nδ̄(g) + a3, n− nδ̄(g) + b3) (3)

where S
(g)
δv =

∑n
i=1 δ

(g)
i v

(g)
i and. S

(g)
δu =

∑n
i=1 δ

(g)
i u

(g)
i .

Analytically, for each model we have

Model 1: f(θ∗m1
|y) = f(θ∗|y) = G−1

∑G
g=1 Gamma(θ∗;nv̄(g) + nū(g) + a, 2n + b).

Model 2: f(θ∗m2
|y) = f(θ∗1 , θ∗2 |y) = f(θ∗1 |θ∗2 ,y)f(θ∗2 |y)
= G−1

∑G
g=1 Gamma(θ∗1 ; nv̄(g) − S

(g)
δv + a1, n− nδ̄(g) + b1)

×G−1
∑G

g=1 Gamma(θ∗2 ; nū(g) − S
(g)
δu + a2, n− nδ̄(g) + b2)

Model 3: f(θ∗m3
|y) = f(θ∗, p∗|y) = f(θ∗1 |p∗,y)f(p∗|y)
= G−1

∑G
g=1 Gamma(θ∗1 ; nv̄(g) + nū(g) − S

(g)
δv − S

(g)
δu + a, 2n− 2nδ̄(g) + b)

×G−1
∑G

g=1 Beta(p∗; nδ̄(g) + a3, n− nδ̄(g) + b3).
Model 4: f(θ∗m4

|y) = f(θ∗1 , θ∗2 , p∗|y) = f(θ∗1 |θ∗2 , p∗,y)f(θ∗2 |p∗,y)f(p∗|y)
= G−1

∑G
g=1 Gamma(θ∗1 ; nv̄(g) − S

(g)
δv + a1, n− nδ̄(g) + b1)

×G−1
∑G

g=1 Gamma(θ∗2 ; nū(g) − S
(g)
δu + a2, n− nδ̄(g) + b2)

×G−1
∑G

g=1 Beta(p∗; nδ̄(g) + a3, n− nδ̄(g) + b3).
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Table I. Comparison of Estimated log B21 Using RJMCMC and Chib’s Marginal Likelihood Approach;
log B21: log Bayes factor of m2 vs m1, Monte Carlo Error: estimated by the standard deviation of the

log B21 for 50 sub-samples, In brackets: number of total iterations kept.

Estimated log B21 Monte Carlo Error
RJMCMC Chib’s Chib’s RJMCMC Chib’s Chib’s

School (10,000) (10,000) (25,000) (10,000) (10,000) (25,000)
1 37.96 38.51 38.61 0.19 1.21 0.48
2 20.00 20.59 20.55 0.14 1.25 0.43
3 31.49 32.00 31.92 0.20 0.58 0.35
4 14.69 15.52 15.48 0.14 0.70 0.33
5 40.31 40.92 40.88 0.13 0.74 0.39
6 17.87 18.32 18.36 0.11 0.54 0.37

All 168.60 168.88 169.07 0.13 0.92 0.39

7.2. Results from the Comparison of PD(θ1, θ2) and PD(θ, θ) for DMFT data.

In order to compare the efficiency of RJMCMC and Chib’s marginal likelihood approach we
have calculated the logarithm of B21 using output of length 5000 iterations and additional 500
burn-in each (resulting to 10,000 iterations in total which is equal to the number of iterations
we considered in RJMCMC). We have separated the output in 50 batches and estimated in each
of them the log B21 using the Chib’s marginal likelihood approach. The standard deviation
of the estimated quantities in each batch measures the Monte Carlo error. This is directly
comparable to the corresponding Monte Carlo error we have calculated using RJMCMC. In
the Table which follows we clearly see that Chib’s method has considerably higher Monte Carlo
error (about 3–9 times higher). Finally, we have calculated Monte Carlo error using 12,500
iterations with additional 2,500 iterations as burn-in (which mean 25,000 iterations kept in
total) but still Monte Carlo error was found higher than the corresponding error of RJMCMC
with 10,000 iterations.
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