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Mε αγάπη στην Iωάννα και στoυς γoνείς µoυ.
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Synopsis

Model selection is one of the most important problems in science. The development

of a scientific theory takes the form of a mathematical model. Model selection refers to

the procedure that selects hypothesized models which describe best the phenomenon under

study. Traditional statistical theory involves the selection of a single model using various

procedures including stepwise sequential application of significance tests or maximimiza-

tion of a specified criterion which is optimal under certain conditions. On the other hand,

Bayesian model selection involves the calculation of posterior model probabilities (weights).

The full Bayesian model selection methods has, in the past, been restricted by difficulties

in the computation of the integrals required. The recent advances in Markov chain Monte

Carlo methods (MCMC) have extended the possibility to apply Bayesian model selection

techniques to high dimensional problems where a large number of models may be consid-

ered. For example, in an eight way contingency table the number of hierarchical models is

approximately equal to 5.6× 1022 (Dellaportas and Forster, 1999).

The work presented in this thesis considers MCMC methods for model determination,

with a general emphasis given in the popular generalised linear model formulation. Re-

cent advances are critically reviewed and some new easy-to-use and flexible samplers are

presented. Associations and connections between all existing MCMC algorithms for model

selection are investigated. Moreover, a general framework for variable selection in generalised

linear models is presented in detail with some associated examples. Methods for selection

of link function or other structural properties are also developed and guidance of how to

implement a new method, called Gibbs variable selection, using BUGS is presented. The

connection of posterior odds with the information criteria, the robustness of posterior weights

under different prior setups, and the presence of collinearity are investigated and discussed

in detail. Finally, some calibrating methods, which eliminate the effect of prior variance on

the posterior odds are proposed.
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Óýíïøç

Ç áíÜðôõîç ìéáò åðéóôçìïíéêÞò èåùñßáò ðáßñíåé óõíÞèùò ôç ìïñöÞ åíüò

ìáèçìáôéêïý õðïäåßãìáôïò. ¸íá áðü ôá óçìáíôéêüôåñá ðñïâëÞìáôá ôçò åðéóôÞìçò

åßíáé ç äéáäéêáóßá åðéëïãÞò åíüò õðïèåôéêïý õðïäåßãìáôïò ðïõ ðåñéãñÜöåé üóï ôï

äõíáôüí êáëýôåñá ôï õðü ìåëÝôç öáéíüìåíï. Ç óôáôéóôéêÞ åðéóôÞìç ó÷åôßæåôáé

ðáñáäïóéáêÜ ìå ôçí åðéëïãÞ åíüò õðïäåßãìáôïò ÷ñçóéìïðïéþíôáò ìéá ðïéêéëßá áðü

äéáäéêáóßåò óôéò ïðïßåò ðåñéëáìâÜíåôáé ç êëéìáêùôÞ, äéáäï÷éêÞ åöáñìïãÞ

óôáôéóôéêþí äïêéìáóéþí óçìáíôéêüôçôáò êáé ç ìåãéóôïðïßçóç åíüò ðñïåðéëåãìÝíïõ

êñéôçñßïõ ôï ïðïßï åßíáé Üñéóôï õðü ïñéóìÝíåò óõíèÞêåò. Áíôßèåôá, ç ÌðåûæéáíÞ

åðéëïãÞ õðïäåéãìÜôùí åìðëÝêåé ôïí õðïëïãéóìü ôùí åê ôùí õóôÝñùí ðéèáíïôÞôùí.

Ç ðëÞñçò ÌðåûæéáíÞ åðéëïãÞ õðïäåéãìÜôùí ðåñéïñßóèçêå óôï ðáñåëèüí åîáéôßáò

ôùí ðñïâëçìÜôùí ðïõ ó÷åôßæïíôáé ìå ôïí õðïëïãéóìü ôùí ïëïêëçñùìÜôùí ðïõ

áðáéôïýíôáé ãéá ôçí õëïðïßçóç ôïõ èåùñÞìáôïò ôïõ Ìðåûåò. Ç ðñüóöáôç ðñüïäïò

ôùí ìåèüäùí ðñïóïìïßùóçò Monte Carlo ìå ôç ÷ñÞóç Ìáñêïâéáíþí áëõóßäùí

(MCMC) ãéá õðïäåßãìáôá ðïëëáðëÞò äéÜóôáóçò åðÝêôåéíáí ôç äõíáôüôçôá

åöáñìïãÞò ôçò ÌðåûæéáíÞò åðéëïãÞò õðïäåéãìÜôùí óå ðïëýðëïêá êáé ðïëõäéÜóôáôá

ðñïâëÞìáôá üðïõ Ýíáò ìåãÜëïò áñéèìüò ìïíôÝëùí åßíáé õðü äéåñåýíçóç. Ãéá

ðáñÜäåéãìá óå Ýíá ï÷ôáðëÞò äéÜóôáóçò ðßíáêá óõíÜöåéáò ï áñéèìüò ôùí éåñáñ÷éêþí

ëïãáñéèìïãñáììéêþí õðïäåéãìÜôùí åßíáé ðåñßðïõ ßóïò ìå 5.6 × 10
22

(Dellaportas

and Forster, 1999).

Ç åñåõíçôéêÞ åñãáóßá ðïõ åêôßèåôáé óå áõôÞ ôç äéáôñéâÞ ìåëåôÜ ôçò

ìåèüäïõò Ìonte Carlo ìå ôç ÷ñÞóç Ìáñêïâéáíþí áëõóßäùí ãéá ðñïóäéïñéóìü

õðïäåéãìÜôùí ìå Ýìöáóç óôá äçìïöéëÞ ãåíéêåõìÝíá ãñáììéêÜ ìïíôÝëá.

ÐáñïõóéÜæåôáé ìå ëåðôïìÝñåéá ìéá êñéôéêÞ áíáóêüðçóç ôùí ðñüóöáôùí åîåëßîåùí

êáé åðéðëÝïí ðåñéãñÜöåôáé ç áíÜðôõîç êáé ç åöáñìïãÞ åõêïëü÷ñçóôùí

äåéãìáôïëçðôþí ãéá ôïí õðïëïãéóìü ôùí åê ôùí õóôÝñùí ðéèáíïôÞôùí ôùí

õðïäåéãìÜôùí õðü äéåñåýíçóç. Ïé ó÷Ýóåéò ìåôáîý üëùí ôùí õöéóôáìÝíùí

áëãïñßèìùí Monte Carlo ìå ôç ÷ñÞóç Ìáñêïâéáíþí áëõóßäùí» ãéá åðéëïãÞ

õðïäåéãìÜôùí äéåñåõíïýíôáé åêôåíþò. ÅðéðëÝïí, ðáñïõóéÜæïõìå Ýíá ãåíéêü ðëáßóéï

ãéá åðéëïãÞ ìåôáâëçôþí óôá ãåíéêåõìÝíá ãñáììéêÜ õðïäåßãìáôá óõíïäåõüìåíï ìå

ôá ó÷åôéêÜ ðáñáäåßãìáôá. Åðßóçò áíáðôýóóïõìå ìåèüäïõò ãéá ôç åðéëïãÞ óõíäåôéêÞò

óõíÜñôçóçò (link function) Þ Üëëùí äïìéêþí ÷áñáêôçñéóôéêþí ôùí ãåíéêåõìÝíùí

ãñáììéêþí ìïíôÝëùí êáé õðïäåéêíýïõìå ôñüðïõò åöáñìïãÞò ìéáò íÝáò ìåèüäïõ ðïõ

ïíïìÜæïõìå «åðéëïãÞ ìåôáâëçôþí ìå ôïí äåéãìáôïëÞðôç Gibbs» (Gibbs variable

selection) ìå ôç ÷ñÞóç ôïõ ëïãéóìéêïý BUGS. Ç óýíäåóç ôïõ åê ôùí õóôÝñùí ëüãïõ

ðéèáíïôÞôùí ìå ôá äéÜöïñá êñéôÞñéá åðéëïãÞò õðïäåéãìÜôùí, ç åõáéóèçóßá ôïõ åê
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ôùí õóôÝñùí ëüãïõ ðéèáíïôÞôùí õðü ôç ÷ñÞóç äéáöïñåôéêþí åê ôùí ðñïôÝñùí

êáôáíïìþí êáé ç ýðáñîç óõããñáììéêüôçôáò åîåôÜæïíôáé êáé óõæçôïýíôáé äéåîïäéêÜ.

ÔÝëïò, ðáñïõóéÜæïíôáé ìåñéêïß ìÝèïäïé ðïõ åîáëåßöïõí ôçí åðßäñáóç ôçò åê ôùí

ðñïôÝñùí äéáêýìáíóçò ðÜíù óôïí åê ôùí õóôÝñùí ëüãï ðéèáíïôÞôùí ïýôùò þóôå

íá ÷ñçóéìïðïéÞóïõìå åê ôùí ðñïôÝñùí êáôáíïìÝò ìå üóï ìåãÜëç äéáêýìáíóç

åðéèõìïýìå ÷ùñßò íá áëëÜæïõí óçìáíôéêÜ ïé ðéèáíüôçôåò åðéëïãÞò ôïõ êÜèå

õðïäåßãìáôïò.



Contents

Introduction 1

1 Model Based Bayesian Inference via Markov Chain Monte Carlo 5

1.1 Definition of Statistical Models . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Model Based Bayesian Inference . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Markov Chain Monte Carlo Methods . . . . . . . . . . . . . . . . . . . . . . 6

1.3.1 The Metropolis-Hastings Algorithm . . . . . . . . . . . . . . . . . . . 7

1.3.2 Gibbs Sampler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 Case Study: Bayesian Modelling of Outstanding Liabilities Incorporating

Claim Count Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4.1 Background of the Case Study . . . . . . . . . . . . . . . . . . . . . . 9

1.4.2 Bayesian Modelling via MCMC . . . . . . . . . . . . . . . . . . . . . 12

1.4.3 Modelling Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.4.3.1 Model 1: Log-Normal Model . . . . . . . . . . . . . . . . . . 13

1.4.3.2 Model 2: Log-Normal & Multinomial Model . . . . . . . . . 14

1.4.3.3 Model 3: State Space Modelling of Claim Amounts . . . . . 15

1.4.3.4 Model 4: State Space Modelling of Average Claim Amount

per Accident . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.4.4 A Real Data Example . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.4.6 Full Conditional Posterior Densities of Case Study . . . . . . . . . . . 21

1.4.6.1 Computations for Model 1 . . . . . . . . . . . . . . . . . . . 21

1.4.6.2 Computations for Model 2 . . . . . . . . . . . . . . . . . . . 23

1.4.6.3 Computations for Model 3 . . . . . . . . . . . . . . . . . . . 26

ix



x

1.4.6.4 Computations for Model 4 . . . . . . . . . . . . . . . . . . . 28

2 Model Selection Strategies 31

2.1 Stepwise Strategies Using Significance Tests . . . . . . . . . . . . . . . . . . 31

2.2 Bayesian Model Selection Techniques . . . . . . . . . . . . . . . . . . . . . . 34

2.2.1 Bayesian Model Comparison . . . . . . . . . . . . . . . . . . . . . . . 34

2.2.1.1 Definition of Posterior Probabilities, Odds and Bayes Factor 34

2.2.1.2 Analytic Approximations of Bayes Factor . . . . . . . . . . 36

2.2.1.3 Monte Carlo Estimates of Bayes Factor . . . . . . . . . . . . 38

2.2.1.4 Interpretation of Prior and Posterior Model Probabilities . . 39

2.2.1.5 Model Selection and Rejection as a Decision Problem . . . . 39

2.2.2 Bayesian Model Averaging and Prediction . . . . . . . . . . . . . . . 41

2.2.3 Occam’s Window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.2.4 Lindley’s Paradox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.2.5 Bayes Factors Variants . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.2.6 Bayesian Predictive Model Selection . . . . . . . . . . . . . . . . . . 48

2.2.6.1 Predictive Model Selection Criteria . . . . . . . . . . . . . . 48

2.2.6.2 Bayesian Predictive P-Values . . . . . . . . . . . . . . . . . 49

2.3 Model Selection Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3 Model Selection via Markov Chain Monte Carlo Methods 59

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.2 Prior Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.2.1 Prior Distribution for Model Parameters . . . . . . . . . . . . . . . . 62

3.2.1.1 Independent Priors for Each Term Parameter Vector . . . . 62

3.2.1.2 Model Dependent Prior Distributions . . . . . . . . . . . . . 64

3.2.1.3 Prior Distributions on the Coefficients Resulted from the

Model with Standardised Variables . . . . . . . . . . . . . . 66

3.2.1.4 Defining a Prior on the Full Model . . . . . . . . . . . . . . 67

3.2.1.5 Intrinsic, Conjugate and Imaginary Samples Prior Distributions 68

3.2.2 Prior Distribution on Model Space . . . . . . . . . . . . . . . . . . . 69



xi

3.2.3 An Alternative Prior Specification . . . . . . . . . . . . . . . . . . . . 71

3.3 MCMC Model Selection Methods . . . . . . . . . . . . . . . . . . . . . . . . 72

3.3.1 Reversible Jump . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.3.2 Carlin and Chib’s Method . . . . . . . . . . . . . . . . . . . . . . . . 73

3.3.3 Markov Chain Monte Carlo Model Composition (MC3) . . . . . . . . 74

3.4 Variable Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.4.1 Stochastic Search Variable Selection . . . . . . . . . . . . . . . . . . . 75

3.4.1.1 The Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.4.1.2 Priors for Stochastic Search Variable Selection . . . . . . . . 76

3.4.2 Kuo and Mallick Variable Selection . . . . . . . . . . . . . . . . . . . 78

3.5 Model Selection Methods for Linear Normal Models Using Marginal Posterior

Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.5.1 Fast Variable Selection Algorithms . . . . . . . . . . . . . . . . . . . 79

3.5.2 Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.5.3 Outlier Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4 Further Developments of MCMC Model and Variable Selection 87

4.1 Further Gibbs Samplers for Variable Selection . . . . . . . . . . . . . . . . . 87

4.1.1 Gibbs Variable Selection . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.1.2 Variable Selection Using Carlin and Chib Sampler . . . . . . . . . . . 89

4.2 Extensions of Fast Variable Selection Algorithms . . . . . . . . . . . . . . . . 90

4.2.1 Extension to Error Dependent and Autoregressive Models . . . . . . 90

4.2.2 Fast Variable Selection Methods for Probit Models . . . . . . . . . . 91

4.3 Connections Between Markov Chain Monte Carlo Model Selection Methods . 92

4.3.1 Reversible Jump and ‘Metropolised’ Carlin and Chib . . . . . . . . . 92

4.3.2 Using Posterior Distributions as Proposals . . . . . . . . . . . . . . . 93

4.3.3 Reversible Jump for Covariate Selection . . . . . . . . . . . . . . . . 94

4.3.4 Metropolis within Gibbs Variable Selection . . . . . . . . . . . . . . . 95

4.4 Comparison of Variable Selection Methods . . . . . . . . . . . . . . . . . . . 97

4.5 Further Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.5.1 Proposal Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . 98



xii

4.5.1.1 Proposal Distributions for Model Parameters . . . . . . . . 99

4.5.1.2 Proposal Distributions on Model Space . . . . . . . . . . . . 100

4.5.2 Parametrizations and Data Transformations . . . . . . . . . . . . . . 102

4.6 Implementation of MCMC Variable Selection Algorithms in Generalised Lin-

ear Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.6.1 Normal Linear Models . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.6.1.1 Simulated Regression Examples . . . . . . . . . . . . . . . . 107

4.6.2 Poisson Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.6.2.1 SSVS Prior Distributions for Contingency Tables Problems

with Two Leveled Factors . . . . . . . . . . . . . . . . . . . 114

4.6.2.2 A Large 26 Contingency Table Example . . . . . . . . . . . 116

4.6.2.3 SSVS Prior Distribution for Factors with Multiple Categories 124

4.6.2.4 An Example with Multiple Categories Factors: 3 × 2 × 4

Contingency Table . . . . . . . . . . . . . . . . . . . . . . . 126

4.6.3 Binomial Regression Models . . . . . . . . . . . . . . . . . . . . . . . 132

4.6.3.1 A Logistic Regression Example . . . . . . . . . . . . . . . . 133

5 Simultaneous Covariate and Structural Identification in Generalised Linear

Models 139

5.1 Covariate and Link Function Identification . . . . . . . . . . . . . . . . . . . 140

5.1.1 ‘Equivalent’ Priors for Non-canonical Link Functions . . . . . . . . . 140

5.1.2 Reversible Jump Link Selection for Given Covariate Structure . . . . 143

5.1.3 Gibbs Variable and Link Selection for Generalised Linear Models . . 144

5.1.4 Metropolised Gibbs Sampler for Link Selection . . . . . . . . . . . . . 145

5.1.5 Other Approaches in Link Selection . . . . . . . . . . . . . . . . . . . 146

5.2 Alternative Procedures for Outlier Identification . . . . . . . . . . . . . . . . 147

5.3 Link or Transformation Selection? . . . . . . . . . . . . . . . . . . . . . . . . 150

5.4 Distribution Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

5.5 Illustrated Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

6 On Prior Distributions for Model Selection 159

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159



xiii

6.2 The Normal Linear Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

6.2.1 A General Model Comparison . . . . . . . . . . . . . . . . . . . . . . 160

6.2.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

6.2.3 Posterior Odds and Information Criteria . . . . . . . . . . . . . . . . 162

6.2.4 Independent Prior Distributions for Variable Selection . . . . . . . . . 165

6.3 Conditional Prior Odds at Zero . . . . . . . . . . . . . . . . . . . . . . . . . 170

6.4 Prior Specification via Penalty Determination . . . . . . . . . . . . . . . . . 174

6.4.1 Prior Odds and Penalty Specification . . . . . . . . . . . . . . . . . . 174

6.4.2 Conditional Prior Odds Using Penalty Determination . . . . . . . . . 177

6.5 Posterior Odds at the Limit of Significance . . . . . . . . . . . . . . . . . . . 179

6.5.1 Posterior Odds at the Limit of Significance and Lindley’s Example . . 180

6.5.2 Posterior Odds at the Limit of Significance and Prior Specification

Using Penalty Determination . . . . . . . . . . . . . . . . . . . . . . 181

6.5.3 Specification of Prior Distributions Using P-values . . . . . . . . . . . 182

6.6 Prior Specification via Penalty Determination in Generalised Linear Models . 189

6.6.1 Posterior Odds, Maximum Likelihood Ratios and Information Criteria

Using Laplace Approximation . . . . . . . . . . . . . . . . . . . . . . 189

6.6.2 Prior Distributions via Penalty Determination in Generalised Linear

Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

6.7 Bayes Factor’s Variants and Information Criteria . . . . . . . . . . . . . . . 195

6.7.1 Posterior, Fractional and Intrinsic Bayes Factors. . . . . . . . . . . . 195

6.7.2 The SSVS Bayes Factor. . . . . . . . . . . . . . . . . . . . . . . . . . 197

6.7.2.1 The General Model Comparison . . . . . . . . . . . . . . . . 198

6.7.2.2 Lindley-Bartlett’s Paradox and SSVS . . . . . . . . . . . . . 199

6.8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

6.9 Appendix: Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

7 Gibbs Variable Selection Using Bugs 215

7.1 Definition of likelihood . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

7.2 Definition of Prior Distribution of β . . . . . . . . . . . . . . . . . . . . . . . 217

7.3 Definition of Prior Term Probabilities . . . . . . . . . . . . . . . . . . . . . . 218



xiv

7.4 Calculating Model Probabilities in Bugs . . . . . . . . . . . . . . . . . . . . 219

7.5 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

7.5.1 Example 1: 3× 2× 4 Contingency Table . . . . . . . . . . . . . . . . 220

7.5.2 Example 2: Beetles Dataset . . . . . . . . . . . . . . . . . . . . . . . 222

7.5.3 Example 3: Stacks Dataset . . . . . . . . . . . . . . . . . . . . . . . . 223

7.5.4 Example 4: Seeds Dataset, Logistic Regression with Random Effects . 225

7.6 Appendix of Chapter 7: BUGS CODES . . . . . . . . . . . . . . . . . . . . . 227

7.6.1 Example 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

7.6.2 Example 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

7.6.3 Example 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

7.6.4 Example 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

8 Discussion and Further Research 235



List of Tables

1.1 Structure of Outstanding Claim Amounts Data. . . . . . . . . . . . . . . . . 10

1.2 Structure of Outstanding Claim Counts Data. . . . . . . . . . . . . . . . . . 11

1.3 Outstanding Claim Amounts from a Greek Insurance Company. . . . . . . . 17

1.4 Outstanding Claim Counts from a Greek Insurance Company. . . . . . . . . 18

1.5 Inflation Factor for Greece. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.6 Posterior Moments for Total Claim Amounts Paid for Each Accident Year. . 18

1.7 Posterior Moments for Total Outstanding Claim Amounts of Each Accident

Year. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.8 Posterior Moments of Total Claim Amounts to be Paid in Each Future Year. 19

1.9 Posterior Summaries for Model Parameters σ2, σ2
ε and σ2

ζ . . . . . . . . . . . 20

2.1 Bayes Factor Interpretation according to Kass and Raftery (log of 10). . . . 36

2.2 Bayes Factor Interpretation according to Kass and Raftery (Natural logarithm). 36

2.3 Summary of Model Selection Criteria. . . . . . . . . . . . . . . . . . . . . . . 56

3.1 Generalised Linear Model Weights hi. . . . . . . . . . . . . . . . . . . . . . . 66

4.1 Components of Full Conditional Posterior Odds for Inclusion of Term j in

Each Variable Selection Algorithm. . . . . . . . . . . . . . . . . . . . . . . . 98

4.2 Simulated Regression Datasets Details . . . . . . . . . . . . . . . . . . . . . 107

4.3 Simulated Regression Datasets: Batch Standard Deviations of Highest Poste-

rior Model Probability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.4 Simulated Regression Datasets: Posterior Model Probabilities. . . . . . . . . 112

4.5 Simulated Regression Datasets: Posterior Variable Probabilities Higher than

0.05. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

xv



xvi

4.6 26 Contingency Table: Edwards and Havránek (1985) Dataset. . . . . . . . . 116
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Introduction

One of the most important issues in statistical science is the construction of probabilis-

tic models that represent, or sufficiently approximate, the true generating mechanism of a

phenomenon. The arbitrary construction of such models may possibly include useless infor-

mation for the description of the phenomenon under study. Model selection is the procedure

that decides which probabilistic structure we should finally select from a specified set of

models. All model selection procedures try to balance two different notions: goodness of fit

and parsimony. The first notion refers to the procedure of selecting models that describe the

available data as good as possible while the second notion refers to the procedure of avoiding

unecessary complication of the model.

Although a model selection procedure seems to be defined clearly, the identification of

a mathematical procedure for the selection of ‘good’ models is still problematic even in the

simple case of covariate selection, that is, selection of variables that influence a response

variable Y under study. Particularly in variable selection the most broadly used methods

are the stepwize procedures which consist of a sequential application of single significance

tests. The simplest arguement against stepwize methods is that their distribution cannot be

identified and is by no means the same to the distribution of the single significance test used

(see, for example, Miller, 1984). Moreover, significance tests cannot discriminate between

non-nested models and therefore between models with different distributional structures.

A variety of alternative model selection criteria have been presented in statistical liter-

ature. These criteria select the model which maximizes a quantity usually expressed as the

maximum log-likelihood minus a penalty function which depends on the dimensionality of

the model. The most popular criteria were introcuded by Akaike (AIC, 1973), Mallows (Cp,

1973) and Schwarz (BIC, 1978). The large variety of different penalty functions (which are

optimal under certain conditions) have made practitioners to wonder which of these criteria

1
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should consider under different circumstances. Even if we limit ourselves to the popular

AIC or BIC, the model selection proccess will usually result to different models (BIC selects

more parsimonious models). A further problem that we face when using any model selection

criterion is the large number of models that we need to consider. For example if we have a

normal linear regression model with 15 covariates then the models under consideration are

215. Calculating the selected criterion over all these models is highly inefficient. Alternative

procedures, such as stepwize type methods, may not trace the model which maximizes the

criterion used since, in collinear cases, some ‘good’ models will not be visited at all.

On the other hand, Bayesian model selection offers solutions to the above problems with

the use of modern computing tools such as Markov chain Monte Carlo (MCMC) techniques

which explore the model space, trace ‘good’ working models and estimate their prosterior

probability (or more appropriate their posterior weight) based on both assigned prior beliefs

and observed data. The main problem which has prevented Bayesian model selection tech-

niques from being a broadly accepted solution for model selection problems is the sensitivity

of posterior weights to different prior distributions. No prior distribution can be thought as

entirely non-informative since proper approximately flat priors (thought to be approximately

non-informative for a given model) fully support the simplest, in terms of dimensionality,

model.

This thesis attempts to enlighten some aspects of Bayesian model selection including

MCMC methods and problems caused by prior misspecification. The thesis is organized into

eight chapters. The first provides introductory details for Bayesian model inference through

MCMC algorithms and a case study in an actuarial problem. The second chapter gives

a general overview and discussion of model selection techniques including stepwize meth-

ods, information based criteria and Bayesian techniques. A critical review of available prior

distributions and MCMC techniques used in Bayesian model selection are presented in the

third chapter. Some easy-to-use samplers for variable selection are developed in Chapter 4.

Connections between widely used samplers for model selection are also presented, as well

as a general implementation framework for covariate selection in generalised linear models.

Advanced samplers for the selection of structural properties such as response distribution,

link function and residual identification are developed in Chapter 5 while further topics of

Bayesian model selection, such as the effect of different prior distributions on the posterior
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weights or the problems caused by collinear covariates, are examined in Chapter 6. Associa-

tions between Bayesian model selection methods and information criteria are also presented

together with some proposed methods for specification of prior distributions via determi-

nation of a prefixed penalty function. The thesis is concluded with a detailed guide and

illustrated examples for the implementation of the variable selection sampler introduced in

this thesis and a discussion including the directions for further research in Chapters 7 and

8.
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Chapter 1

Model Based Bayesian Inference via

Markov Chain Monte Carlo

1.1 Definition of Statistical Models

Assume that a random variable Y , usually called response, follows a probabilistic rule f(y|θ),
where θ is the parameter vector. Consider an i.i.d. sample yT = [y1, . . . , yn] of size n of this

variable. The joint distribution

f(y|θ) =
n∏
i=1

f(yi|θ)

is called the likelihood of the model and contains all the available information provided by

the sample.

Usually models are constructed in order to assess or interpret causal realationships of

the response variable Y with other characteristics expressed in variables Xj, j ∈ V, usually
called covariates; j indicates a covariate or model term and V the set of all terms under

consideration. In such cases these explanatory variables are linked with the response variables

via a deterministic function and part of the parameter vector is substituted by alternative

parameters (noted by β) that usually encapsulate the effect of each covariate on the response

variable. For example in a regression model with y ∼ N(Xβ, σ2I) the parameter vector is

given by θT = [βT , σ2].

5
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1.2 Model Based Bayesian Inference

Bayesian theory differs from classical statistical theory since it considers any unknown pa-

rameter as random variable and, for this reason, each of these parameters should have a

prior distribution. Therefore, interest lies in calculating the posterior distribution f(θ|y) ∝
f(y|θ)f(θ) of the unknown parameters which incorporate both prior [f(θ)] and data [f(y|θ)]
information. When covariates are incorporated in the model formulation, interest usually

lies in calculating the posterior distribution f(β|y) rather than f(θ|y).
The moments of the posterior distribution may be used as summary descriptive measures

for inference. If no prior information is available a wide range of ‘non-informative’ vague

priors may be used; for details see Kass and Wasserman (1996) and Yang and Berger (1996).

In many cases the posterior distribution is intractable. In the past, intractability was avoided

via ‘conjugate’ prior distributions. These distributions have the nice property of resulting

to posteriors of the same distribution family. Extensive illustration of conjugate priors is

provided by Bernando and Smith (1994). In cases that conjugate priors are considered to

be unrealistic or are unavailable, asymptotic approximations such as Laplace approximation

may be used (see, for example, Tierney and Kadane, 1986, Tierney et al. , 1989 and Erkanli,

1994) or numerical integration techniques (see, for example, Evans and Swartz, 1996). In

recent years, massive development of computing facilities has made MCMC techniques pop-

ular. These techniques generate samples from the posterior distribution. MCMC enabled

Bayesians to use highly complicated models and estimate the posterior densities with accu-

racy. These methodologies are briefly described in the next section.

1.3 Markov Chain Monte Carlo Methods

MCMC methodology is a very powerful computational tool which has recently become pop-

ular in the statistical community. The main reason for its popularity is its ability to evaluate

(indirectly) high dimensional integrals involved in the Bayesian implementation of statistical

models describing common real life problems. MCMC methods were initially introduced by

Metropolis et al. (1953), but were made popular in statistical science after the publications of

Gelfand and Smith (1990) and Gelfand et al. (1990). Extensive details of the use of MCMC
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methods are given by Gilks et al. (1996). Finally, the BUGS software developed by Spiegel-

halter et al. (1996a,b,c) provides an easy-to-use program for applying MCMC methods in

Bayesian modelling.

A Markov chain is a stochastic process {θ(1), θ(2), · · · , θ(t)} such that f (θ(t+1)|θ(t), · · · ,
θ(1)) = f (θ(t+1)|θ(t)). That is, the distribution of θ in time t + 1 given all the preceding θ

(for times t, t − 1, . . . , 1) depends only on θ(t). Moreover, f (θ(t+1)|θ(t)) is independent of

time t. Finally, when the Markov chain is irreducible, aperiodic and positive recurrent, as

t→∞ the distribution of θ(t) tends to its equilibrium distribution which is independent of

the initial θ(0); for details see Gilks et al. (1996).

In order to generate a sample from f (θ|y) we must construct a Markov chain with

two desired properties. First, f (θ(t+1)|θ(t)) should be ‘easy to generate from’ and, second,

the equilibrium distribution of the selected Markov chain should be our target posterior

distribution f (θ|y).
We construct a Markov chain with the above requirements, then we select an initial value

θ(0) and generate values until the equilibrium distribution is reached. The next step is to cut

off the first t0 observations and take as a sample {θ(t0+1), θ(t0+2), · · · , θ(t0+t)}. Convergence of
the MCMC can be checked by various methods; for details see Cowles and Carlin (1996) and

Brooks and Roberts (1997). CODA software, which applies certain tests to check MCMC

convergence, is provided by Best et al. (1995).

Two are the most popular MCMC methods: Metropolis-Hastings algorithm (Metropolis

et al. , 1953, Hastings, 1970) and the Gibbs sampler (Geman and Geman, 1984).

1.3.1 The Metropolis-Hastings Algorithm

Metropolis et al. (1953) introduced MCMC methods with Metropolis algorithm. Seventeen

years later, Hastings (1970) generalised the original method in what is known as Metropo-

lis-Hastings algorithm. The latter is considered as the general form of any MCMC method.

Green (1995) further generalised Metropolis-Hastings algorithm by introducing reversible

jump Metropolis-Hastings algorithms for sampling from parameter spaces with different di-

mension.

In Metropolis-Hastings algorithm we follow iteratively three steps:
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1. Generate θ′ from a proposal distribution q(θ|θ(t)).

2. Calculate

α = min

(
1,

f (θ′|y)q(θ(t)|θ′)

f (θ(t)|y)q(θ′|θ(t))

)
.

[Both f (.) and q(.) do not require their normalising constants because they cancel out].

3. Update θ(t+1) = θ′ with probability α, otherwise set θ(t+1) = θ(t).

Special cases of Metropolis-Hastings are the Metropolis algorithm, random walk Metropo-

lis, Independence Sampler, single component Metropolis-Hastings and the Gibbs sampler.

In Metropolis algorithm, Metropolis et al. (1953), only symmetric proposals were con-

sidered, that is q(θ′|θ(t)) = q(θ(t)|θ′). Random walk Metropolis is a special case with

q(θ′|θ(t)) = q(|θ′ − θ(t)|). Both cases result in

α = min

(
1,

f (θ′|y)
f (θ(t)|y)

)
.

A usual proposal of this type is q(θ′|θ(t)) ≡ N(θ(t),S). The covariance matrix S controls the

convergence speed of the algorithm.

Independence sampler is a Metropolis Hastings algorithm where the proposal distribution

does not depend on the current state θ(t) of the chain. This sampler can be used when a good

approximation of the posterior distribution is known. In many cases a good independent

proposal may be given by Laplace approximation (Tierney and Kadane, 1986, Tierney et al. ,

1989, Erkanli, 1994).

Finally, in single component Metropolis-Hastings only one component at each time is

updated. In each step, a candidate value of the jth component of the vector θ, θ′j , is proposed

by qj(θ
′
j |θ(t)). Gibbs sampler is a special case of this algorithm and will be discussed in detail

in the following section. Other variations of Metropolis Hastings have been developed; for a

detailed description see Chib and Greenberg (1995) and Gilks et al. (1996).

1.3.2 Gibbs Sampler

Gibbs sampler was introduced by Geman and Geman (1984). In this algorithm we update

one component in each step from the corresponding conditional posterior. Given a particular

state of the chain θ(t) we we have the following steps
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θ
(t+1)
1 from f (θ1|θ(t)

2 , θ
(t)
3 , · · · , θ(t)

p ,y),

θ
(t+1)
2 from f (θ2|θ(t+1)

1 , θ
(t)
3 , · · · , θ(t)

p ,y),

θ
(t+1)
3 from f (θ3|θ(t+1)

1 , θ
(t+1)
2 , · · · , θ(t)

p ,y),
...
...
...

...
...

...
...

...
...

θ(t+1)
p from f (θp|θ(t+1)

1 , θ
(t+1)
2 , · · · , θ(t+1)

p−1 ,y),

where p is the number of components of the parameter vector θ. The generation from

f (θj |θ\j,y) = f (θj |θ(t+1)
1 , · · · , θ(t+1)

j−1 , θ
(t)
j+1, · · · , θ(t)

p ,y) is relatively easy since it is a univariate

distribution and can be written as f (θj |θ\j ,y) ∝ f (θ|y) where all the variables except θj

are held constant at their given values. Gibbs sampler is a special case of single component

Metropolis-Hastings algorithm since, when the proposal density q(θ′|θ(t)) equals to the full

conditional posterior distribution f (θj |θ\j ,y), we have α = 1 and therefore we always accept

the proposed move. More detailed description of the Gibbs sampler is given by Casella and

George (1992) and Gilks et al. (1996) while applications of Gibbs sampling are given by

Gelfand and Smith (1990), Gelfand et al. (1990) and Smith and Roberts (1993).

1.4 Case Study: Bayesian Modelling of Outstanding

Liabilities Incorporating Claim Count Uncertainty

Here we present a complete and detailed actuarial case study in order to illustrate how we can

exploit the possibilities and solutions offered by Bayesian inference and MCMC techniques.

Summary of the implementation of this case study is also available in the form of research

paper; see Ntzoufras and Dellaportas (1998).

1.4.1 Background of the Case Study

Insurance companies often do not pay the outstanding claims as soon as they occur. Instead,

claims are settled with a time delay which may be years or, in some extreme cases, decades.

Reserving for outstanding claims is of central interest in actuarial practice and has attracted

the attention of many researchers because of the challenging stochastic uncertainties involved.

In this section, we investigate possible extensions of models which deal with outstanding

liabilities. We focus in cases for which the outstanding claims will be considered to be only
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the ‘reported but not settled’ claims. Thus, other important cases such as claims settled

with sub-payments or ‘incurred but not reported’ claims (including claims that have been

already settled but may be reopened) are not considered.

Mathematically, the problem can be formulated as follows. There exist data with a

structure given by Table 1.1. Aı, ı = 1, 2, . . . , r denote the accident years and B,  = 1, 2, ..., r

denote the years that the claim was settled. For example, the cell ı contains the amount

Yı that the company paid with a delay of  − 1 years for accidents happened during the

year ı. Moreover, the counts of claims for each cell are also given for certain insurance

claims. The claim counts have the same triangular form as the claim amounts; in Table

1.2, nı represents claim counts that an insurance company paid with a delay of − 1 years

for accidents originated at year ı and Tı denotes the total number of accidents. Finally,

the inflation factor for each cell infı which is used to deinflate the claim amounts, is also

assumed to be known.

B

B1 B2 · · · Br−1 Br

A1 Y11 Y12 · · · Y1,r−1 Y1r

A2 Y21 Y22 · · · Y2,r−1

A
...

...
...

Ar−1 Yr−1,1 Yr−1,2

Ar Yr1

Table 1.1: Structure of Outstanding Claim Amounts Data.

Many models and techniques have been proposed for the prediction of the lower triangles

of Tables 1.1 and 1.2. Two of the most broadly used models are the log-linear and the

log-normal anova-type models; see Taylor and Ashe (1983), Renshaw and Verrall (1994),

Renshaw (1989) and Verrall (1991, 1993, 1996). Renshaw (1994) found accurate approxima-

tions of the square root prediction error for the log-normal model. A short review of more

advanced models for this problem is given by Haberman and Renshaw (1996). Recently,

Verrall (1996) investigated generalised additive models. Dynamic models (also called state

space models) were also proposed; De Jong and Zehnwirth (1983) made a general investiga-
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B

B1 B2 · · · Br−1 Br

A1 n11 n12 · · · n1,r−1 n1r T1

A2 n21 n22 · · · n2,r−1 T2

A
...

...
...

...

Ar−1 nr−1,1 nr−1,2 Tr−1

Ar nr1 Tr

Table 1.2: Structure of Outstanding Claim Counts Data.

tion of state space models in reserving claims problem and Verrall (1989, 1994) investigated

a state space model which can be viewed as an extension to the log-normal models. From a

Bayesian point of view, Verrall (1990) produced Bayes estimates for the log-normal model.

Makov et al. (1996) provide a short review of Bayesian methods and description of applying

MCMC in the problem of outstanding claims. Bayesian methods were also used by Haas-

trup and Arjas (1996) for estimating claim counts and amounts in individual claim data,

Jewell (1989) and Alba et al. (1997) for estimating claim counts. Empirical Bayes estimates

were also obtained by Verrall (1989, 1990). Further work in estimating claim amounts or

claim counts is published by Norberg (1986), Hesselager (1991), Neuhaus (1992) and Lawless

(1994).

In this case study we propose a Bayesian approach to investigate various models for

the outstanding claims problem. The use of the Bayesian paradigm did not emanate from

the need to use prior information as in Verrall (1990) but, rather, from its computation

flexibility that allows us to handle complex models. MCMC sampling strategies are used to

generate samples for each posterior distribution of interest. A key feature in the modelling

approach we propose, is the simultaneous use of data of Tables 1.1 and 1.2. In this way we

are essentially modelling ‘payments per claim finalized’ (PPCF) in delay year  having origin

in year ı; see Taylor and Ashe (1983). This has the advantage that increase in accidents,

which is expressed via increase of claim counts in Table 1.2, results in the increase of total

claims in Table 1.1. Modelling of both claim counts and amounts has been advocated in the

past; see Norberg (1986), Hesselager (1991), Neuhaus (1992), Haastrup and Arjas (1996) for
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application in individual claim data and Taylor and Ashe (1983) for aggregated data.

We model the claim counts for year ı using a multinomial distribution when Tı is known.

If Tı is not known, this assumption is easily relaxed and the claim counts data can be

modelled as Poisson distributed.

In the next section we briefly describe the Bayesian theory and the MCMC methodology.

Section 1.4.3 presents the models under consideration. In Section 1.4.4 an illustrated example

with data from a Greek insurance company is presented. Finally, a brief discussion is given

in Section 1.4.5 while computational details are given in Section 1.4.6.

1.4.2 Bayesian Modelling via MCMC

We adopt Bayesian theory and MCMC methodology in order to develop new models in

estimating future liabilities. Technicalities involved MCMC methods are given in Section

1.3. To avoid extended discussion on MCMC, the following section focuses only in the

modelling aspects of the problem and implementation details for the models proposed (form

of the full conditional densities, Metropolis Hastings sampling etc.) are given in Section

1.4.6. Technicalities used include sampling from the usual log-concave densities met in

generalised linear models (Dellaportas and Smith, 1993), MCMC strategies for problems

with constrained parameter problems (Gelfand et al. , 1992), ways to handle the missing

values problem (Gelfand et al. , 1990), and finally, usual transformation of the MCMC output

to the actual parameters of interest. For the latter, let us give some additional information.

For every model the missing entries in Table 1.1 (Yı, ı+ > r+1) are treated as parameters.

Having obtained the MCMC output samples, it is straightforward to obtain the posterior

sample for the parameters of interest Yı. =
r∑

=r+2−ı
Yı which express the outstanding claims

of year ı, by simply adding the generated values of Yı, ı+  > r + 1.

Convergence aspects were treated carefully by firstly choosing an appropriate lag interval

in the MCMC output so that autocorrelation bias is minimized, and secondly by using all

convergence diagnostics criteria available in CODA software (see Best et al. , 1995) to ensure

that convergence is achieved.
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1.4.3 Modelling Approaches

New modeling aspects expressed in terms of four models of the problem of outstanding claims

are presented in this section. For comparison purposes, we present a Bayesian analysis of two

models used in the past, the log-normal (model 1.1) and the state space model (model 1.3).

We enhance these models by simultaneously modelling claim amounts and counts and using

the total claim counts to specify appropriate parameter constraints. These modifications

result in Models 1.2 and 1.4.

1.4.3.1 Model 1: Log-Normal Model

The simplest model for the data in Table 1.1 is a log-normal (anova-type) model. This model

was investigated by Renshaw and Verrall (1994), Renshaw (1989) and Verrall (1991, 1993,

1996). Verrall (1990) produced Bayes estimates for the parameters of this model. The model

is given by the formulation

Υı = log
Yı
infı

, Υı ∼ N(µı, σ
2), µı = b0 + aı + b, ı,  = 1, . . . , r (1.1)

where Υı are called log-adjusted claim amounts and N(µı, σ
2) denotes the normal distri-

bution with mean µı and variance σ2. In Taylor and Ashe (1983) and Verrall (1991, 1993,

1996) the alternative parametrization Υı = log(Yı)− log(infı × Eı) with Υı ∼ N(µı, σ
2)

is used, where Eı is a measure of exposure (for example size of portfolio for year ı). This

reparametrization can be easily adopted for all following models. Finally, (1.1) requires

appropriate constraints to achieve identifiability of the parameters, so here we adopt the

usual sum-to-zero parametrization, that is,
∑
ı

aı =
∑


b = 0. Consequently, expression

(1.1) assumes that the expected log-adjusted claim amount µı originated at year ı and paid

with delay of  − 1 years is modelled via a linear predictor which consists of the average

log-adjusted claim amount b0, a factor which reflects expected changes due to origin year aı,

and a factor depending on the delay pattern b.

To complete the Bayesian formulation we use the priors

b0 ∼ N(0, σ2
b0), aı ∼ N(0, σ2

aı
), b ∼ N(0, σ2

b), ı,  = 2, ..., r, τ = σ−2 ∼ G(aτ , bτ )

with G(a, b) denoting gamma distribution with mean a/b. For the kind of problems we are
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interested in, vague diffuse proper priors (Kass and Wasserman, 1996) are produced by using

σ2
b0
= 1000, σ2

aı
= 100, ı = 2, ..., r, σ2

b = 100,  = 2, ..., r, aτ = bτ = 0.001.

A disadvantage of the above model is that it does not use any information from the

observed counts. That is, any prediction of the missing claim amounts will be based only on

the observed claim amounts. As a result, a source of information for a year (or cell) such as

a sudden increase of accidents will not affect the prediction of the claim amounts.

1.4.3.2 Model 2: Log-Normal & Multinomial Model

We suggest here a two stage hierarchical model which uses both data sets in Tables 1.1 and

1.2 and the can be written, assuming nı > 0 for all ı, , in the two stage formulation

Υı = log
Yı
infı

, Υı ∼ N(µı, σ
2), µı = b0 + aı + b + log(nı),

(nı1, nı2, . . . , nır)
T ∼Multinomial(p′1, p

′
2, . . . , p

′
r;Tı), log(p′/p

′
1) = b∗ (1.2)

where (nı1, nı2, . . . , nır)
T are the number of claims originated at year ı and p′ is the probability

for a claim to be settled with a delay of − 1 years. For the first stage of the model we use

as in Model 1 sum-to-zero constraints. Compared to (1.1), the linear predictor in this stage

has been enhanced with the term log(nı). As a result, b0 represents the average log-adjusted

amount per claim finalized and aı, b reflect expected differences from b0 due to origin and

delay years respectively. For the second stage we use corner constraints (b∗1 = 0) to facilitate

its straightforward interpretation: b∗ represents the log-odds of an accident to be paid with

a delay of − 1 years versus an accident paid without delay.

The second (multinomial) stage of Model 1.2 is equivalent, to the log-linear model

nı ∼ Poisson(λı), log(λı) = b∗0 + a∗ı + b∗

under the constraints
r∑

=1
nı = nı. = Tı,

r∑
=1

λı = λı. = Tı, where b∗0 and a∗ı are nuisance

parameters; for more details see Agresti (1990). Under the assumption that nı > 0 for all

ı,  it is precise to assume that nı follows a ‘truncated at zero’ Poisson(λı). However, for

the size of the data we are interested in, the above distribution is practically identical to

Poisson(λı). Had we assumed that Tı is unknown, we would have used the above log-linear

model without constraints on λı and nı. This could be useful, for example, if some kind
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of exposure measure is available, say the size of portfolio. Then, Model 1.2 without the

constraints on λı and nı is appropriate for predicting ‘incurred but not reported claims’.

We suggest similar prior distributions as Model 1.1

b0 ∼ N(0, σ2
b0), aı ∼ N(0, σ2

aı
), ı = 2, ..., r, b ∼ N(0, σ2

b),  = 2, ..., r,

τ = σ−2 ∼ G(aτ , bτ ), b∗ ∼ N(0, σ2
b∗ ),  = 2, ..., r.

The same values for σ2
b0
, σ2

aı
, σ2

b as in Model 1.1 can be used. For the additional parameters

b∗ we suggest σ
2
b∗ = 100, for  = 2, ..., r.

1.4.3.3 Model 3: State Space Modelling of Claim Amounts

An alternative modelling perspective for this kind of problems is the state space (or dynamic

linear) models where the parameters depend on each other in a time recursive way. A general

description of MCMC in dynamic models is given by Gamerman (1998). Carter and Kohn

(1994) describe how to use Gibbs sampler for general state space models and Carlin (1992)

applies Gibbs sampler for state space models for actuarial time series. For application of

state space models in claim amounts problem see De Jong and Zehnwirth (1983) and Verrall

(1989, 1994). The state space model can be written as

Υı = log
Yı
infı

, Υı ∼ N(µı, σ
2), µı = b0 + aı + bı (1.3)

with the recursive associations

bı = bı−1,j + εı, εı ∼ N(0, σ2
ε), ı = 2, ..., r,

aı = aı−1 + ζı, ζı ∼ N(0, σ2
ζ ), ı = 2, ..., r

and corner constraints a1 = bı1 = 0, ı = 1, 2, . . . , r.

Comparing Model 3 with Model 1 we first note that b has been replaced by bı. Thus,

the delay effect on the log-adjusted claim amounts changes with the origin year. Second,

the introduced recursive associations express the belief that the parameters aı and b evolve

through time via known stochastic mechanisms. In fact, these mechanisms are determined

by the disturbance terms εı and ζı; as σ2
ε approaches zero (1.3) degenerates to Model 1,

whereas when σ2
ζ approaches zero the parameters aı tend to zero. The corner constraints
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imply that b0 is the expected log-adjusted claim amount for the first origin year paid without

delay and aı and bı are interpreted accordingly.

In (1.3) we only need to define prior distributions for the first state space parameters;

for more details see Carlin et al. (1992), Carlin (1992) and Gamerman (1998). We propose

priors b1 ∼ N(0, σ2
b1
) and b0 ∼ N(0, σ2

b0) with σ2
b1

= 100 and σ2
b0 = 1000. The prior for the

precision τ = σ−2 is a G(aτ , bτ ) density as in Model 1.1. We additionally use non-informative

gamma priors for the parameters σ−2
ε ∼ G(aε, bε) and σ−2

ζ ∼ G(aζ , bζ) with proposed values

aε = bε = aζ = bζ = 10−10. Finally, as in Model 1.1, we note that this model does not use

any information from claim counts.

1.4.3.4 Model 4: State Space Modelling of Average Claim Amount per Accident

Here we generalise the Model 1.3 by incorporating information from data in Table 1.2.

Assuming that nı > 0 for all ı, , we suggest

Υı = log
Yı
infı

, Υı ∼ N(µı, σ
2), µı = b0 + aı + bı + log(nı),

(nı1, nı2, . . . , nır)
T ∼Multinomial(p′1, p

′
2, . . . , p

′
r;Tı), log(p′/p

′
1) = b∗ , b∗1 = 0 (1.4)

with the recursive associations

bı = bı−1, + εı, εı ∼ N(0, σ2
ε), ı = 2, ..., r,

aı = aı−1 + ζı, ζı ∼ N(0, σ2
ζ ), ı = 2, ..., r.

In analogy with Model 2, we have added the term log(nı) in the linear predictor. Thus,

b0 represents the log-adjusted amount per claim finalized for the first origin year paid without

delay, and aı, bı are interpreted accordingly. The multinomial second stage formulation is

interpreted exactly as in Model 2. The priors can be defined similarly as in Models 1.2 and

1.3.

1.4.4 A Real Data Example

The following data came from a major Greek insurance company. Tables 1.3-1.5 give the

claim amounts, the claim counts, the total counts for car accidents and the inflation factor.

Due to their nature, the main source of delay is due to claims that are notified but settled
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after the accident year. Liabilities that have arisen but reported later are assumed to be

minimal. Moreover, the assumption of no partial payments is plausible since only a small

proportion of car accident claims are paid in more than one installments.

B

Year 1 2 3 4 5 6 7

1989 527003 220645 130250 84085 72182 21656 49868

1990 715247 341364 166001 99845 108648 91958

1991 1166119 428365 166410 155376 191644

A 1992 1686294 647331 335290 427069

1993 2780948 961010 444610

1994 3619446 1328151

1995 4002087

Table 1.3: Outstanding Claim Amounts from a Greek Insurance Company(thousands drach-

mas).

The analysis of the data above was initiated by deinflating the data in Table 1.3 using

the inflation factors in Table 1.5. Therefore, the resulting predictive amounts presented in

this section should be multiplied by the corresponding inflation factor to represent amounts

for a specific year (for example multiply by 257/100=2.57 to get the inflated amount for year

1996).

Posterior summaries of Models 1-4 are given in Tables 1.7 and 1.8. Note the striking

difference of our proposed models 1.2 and 1.4 when compared with the existing approaches

expressed by Models 1.1 and 1.3 for outstanding claim amounts for 1991 and 1992. This

deviation is easily explainable if we examine carefully the data in Table 1.4. The remaining

outstanding claims for 1991 are only 132 and account for the 1.05% of the total claim counts

(12,601). This percentage is comparably much smaller than the corresponding outstanding

claim counts of 1989 and 1990 which were 3.03% and 4.48% respectively. This decrease is

being taken into account by our models and the produced estimates for 1991 are appropriately

adjusted.

Table 1.9 gives the posterior summaries for variance components for all models. For the
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B

Year 1 2 3 4 5 6 7 Total

1989 6622 1943 489 138 61 223 66 9542

1990 6943 2133 632 154 162 390 10496

1991 8610 2216 736 651 256 12601

A 1992 9791 3167 1570 624 15565

1993 11722 3192 1773 17735

1994 13684 3664 19746

1995 13068 18600

Table 1.4: Outstanding Claim Counts from a Greek Insurance Company.

Year 1989 1990 1991 1992 1993 1994 1995 1996

Inflation (%) 100.0 120.4 143.9 166.6 190.6 214.2 235.6 257.0

Table 1.5: Inflation Factor for Greece.

Year

Model 1990 1991 1992 1993 1994 1995

1 1107(17) 1374(22) 1904(69) 2505(118) 3026(238) 3112(556)

2 1105(19) 1322( 6) 1787(48) 2400(121) 2892(271) 2950(698)

3 1103(13) 1379(27) 1896(68) 2533(167) 3013(282) 3091(475)

4 1101( 3) 1330( 2) 1789( 8) 2433( 31) 2752( 59) 2767(168)

Table 1.6: Posterior Mean (Standard Deviation) for Total Claim Amounts Paid for Each

Accident Year (million drachmas; adjusted for inflation).



Chapter 1: Model Based Bayesian Inference via MCMC 19

Year

Model 1990 1991 1992 1993 1994 1995

1 34(17) 65(22) 215(69) 409(118) 773(238) 1413(555)

2 32(19) 13( 6) 97(48) 304(121) 639(271) 1251(698)

3 30(13) 70(27) 206(68) 436(167) 760(282) 1393(475)

4 28( 3) 21( 2) 99( 8) 336( 31) 498( 59) 1068(168)

Table 1.7: Posterior Mean (Standard Deviation) for Total Outstanding Claim Amounts of

Each Accident Year (million drachmas; adjusted for inflation).

Year

Model 1996 1997 1998 1999 2000 2001 Total

1 1222(338) 679(177) 470(140) 299(110) 152( 59) 88(54) 2909(670)

2 1085(450) 582(215) 375(171) 191(109) 66( 40) 37(29) 2336(806)

3 1166(289) 677(225) 496(227) 310(179) 161(154) 85(99) 2895(834)

4 937(136) 456( 70) 353( 78) 179( 43) 87( 24) 41(20) 2052(226)

Table 1.8: Posterior Mean (Standard Deviation) of Total Claim Amounts to be Paid in Each

Future Year (million drachmas; adjusted for inflation).
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data we analysed, we noticed that the state space model for claim amounts (Model 1.3) did

not differ very much from the simple log-normal model. This is due to the small posterior

values of σ2
ε and may imply that no dynamic term is needed when modelling the total claim

amounts. On the other hand, incorporation the claim counts (Model 4) resulted in a posterior

density of σ2
ε which gives evidence for a non-constant dynamic term. Therefore, Model 3

implies that the total payments have a similar delay pattern across years while Model 4

implies that ‘payments per claim finalized’ for origin year ı and delay year  change from

year to year.

Model Parameters

Posterior σ2 σ2
ε σ2

ζ

Value Model 1 Model 2 Model 3 Model 4 Model 3 Model 4 Model 3 Model 4

mean 0.0893 0.1366 0.0623 0.00008 0.0379 0.1249 0.1091 0.0150

median 0.0816 0.1231 0.0603 0.00008 0.0002 0.1197 0.0777 0.0112

st.dev. 0.0409 0.0596 0.0399 0.00002 0.0777 0.0324 0.1227 0.0145

Table 1.9: Posterior Summaries for Model Parameters σ2, σ2
ε and σ2

ζ .

1.4.5 Discussion

In this case study we developed new models in order to analyse the well known problem of

outstanding claims of insurance companies using Bayesian theory and MCMC methodology.

The models fitted can be divided in two categories. The first category contains models

that use only the information from claim amounts (Table 1.1) while the second exploits both

claim amounts and counts (Tables 1.1 and 1.2). Thus the enriched family attempts to model

the average payment per claim finalized or paid; this is the approach we advocate, and we

believe that it improves the predictive behaviour of the model.

The models dealt with in this illustrated example can be generalised by adding other

factors in the first (log-normal) stage. For example, we may assume that the variance of

Υı depends on the claim counts of the corresponding cell. Since our suggested models are

already multiplicative in the error, this adjustment will improve, at least in our data, only
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slightly the fit.

Finally, we would like to mention that the Bayesian paradigm used in this case study did

not utilize the advantage of using informative prior densities. By illustrating our results with

non-informative priors, we only provide a yardstick for comparison with other approaches.

However, any prior knowledges can be incorporated in our models using usual quantification

arguments.

1.4.6 Full Conditional Posterior Densities of Case Study

Conditional posterior distributions needed for the MCMC implementation of the four models

presented in Section 1.4.3 are given here in detail. Iterative samples from these conditional

densities provide, after some burn-in period and by using an appropriate sample lag, the

required samples from the posterior density.

1.4.6.1 Computations for Model 1

The model described in Section 1.4.3.1 includes parameters b0,a, b, σ
−2. The claim amounts

and counts are divided in known/observed (data) for i + j ≤ r + 1 and unknown missing

(parameters) for i+ j > r+1. Denote by ΥU the observed (inflation adjusted) log-amounts

by ΥL the missing (inflation adjusted) log-amounts and by Υ the matrix containing both

observed and missing claim (inflation adjusted) log-amounts. Assuming that the missing

data ΥL are a further set of parameters, the parameter vector is given by (b0,a, b, σ
−2,ΥL)

and the data vector is given by (ΥU). Using Bayes theorem and denoting by f the prior,

conditional and marginal densities, the posterior distribution is given by

f (b0,a, b, σ−2,ΥL|ΥU) ∝
∝ f (ΥU |b0,a, b, σ−2,ΥL)f (b0,a, b, σ−2,ΥL)

∝ f (ΥU |b0,a, b, σ−2)f (ΥL|b0,a, b, σ−2)f (b0,a, b, σ−2)

∝ f (Υ|b0,a, b, σ−2)f (b0)f (a)f (b)f (σ
−2)

where b = (b2, . . . , br) and a = (a2, . . . , ar).

The full conditional distributions are therefore given by

1. f (b0|.) ∝ f (Υ|b0,a, b, σ−2)f (b0)
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2. f (a|.) ∝ f (Υ|b0,a, b, σ−2)f (a)

3. f (b|.) ∝ f (Υ|b0,a, b, σ−2)f (b)

4. f (σ−2|.) ∝ f (Υ|b0,a, b, σ−2)f (σ−2)

5. f (ΥL|.) ∝ f (Υ|b0,a, b, σ−2)

In the above posterior the conditional f (Υ|b0,a, b, σ−2) is the full likelihood assuming

that there are no missing data in the claim amount table; therefore,

f (Υ|b0,a, b, σ−2) = (2πσ2)−r
2/2exp


− 1

2σ2

r∑
ı=1

r∑
=1

[Υı − b0 − aı − b)]
2




Thus, the resulting conditional distributions are

1.

f (b0|.) = N

(
Υ..

r2 + σ2/σ2
b0

,
σ2

r2 + σ2/σ2
b0

)
, (1.5)

where Υ.. =
r∑
ı=1

r∑
=1

Υı.

2. [a]

f (aı|.) = N



Υı. −Υ1. − r

∑
k �=1,i

ak

2r + σ2/σ2
aı

,
σ2

2r + σ2/σ2
aı


 , ı = 2, . . . , r, (1.6)

where Υı. =
r∑

=1
Υı.

[b] Set a1 = −
r∑
ı=2

aı.

3. [a]

f (b|.) = N



Υ.j −Υ.1 − r

∑
k �=1,j

bk

2r + σ2/σ2
b

,
σ2

2r + σ2/σ2
b


 ,  = 2, . . . , r, (1.7)

where ln.j =
r∑
ı=1

log(nı) and Υ.j =
r∑
ı=1

Υı

[b] Set b1 = −
r∑

=2
b.

4.

f (τ = σ−2|.) = G(aτ + r2/2, bτ + SS/2), (1.8)

with SS =
r∑
ı=1

r∑
=1

(Υı − µı)
2 and µı = b0 + aı + b).
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5.

f (Υı|.) = N(µı, σ
2), ı = 2, . . . , r,  = r − ı+ 2, . . . , r, (1.9)

with µı = b0 + aı + b.

1.4.6.2 Computations for Model 2

The model introduced in 1.4.3.2 is more complicated and includes parameters b0,a, b, σ
−2

from stage one, and b∗ from stage two. Similar to above, the claim (inflation-adjusted) log-

amounts and counts are divided in known/observed (data) for i + j ≤ r + 1 and unknown

missing (parameters) for i+j > r+1. Denote by NU and ΥU the observed claim counts and

amounts, respectively, by NL and ΥL the missing claim counts and amounts, respectively,

and by N and Υ the matrices containing both observed and missing claim counts and

amounts, respectively. Assuming that the missing data NL and ΥL are a further set of

parameters, the parameter vector is given by (b0,a, b, σ
−2, b∗,NL,ΥL) and the data vector

is given by (NU ,ΥU). Using Bayes theorem and denoting by f the prior, conditional and

marginal densities, the posterior distribution is given by

f (b0,a, b, σ−2, b∗,NL,ΥL|NU ,ΥU) ∝

∝ f (NU ,ΥU |b0,a, b, σ−2, b∗,NL,ΥL)f (b0,a, b, σ−2, b∗,NL,ΥL)

∝ f (NU ,ΥU |b0,a, b, σ−2, b∗)f (NL,ΥL|b0,a, b, σ−2, b∗)f (b0,a, b, σ−2, b∗)

∝ f (N ,Υ|b0,a, b, σ−2, b∗)f (b0)f (a)f (b)f (σ−2)f (b∗)

∝ f (Υ|b0,a, b, σ−2,N)f (N |b∗)f (b0)f (a)f (b)f (σ−2)f (b∗)

where b = (b2, . . . , br), a = (a2, . . . , ar) and b∗ = (b∗2, . . . , b
∗
r).

The full conditional distributions are therefore given by

1. f (b0|.) ∝ f (Υ|b0,a, b, σ−2,N)f (b0)

2. f (a|.) ∝ f (Υ|b0,a, b, σ−2,N)f (a)

3. f (b|.) ∝ f (Υ|b0,a, b, σ−2,N)f (b)

4. f (σ−2|.) ∝ f (Υ|b0,a, b, σ−2,N)f (σ−2)
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5. f (ΥL|.) ∝ f (Υ|b0,a, b, σ−2,N)

6. f (b∗|.) ∝ f (N |b∗)f (b∗)

7. f (NL|.) ∝ f (Υ|b0,a, b, σ−2,N)f (N |b∗)

In the above posterior the conditional f (Υ|b0,a, b, σ−2,N) is the full likelihood for the

first stage assuming that there are no missing data in the claim amount table; therefore,

f (Υ|b0,a, b, σ−2,N) = (2πσ2)−r
2/2exp


− 1

2σ2

r∑
ı=1

r∑
=1

[Υı − b0 − aı − b − log(nı)]
2




The full likelihood f (N |b∗) of the second stage, assuming no missing claim counts, can

be written as

f (N |b∗) = exp


 r∑
ı=1

log(Tı!)−
r∑
ı=1

r∑
=1

log(nı!) +
r∑

=2

n.jb
∗
 − n..log(

r∑
k=1

eb
∗
k)


 ,

where n.. =
r∑
ı=1

r∑
=1

nı =
r∑
ı=1

Tı and n.j =
r∑
ı=1

nı. Thus, the resulting conditional distribu-

tions are

1.

f (b0|.) = N

(
Υ.. − ln..

r2 + σ2/σ2
b0

,
σ2

r2 + σ2/σ2
b0

)
, (1.10)

where ln.. =
r∑
ı=1

r∑
=1

log(nı) and Υ.. =
r∑
ı=1

r∑
=1

Υı.

2. [a]

f (aı|.) = N



Υı. −Υ1. − (lnı. − ln1.)− r

∑
k �=1,i

ak

2r + σ2/σ2
aı

,
σ2

2r + σ2/σ2
aı


 , ı = 2, . . . , r, (1.11)

where lnı. =
r∑

=1
log(nı) and Υı. =

r∑
=1

Υı.

[b] Set a1 = −
r∑
ı=2

aı.

3. [a]

f (b|.) = N



Υ.j −Υ.1 − (ln.j − ln.1)− r

∑
k �=1,j

bk

2r + σ2/σ2
b

,
σ2

2r + σ2/σ2
b


 ,  = 2, . . . , r, (1.12)

where ln.j =
r∑
ı=1

log(nı) and Υ.j =
r∑
ı=1

Υı

[b] Set b1 = −
r∑

=2
b.
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4. f (τ = σ−2|.) is given by (1.8) with µı = b0 + aı + b + log(nı).

5. f (Υı|.) is given by (1.9) with µı = b0 + aı + b + log(nı).

6. [a]

f (b∗ |.) ∝ exp

(
b∗n.j − n..log(

r∑
k=1

eb
∗
k)− 0.5b∗2 /σ2

b∗

)
,  = 2, . . . , r, (1.13)

where n.j =
r∑
ı=1

nı.

[b] Set b∗1 = 0.

To obtain a sample from (1.13) we may use either Metropolis-Hastings algorithm or

Gilks and Wild (1992) adaptive rejection sampling for log-concave distributions. Both

methods provide similar convergence rates.

7. The full conditional posterior of the missing counts nı for  = r − ı + 2, . . . , r − 1,

ı = 3, . . . , r is complicated since

f (nı|.) ∝ f (Υ|b0,a, b, N )f (N |b∗)

The constraint Tı =
r∑

=1
nı reduces the above posterior to

f (nı|.) ∝ f (Υı|b0, aı, b, nı,Υır)f (Υır|b0, aı, br, nır)f (nı|b∗ , nır)f (nır|b∗r)

where nır = Tı −
r−1∑
=1

nı. Therefore,

f (nı|.) ∝
[p′]

nı

nı!

[p′r]
Ωı−nı

(Ωı − nı)!
exp (Ψı(nı) + Ψır(Ωı − nı)) (1.14)

where Ωı = Tı − ∑
k �=j,r

nık and Ψı(nı) = − 1
2σ2 (Υı − b0 − aı − b − log(nı))

2.

We sample from f (nı|.) by using the following Metropolis-Hastings step. Propose

missing n′
ı and n′

ır = Ωı − n′
ı, with ı = 3, . . . , r and  = r − ı+ 2, . . . , r − 1 from

Binomial(p′′ ,Ωı), p′′ =
p′

p′ + p′r
= (1 + exp(b∗r − b∗ ))

−1.

Accept the proposed move with probability

a = min{1, exp(Ψı(n
′
ı) + Ψır(Ωı − n′

ı)−Ψı(nı)−Ψır(Ωı − nı))}. (1.15)



26 I.Ntzoufras: Aspects of Bayesian Model and Variable Selection Using MCMC

1.4.6.3 Computations for Model 3

The dynamic model described in Section 1.4.3.3 is an extension of model of Section 1.4.3.1

includes parameters b0,a, b, σ
−2, σ−2

ε , σ−2
ζ , where b = (b12, . . . , b1r, b22, . . . , b2r, . . . , brr). Using

Bayes theorem the posterior distribution is given by

f (b0,a, b, σ−2, σ−2
ε , σ−2

ζ ,ΥL|ΥU) ∝

∝ f (Υ|b0,a, b, σ−2)f (b0)f (a|σ−2
ζ )f (b|σ−2

ε )f (σ−2)f(σ−2
ε )f(σ−2

ζ ).

The full conditional distributions are therefore given by

1. f (b0|.) ∝ f (Υ|b0,a, b, σ−2)f (b0)

2. f (a|.) ∝ f (Υ|b0,a, b, σ−2)f (a|σ2
ζ )

3. f (b|.) ∝ f (Υ|b0,a, b, σ−2)f (b|σ2
ε)

4. f (σ−2|.) ∝ f (Υ|b0,a, b, σ−2)f (σ−2)

5. f (σ−2
ε |.) ∝ f (b|σ−2

ε )f(σ−2
ε )

6. f (σ−2
ζ |.) ∝ f (a|σ−2

ζ )f(σ−2
ζ )

7. f (ΥL|.) ∝ f (Υ|b0,a, b, σ−2)

Similar to Model 1, the conditional f (Υ|b0,a, b, σ−2) is the full likelihood assuming that

there are no missing data in the claim amount table; therefore,

f (Υ|b0,a, b, σ−2) = (2πσ2)−r
2/2exp


− 1

2σ2

r∑
ı=1

r∑
=1

[Υı − b0 − aı − bı)]
2




Thus, the resulting conditional distributions are

1.

f(b0|.) = N

(
Υ.. − r2ā− r2b̄

r2 + σ2/σ2
b0

,
σ2

r2 + σ2/σ2
b0

)
, (1.16)

where ā = r−1∑
ı aı and b̄ = r−2∑

ı bı.
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2. [a] Set a1 = 0.

[b]

f(aı|.) = N

(
Υı. − rb0 − bı. + (aı+1 + aı−1)σ

2/σ2
ζ

r + 2σ2/σ2
ζ

,
σ2

r + 2σ2/σ2
ζ

)
, ı = 2, . . . , r − 1

(1.17)

where bı. =
∑

 bı.

[c]

f(ar|.) = N

(
Υr. − rb0 − br. + ar−1σ

2/σ2
ζ

r + σ2/σ2
ζ

,
σ2

r + σ2/σ2
ζ

)
. (1.18)

3. [a] Set bı1 = 0 for ı = 1, . . . , r.

[b]

f(b1|.) = N

(
Υ1 − b0 + b2σ

2/σ2
ε

1 + σ2/σ2
ε + σ2/σ2

b1

,
σ2

1 + σ2/σ2
ε + σ2/σ2

b1

)
,  = 2, . . . , r. (1.19)

[c]

f(bı|.) = N

(
Υı − b0 − aı + (bı−1, + bı+1,)σ

2/σ2
ε

1 + 2σ2/σ2
ε

,
σ2

1 + 2σ2/σ2
ε

)
, (1.20)

for ı = 2, . . . , r − 1,  = 2, . . . , r.

[d]

f(br|.) = N

(
Υr − b0 − ar + br−1,σ

2/σ2
ε

1 + σ2/σ2
ε

,
σ2

1 + σ2/σ2
ε

)
,  = 2, . . . , r. (1.21)

4. f(τ |.) is given by equation (1.8), using µı = b0 + aı + bı.

5. f(Υı|.), for i+ j > r + 1, is given by equation (1.9) using µı = b0 + aı + bı.

6.

f(σ−2
ε |.) = G


aε + (r − 1)2/2, bε +

r∑
ı=2

r∑
=2

(bı − bı−1,)
2/2


 . (1.22)

7.

f(σ−2
ζ |.) = G

(
aζ + (r − 1)/2, bζ +

r∑
ı=2

(aı − aı−1)
2/2

)
. (1.23)
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1.4.6.4 Computations for Model 4

The first stage of Model 4 is similar to model 3 but we substitute Υı by Υ∗
ı = log[Yı] -

log[nıinfı] in all conditional distributions (1.16 - 1.21). The stage two is equivalent to the

second stage of Model 2. In more detail we have

1. f(b0|.) is given by (1.16) if we substitute Υı by Υ∗
ı.

2. [a] Set a1 = 0.

[b] f(aı|.) for ı = 2, . . . , r − 1 is given by (1.17) if we substitute Υı by Υ∗
ı.

[c] f(ar|.) is given by (1.18) if we substitute Υı by Υ∗
ı.

3. [a] Set bı1 = 0 for ı = 1, . . . , r.

[b] f(b1|.) for  = 2, . . . , r is given by (1.19) if we substitute Υı by Υ∗
ı.

[c] f(bı|.) for ı = 2, . . . , r − 1,  = 2, . . . , r is given by (1.20) if we substitute Υı by

Υ∗
ı.

[d] f(br|.) for  = 2, . . . , r is given by (1.21) if we substitute Υı by Υ∗
ı.

4. f(τ |.) is given by equation (1.8), using µı = b0 + aı + bı − log(nij).

5. f(Υı|.), for i+ j > r+1, is given by equation (1.9) using µı = b0 + aı+ bı− log(nij).

6. f(σ−2
ε |.) is given by (1.22).

7. f(σ−2
ζ |.) is given by (1.23).

8. f (b∗ |.) is given by (1.13).

9. The full conditional posterior of the missing counts f(nı|.) for  = r− ı+2, . . . , r− 1,

ı = 3, . . . , r is given by (1.14) with Ψı(nı) = −0.5σ−2[Υı − b0 − aı − bı − log(nı)]
2.

In order to achieve to achieve an optimal acceptance rate we propose a simultaneous

updating scheme of nı, bı and bır when ı = 3, . . . , r and  = r − ı + 2, . . . , r. The

corresponding joint full conditional posterior of these parameters is given by given by

an equation of type (1.14) substituting Ψı with Ψ∗
ı(nı, bı) = −0.5σ−2[Υı − b0 − aı −

bı − log(nı)]
2 − 0.5σ−2

ε [(bı − bı−1,)
2 + (bı+1, − bı,)

2].
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We used the following metropolis step. We propose candidate n′
ı, b

′
ı, n

′
ır from the

proposal densities

q(n′
ı, b

′
ı, b

′
ır|nı, bı, bır) = q(n′

ı|nı, bı, bır)q(b′ı|n′
ı, nı, bı, bır)q(b

′
ır|n′

ı, nı, bı, bır)

with

q(n′
ı|nı, bı, bır) = Binomial([1 + exp(b∗r − b∗ )]

−1,Ωı)

q(b′ı|n′
ı, nı, bı, bır) = N(bı + log(nı)− log(n′

ı), σ̄
2
ı),

q(b′ır|n′
ı, nı, bı, bır) = N(bır + log(Ωı − nı)− log(Ωı − n′

ı), σ̄
2
ır)

where σ̄2
ı and σ̄2

ır are metropolis parameters that should be calibrated appropriately

to achieve a desired acceptance rate.

Accept the proposed move with probability

α = min

{
1,

exp[Ψ∗
ı(n

′
ı, b

′
ı) + Ψ∗

ır(Ωı − n′
ı, b

′
ır)]q(bı, bır|nı, n′

ı, b
′
ı, b

′
ır)

exp[Ψ∗
ı(nı, bı) + Ψ∗

ır(Ωı − nı, bır)]q(b′ı, b′ır|n′
ı, nı, bı, bır)

}
. (1.24)
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Chapter 2

Model Selection Strategies

Statistical models are used for two important reasons: interpretation of casual relationships

between certain characteristics of the population (for example relationship of cancer and

smoking) and prediction of future outcomes (for example price of a product).

A complete model formulation includes specification of a response variable and the co-

variates, the connection between them, the distributional form of the response (and of the

covariates) or any other characteristic needed. Model selection is any procedure that deter-

mines the exact form of the structure of a model.

The selection of the final model is made using certain scientific procedures that evaluate

the performance of each model and select the ‘best’ one. The most popular of these methods

are presented in this chapter giving more weight to Bayesian model selection.

2.1 Stepwise Strategies Using Significance Tests

Classical model selection procedures involve sequential comparisons with significance tests.

For example, in Generalised Linear Models (GLM) these tests are based on the F or χ2

distributions. Since the number of competing models may be large (for example, 15 regres-

sors in any generalised linear model result in 32768 models) statisticians have constructed

‘clever’ and ‘computationally cheap’ alternative methods. The most popular methods are

stepwise strategies based on the original idea of Efroymson (1960). The most common step-

wise strategies are the forward selection and the backward elimination (see, for example,

Efroymson, 1966, Draper and Smith, 1966). Natural hybrids of these methods are stepwise

31
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backward or stepwise forward procedures.

Generally, for any generalised linear model type setup, the forward selection is defined

as following: we initially consider the model without any variable in the model equation

(constant model) and continue by adding in each step the variable with the smallest p-value

until a stopping rule is satisfied. This stopping rule is usually of the type p-value> p∗ or

F < Fin; where p
∗ and Fin are arbitrary significance values. Usually p∗ = 0.05 and Fin is the

95th percentile of the corresponding F distribution. On the other hand, backward elimination

starts from the model with all variables in the model equation (full model) and continues by

removing in each step the variable with the largest p-value until a similar stopping rule is

satisfied (for example p-value< p∗ or F > Fout); where Fout is again the (1 − p∗)th quantile

of the corresponding F distribution. Stepwise backward (or stepwise forward) strategy is

similar to the above methods but it also considers in each step whether previously excluded

variables should be included (or whether previously included variables should be excluded).

Comprehensive description of stepwise procedures is provided by Thompson (1978). Stepwise

methods became very popular but according to Hocking (1976)

stepwise procedures have been criticized on many counts, the most common being

that neither FS, BE or ES [forward, backward or stepwise forward strategies] will

assure, with the obvious exceptions, that the “best” subset of a given size will be

revealed.

while Miller (1984) argues that ‘none of these “cheap” methods guarantees to find the best

fitting subsets’.

Raftery (1995) reports that in social sciences p-values and significance tests are less

and less used for hypothesis testing and model selection. The main reason is that social

researchers have extremely large datasets that report small p-values even if the hypothesized

model is plausible and ‘inspection of data fails to reveal any striking discrepancies with it’.

Moreover, Freedman (1983) claims that the interpretation of p-values is not the same in all

model comparisons and exact significance level cannot be calculated since stepwise methods

are sequential application of simple significance tests. Moreover, Miller (1984) notes that

the maximum F -to-enter statistic1 ‘is not even remotely like an F-distribution’. Further

1F -to-enter statistic: the F-statistic used to test whether an excluded term should be included in the

current model.
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criticism on the inconsistent use of p-values as measures of evidence are given by Berger

and Selke (1987), Berger and Delampady (1987), Delampady and Berger (1990), Schervish

(1996) and Bayarri and Berger (1998a,b,c).

The major drawback of classical methods is the selection of a single model. Consider the

case where many models are plausible and sufficiently fit the data but have totally different

interpretation. Choosing a single model does not account for model uncertainty and therefore

inferences, conditionally on a single selected model, may be biased. The notion of selecting

more than one model is not new since Gorman and Toman (1966) argued in favour of this

idea. Moreover, Hocking (1976) supported this idea by noting that ‘It is unlikely that there

is a single best subset but rather several equal good ones’. Miller (1984) also recommends

that ‘the best 10 or 20 subsets of each size, not just the best one, should be saved’. Finally,

Chatfield (1995) argues that ‘model uncertainty is present’ and that statisticians should stop

pretending that does not exists.

Although some significance tests for comparing non-nested models have recently been

developed, see for example Panaretos et al. (1997), generally classical procedures can only

compare nested models; one model m1 is nested to another model m2 if all the terms of

model m1 are also included in model m2. Also note that the number of models considered

may be large and therefore stepwise procedures cannot explore the whole model space.

Additional disadvantages are reported by Volinsky et al. (1996, 1997) and references

therein. They include the selection of explanatory variables that are pure noise; the selec-

tion of different models by different stepwise methods; the phenomenon reported by Hocking

(1976) and Miller (1984) where a variable that is firstly added in forward selection may

be firstly removed in backward elimination; and the argument that the usual 5% signifi-

cance level is arbitrary selected and does not reflect the real significance level in stepwise

procedures. The last drawback was examined by Bendel and Afifi (1977) reporting that a

value of 0.15 significance level for forward selection results in selection of plausible models

while Kennedy and Bancroft (1975) recommended significance level equal to 0.25 for forward

selection and 0.10 for backward elimination.

Finally, the efficiency of stepwise procedures can be summarised by the words of Copas

(1984) arguing that stepwise methods are ‘frequently used’, ‘frequently abused’ and ‘little

understood’ methods of applied statistics.
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2.2 Bayesian Model Selection Techniques

Bayesian model selection is mainly based on the calculation of posterior model probabilities

and posterior odds. Bayes factor is the posterior odds when all alternative models have equal

prior probability. A massive work on Bayes factors and their applications has been published.

Some well distinctive publications are provided by Smith and Spiegelhalter (1980), Spiegel-

halter and Smith (1982), Kass (1993), Kass and Raftery (1995), Hoeting et al. (1998) and

Wasserman (1997). For applications see Kass and Raftery (1995) and references therein.

The evaluation of the integrals involved in posterior odds is the main topic for many publi-

cations. Analytic or Monte Carlo approximations where initially used; see Gelfand and Dey

(1994), Kass and Raftery (1995), Verdinelli and Wasserman (1995), Kass and Wasserman

(1995), Chib (1995), Raftery (1996a,b), DiCiccio et al. (1997) and Pauler (1998). Recent

computational advances led to the construction of highly complicated MCMC algorithms

for the computation of posterior probabilities. MCMC methods for model selection are con-

structed by George and McCulloch (1993), Madigan and Raftery (1994), Carlin and Chib

(1995), Green (1995), Clyde et al. (1996), Hoeting et al. (1996), Smith and Kohn (1996),

Raftery et al. (1997), and Kuo and Mallick (1998).

Lindley (1957) and Bartlett (1957) paradoxes led Bayesians to search for new ‘improved’

model selection measures. These approaches include Bayes factor variants such as the pos-

terior Bayes factor by Aitkin (1991), the fractional Bayes factor by O’Hagan (1995) and the

intrinsic Bayes factor by Berger and Pericchi (1996a,b).

Other approaches include predictive criteria introduced by Ibrahim and Laud (1994)

and Bayesian predictive p-values; see Guttman, 1967, Box, 1980, Rubin, 1984, Meng, 1994,

Bayarri and Berger, 1998a,b,c.

2.2.1 Bayesian Model Comparison

2.2.1.1 Definition of Posterior Probabilities, Odds and Bayes Factor

Bayesian model selection and hypothesis testing are based on posterior probabilities, on

posterior odds and on Bayes factors. Kass and Raftery (1995) argue that Bayesian methods

can ‘evaluate the evidence in favour of the null hypothesis’, compare two or more non-nested

models, draw inferences without ignoring model uncertainty and finally determine which set
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of explanatory variables give better predictive results.

Consider two competing models m0 and m1 and suppose that the data y are considered

to have been generated by one of these two models. Each model m ∈ {m0, m1} specifies

the distribution of Y , f(y|m,β(m)) apart from an unknown parameter vector β(m) ∈ Bm,
where Bm is the set of all possible values for the coefficients of model m. If f(m) is the prior

probability of model m, then, using the Bayes theorem, the posterior probability for a model

is given by

f (m|y) = f (y|m)f (m)

f (y|m0)f (m0) + f (y|m1)f (m1)

where m ∈ {m0, m1} and f (m0) + f (m1) = 1. The posterior odds PO01 of model m0 versus

model m1 is given by

PO01 =
f (m0|y)
f (m1|y) =

f (y|m0)

f (y|m1)
× f (m0)

f (m1)
.

The quantity

B01 =
f (y|m0)

f (y|m1)

is called Bayes factor of model m0 against model m1. According to Kass and Raftery

(1995), the quantity f (y|m) is ‘the predictive probability of the data’ under model m, that is

the probability to get the actually observed data before any data were available under the

assumption that model m holds. This predictive probability is given by

f (y|m) =
∫

f (y|β(m), m)f (β(m)|m)dβ(m) (2.1)

where f(β(m)|m) is the conditional prior distribution of β(m), the model parameters for

model m. From the above we have

Posterior odds = Bayes factor × prior odds.

The above model comparison can be extended for more than two competing models.

Consider the set of models M = {m1, m2, · · · , m|M|} then the posterior probability is given

by

f (m|y) = f (y|m)f (m)∑
ml∈M

f (y|ml)f (ml)
=


 ∑
ml∈M

POml,m




−1

, m ∈M, (2.2)

where M and |M| denote the set and the number of models under consideration.

Possible interpretations of Bayes factor are given by Tables 2.1 and 2.2 provided by Kass

and Raftery (1995). From the above we can easily conclude that posterior odds and Bayes
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log10(B10) B10 Evidence against H0

0.0 to 0.5 1.0 to 3.2 Not worth than a bare mention

0.5 to 1.0 3.2 to 10 Substantial

1.0 to 2.0 10 to 100 Strong

greater than 2 greater than 100 Decisive

Table 2.1: Bayes Factor Interpretation according to Kass and Raftery (log of 10).

ln(B10) B10 Evidence against H0

0 to 1 1 to 3 Not worth than a bare mention

1 to 3 3 to 20 Positive

3 to 5 20 to 150 Strong

greater than 5 greater than 150 Very Strong

Table 2.2: Bayes Factor Interpretation according to Kass and Raftery (Natural logarithm).

factors are invariant to any set of competing models M used, while posterior probabilities

are not.

Bayes factor of model m1 against m0, B10, evaluates the evidence against the null hy-

pothesis which is familiar to classical significance tests. On the other hand, the Bayes factor

B01 evaluates the evidence in favour of the null hypothesis which is not feasible in classical

significance tests.

This integral involved in (2.1) is analytically tractable only in certain restricted examples

and therefore asymptotic approximations or Monte Carlo methods are used instead; for more

details see Sections 2.2.1.2 and 2.2.1.3.

2.2.1.2 Analytic Approximations of Bayes Factor

The most popular approximation is the Laplace approximation used by Tierney and Kadane

(1986), Tierney et al. (1989) and Erkanli (1994) resulting in

f (y|m) ≈ (2π)d(m)/2

∣∣∣∣Iβ(m)

∣∣∣∣
1
2

f (y|β̆(m), m)f (β̆(m)|m) (2.3)
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where d(m) is the dimension of model m, Iβ(m)
is the Hessian matrix of second derivatives

of the log-posterior distribution and β̆(m) is the posterior mode for model m. A simpler

but less accurate variant can be obtained by substituting Iβ(m)
and β̆(m) by Σ̂(m) and β̂(m)

which are the observed information matrix and maximum likelihood estimates of model m,

respectively. The last approximation can easily be calculated from any standard statistical

software that provides the maximum likelihood estimates β̂(m), the observed information

matrix Σ̂(m) and the value of the maximized likelihood, f (y|β̂(m), m). A variant of the

approximation is the Laplace-Metropolis estimator at which we use the posterior mode (or

sub-optimally, the posterior median) and covariance matrix estimated by a sample generated

from the posterior distribution; for details see Raftery (1996b).

Another common and simple approximation is based on Schwarz (1978) criterion given

by

S = log(f (y|β̂(m1), m1)− log(f (y|β̂(m0), m0)− 1

2
[d(m1)− d(m0)]log(n)

where n is the sample size. As sample size n some statisticians argue that we should use

the dimension of y vector while Raftery (1996a) defines it as the dimension of y in normal

models, as the sum of all Bernoulli trials in binomial models and as the sum of all counts in

Poisson models. The main advantage of the above statistic is its independence of any prior

distribution. Due to its property that

S − log(B10)

log(B10)
→ 0 when n→∞

it can be used as an approximation of the logarithm of the Bayes factor. Moreover, the

quantity

BIC = − 2 × Schwarz Criterion

is called Bayes Information Criterion and is provided by many statistical packages. From

the above we also have that

−2logB01 → −2log(LR01) + {d(m0)− d(m1)}log(n) when n→∞ (2.4)

where −2log(LR01) = −2log[f (y|β̂(m0), m0)] + 2log[f (y|β̂(m1), m1)] is the deviance measure

(see McCullagh and Nelder, 1983). Calculation of all Bayes factors against the full model

leads immediately to posterior model probabilities.
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For further details on Schwarz approximation see Kass and Wasserman (1995), Raftery

(1996a) and Pauler (1998).

Berger and Pericchi (1998) underline that both Laplace and BIC approximations are ‘valid

only for “nice” problems’. The use of these approximations is limited to large sample sizes,

models with regular asymptotics and models for which the likelihood is not concentrated in

the boundary of the parameter space (for example in one-sided tests).

2.2.1.3 Monte Carlo Estimates of Bayes Factor

Monte Carlo methods can be used to calculate f (y|m). A simple Monte Carlo method is

applied by generating a sample {β(1)
(m),β

(2)
(m), · · · ,β(t)

(m)} from the prior distribution f (β(m)|m)

and calculate

f̂ (y|m) =
1

t

t∑
t′=1

f (y|β(t′)
(m))

which is the average of the likelihood for each of the sampled values β
(t′)
(m). The above

estimator is unstable when the prior is diffuse or the likelihood is much more concentrated

than the prior. In such cases the simulation will be inefficient since most of the simulated

values will have low likelihood values and therefore the estimates will be dominated by few

large values. Moreover, the variance of the above estimator will be large and the convergence

of the estimator to its true value very slow.

A more precise Monte Carlo estimator is provided by importance sampling. This method

involves simulation of β
(t′)
(m) from an arbitrary density g∗(β(m)|m) and estimate f (y|m) by

f̂ (y|m) =

t∑
t′=1

w∗
t′f (y|β(t′)

(m), m)

t∑
t′=1

w∗
t′

, (2.5)

where w∗
t′ = f (β

(t′)
(m)|m)/g∗(β(t′)

(m)|m). If we use as g∗(β(m)|m) the posterior distribution

f (β(m)|m,y) then the estimator is given by

f̂ (y|m) =

{
1

t

t∑
t′=1

[
f (y|β(t′)

(m), m)
]−1
}−1

.

Details for Monte Carlo estimates are given by Kass and Raftery (1995) and references

therein. More sophisticated Monte Carlo estimates are supplied by Gelfand and Dey (1994),

Newton and Raftery (1994), Chib (1995) and DiCiccio et al. (1997).
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2.2.1.4 Interpretation of Prior and Posterior Model Probabilities

The interpretation of both prior and posterior probabilities have been strongly questioned;

see, for example, Stangl (1996). Many analysts actually interpret them as the (prior and

posterior) probability that the corresponding model is the ‘true’ mechanism generating the

phenomenon under study. However, according to Chatfield (1995) and references therein,

the existence of a ‘true’ underlined model is rarely a realistic assumption and in fact ‘no-one

really believe this’.

Bernardo and Smith (1994) adopt three approaches for the interpretation of prior and

posterior model probabilities:

1. M-closed view : mT ∈M; where mT is the unknown ‘true’ underlined model.

2. M-completed view: M is simply a set of specified models for comparison, ‘to be

evaluated in the light of the individuals separate actual belief model’.

3. M-open view: M here is simply a set of specified models for comparison, with ‘no

separate overall actual belief specification’.

InM-closed view the interpretation of f(m|y) as the posterior probability that model m

is the ‘true’ mechanism generating the phenomenon under study is coherent and valid but

Bernardo and Smith (1994) argue that a real underlined model usually does not exist and

therefore this view is not realistic unless in extreme cases such as evaluation of a ‘computer

game’. When M-closed view cannot be adopted, our aim is to identify a good ‘proxy’ of

the real model or simply consider which model performs best (in terms of prediction or

data fitting) over the selected set of models. For this reason, the alternative term (prior

and posterior) ‘model weight’ can be used instead of probability. A different interpretation

may be adopted: (prior or posterior) model weights are the (prior or posterior) probabilities

that the corresponding model is the ‘best’ approximation or description of reality over the

selected set of candidate models M.

2.2.1.5 Model Selection and Rejection as a Decision Problem

Within the Bayesian framework, model selection and hypothesis testing is viewed as a de-

cision problem. Although posterior model probabilities (or weights) play an important role
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in the model selection or rejection procedure, we additionally need to specify utilities over

which the final decision will be based. We may assign utilities u′(mT , m) and select the model

which maximizes the posterior expected utility Em|y[u′(mT , m)]. The function u′(mT , m) de-

notes the utility when mT is the true model but we select model m instead. Usual utilities

in model selection are

• u′(m,m) = 1 and u′(m,m′) = 0 for all m′ �= m, m′, m ∈M.

• u′(mk, ml) = −u′
kl where u′

kl are constant positive values.

• Kullback-Leibler discrepancy of the posterior distributions of two competing models.

This discrepancy is a distance measure between two distributions defined as

K(f, g) =
∫

log

[
f(x)

g(x)

]
f(x)dx. (2.6)

The first case leads to the use of posterior odds and to a Bayesian test which selects

model m0 if PO01 > 1 and m1 otherwise. The second case facilitates again the posterior

odds but with different cut-off point. Therefore we now select the null model when PO01 >

[u′
01 − u′

11]/[u
′
10 − u′

00] for the sensible choices of u′
00, u

′
11 < u′

10, u
′
01. Berger et al. (1994,

1997) constructed more sophisticated tests that have dual interpretation in both classical

and Bayesian statistics and an additional area where decision can be taken (both models are

equally good). For details see Berger et al. (1994, 1997).

Model selection based on more complicated utility functions (usually the Kullback-Leibler

discrepancy) has been used by San Martini and Spezzaferri (1984), Poskitt (1987), Bernardo

and Smith (1994), Key (1996), Key et al. (1997, 1998).

Recent work involves the Bayesian reference criterion (BRC) proposed by Bernardo (1999)

derived by the use of Kullback-Leibler discrepancy as utility. For βT = [β
′T ,β

′′T ] and the

assessment of H0 : β′ = β′
0 vs. H1 : β′ �= β′

0. The selection procedure for such case is given

by three steps:

[1] Compute the Kullback-Leibler distance between the models defined in the two hy-

potheses: K[f(y|β′,β′′), f(y|β′
0,β

′′)].

[2] Compute the posterior expectation of the above distance
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[3] Reject H0 when the posterior expectation computed in the second step is greater than

a critical value d∗; the value d∗ = 5 was proposed by Bernardo (1999) for scientific

communication.

Goutis and Robert (1998) also used Kullback-Leibler distance in hypothesis testing. They

proposed to test the hypothesis H0 : K(f(.|θ), f(.|θ0)) ≤ d∗ vs. H1 : K(f(.|θ), f(.|θ0)) > d∗

and implement this approach in generalised linear models using MCMC.

2.2.2 Bayesian Model Averaging and Prediction

Bayesian theory offers the tool to adjust predictions (and inference) according to the ob-

served model uncertainty. This methodology is called Bayesian model averaging since the

distribution of any quantity of interest [for example f (β|y)] is now the average of all con-

ditional model specific posterior distributions [f (β|m,y)] weighted by their posterior model

probabilities f (m|y). By this way, Bayesian methods base their predictions on all models

under consideration and therefore account for model uncertainty. Similarly, the predictive

distribution is given by

f (∆|y) = ∑
m∈M

f (∆|m,y)f (m|y) (2.7)

where ∆ is a parameter of interest and f (m|y) is given by formula (2.2).

Wasserman (1997) and Hoeting et al. (1998) recently provided two well written papers

that both review Bayesian model averaging. According to Hoeting et al. (1998) the idea of

model averaging seems to exist from the beginning of nineteenth century in the early work of

Laplace but was firstly formulated by Leamer (1978) without gaining great attendance due

to computation difficulties. After the reinvention of MCMC, Madigan and Raftery (1994)

and Kass and Raftery (1995) brought again in the foreground Bayesian model averaging.

General theoretical and practical details on Bayesian model averaging are given by Kass and

Raftery (1995), Madigan et al. (1996), and Hoeting et al. (1998). Comprehensive discussion

on model uncertainty and model averaging is also provided by Draper (1995) and Chatfield

(1995). Implementation of Bayesian model averaging in linear models is given by Raftery

et al. (1997), while Hoeting et al. (1995, 1996) provide Bayesian model averaging using

simultaneous variable and outlier or transformation identification in linear models. Bayesian

model averaging methods were also applied by York et al. (1995) in estimating proportion of
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born children with Down’s syndrome, Clyde et al. (1996) in generalised linear models using

an alternative orthogonal model space, Fernandez et al. (1997) in modelling fishing activities,

Heckerman and Meek (1997) in Bayesian regression and classification models in networks,

Clyde and DeSimone-Sasinowska (1997) in Poisson models, Clyde et al. (1998) in wavelets

and Clyde (1999) in linear and generalised linear models using some clever MCMC samplers

for approximating posterior weights. Finally, Fernandez et al. (1998) provide benchmark

priors for Bayesian model averaging. Buckland et al. (1997) try to simplify Bayesian model

averaging techniques by calculating the model weights through AIC and BIC approximations.

The predictive performance of any model is usually measured by the logarithmic scoring

rule (LS) which is given by

LS = −E
{
log

[ ∑
m∈M

f (∆|m,y)f (m|y)
]}

(2.8)

for Bayesian model averaging and by

LSm = −E{log[f (∆|m,y)]} (2.9)

for model m; ∆ denotes a future observation and the expectation is with respect to f(∆|y).
Lower values of the logarithmic scoring rule indicate better predictive power. The Bayesian

model averaging method always provides better predictive ability (in terms of logarithmic

scoring rule) since LS ≤ LSm, ∀m ∈ M; see Madigan and Raftery (1994), Kass and Raftery

(1995) and Raftery et al. (1997). Implementation of assessing predictive performance using

logarithmic scoring rule is provided by Madigan et al. (1995), Raftery et al. (1996), Volinsky

et al. (1997) and Hoeting et al. (1998).

2.2.3 Occam’s Window

In many cases averaging over all possible models is not possible for example when the number

of models under consideration is large. An alternative is to average over a limited set of ‘best’

models. This variant of model averaging was called by Heckerman and Meek (1997) ‘selective

model averaging’. One method for identifying the most promising models is suggested by

Madigan and Raftery (1994). This method is called Occam’s window and is based on the

Occam’s razor logic, widely used in other disciplines; for implementation of Occam’s razor

in astronomy see Jefferys and Berger (1991). Although averaging over A ⊂ M may give
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different predictions than original Bayesian model averaging, there is some evidence that it

will still have better predictive power than the selection of a single model. In some cases

Occam’s window may ignore a wide range of uncertainty since it is usual to have many

models each of them with low posterior weights but their union set accounts for important

percentage of the total uncertainty.

Occam’s window is not an MCMC method. It is a simple and fast algorithm that restricts

our attention to a set of the most promising models. The algorithm sets two conditions. The

first one ignores all models that are far away (in terms of posterior odds) from the best

model. The second condition ignores models which are more complicated and worse in

terms of posterior odds than at least one model selected by the first condition. In detail we

firstly select

A′ =

{
m ∈M :

maxml
{f (ml|y)}

f (m|y) ≤ κ∗
}

(2.10)

where κ∗ is a constant that according to Kass and Raftery (1995) should be equal to 20 (by

analogy to the popular 0.05 cut-off for p-values). Then we exclude a set of models B given

by

B′ =

{
m ∈M : ∃ ml ∈ A′, V(ml) ⊂ V(m),

f (ml|y)
f (m|y) > 1

}
(2.11)

that is, the set B′ will include any model m for which there are simpler sub-models ml with

higher posterior probability. Note that one modelml is sub-model ofm if the former includes

all terms of the latter. Finally, we set A = A′ \ B′ and calculate the predictive density

f (∆|y) = ∑
m∈A

f (∆|m,y)f (m|y)

instead of equation (2.7).

In situations that we have to compare two models m0 and m1 we may interpret the

posterior odds of model m0 against model m1 (PO01) as follows.

• If PO01 > κ∗ then reject m0 and consider m1. We can interpret this case as strong

evidence in favour of m0 and/or against m1 .

• If PO01 ∈ (1, κ∗) then we generally consider as equally ‘good’ both models since there

is not strong enough evidence in favour of m0. In the case where m0 is sub-model of

m1 then we may consider only the simpler model m0 due to the second condition of

Occam’s window.
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• If PO01 ∈ (κ∗−1, 1) then we consider both models as equally ‘good’. There is evidence

against m0 but not strong enough in order to reject it.

• If PO01 < κ∗−1 then reject m0 and consider m1 since there is strong evidence against

model m0 and/or in favour of m1.

Two search algorithms where provided by Madigan and Raftery (1994) for graphical

models - the Up and Down algorithms. When we start from a non-saturated or a non-empty

model then we execute firstly the Down and then the Up algorithm. Let A and C be subsets

of the model spaceM, where A denotes a set of ‘promising models’ and C the models under

consideration in each step of the algorithm. For both algorithms we start with A = ∅ and

C =M.

Down Algorithm

1. Select model m ∈ C.

2. C ← C \ {m} and A ← A∪ {m}.

3. Select a sub-model m0 of m by removing a variable/link from m.

4. Compute LPO = log(POm0,m).

5. If LPO > log(κ∗) then A ← A \ {m} and if m0 �∈ C, C ← C ∪ {m0}.

6. If −log(κ∗) ≤ LPO ≤ log(κ∗) then if m0 �∈ C, C ← C ∪ {m0}.

7. If there more submodels of m, go to 3.

8. If C �= ∅, go to 1.

Up Algorithm

1. Select model m ∈ C.

2. C ← C \ {m} and A ← A∪ {m}.

3. Select a supermodel m1 of m by adding a variable/link to m.

4. Compute LPO = POm,m1.
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5. If LPO < −log(κ∗) then A ← A \ {m} and if m1 �∈ C, C ← C ∪ {m1}.

6. If −log(κ∗) ≤ LPO ≤ log(κ∗) then if m1 �∈ C, C ← C ∪ {m1}.

7. If there more supermodels of m, go to 3.

8. If C �= ∅, go to 1.

More details are given in Madigan and Raftery (1994) and Kass and Raftery (1995). Ap-

plication in normal linear models is presented by Raftery et al. (1997) and in proportional

hazard models by Volinsky et al. (1997). Raftery (1995) applied Occam’s window in social

sciences and Raftery and Richardson (1996) in epidemiology.

2.2.4 Lindley’s Paradox

Lindley (1957) reported a strange phenomenon on the behaviour of posterior odds. He used

the simple example where y ∼ N(θ, σ2) with σ2 known, H0 : θ = θ0 vs. H1 : θ �= θ0.

He assigned prior probability p = P (H0) to H0 and on θ|H1 a uniform over an interval I

containing θ0 and ȳ ‘is well within the interval I’. The resulting posterior odds is given by

PO01 =
p

1− p

exp(− n
2σ2 (ȳ − θ0)

2)√
2πσ/

√
n

.

The resulting posterior odds depends on the sample size n and ȳ. Lindley considered samples

being at the limit of rejection area of the usual significance test of 100q% significance level.

These samples have θ = θ0 ± zq/2σ
2/
√
n (or zq for one tailed alternatives) and resulting

posterior odds

POLSq
01 =

p

1− p

exp(−1
2
z2
q/2)√

2πσ/
√
n

where zq is the q quantile of the standardised normal distribution. We will use the term

‘posterior odds at the limit of significance’. From the above, he noted that when n increases

the above posterior odds also increase and tend to infinity for a given significance level q.

This leads to a paradox since for sufficient large samples Bayesian methods and significance

tests support different hypotheses.

Bartlett (1957) noted another paradox which is related to the prior variance used in Bayes

factor. He observed that the largest the prior variance is, the largest the posterior Bayes fac-

tor in favour ofH0 will be. This phenomenon is much of concern since usual ‘improper’ priors
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cannot be determined due to unknown constants involved in the computation of posterior

odds while large variance priors fully support the simplest model. For these reasons either

improper or large variance priors cannot be used. Although, Bartlett (1957) noted this phe-

nomenon, the term ‘Lindley’s paradox’ is used for any case where Bayesian and significance

tests result in contradictive evidence (Shafer, 1982). The term ‘Bartlett’ paradox was used

by a few number of researchers such as Kass and Raftery (1995) while others refer to this

phenomenon by the term ‘Jeffreys’ paradox (Lindley, 1980, Berger and Delampady, 1987)

or ‘Jeffreys-Lindley’s paradox’ (Robert, 1993). Detailed discussion of Lindley’s paradox is

provided by Shafer (1982).

Although Lindley (1993) noted that the sensitivity of the Bayes factor is natural, this

drawback resulted in a series of publications trying to resolve the problem and find good

reference priors for model selection. In this category we may include Bayes factor vari-

ants (posterior, fractional and intrinsic) which are defined in the following section. Other

approaches are presented by Robert (1993) and Brewer (1998); see also Chapter 6 of this

thesis. Berger and Selke (1987), Casella and Berger (1987), Berger and Delampady (1987),

Delampady and Berger (1990) and Berger and Montera (1991) examine the relationship of p-

values and posterior probabilities using precise (H0 : θ = θ0) and imprecise (H0 : |θ−θ0| ≤ ε)

hypotheses. They used the lower bounds of Bayes factors to make comparisons with classical

statistics. Casella and Berger (1987) argue that the main reason for Bartlett’s paradox is

that we incoherently put mass point prior on a single point of the parameter space and this

‘actually reflects a bias towards H0’.

2.2.5 Bayes Factors Variants

The need for use of non-informative priors in model selection led to the definition of three

new types of Bayes factors: the posterior, fractional and intrinsic Bayes factors by Aitkin

(1991), O’Hagan (1995) and Berger and Pericchi (1996a, 1996b), respectively.

The posterior Bayes factor is given by

PBF01 =

∫
f(y|β(m0), m0)f(β(m0)|m0,y)dβ(m0)∫
f(y|β(m1), m1)f(β(m1)|m1,y)dβ(m1)

which essentially is the mean likelihood under the given posterior while the original Bayes

factor is the mean likelihood over the selected prior. Posterior Bayes factor allows the use
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of improper priors but is incoherent since it uses the data information twice and therefore

violates the likelihood principle. Moreover, it is not derived from the Bayes theorem and

therefore it cannot be considered as a ‘pure’ Bayesian tool.

The fractional Bayes factor was introduced by O’Hagan and is given by

FBFb,01 =

∫
f(y|β(m0), m0)

1−bfb(β(m0)|m0,y)dβ(m0)∫
f(y|β(m1), m1)1−bfb(β(m1)|m1,y)dβ(m1)

where

fb(β(m)|m0,y)dβ(m) =
∫

f(y|β(m), m)bf(β(m)|m,y)dβ(m)

and b < 1 is called fractional parameter. The idea of fractional Bayes factor is based on the

notion of using a fraction of the likelihood for estimation and the rest for model selection.

Although, the fractional Bayes factor is a useful alternative statistical tool for model selection

and in some cases may provide valuable insight, is also not ‘purely’ Bayesian.

The intrinsic Bayes factor of Berger and Pericchi (1996a,b) was based on the original idea

of Spiegelhalter and Smith (1982) of partial Bayes factor in which we use a small fraction of

the data for estimation and the rest of the data for model selection. Given a training sample

y(l) the partial Bayes factor is given

B01(y(l)) =

∫
f(y(\l)|β(m0), m0)f(β(m0)|m0,y(l))dβ(m0)∫
f(y(\l)|β(m1), m1)f(β(m1)|m1,y(l))dβ(m1)

where y(\l) is the rest of data used for model selection. The intrinsic Bayes factor is esti-

mated by the median, arithmetic or geometric mean of partial Bayes factors over all minimal

samples.

Implementation of the posterior Bayes factor is provided in distribution fitting using the

exponential distribution family (Aitkin, 1995) and in selection of normal mixture distribu-

tions (Aitkin et al. , 1996). A comparison between p-values, posterior Bayes factors and AIC

criterion is provided by Aitkin (1997). Further work on the fractional Bayes factor is pro-

vided by Conigliani and O’Hagan (1996) and DeSantis and Spezzaferri (1997) while intrinsic

Bayes factor has been applied to autoregressive data by Varshavsky (1996). Properties of

both intrinsic and fractional Bayes factors are given by O’Hagan (1997). Berger and Peric-

chi (1999) propose the median version of intrinsic Bayes factor as a well behaved measure.

Moreover, Berger and Pericchi (1998) compare common Bayes factor and its approximations

with its intrinsic and fractional variants. Finally, Berger and Montera (1998) use intrinsic
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and fractional Bayes factors with one sided alternative hypotheses while Berger and Pericchi

(1998) compare both intrinsic and fractional Bayes factor with the usual (prior) Bayes factor

and its approximations.

2.2.6 Bayesian Predictive Model Selection

Alternative methods for model assessment and model adequacy, rather than model selection,

are the predictive measures. In this category we may include the criteria of Ibrahim and

Laud (1994) and Bayesian variants of p-values (Dempster, 1974, Box, 1980, Rubin, 1984,

Bayarri and Berger, 1998a,b,c).

2.2.6.1 Predictive Model Selection Criteria

Predictive model selection (or rejection) use the predictive distributions of type f(yn+1|y, m)

in order assess whether model m describes sufficiently the data; yn+1 here denote future

observations. Many predictive criteria have been developed, see, for example, Bernardo and

Smith (1984), Key (1996) and references therein. For illustrative purposes we will briefly

concentrate on a recent approach introduced by Ibrahim and Laud (1994) for illustration.

Ibrahim and Laud (1994) propose to use predictive distributions for variable selection and

model assessment. Suppose that we replicate the entire experiment with the same design

matrix X. The predictive distribution of the vector of responses that we might obtain from

this replicated experiment is given by

f(z|m,y) =
∫

f(z|β(m), m)f(β(m)|m,y)dβ(m). (2.12)

A good measure of the model fit is given by Lm criterion defined as

L2
m = Ez|y,X (m)

[(z − y)T (z − y)] (2.13)

which measures the expected squared distance of the replicated and the observed data. The

smallest values of Lm indicate better models. This Lm criterion is measured in the same

units as the response variable Y .

Another criterion used by Laud and Ibrahim (1995) is given by

M∗
m = f(z|y,X(m))
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which is the probability of getting again the same replicated data. This is equivalent to

posterior Bayes factor as defined by Aitkin (1991). The M∗−1/n
m is measured in the same

units as the response variable Y ; where M∗−1/n
m is the M∗ in the power of −1/n.

Finally, the Km0
m criterion is defined as the sum of two Kullback-Leibler discrepancies

and is given by

Km0
m = K[f(z|m0,y), f(z|m,y)] +K[f(z|m,y), f(z|m0,y)]

where m0 is a fixed model defined for comparison. Usually m0 is either the constant or the

full model. The quantity K[f(z|m1,y), f(z|m2,y)] is the Kullback Leibler distance between

the predictive densities of the two models as defined in (2.6). Both these Lm and M∗
m criteria

measure how close is the predictive density of model m to the observed data while the third

one (Km0
m ) measures how close is the predictive density of model m to the corresponding

predictive density of model m0.

Implementation of this predictive selection approach has been provided in designed ex-

periments (Ibrahim and Laud, 1994), linear regression models and transformation selection

(Laud and Ibrahim, 1995, Ibrahim and Laud, 1996, Hoeting and Ibrahim, 1997), multivari-

ate linear model (Ibrahim and Chen, 1997) and repeated measures random effects models

(Weiss et al. , 1997).

2.2.6.2 Bayesian Predictive P-Values

Other predictive measures are the ‘Bayesian’ p-values which are similar in notion to the

classical p-values. Generally, p-values are measures of surprise in the data relative to the the

hypothesized model (Bayarri and Berger, 1998a,b,c). The p-values have the following form

p = P (T (Y ) > T (y)|m),

where T (Y ) is a test statistic, T (y) is the observed value of this statistic and m is the

hypothesized model. Variation of p-values depend on the distribution used for the calculation

of this tail area probability. The most commonly used p-values are

1. Classical p-values in which we use the maximum likelihood f(y|β̂(m), m).
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2. Prior predictive p-values (Box, 1980) in which we use the prior predictive density

defined by

f(z|m) =
∫

f(z|β(m), m)f(β(m)|m)dβ(m).

3. Posterior predictive p-values (Guttman, 1967, Rubin, 1984, Meng, 1994) in which we

use the posterior predictive density defined by (2.12).

4. Conditional predictive p-values (Bayarri and Berger, 1998a,b,c) which is a compromise

between the two previous p-values. This p-value is calculated in respect to

f(T (Y )|U(y), m) =
∫

f(T (Y )|U(y),β(m), m)f(β(m)|U(y), m)dβ(m),

where U(y) is the observed value of a second test statistic U(Y ).

5. Partial Posterior P-values (Bayarri and Berger, 1998b) which is calculated in respect

to the partial posterior

f(T (Y )|U(y), m) ∝
∫

f(T (Y )|β(m), m)f(y|T (y),β(m), m)f(β(m)|m)dβ(m).

All p-values are strongly criticized and do not provide at any case the probability that

the hypothesized model is true. According to Meng (1994) p-values are only measures of

discrepancy between data and the model, similar to Lm and M∗
m predictive criteria defined in

the previous section. The same author also adds that p-values may be useful ‘in monitoring

model adequacy’. Similar ideas are expressed by Lewis and Raftery (1996) supporting that

‘posterior predictive assessment should usually be used to point the way to a better model,

rather than to reject the current model in the absolute sense’. Moreover, Bayarri and Berger

(1998c) claim that p-values are important in deciding whether to search for alternative model

but their use as measures of model rejection is questionable.

The main disadvantages of the prior predictive p-values are their sensitivity to the prior

distribution and that cannot be specified when improper priors are used. The main draw-

back of the posterior p-values is that they are not ‘Bayesian’ since they use the data twice

and violate the likelihood principle (Meng, 1994). This double use of the data leads to

overestimated measures that are high even when the test statistic is far away from the hy-

pothesized model (see Bayarri and Berger, 1998c, for illustration). Also for suitably large n

and non-informative priors the posterior p-values give equivalent results in classical p-values.
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This was considered as a disadvantage from Bayarri and Berger (1998c) but seems to be in

concordance with the use of non-informative priors in Bayesian estimation problems that re-

sult in posterior distributions equivalent to the maximum likelihood estimates. On the other

hand, they are not sensitive on the choice of prior distribution and improper priors can be

used. Bayarri and Berger (1998c) developed alternative conditional predictive p-values that

facilitate the advantages and avoid the drawbacks of both prior and posterior p-values. The

only drawback is that we need to select a second statistic upon which we need to condition

on. The selection of this statistic may alter the results but the author provide adequate

guidance for its selection. They also provide various alternative computational schemes for

the estimation of these p-values including Gibbs and Metropolis-Hastings sampler. The par-

tial posterior predictive p-value have properties similar to the conditional posterior p-values

and furthermore they do not use any arbitrary statistic upon we need to condition on; for

further discussion see Bayarri and Berger (1998b).

Other publications include the p-values by Dempster (1974) and Aitkin (1997) discussing

posterior predictive values based on the statistic of the likelihood ratio test. Aitkin (1997)

also provides connection of posterior p-values using the maximum likelihood ratio with the

classical p-values, posterior Bayes factor and information criteria such as AIC. Gelman

et al. (1996) and Gelman and Meng (1996) provide algorithms for the calculation of poste-

rior p-values and other predictive discrepancies using MCMC output. Similarly, Spiegelhalter

et al. (1996a) provide guidance for the estimation of posterior p-values and other predictive

measures using BUGS.

Other comprehensive measures of surprise are given by Evans (1997) and Bayarri and

Berger (1998a).

2.3 Model Selection Criteria

The use of information criteria in model choice was introduced in the early seventies in order

to find a consistent method for model selection. The most popular criteria are Akaike’s In-

formation Criterion (AIC, Akaike, 1973), Bayes Information Criterion (BIC, Schwarz, 1978)

and Cp Criterion (Mallows, 1973). These criteria have been widely used by ‘frequentists’

although most of them such as BIC (Schwarz, 1978) derive from Bayesian logic. BIC was



52 I.Ntzoufras: Aspects of Bayesian Model and Variable Selection Using MCMC

derived as a ‘large sample approximation’ of Bayes factor while AIC as an approximately

unbiased estimate of the Kullback-Leibler discrepancy between two models (Akaike, 1973).

These criteria have been mainly used for linear models and a selective variety is presented in

Table 2.3. In this table, RSSm is the maximum likelihood residual sum of squares for model

m equal to

RSSm =
(
y −X(m)β̂(m)

)T (
y −X(m)β̂(m)

)
,

where β̂(m) are the maximum likelihood parameter estimates of model m, d(m) is the dimen-

sion of the parameter vector β(m) and σ̂2 is the maximum likelihood estimate of the residual

variance.

Generally, most information criteria minimize the quantity

ICm = −2log
(
f (y|θ̂m, m)

)
+ d(m)F (2.14)

where θm is the whole parameter vector, θ̂m are the corresponding maximum likelihood

estimates. In linear regression models θT
m = [βT

(m), σ
2] and minimizing −2log

(
f (y|θ̂m, m)

)
is equivalent to minimizing nlog(RSSm). Also note that F is the penalty imposed to the

-2log-likelihood for each additional parameter used in the model. Different penalty functions

result in different criteria; for example

• For F = 2 we have AIC.

• For F = 3/2 we have the criterion of Smith and Spiegelhalter (1980).

• For F = log(n) we have BIC.

• For F = clog(log(n)) we have Φc.

If we want to compare two models m0 and m1 then we select the one that has lower value

of IC and therefore we define as IC01 the difference of the two information criteria. Hence

IC01 = −2log
(
f (y|θ̂m0 , m0)

f (y|θ̂m1 , m1)

)
− [d(m1)− d(m0)]F. (2.15)

Without loss of generality, we assume that d(m0) < d(m1). Note that if IC01 < 0 we

select model m0 and if IC01 > 0 we select model m1. We can generalise the above criterion

difference by substituting the expression [d(m1) − d(m0)]F by a more complicated penalty
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function ψ. In such case we may write the information criteria in more general setup given

by

IC01 = −2log
(
f (y|θ̂m0 , m0)

f (y|θ̂m1 , m1)

)
− ψ,

where ψ is a penalty function depending on difference of model dimensionalities, d(m1) −
d(m0), sample size n, and design matrices, X (m0) and X(m1).

Shao (1997) divides model choice criteria in three major divisions:

1. Asymptotically valid criteria under the assumption that a true model exists.

2. Asymptotically valid criteria under the assumption that not a fixed dimension true

model exists.

3. A compromise between these two categories.

According to Zhang (1997) the main conclusion of Shao (1997) is that ICm with F = 2 and

F → ∞ when n → ∞ are two differently behaved categories of criteria referred as AIC-

like and BIC-like criteria. The BIC-like criteria perform better if the true model has simple

structure (‘finite dimension’) while the AIC-like criteria are better if the true model is a more

complex one (‘infinite dimension’). The main argument of Zhang (1997) in favour of BIC-like

criteria is that the existence of a true model is doubtful and even if exists we may prefer to

select a simpler model that approximates sufficiently the true one. In his words, ‘the practical

advantage of a more parsimonious model often overshadows concerns over the correctness

of the model. After all the goal of statistical analysis is to extract information rather to

identify the correct model.’ In this direction, Rissanen (1986) states that it is obvious

that all selection criteria give rise to quantification of the parsimony principle. They differ

in the weight (or significance) that they give to goodness of fit and model complexity. The

goodness of fit is measured by the log-likelihood ratio while model complexity by the number

of model parameters. Zheng and Loh (1995) examine a generalization of information criteria

as given in (2.14) and prove that BIC-like criteria are optimal and consistent. Bhansali

(1997) supports Shao (1997) and Zhang (1997) claiming that when the dimension of the

true model is ‘finite’ then AIC and final prediction error (FPE) do not provide consistent

estimates of the true model while BIC and the criterion of Hannan and Quinn (1979) do

provide consistent estimates. Moreover, in the case of ‘infinite’ dimension of the true model
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AIC, final prediction error and Shibata criterion (1980, 1981) are asymptotically efficient

while BIC is not.

Bhansali and Downham (1977) introduced an AIC variant given by (2.14) with 2 ≤ F ≤ 5.

They argued that optimal values of the penalty may be greater than 2 using frequency

tabulations of generated data. According to Akaike (1979) and Atkinson (1980) the use of

frequency tabulations to prove optimality of a criterion is not appropriate. Akaike (1979)

alternatively proposed to use squared prediction error. Shi and Tsai (1998) used Kullback-

Leibler discrepancy to define other variants of AIC. Also Akaike (1981) facilitates Bayesian

theory to result in alternative criteria.

Wei (1992) proposes another criterion called Fisher information criterion (FIC) where we

minimize

FICm = σ2
m(n + log|XT

(m)X (m)|).

If we substitute σ2 by its maximum likelihood estimate, then minimizing the above quantity

is equivalent to minimizing

nlog(FICm) = nlog(RSSm) + log|XT
(m)X(m)|

when n−1log|XT
(m)X (m)| → 0. This criterion, which is equivalent to (2.14) with F =

d(m)−1log|XT
(m)X(m)|, was introduced for the normal model and can be adopted for other

generalised linear models using the respective Fisher information matrix. Dudley and

Haughton (1997) introduce information criteria based on Bayes factor with Jeffreys prior

suitable for model selection when using multiple datasets. Lai and Lee (1997) use the final

prediction error criterion which minimizes

FPEm =

(
1 +

2d(m)

n

)
σ̂2
m

which is equivalent to minimizing

nlog(FPEm) = nlog(σ̂2
m) + 2d(m)

when n → ∞ and therefore 2d(m)/n → 0. The above is the same as AIC. Similarly,

minimizing

APEm = nσ̂2
m + σ̂2d(m)log(n)

is equivalent to using BIC. Shibata (1984) and Zheng and Loh (1997) extensively discuss the

use of final prediction error as a model selection criterion. The latter also extents the final
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prediction error by substituting the dimensionality d(m) by a function of it. Similarly, Zhang

(1997) proposes an alternative criterion noted as GIC∗
m = SSm + F σ̂2h[d(m)] which uses

penalty for each unit of a dimensionality function; see, for example, Foster and George (1994)

in which h[d(m)] = log[d(m)]. Stone (1977) and Shao (1993) also note that ‘leave-one-out’

cross-validation method is asymptotically equivalent to AIC and Cp.

Ronchetti (1997) examines the behaviour of a robust version of Cp and AIC criteria. The

robust Cp (RCp) ‘allows us to choose the best models which fit the majority of the data

by taking into account the presence of outliers and possible departures from the normality

assumption on the error distribution’. Rao and Wu (1989) also propose a criterion similar

to Cp.

Shibata (1997) gives a sufficient explanation why AIC was firstly proposed as a naive

estimator of Kullback-Leibler discrepancy. He also discusses the bias correction given by

Hurvich and Tsai (1989, 1991) which is more precise than Akaike’s. Finally, he introduces

bootstrap estimates of the Kullback-Leibler information. Cavanaugh and Shumway (1997)

also introduced a bootstrap variant of AIC called WIC.

Geiger et al. (1996) extend BIC in Bayesian networks with hidden variables, where the

dimension of the model is given by the rank of the Jacobian of the transformation between

model parameters of the network and the parameters of observable variables.

Comparison of information criteria, posterior odds and likelihood ratios and their con-

nections are provided by Atkinson (1981) and Chow (1981). Note that Bayes factor variants

and Bayesian predictive or utility based criteria are (in most cases) equivalent to information

criteria. For example the predictive criterion Lm of Ibrahim and Laud (1994) given by (2.13)

is equivalent to an information criterion given by (2.15) with penalty function

F =
n

d(m1)− d(m0)
log

(
n− d(m0)− 2

n− d(m1)− 2

)

while posterior Bayes factor is approximately equal to a criterion of type (2.15) with penalty

equal to F = log(2); see Aitkin (1991), O’Hagan (1995) and Chapter 6. Other recent

interesting criteria are also presented by George and Foster (1997) using empirical Bayes

methods, Bernardo (1999) using Bayesian decision theory and Gelfand and Ghosh (1998)

using predictive loss approach.
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Full Name (Reference) Equation

FPE Final Prediction Error (Akaike, 1969)
(
1 + 2d(m)

n

)
σ̂2
m

AIC Akaike Information Criterion (Akaike, 1973) (2.14), F = 2

Cp Mallows Cp (Mallows, 1973) σ−2RSSm − n+ 2d(m)
AICa Generalization of AIC (Bhansali and Downham, 1977) (2.14), F = a, 2 ≤ a ≤ 5

BIC Bayes Information Criterion (Schwarz, 1978) (2.14), F = log(n)

Φc,m Hannan and Quinn (1979) Criterion (2.14), F = clog(log(n))

SSC Smith and Spiegelhalter (1980) Criterion (2.14), F = 3/2

SC Shibata (1980) Criterion (2.14),F = nlog[n + 2d(m)]/d(m)

BIVAR Bias-Variance Criterion ( Young, 1982) wCp + (1− w)d(m)
PMC Predictive model Criterion BICm1 −BICm2 − 2 log c̄

(San Martini and Spezzaferri, 1984) c̄ = 2(RSSm1/RSSm2−1)
log(RSSm1/RSSm2 ) − 1

FIC Fisher Information Criterion (Wei, 1992) nσ̂2
m + σ̂2log|XT

(m)X(m)|
RIC Risk Inflation Criterion (Foster and George, 1994) (2.14), F = 2plog[d(m)]/d(m)

EBC Empirical Bayesian Criterion RSSm/σ̂
2 + 2d(m)logd(m)

(George and Foster, 1997) +2[p − d(m)]log[p − d(m)]
−d(m){1 + log[d(m)SSm/σ̂2]}

BRC Bayesian Reference Criterion (Bernardo, 1999) see page 40

Table 2.3: Summary of Model Selection Criteria.
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2.4 Discussion

In this chapter we have critically reviewed classical and Bayesian model selection methods.

The main classical competitors are stepwise procedures using significance tests and evalua-

tion of models via information criteria (mainly BIC and AIC). Alternatively, posterior odds

(and Bayes factors) are the main tool for model selection and hypothesis testing in Bayesian

analysis. Problems with prior specification together with the large computational burden,

required for implementing Bayesian theory, did not allow posterior odds to become very

popular until the early nineties. The development of MCMC methods and their implemen-

tation in statistical science made the calculation of posterior probabilities fairly automatic.

Many authors (for example Bayarri and Berger, 1998a,b,c) have extensively studied relations

between different model selection techniques. Current research mainly involves assessment

of better criteria, evaluation of optimal MCMC methods and benchmark priors for model

selection. In the following chapters we will introduce a new efficient, flexible and easy-to-use

MCMC method for model selection; we will compare and underline relations between MCMC

model selection methods; we will provide guidance for implementation of these methods in

generalised linear models; finally we will describe a new perspective and interpretation of

posterior odds.
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Chapter 3

Model Selection via Markov Chain

Monte Carlo Methods

3.1 Introduction

The problems with Bayesian model selection are associated with the computation of the

integrals involved in the calculation posterior probabilities. These integrals can be analyt-

ically evaluated only in certain restricted examples. A further problem is that the size of

the set of possible models M may be so great that calculation or approximation of f(y|m)

for all m ∈ M becomes infeasible. Hence, MCMC methods for generating from the joint

posterior distribution of
(
m,β(m)

)
become an extremely attractive alternative. If a sam-

ple (m(t′),β(t′), t′ = 1, . . . , t) can be generated from this distribution, then posterior model

probabilities can be estimated directly by

f̂(m) =
1

t

t∑
t′=1

I(m(t′) = m) m ∈M (3.1)

where I(·) is the indicator function. Samples from f(β(m)|m,y) are also automatically

available for marginal parametric inference. In practice, all suggested methods for generating

from f(m,β(m)|y) are based on Markov chains.

Furthermore, in many statistical models we may substitute the model indicator m ∈M
by (s,γ) ∈ S×{0, 1}p, where the indicator vector γ represents which of the p possible sets of

covariates are present in the model and s represents other structural properties of the model.

For example, in generalised linear models, s may describe the distribution, link function and

59
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variance function, and the linear predictor may be written as

η =
∑
j∈V

γjXjβj (3.2)

where V is the set of possible regressors, Xj is the design matrix and βj the parameter

vector related to the jth term. When variable selection problems are considered then we

may use either the model indicator m or the variable indicator vector γ.

The latent vector of binary indicators γ was introduced by George and McCulloch (1993)

in the first attempt to use MCMC algorithms for model selection. In their Gibbs based sam-

pler, called ‘stochastic search variable selection’ (SSVS), they used the clever idea of keeping

the dimensionality constant across all possible models by limiting the posterior distribu-

tion of non-significant (removed) terms in a small neighbourhood of zero instead of setting

it equal to zero as usually. SSVS was originally implemented in linear regression models

and was followed by a series of publications with implementation in various scientific fields;

pharmacokinetics modelling (Wakefield and Bennett, 1996), construction of stock portfolios

in finance (George and McCulloch, 1996), generalised linear models (George et al. , 1996,

George and McCulloch, 1997), designed experiments (Chipman, 1996, 1997 and Chipman

et al. , 1997) and multivariate regression models (Brown et al. , 1998).

Another popular method is the Markov chain Monte Carlo model composition (MC3)

which was originally implemented by Madigan and York (1995) in graphical model selection.

Details of this MCMC algorithm is also given by Kass and Raftery (1995) while Ntzoufras

(1995) provided extensive implementational details for log-linear model selection. MC3 has

been extended in other model selection problems such as variable, outlier and transformation

identification in linear regression by Hoeting et al. (1995, 1996) and Raftery et al. (1997),

social research by Raftery (1995), epidemiology by Raftery and Richardson (1996) and pro-

portional hazards models by Volinsky et al. (1997).

These early research attempts were followed by Carlin and Chib (1995) sampler. Its

computational complexity was its main drawback and the main reason for not being widely

implemented in statistical research. An example of comparison between two models using

Carlin and Chib method using BUGS software is given by Spiegelhalter et al. (1996c).

Green (1995) introduced a generalization of Metropolis-Hasting algorithm for sampling

from models with different dimensionality, called reversible jump (RJ). This method is ex-
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tremely flexible and can jump from one model space to another provided that we carefully

select appropriate proposal densities. This sampler has gained attention and has been ap-

plied by Richardson and Green (1997) in selection of normal mixtures, Nobile and Green

(1997) in ANOVA models and factorial experiments, Troughton and Godsill (1997) in au-

toregressive models, Dellaportas et al. (1998) in analysis of finite Poisson mixtures, Vrontos

et al. (1998) in ARCH/GARCH models, Denison et al. (1998a) in CART models, Denison

et al. (1998b) in MARS models, Giudici and Green (1998) in decomposable graphical Gaus-

sian models and Dellaportas and Forster (1999) in log-linear models. Brooks and Giudici

(1998) have developed convergence diagnostics for reversible jump output for samples within

each model.

Other samplers are provided by Smith and Kohn (1996) for linear and nonparametric

regression models, Clyde et al. (1996), Clyde (1999), Geweke (1996) and Kuo and Mallick

(1998).

In this chapter, we focus on the prior specification for model selection used in generalised

linear models and on methods of Green (‘reversible jump’, 1995) and Carlin and Chib (1995).

We further consider existent ‘variable selection’ problems including SSVS and Kuo and

Mallick samplers. Finally, we describe and comment on the fast variable selection methods

used in normal models under a conjugate prior distribution.

3.2 Prior Specification

To complete Bayesian formulation of any model selection problem we define priors on param-

eters β(m) and on model indicator m (or alternatively on (s,γ) ). Here we review the most

usual prior setups for generalised linear models. We focus on generalised linear models to

facilitate the reading of the following chapters which involve applications of model selection

methods on this popular family of models.

The usual prior specification in model selection is to define each model parameter prior

distribution conditionally on the model indicator m. In variable selection we may use a prior

on the parameter vector of the full model but, in most cases, this is not appropriate since the

parameters have different interpretation under different models. This subsection is divided

into three parts, the first one concerning priors for model parameters conditionally on the
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model indicator, the second concerning priors on model space while the last one introduces

a different approach of prior distributions specification.

3.2.1 Prior Distribution for Model Parameters

A common prior distribution used to express prior beliefs about the model parameters is a

multivariate normal distribution. Hence the prior is of the type

β(m)|m ∼ N
(
µβ(m)

,Σ(m)

)
, (3.3)

where µβ(m)
and Σ(m) are the prior mean and covariance matrix under model m respectively.

This prior set up is used throughout this section. Due to the Lindley’s and Bartlett’s paradox

described in Section 2.2.4 when no prior information is available, we should select a prior

distribution with little information about model parameters β(m) which is not extremely

flat. The prior covariance matrix may be written alternatively as Σ(m) = c2V (m), where c2

controls the flatness of the prior distribution and V (m) encapsulates the prior correlation

structure. Usual choice for the prior mean, when no prior information is available, is the

zero vector, that is µβ(m)
= 0d(m).

3.2.1.1 Independent Priors for Each Term Parameter Vector

In variable selection problems it is common to set independent priors on parameters of each

variable or term. In such case the prior is given by

βj ∼ N
(
µβj

,Σj

)
, (3.4)

where µβj
and Σj are the prior mean and covariance matrix for term j independent of the

model indicator m (or γ). Similar to the above prior setup, the covariance matrix can be

alternatively written as Σj = c2
jV j and for non-informative cases the prior mean is usually

given by µβj
= 0dj

. Geweke (1996) used independent truncated normal prior distributions

in linear regression models.

This prior is plausible only when the design or data matrix is orthogonal since, in such

cases, model parameters have similar interpretation over all models. We can easily incorpo-

rate such priors in ANOVA type models with sum-to-zero constraints. In other cases, when
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we are interested in prediction rather than description of variable relations, we may orthog-

onalize the design matrix and proceed with model selection in the new orthogonal model

space; see Clyde et al. (1996). In non-orthogonal cases, especially when high dependencies

among covariates exist, the use of such prior setup may result in unpredicted influence on

the posterior odds and hence should be avoided. For a simple illustration see Chapter 6.

In the category of independent priors for term parameters we could include the prior of

Dellaportas and Forster (1999) defined for log-linear model selection problems in contingency

tables with sum-to-zero constraints. This prior is also proposed in this thesis for binomial

logistic regression model selection problems with categorical data and can be extended in

‘equivalent’ priors for binomial models with other link functions through approximation of

the Taylor expansion. The prior covariance structure of j term is given by

V j = d−1
∏

ν∈V(j)

(dν + 1)
⊗

ν∈V(j)

(
Idν −

1

dν + 1
Jdν

)
(3.5)

where V(j) is the set of factors creating the (interaction) term j, ν is a factor included in

term j, d is the dimension of the full model (and the total number of cells in the contingency

table), dν is the dimension of ν factor (and therefore dν + 1 are the levels of this factor), Idν

is the dν × dν identity matrix and Jdν is the dν × dν matrix with every element equal to one.

Dellaportas and Forster (1999) propose a value of c2
j = c2 = 2d (twice the number of cells)

for Poisson log-linear models. Albert (1996) used similar prior with V j = Idj
utilizing odds

ratios to calibrate the prior parameter c. Therefore, his prior represents the statement that

the corresponding odds ratio varies between −2c and 2c with probability 0.68 when the two

variables are not independent.

An equivalent prior for logistic regression problems with only categorical regressors can

easily be adopted using Dellaportas and Forster (1999) prior. We simply consider the above

prior covariance matrix multiplied by four since, in sum-to-zero constraints, the logistic

regression parameters are twice the corresponding log-linear parameters. For all the other

(non-canonical) link functions Taylor expansion may be used to find an equivalent prior

variance; see Chapter 5.
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3.2.1.2 Model Dependent Prior Distributions

In normal linear models the prior (3.3) can be used. Additionally we need to define a prior

on the residual variance. The usual gamma distribution on the precision parameter τ = σ−2

(or inverse gamma on σ2) may be considered. Therefore, the prior is given by

τ ∼ G(aτ , bτ ). (3.6)

An improper prior on the residual precision τ does not influence the posterior odds and hence

(3.6) with aτ = bτ = 0 may be used without any complication. In normal linear models, it is

convenient to use prior on model parameters conditionally on the residual variance σ2. So,

instead of (3.3) we may use

β(m)|σ2, m ∼ N
(
µβ(m)

,Σ(m)σ
2
)
. (3.7)

The joint prior distribution f(β(m), σ
2|m) given by the product of the marginal distributions

(3.6) and (3.7) is also called normal inverse gamma distribution and it is conjugate since

the posterior f(β(m), σ
2|m,y) is also normal inverse gamma; see, for example, Bernardo and

Smith (1994) or O’Hagan (1994). Smith and Spiegelhalter (1980), Smith and Kohn (1996)

and George and Foster (1997) adopted the prior

β(m)|σ2, m ∼ N
(
µβ(m)

, c2V (m)σ
2
)
. (3.8)

with

µβ(m)
= 0d(m) and V (m) =

(
XT

(m)X(m)

)−1
(3.9)

resulting to simple posterior odds with nice properties and interpretation. The prior pa-

rameter c fully controls the dimensionality penalty imposed to the log-maximum posterior

distribution. For more details see Fernandez et al. (1998) and Chapter 6. For the specifica-

tion of the prior parameter c2, Smith and Kohn (1997) proposed values between 10 and 1000

while the values c2 = 100 and c2 = n were highly recommended as good practical solutions.

We argue that these choices work well in practice while the choice c2 = n−1 directly results

in a Bayes factor which is equivalent to Bayes information criterion; see Chapter 6.

Ibrahim and Laud (1994) and Laud and Ibrahim (1995) used similar priors in their

predictive model selection approach. They used covariance matrix (3.9) and mean µβ(m)

equal to the maximum likelihood estimates β̂(m).
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For the rest of generalised linear models we may use a more general form of prior distri-

bution given by

β(m)|m ∼ N
(
µβ(m)

, c2V (m)

)
. (3.10)

As mentioned earlier, a usual choice, when no information is available, is µβ(m)
= 0d(m). For

the covariance matrix we may also consider the choice

V (m) =
(
XT

(m)X(m)

)−1
(3.11)

or alternatively use the inverse of the Fisher information matrix given by

Iβ(m)
= −

{
E

[
∂2l(β(m))

∂βν,(m)∂βj,(m)

]}−1

=
(
XT

(m)H(m)X(m)

)−1
,

where

H(m) = Diag(hi), hi =

(
∂µi
∂ηi

)2
1

ai(φ)b′′(ϑ)
= {g′(E[Yi])

2ai(φ)v(E[Yi])}−1, (3.12)

l
(
β(m)

)
is the likelihood function of model m. Alternatively, the above matrix can be

substituted by the inverse of the observed information matrix given by

V (m) = I ˆβ(m)

= −
[

∂2l(β(m))

∂βν,(m)∂βj,(m)

]−1

β(m)=
ˆβ(m)

=
(
XT

(m)Ĥ(m)X (m)

)−1
(3.13)

where β̂(m) is the maximum likelihood estimate of β(m). Although, prior distributions us-

ing a covariance resulting from (3.13) are data dependent, they can be thought as a non-

informative since they do not influence the posterior f(β(m)|m,y) for large values of c2.

Additionally, Smith and Kohn (1996) prior is a special case of the above generalization since

hi = σ−2 for normal models.

Special case of prior (3.8) with V (m) given by (3.13) is the unit information prior (for

c2 = n) . This prior has precision approximately equal to the precision provided by one

data point. Fisher information matrix measures the amount of information provided by

the data and therefore the precision of one data point is approximately given by n−1I−1

β(m)

.

More detailed discussion of this prior is given by Spiegelhalter and Smith (1980), Kass and

Wasserman (1995) and Pauler (1998). Pauler et al. (1998) use the unit root prior for model

selection in variance component models.
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Model Link GLM weights hi

Normal Identity σ−2

Poisson Log λi

Binomial Logit Nipi(1− pi)

Probit Ni/[pi(1− pi)ϕ
2(pi)]

clog-log −Ni(1− pi)log
2(1− pi)/pi

Table 3.1: Generalised Linear Model Weights hi.

3.2.1.3 Prior Distributions on the Coefficients Resulted from the Model with

Standardised Variables

Raftery (1996a) developed a prior for generalised linear models with one dimensional terms

by using standardised variables noted by Y s and Xs
j . He initially considered the case where

hi is constant over all observations and identity link g(µ) = µ. If we consider the parameter

vector of the full model βT = (β0, β1, . . . , βp−1) where β0 is the coefficient for the constant

term, then the new transformed model is given by

µsi = E(Y s
i ) = βs0 +

∑
j∈V(m)\{0}

xsijβ
s
j .

Raftery (1996a) used independent normal priors on βs0 and βsj given by

βs0 ∼ N(µβs
0
, c2

0), βsj ∼ N(0, c2),

where c2
0 and c2 are prior parameters to be specified. From the above it is clear that

β0 = ȳ + syβ
s
0 −

p−1∑
j=1

sy
sj
x̄jβ

s
j , βj =

sy
sj
βsj ,

where ȳ and s2
y are the sample mean and variance of the response variable Y , x̄j and s2

j are

the sample mean and variance of the regressor Xj . This leads to a multivariate normal prior

for the original parameters β given by (3.3) with prior mean

µT
β(m)

= (µβs
0
+ ȳ, 0, . . . , 0)
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and prior covariance matrix given by

Σ(m) = c2s2
y




c−2c2
0 −
∑

s−2
j x̄2

j −s−2
2 x̄2 −s−2

3 x̄3 . . . −s−2
d(m)−1x̄d(m)−1

−s−2
2 x̄2 s−2

2 0 . . . 0

−s−2
3 x̄3 0 s−2

3 . . . 0
...

...
...

...

−s−2
d(m)−1x̄d(m)−1 0 . . . 0 s−2

d(m)−1




where d(m) is the dimension of the model (and, when we use one dimensional regressors, the

number of covariates in model m).

For generalised linear models with other link functions he suggested similar procedure

as above but the sample statistics should be weighted by hi as defined in (3.12). Raftery

(1996a) used two criteria (desiderata) to define plausible values for the parameter c2. He

reports the value of c = 1.65 as a trade-off between the two criteria and suggests various

values from one to five (1 ≤ c ≤ 5).

A similar prior is defined by Raftery et al. (1997) for normal linear models. The prior

for the constant term is given by

β0 ∼ N(β̂0, s
2
yσ

2)

while for the other terms by

βj ∼ N(0, c2s−2
j σ2)

when they are continuous and by

βj ∼ N(0, nc2
(
XT

j X j

)−1
σ2)

when they are categorical factors and Xj is the design matrix with each dummy variable

centered on its sample mean. Raftery et al. (1997) following some specific criteria suggest

to use prior values c = 2.85, aτ = 1.27 and bτ = 0.3612. They also argue that this prior

corresponds to a Bayesian subjective prior and can be considered as an approximation of

this true subjective prior.

3.2.1.4 Defining a Prior on the Full Model

Another strategy for the specification of prior distributions is to use a prior on the pa-

rameters β of the full model and the resulting marginal distributions for models of lower
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dimension. This approach was used by Kuo and Mallick (1998) but we argue that a prior on

the full model may result in inappropriate or undesirable prior distributions for the models

of lower dimension. In cases of block diagonal prior covariance matrix the prior distribution

is decomposed to several independent prior distributions for the parameter vector βj of each

term j.

Following the logic of (3.8), we may use

β ∼ N
(
0, c2V

)
.

Choices for the V are either V = (XTX)−1 or V = (XTĤX)−1 where X and Ĥ are the

design (or data) and weight matrices of the full model respectively. Note that such prior on

Poisson log-linear and logistic regression models with categorical regressors and sum-to-zero

constraints leads to the distribution of Dellaportas and Forster (1999) given by (3.5). In

normal models the above prior can also be defined conditionally on σ2 similar to Smith and

Kohn (1996) prior.

3.2.1.5 Intrinsic, Conjugate and Imaginary Samples Prior Distributions

Another more complicated approach is to consider training samples. Training samples can

be either a subset of our dataset or an imaginary sample used to express our prior beliefs.

Spiegelhalter and Smith (1982) favour the idea of imaginary training samples. Elicitation

of prior beliefs for variable selection in normal models are given by Garthwaite and Dickey

(1992) and Ibrahim and Chen (1999). Berger and Pericchi (1996a) introduced the intrinsic

Bayes factor (see also Section 2.2.5) based on the idea of using a minimal part of the data

for estimation while the rest for model selection. They argue that intrinsic Bayes factors

correspond to actual Bayes factor for a sensible prior. These priors are called intrinsic priors.

Alternative approaches include the use of conjugate priors on canonical parameters ϑi

proposed in minimal Kullback-Leibler approach by Goutis and Robert (1998).

Finally, according to a different perspective, we may utilize the idea of Bedrick et al.

(1996) for any model selection problem. For example in the binomial models with different

link functions a beta prior on binomial probabilities may be used and then calculate the

prior distribution of the model coefficients. Using a beta prior on each pi with parameters

api
and bpi

, assuming that the inverse of the design matrix of the full (saturated) model X
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exists, results in

f (β) =
Γ (api

+ bpi
)

Γ (api
)Γ (bpi

)

p∏
i=1

[exp(xT
i β)]api

[1 + exp(xT
i β)]api +bpi

|X| (3.14)

for the logit link. The corresponding prior for the probit link is given by

f (β) =
Γ (api

+ bpi
)

Γ (api
)Γ (bpi

)

p∏
i=1

[exp(xT
i β)]api−1

[1 + exp(xT
i β)]api +bpi−2

ϕ(xT
i β)|X| (3.15)

where ϕ(.) is the density function of the standard normal distribution. Finally, the density

f (β) =
Γ (api

+ bpi
)

Γ (api
)Γ (bpi

)

p∏
i=1

[exp(xT
i β)]api

[1 + exp(xT
i β)]api +bpi−2

exp
(
−exT

i β
)
|X| (3.16)

defines the prior distribution for the complementary log-log link. The above priors are defined

for the full (saturated) model while all other priors are given by the corresponding marginal

distributions. Although these priors seem plausible, they do not solve the problem of prior

specification since a uniform prior on binomial probabilities strongly supports the constant

model and it unnecessarily complicates the conditional posterior distributions.

3.2.2 Prior Distribution on Model Space

The problem is not only to define the prior on model space M but also to decide how large

M should be. Given that we restrict attention to a limited set of model M, the uniform

distribution on this model space is frequently used as ‘non-informative’ prior because it gives

the same weight in all models included in model M. Therefore, we have

f(m) =
1

|M| , ∀ m ∈M. (3.17)

Suppose that the set of all possible models isM∗. The selection ofM⊂M∗ and assignment

of uniform distribution on this subset is totally misleading and is equivalent to considerM∗

and set the prior probability of all models m ∈ M∗ \M equal to zero. Under this condition

there is not any prior distribution that can be assumed as non-informative unless the set of

all possible models can be exactly determined; for further discussion on this very important

issue see Draper (1995).

In variable selection, when no restrictions on variable combinations are imposed, each

model prior can be easily decomposed to independent Bernoulli distributions for each term

indicator γj

γj ∼ Bernoulli(πj), j ∈ V, (3.18)
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where πj is the prior probability to include j term in the model. In the non-informative case,

the uniform prior on M corresponds to πj = 0.5 for all j ∈ V. The above prior can also be

written in the form

f(γ) =
∏
j∈V

π
γj

j (1− πj)
1−γj .

Usually we consider the same prior probability for all terms under consideration, that is

πj = π, for all j ∈ V resulting to

f(γ) = πd(γ)(1− π)p−d(γ)

where d(γ) is the dimension of γ model, hence d(γ) =
∑
j∈V

γj. It is straightforward that

f(γ) ∝
(

π

1− π

)d(γ)

= [PrO]d(γ)

which denotes that the prior probability of a model depends on its dimension and parameter

PrO which measures the prior odds of including any term in the model equation.

When restrictions on model space are imposed (for example selection of hierarchical mod-

els only in contingency tables) the prior on γ needs to be specified hierarchically. Chipman

(1996) demonstrates how we can define conditional probabilities in order to achieve the prior

(3.17). He also allowed to visit non-hierarchical models with low probability.

Using similar ideas we argue that the probability of a model should be written as a

product of conditional distributions of term indicators and therefore it can be generally

expressed either as

f(γ) =
∏
j∈V

f(γj|{γk : j ∈ V(k)})

or

f(γ) =
∏
j∈V

f(γj|{γk : k ∈ V(j)}).

For example, the probability of a three way ANOVA model with V = {A,B,C,AB,AC,BC,

ABC} can be written as

f(γ) = f(γABC)f(γAB, γAC, γBC |γABC)f(γA|γAB, γAC)f(γB|γAB, γBC)f(γC|γAC , γBC)

or

f(γ) = f(γA)f(γB)f(γC)f(γAB|γA, γB)f(γAC|γA, γC)f(γBC |γB, γC)f(γABC |γAB, γAC, γBC).
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Let us consider the simple example of a two way contingency table with five hierarchical

models (|M| = 5),M = {∅, [A], [B], [A][B], [AB]} and V = {A,B,AB}; where ∅ is the con-
stant model. initially, we set f(γAB) = 1/5 and then f(γA|γAB) = f(γB|γAB) = (1/2)1−γAB

resulting in f(γ) = 1/5 for all γ under consideration.

The prior distributions (3.17) and (3.18) with πj = 0.5 (or PrO = 1.0) are widely used as

non-informative priors since they give the same prior weight to all models. George and Foster

(1997) argue that such prior distributions give more weight to models with dimension close

to p/2 and hence are informative in terms of dimensionality. They alternatively propose the

specification of variable probabilities using empirical Bayes procedures. On the other hand,

Laud and Ibrahim (1996) propose predictive methods for the specification of prior model

probabilities.

An alternative approach includes specification of prior model probabilities depending

on the prior precision of model parameters β. For this reason, the prior parameter PrO,

included in f(m), should be defined as a function of and prior covariance Σ(m) or the pa-

rameter controlling the flatness of the prior distribution, c2. For further details and new

developments see Chapter 6.

3.2.3 An Alternative Prior Specification

An alternative approach can be used for specifying the prior distribution f(β(γ),γ). Instead

of specifying f(β(γ)|γ) and f(γ) we may consider the possibility, at least in variable selection,

to specify f(γ|β) and f(β). Consider the simple case of yi ∼ N(xiγβ, σ
2). We want to test

whether β is significant or not, that is to estimate f(γ). The prior f(γ = 1|β) will the

probability of inclusion of X under specific values of β. For example, the value βs such

that f(γ = 1|βs) = 0.5 will be considered as the value that we are a-priori totally uncertain

whether we should include or not X in our model. Although this prior has nice interpretation

in variable selection problems, it has major drawbacks. The main drawback is that such

prior distributions will complicate the posterior distributions and the sampling procedures.

A further drawback is that we do not know what choices of f(γ|β) are plausible and what

effect will have on the MCMC methods. Moreover, it is quite unclear what distribution will
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be appropriate for f(β). A suggested prior, that needs further exploration, is given by

f(γj = 1|βj) = ξ1e
βj

ξ0 + ξ1eβj

where ξ0/ξ1 is the prior odds to exclude j term from the model when all parameters are zero.

This interpretation closely related with the interpretation of parameter kj used in SSVS; see

Section 3.4.1. Another possible choice is

f(γj = 1|βj) =
ξ1β

2
j

ξ0 + ξ1β2
j

resulting f(γj = 1|βj = 0) = 0 so f(γj = 1|βj = ±
√
ξ0/ξ1) = 0.5. A logical choice for the

latter is
√
ξ0/ξ1 = 2

√
V ar(β̂j); however we have not pursued this issue further.

3.3 MCMC Model Selection Methods

3.3.1 Reversible Jump

Reversible jump (Green, 1995) is a flexible MCMC sampling strategy for generating obser-

vations from the joint posterior distribution f(m,β(m)|y). The method is based on creating

a Markov chain which can ‘jump’ between models with parameter spaces of different di-

mension, while retaining detailed balance which ensures the correct limiting distribution,

provided the chain is irreducible and aperiodic.

Suppose that the current state of the Markov chain is
(
m,β(m)

)
, where β(m) has dimen-

sion d(m), then one version of the procedure is as follows

• Propose a new model m′ with probability j(m,m′).

• Generate u from a specified proposal density q(u|β(m), m,m′).

• Set (β′
(m′),u

′) = hm,m′(β(m),u) where hm,m′ is a specified invertible function. Hence

d(m) + d(u) = d(m′) + d(u′). Note that hm′,m = h−1
m,m′ .

• Accept the proposed move to model m′ with probability

α = min

(
1,

f (y|β′
(m′), m

′)f (β′
(m′)|m′)f (m′)j(m′, m)q(u′|β′

(m′), m
′, m)

f (y|β(m), m)f (β(m)|m)f (m)j(m,m′)q(u|β(m), m,m′)

∣∣∣∣∣
∂h(β(m),u)

∂(β(m),u)

∣∣∣∣∣
)
.

(3.19)
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There are many variations or simpler versions of reversible jump that can be applied in

specific model selection problems. In particular, if all parameters of the proposed model are

generated from a proposal distribution, then (β′
(m′),u

′) = (u,β(m)) with d(m) = d(u′) and

d(m′) = d(u), and the Jacobian term in (3.19) is one. This version of reversible jump could be

used for jumping between models for which no appropriate parameter transformation exists.

Where modelsm andm′ may be described as nested, then there may be an extremely natural

proposal distribution and transformation function hm,m′ (may be the identity function) such

that d(u′) = 0 and βm′ = hm,m′(β(m),u). See, for example, Dellaportas and Forster (1999).

Finally, if m′ = m, then the move is a standard Metropolis-Hastings step.

3.3.2 Carlin and Chib’s Method

Carlin and Chib (1995) proposed using a Gibbs sampler to generate from the posterior

distribution f(m,β(m)|y). In order to do this, it is required to consider a Markov chain of

realisations of {m,β(mk) : mk ∈ M}. Therefore, a prior distribution for {m,β(mk) : mk ∈
M} is no longer completely specified by f(m) and f(β(m)|m), so Carlin and Chib proposed

the use of pseudopriors or linking densities f(β(mk)|m �= mk), mk ∈M.

The full conditional posterior distributions are given by

f (β(mk)|y, {β(ml)
: ml �= mk}, m) ∝




f (y|β(m),m)f (β(m)|m) mk = m

f (β(mk)|mk �= m) mk �= m
(3.20)

where {β(ml)
: ml �= mk} are the parameter vectors β(ml)

for all ml ∈ M \ {mk}. The full

conditional posterior distribution of the model indicator is given by

f (m|{β(mk) : mk ∈M},y) = Am∑
mk∈M

Amk

(3.21)

where {β(mk) : mk ∈ M} are the parameter vectors β(mk) for all mk ∈M and

Am = f (y|β(m), m)
∏

ml∈M

{
f (β(ml)

|m)
}
f (m).

When mk = m, β(mk) are generated from the conditional posterior distribution f (β(m)|m,y),

and when mk �= m from the corresponding pseudoprior, f (β(mk)|m). Since for mk �= m we

generate directly from the pseudopriors f (β(mk)|m), Carlin and Chib sampler will be opti-

mal when these densities are good approximations of the conditional posterior distributions
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f(β(mk)|mk,y) and therefore we only need one density f (β(mk)|m) for all m ∈M\{mk}. In
the following we denote this common pseudoprior as f (β(mk)|mk �= m) for all m ∈M\{mk}.
The model indicator m is generated as a discrete random variable.

The main drawback of this method is the unavoidable specification of, and generation

from, many pseudoprior distributions. Carlin and Chib (1995) point out that, pseudopriors

should be chosen to make the method efficient, since they do not enter the marginal posterior

distributions f
(
m,β(m)|y

)
of interest. However, generation from |M| − 1 pseudopriors at

every cycle of the Gibbs sampler is still required, and this is computationally demanding.

3.3.3 Markov Chain Monte Carlo Model Composition (MC3)

Markov chain Monte Carlo model composition (MC3) was introduced by Madigan and York

(1995) in graphical model selection. Variants of MC3 were used in normal linear models by

Hoeting et al. (1995, 1996), Raftery et al. (1997). MC3 is a simple Metropolis algorithm

which helps to explore the model space when the number of candidate models is large. We

define as neighbourhood of model m the set nb(m) which includes all models that differ from

m by one term or variable. We also select a transition function j(m,m′) for all m,m′ ∈ M
which indicates the probability of proposing model m′ when we are currently in model m.

Note that j(m,m′) = |nb(m)|−1, for all m′ ∈ nb(m) and j(m,m′) = 0, for all m′ /∈ nb(m);

where |nb(m)| are the number of models in nb(m). If the chain is currently in state m

then we propose model m′ with probability j(m,m′) and accept this proposed model with

probability

α = min

(
1,

f (m′|y)|nb(m)|
f (m|y)|nb(m′)|

)
.

The above procedure composes the definition of MC3 for graphical model selection by Madi-

gan and Raftery (1994). In the case where |nb(m)| = |nb(m′)| the above acceptance prob-

ability is simplified to α = min(1, POm′,m), as given by Kass and Raftery (1995), Madigan

et al. (1995) and Raftery et al. (1997). We can easily generalise MC3 by using any j(m,m′)

and therefore accept the proposed model m′

α = min

(
1,

f (m′|y)j(m′, m)

f (m|y)j(m′, m)

)
. (3.22)

In cases at which the posterior odds (or Bayes factor) cannot be calculated analytically, BIC

or Laplace approximations may be used instead. The Metropolis step, when we are in model
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m and propose to switch to model m′, is given by

α = min


1, |XT

(m′)Ĥ(m′)X(m′)| 12 f (y|β̂(m′), m
′)f (β̂(m′)|m′)j(m′, m)

|XT
(m)Ĥ(m)X(m)| 12 f (y|β̂(m), m)f (β̂(m)|m)j(m,m′)

(2π)[d(m
′)−d(m)]/2




when Laplace approximation is adopted or

α = min


1, f (y|β̂(m′), m

′)j(m′, m)

f (y|β̂(m), m)j(m,m′)
n−[d(m′)−d(m)]/2




is based on BIC approximation.

The results from approximate MC3 samplers can be used as a yardstick for further

analysis or as proposal distributions in more advanced MCMC model selection algorithms

such as reversible jump and Carlin and Chib sampler. These approximation should be

handled with care since regularity conditions must hold; for details see Pauler (1998). Laplace

approximations should be preferred since it provides more accurate results and allows for

prior adjustment.

3.4 Variable Selection

As we have already mentioned, in variable selection problems statistical models may be

represented naturally as (s,γ) ∈ S × {0, 1}p, where the indicator vector γ represents which

of the p possible sets of covariates are present in the model and s represents other structural

properties of the model. For example, in generalised linear models, s may describe the

distribution, link function and variance function, and the linear predictor is given by (3.2).

In the following, we restrict consideration to variable selection aspects assuming that s is

known, or dealt with in another way and therefore we substitute γ for model indicator m.

For example, we can apply reversible jump to variable selection by substituting γ for m in

(3.19).

3.4.1 Stochastic Search Variable Selection

Stochastic Search Variable Selection (SSVS) was introduced by George and McCulloch (1993)

for linear regression models and has been adopted for more complicated cases in pharma-

cokinetics, finance, generalised linear models, log-linear models and multivariate regression

models.
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3.4.1.1 The Method

The difference between SSVS and other variable selection approaches is that the parameter

vector β is specified to be of full dimension p under all models, so the linear predictor is

η = Xβ instead of (3.2) for all models, where X contains all the potential explanatory

variables. The indicator variables γj are involved in the modelling process through the prior

βj|γj ∼ γjN(0,Σj) + (1− γj)N(0, k−2
j Σj) (3.23)

for specified kj and Σj. The prior parameters kj and Σj in (3.23) are chosen so that when

γj = 0 (covariate is ‘absent’ from the linear predictor) the prior distribution for βj ensures

that βj is constrained to be ‘close to 0’. When γj = 1 the prior is diffuse, assuming that

little prior information is available about βj .

The full conditional posterior distributions of βj and γj are given by

f (βj |β\j ,γ,y) ∝ f (y|β,γ)f (βj |γj) (3.24)

and
f (γj = 1|β,γ\j ,y)

f (γj = 0|β,γ\j ,y)
=

f (β|γj = 1,γ\j)

f (β|γj = 0,γ\j)

f (γj = 1,γ\j)

f (γj = 0,γ\j)
(3.25)

where γ\j denotes all terms of γ except γj.

If we use the prior distributions for β and γ defined by (3.23) and assume that f (γj =

0,γ\j) = f (γj = 1,γ\j) = |M|−1 for all j ∈ V, then
f (γj = 1|β,γ\j ,y)

f (γj = 0|β,γ\j ,y)
= k

−dj

j exp

(
k2
j − 1

2
βT
j Σ

−1
j βj

)
. (3.26)

3.4.1.2 Priors for Stochastic Search Variable Selection

The posterior model probabilities are heavily dependent on the choice of the prior parameters

k2
j and Σj. One way of specifying these parameters is by setting Σj as a diffuse prior (for

γj = 1) and then choosing k2
j by considering the value of |βj| at which the densities of the

two components of the prior distribution are equal. This can be considered to be the smallest

value of |βj| at which the term is considered of practical significance.

When βj is one-dimensional then specification of the prior may be completed by using the

methodology of George and McCulloch (1993), using the value of |βj| at which the densities

of the two components of the prior distribution are equal. In this case f(γj = 0|βj) = f(γj =
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1|βj), and therefore it may be considered as the smallest value for which the term is thought

to be of practical significance. Now, suppose that δj is the smallest value of βj of practical

significance. Then

δj =

√√√√Σj
2 log kj
(k2

j − 1)
≈
√√√√Σj

2 log kj
k2
j

, (3.27)

where Σj is the prior variance when j is included in the model. From the above we may

specify δj and then try to identify optimal selections of Σj and kj. In some cases, the

user defines the ‘large’ variance (Σj) and may use the above equation to define the ‘small’

variance. Moreover, δjkjΣ
−1/2
j changes slowly with variations of kj since for kj =10, 100,

1,000, 10,000, 100,000 then δjkjΣ
−1/2
j = 2.1, 3.1, 3.7, 4.3, 4.8. The semiautomatic ap-

proach considers the two marginal distributions β̂j |σ2
β̂j
, γj = 0 ∼ N

(
0, σ2

β̂j
+ k−2

j Σj

)
and

β̂j |σ2
β̂j
, γj = 1 ∼ N

(
0, σ2

β̂j
+ Σj

)
, where σ2

β̂j
is the variance of the least square estimates β̂j

and their intersection point; for more details see George and McCulloch (1993).

According to George and McCulloch (1997), SSVS gives results close to the actual pos-

terior probabilities for large values of kj. On the other hand, the largest the prior parameter

kj the slowest the convergence of the chain. Hence, we propose to specify Σj as described in

usual Bayesian model selection methods and kj in such way that gives results close to the

actual posterior probabilities and also does not prevent the chain to converge in reasonable

time. We report that kj = 1000 is a sensible choice. Moreover,

f(γj = 0|βj = 0)

f(γj = 1|βj = 0)
= kj

f(γj = 0)

f(γj = 1)
.

and therefore kj can be interpreted as the prior odds that j term should be excluded from the

model if βj is zero and f(γj = 1) = 1/2. Under this interpretation the values 100 < kj < 1000

seem plausible choices. We can still use (3.27) to monitor the area of non-significant values

for different choices of priors. Similar methods are proposed in Chapter 4 for the specification

of prior distributions in log-linear interaction models where βj terms are multidimensional.

George and McCulloch (1993) also proposed an alternative prior set-up based on a mul-

tivariate normal distribution. This prior is given by

β|γ ∼ N(0,DγRγDγ), Dγ = diag[k
γj−1
j Σ

1/2
j ] (3.28)

where Rγ is the prior correlation matrix and Σj is the prior variance when the j term is

in the model. George and McCulloch (1993) propose Rγ = I and Rγ ∝ (XTX)−1. We
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may generalise the latter proposed prior correlation for all generalised linear models by using

Rγ ∝ I ˆβ
; for further details see George and McCulloch (1997).

3.4.2 Kuo and Mallick Variable Selection

Kuo and Mallick (1998) advocated the use of the linear predictor (3.2) for variable selection.

They considered a prior distribution f (β) which is independent of γ (and therefore m) so

that f (βj |β\j,γ) = f (βj |β\j)

Therefore, the full conditional posterior distributions are given by

f (βj |β\j ,γ,y) ∝



f (y|β,γ)f (βj |β\j) γj = 1

f (βj|β\j) γj = 0
(3.29)

and
f (γj = 1|β,γ\j ,y)

f (γj = 0|β,γ\j ,y)
=

f (y|β, γj = 1,γ\j)

f (y|β, γj = 0,γ\j)

f (γj = 1,γ\j)

f (γj = 0,γ\j)
. (3.30)

The above approach is extremely straightforward. It only requires to specify the usual

prior on β (for the full model) and the conditional prior distributions f (βj |β\j) replace the

pseudopriors required by Carlin and Chib’s method. However, this simplicity may also be a

drawback, as there is no flexibility here to alter the method to improve efficiency. In practice,

if, for any βj, the prior is diffuse compared with the posterior, the method may be inefficient.

3.5 Model Selection Methods for Linear Normal Mo-

dels Using Marginal Posterior Distributions

This section critically reviews and generalises MCMC methodologies used to explore model

space in normal models. In normal models we can exactly evaluate the posterior odds if we

use the prior distributions (3.6) and (3.7) which result to the conjugate joint prior called

normal inverse gamma. The only problem is such cases is the calculation of all posterior

probabilities when the set of models is large. Therefore these methods sample directly

from the target distribution f(γ|y), or f(m|y), without the need to generate samples also

from model parameters β(γ) and σ2 or any other pseudo-parameters. For this reason we

call these methods ‘fast’ model selection algorithms. Similar terminology was also used by
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Chipman (1997). We divide this subsection into three parts. The first describes all the

variable selection methods and their associations, the second describes the transformations

advocated and the last is concerned with the outlier identification.

3.5.1 Fast Variable Selection Algorithms

In this section we consider the conjugate prior (3.6) and (3.7) resulting to a normal inverse

gamma prior distribution for β(m) and σ2.

The fast variable selection methods involve generation of the model indicator m or γ

directly from the marginal posterior distribution f(m|y) or f(γ|y). The approach varies

according to the sampler (Metropolis or Gibbs approach), the prior distributions used and

the model indicator approach adopted (m or γ). We will try to be as general as possible

adopting the general normal inverse gamma prior setup and restrict attention to special cases

presented by other authors.

Smith and Kohn (1996) developed a Gibbs sampler for variable selection for nonparamet-

ric regression in normal models. The resulted Gibbs sampler involves sequential generation

of each γj from a Bernoulli distribution with success probability Oj/(1 + Oj); where Oj is

given by

Oj =
f(γj = 1|γ\j ,y)

f(γj = 0|γ\j ,y)
=

=


 |Σ̃(γj=1,γ\j)

||Σ(γj=0,γ\j)
|

|Σ(γj=1,γ\j)
||Σ̃(γj=0,γ\j)

|




1/2
SSγj=1,γ\j

+ 2bτ

SSγj=0,γ\j
+ 2bτ




−n/2−aτ

f(γj = 1,γ\j)

f(γj = 0,γ\j)
, (3.31)

where aτ and bτ are prior parameters of the precision with usual choices of aτ = bτ = 0, Σ̃γ

is the posterior covariance matrix given by

Σ̃γ =
(
XT

(γ)X(γ) +Σ−1
(γ)

)−1

and SSγ are the posterior residual sum of squares given by

SSγ = yTy + µT
β(γ)

Σ−1
(γ)µβ(γ)

−
(
XT

(γ)y +Σ−1
(γ)µβγ

)T
Σ̃(γ)

(
XT

(γ)y +Σ−1
(γ)µβγ

)
(3.32)

when the general normal inverse gamma prior setup is adopted. Smith and Kohn (1996)

used the more restrictive prior (3.8) with prior parameters given by (3.9) which is related to



80 I.Ntzoufras: Aspects of Bayesian Model and Variable Selection Using MCMC

Zellner’s g-priors; see Zellner (1986). The posterior distributions are now simplified to

Oj =
f(γj = 1|γ\j ,y)

f(γj = 0|γ\j ,y)
= (c2 + 1)−dj/2


SSγj=1,γ\j

+ 2bτ

SSγj=0,γ\j
+ 2bτ




−n/2−aτ

f(γj = 1,γ\j)

f(γj = 0,γ\j)
, (3.33)

where where SSγ are given by

SSγ = yTy − c2

c2 + 1
yTX(γ)

(
XT

(γ)X(γ)

)−1
XT

(γ)y. (3.34)

Under the same prior setup Smith and Kohn (1996) type of Gibbs samplers are closely

related to MC3 for normal models provided that we substitute the model indicator m by γ

and the Metropolis step by sequential Gibbs steps. One sampling step in MC3 is equivalent

to updating one γj using a Metropolised version of Smith and Kohn sampler. Therefore, the

MC3 step for accepting a proposed move from model m to model m′ ∈ nb(m′) (model m′

differs from model m only in j term) is given by

α =




min
(
1, Oj

j(m′,m)
j(m,m′)

)
when γj = 1

min
(
1, O−1

j
j(m′,m)
j(m,m′)

)
when γj = 0

.

The ratio Oj will be given by equations (3.31) and (3.32) if the general normal inverse gamma

setup is adopted or by equations (3.33) and (3.34) in the case of the Smith and Kohn prior

setup.

Consider now two models γ ′ and γ ′′ differing only in the jth term, that is γ′
j = 1

and γ′′
j = 0 while γ′

ν = γ′′
ν for all ν ∈ V \ {j}. Then without loss of generality we set

X(γ ′) = [X(γ ′′),Xj]. Under the above assumption, the posterior residual sum of squares

with Smith and Kohn (1996) prior is given by

SSγ ′ = SSγ ′′ +
c2

c2 + 1
yT
(
I − Pγ ′′

)(
Xj

(
XT

j Xj −XT
j Pγ ′′X j

)−1
XT

j

)(
I −Pγ ′′

)
y

where

Pγ = X(γ)

(
XT

(γ)X(γ)

)−1
XT

(γ).

In orthogonal cases the posterior residual sum of squares (3.34) simplifies to

SSγ = yTy − c2

c2 + 1

∑
j∈V

γjFj

Fj = yTXj

(
XT

j Xj

)−1
XT

j y = β̂
T

j XT
j Xjβ̂j. (3.35)
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Substituting the above formula in the posterior distribution of variable indicators results in

Clyde et al. (1996) Gibbs sampler for orthogonal cases with prior (3.9) and aτ = bτ = 0.

The resulting conditional posterior term probabilities are given by

f(γj = 1|γ\j,y)

f(γj = 0|γ\j,y)
= (c2 + 1)−dj/2

(
1− c2

c2 + 1
Fj/SSγj=0,γ\j

)−n/2
. (3.36)

Clyde (1999) introduced a straightforward sampler for linear regression models with

known variance. A more general version of Clyde (1999), ideal for ANOVA model selec-

tion with sum-to-zero constraints, is developed in this section. Clyde (1999) utilizes clever

ideas similar to Foster and George (1994) where they use information criteria in orthogonal

data to select variables rather than models.

Assuming known σ2 and the prior distribution (3.4) the posterior conditional for γj will

be (as usually) Bernoulli with success probability Oj/(1 +Oj) and Oj is given by

Oj =
f(γj = 1|y, σ2,γ\j)

f(γj = 0|y, σ2,γ\j)
=

f(γj = 1,γ\j)

f(γj = 0,γ\j)
O′
j

O′
j =

( |XT
j Xj/σ

2 +Σ−1
j |

|Σ−1
j |

)−1/2

exp
(
1

2
A∗T

j (XT
j X j/σ

2 +Σ−1
j )−1A∗

j −
1

2
µT
βj
Σ−1

j µβj

)

A∗
j = (XT

j Xjβ̂j/σ
2 +Σ−1

j µβj
)

where O′
j is the Bayes factor to include the j term, β̂j are the maximum likelihood estimates

of the parameters of the j term.

For unknown σ2, an alternative prior specification is given by βj ∼ Ndj
(0, c2(XT

j Xj)
−1σ2)

and σ−2 ∼ G(aτ , bτ ) resulting to the Gibbs sampler steps

γj|σ2,γ\j,y ∼ Bernoulli

(
Oj

1 +Oj

)

Oj =
f(γj = 1, γ\j)
f(γj = 0, γ\j)

(c2 + 1)−dj/2exp

(
1

2σ2

c2

c2 + 1
Fj

)

and

σ−2|γ,y ∼ G

(
aτ + n/2, bτ + (yTy − c2

c2 + 1

p∑
i=1

γjFj)/2

)
.

If instead of sampling σ2 we integrate it out we result in Clyde et al. (1996) sampler for

orthogonal data as given by (3.36).

The main advantage of Clyde (1999) is the computational speed since it is much faster

than other MCMC methods. Moreover, it is suitable for ANOVA models where the design
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matrix is orthogonal. On the other hand, the assumptions of orthogonality and known resid-

ual variance required in normal models is not generally the case. The required orthogonality

is restrictive and cannot be used when interpretation of casual relationships or selection of

a parsimonious model is the main interest. Generally, Smith and Kohn (1996) sampler or

MC3 in linear models can be easily implemented and can handle non-orthogonal data and

unknown residual variance.

The extension of Clyde (1999) to non-normal or non-orthogonal models is problematic.

The method does not provide good approximations when regressors with low correlation

are used. Moreover it does not generally work in Poisson or binomial models since the

assumption of constant variance results in bad approximations. A tool should be developed

for identifying cases where this method may be applied. An alternative Gibbs sampler for

regression models was introduced by Geweke (1996) which was constructed by integrating out

from the model selection step for the j term only the corresponding parameter βj . Summary

of the above paragraphs is given as a discussion of Clyde (1999) paper; see Ntzoufras (1999a).

George and McCulloch (1997) developed a sampler similar to Smith and Kohn (1996)

sampler based on SSVS. They used a multivariate normal prior for the parameter vector on

the full model given by

β|σ2,γ ∼ N(0p, [DγRγDγ ]σ
2)

and the usual gamma prior (3.6) for the residual precision parameter. The resulting posterior

is given by

f(γj = 1|γ\j ,y)

f(γj = 0|γ\j ,y)
= (c2 + 1)−dj/2


SS∗

γj=1,γ\j
+ 2bτ

SS∗
γj=0,γ\j

+ 2bτ




−n/2−aτ

, (3.37)

where SS∗
γ are the posterior sum of squares for SSVS given by

SS∗
γ = yTy − yTX

(
XTX + [DγRγDγ ]

−1
)−1

XTy.

where DγRγDγ is the SSVS prior variance defined in (3.28). We may use the simplified

prior (3.23) by setting [DγRγDγ ]
−1 = diag[k

2(1−γj)
j Σ−1

j ]. In orthogonal cases, using this

prior setup, results to a Gibbs sampler similar to Clyde et al. (1996) sampler with

SS∗
γ = yTy −∑

j∈V
k
−2(1−γj )
j yTXj

(
XT

j Xj +Σ−1
j

)−1
XT

j y.
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In order to make the above equation comparable to (3.36) we use the equivalent to Smith

and Kohn (1996) prior that is Σj = c2
(
XT

j Xj

)−1
resulting to

SS∗
γ = yTy − c2

c2 + 1

∑
j∈V

k
−2(1−γj )
j Fj

where Fj is given by (3.35). In this case SS∗
γ = SSγ +

∑
j:γj=0 k

−2
j Fj and for large kj we

have SS∗
γ ≈ SSγ . The above fast version of SSVS for orthogonal cases using Smith and

Kohn(1996) type prior differs only in the summation where γj is substituted by k
−2(1−γj)
j .

The resulting conditional posterior is given by

f(γj = 1|γ\j ,y)

f(γj = 0|γ\j ,y)
= (c2 + 1)−dj/2

(
1− k2

j − 1

k2
j

c2

c2 + 1
Fj/SS

∗
γj=0,γ\j

)−n/2
. (3.38)

Brown et al. (1998) expanded the idea of fast variable selection using SSVS setup in

multivariate normal regression models. The resulting posterior for variable selection has

similar form to the above involving more complicated matrices. Similar approach can be

used to extend Smith and Kohn (1996) methodology to multivariate regression models.

3.5.2 Transformations

A very frequent problem, especially in normal models, is the identification of an appropriate

transformation of the response variable Y . Hoeting et al. (1995) have used MC3 and tried

to identify which transformation was appropriate. We consider the Box-Cox transformations

and therefore the normal linear model is now written

Y (ρ) ∼ N(η, Iσ2), Y (ρ) =




(Y ρ − 1)/ρ ρ �= 0

log(Y ) ρ = 0
.

Hoeting et al. (1995) consider a limited set for values of ρ ∈ {−1, 0, 1/2, 1} but also contin-

uous values can be considered. In the first step we propose to move from m (or γ) to a new

model m′ ∈ nb(m) (or γ ′) which differs by only one covariate (say in j term). Therefore the

MC3 step is given by

α = min

(
1,

f(1− γj|ρ,γ\j ,y)j(γ
′,γ)

f(γj,γ\j|ρ,y)j(γ,γ ′)

)

while in the second step we propose ρ to change to ρ′ with probability j(ρ′, ρ) and accept

the move with probability

α = min

(
1,

f(ρ′|γ,y)j(ρ′, ρ)j(ρ, ρ′)
f(ρ′|γ,y)j(ρ, ρ′)j(ρ′, ρ)

)
.
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Alternatively, a Gibbs sampler is given by sampling γj from the Bernoulli with success

probability Oj/(1 +Oj) with Oj equal to (3.31) in which we substitute SSγ by SSρ,γ given

by

SSρ,γ = y(ρ)Ty(ρ)+µT
β(γ)

Σ−1
(γ)µβ(γ)

−(XT
(γ)y(ρ)+Σ−1

(γ)µβ(γ)
)T Σ̃(γ)(X

T
(γ)y(ρ)+Σ−1

(γ)µβ(γ)
).

and

f(ρ|γ,y) ∝ [SSρ,γ + 2bτ ]
−n/2−aτ f(ρ).

For the simplified prior of Smith and Kohn (1996) the posterior residual sum of squares

reduces to

SSρ,γ = y(ρ)Ty(ρ)− c2

c2 + 1
y(ρ)TX(γ)

(
XT

(γ)X(γ)

)−1
XT

(γ)y(ρ).

The uniform prior on the set of possible values of ρ, R can be used without any problem.

Possible proposal distributions for ρ can be a normal distribution with mean value equal to

ρ′.

3.5.3 Outlier Identification

The most common method for outlier identification is called variance inflation method and

was used by Hoeting et al. (1996) for linear models and Albert and Chib (1997) for generalised

linear models. An alternative method is proposed in next chapter. Similar to variable

selection procedures, we introduce a latent vector of binary variables v which indicates

outliers by vi = 0.

In the variance inflation method, the normal linear model is modified to

y ∼ N
(
X(γ)β(γ),Qvσ

2
)
,

where Qv = Diag[K2(1−vi)] and K is a fixed parameter to be specified. Hoeting et al. (1996)

suggested K = 7 and f(vi = 0) = 0.10 for small datasets (n < 50) and f(vi = 0) = 0.02 for

larger datasets. They used MC3 for variable and outlier identification but also Smith and

Kohn (1996) approach can be adopted.

Using MC3 for both variable and outlier identification results in two Metropolis steps.

In the first we propose a new model with covariates given by γ ′ differing by γ only in one
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term and accept the move with probability

α = min

(
1,

f(1− γj|γ\j ,v,y)j(γ
′,γ)

f(γj|γ\j ,v,y)j(γ,γ ′)

)
. (3.39)

Then we propose with probability j(v,v′) to move from v to v′ that differ only in the ith

coordinator and accept the move with probability

α = min

(
1,

f(1− vi|γ,v\i,y)j(v′,v)
f(vi|γ,v\i,y)j(v,v′)

)
(3.40)

If a prior of the form

β(γ)|v,γ ∼ N(µβ(γ)
,Σ(γ ,v))

is adopted then the Gibbs sampler is given by sequential generations of γj from the Bernoulli

with success probability Oj/(1 + Oj) with Oj given by (3.31) but the posterior covariance

matrix is now given by

Σ̃(γ ,v) =
(
XT

(γ)Q
−1
v X(γ) +Σ−1

(γ ,v)

)−1

while the posterior residual sum of squares SSγ is substituted by

SSγ,v = yT Q−1
v y + µT

β(γ)
Σ−1

(γ ,v)µβ(γ)
− (XT

(γ)Q
−1
v y +Σ−1

(γ,v)µβ(γ)
)T Σ̃(γ,v)(X

T
(γ)Q

−1
v y +Σ−1

(γ,v)µβ(γ)
).

(3.41)

Similarly the outlier identification step will involve sequential generations from similar Ber-

noulli steps with success probability O∗
i /(1 +O∗

i ); where O∗
i is given by

O∗
i =

f(vi = 1|γ,v\i,y)
f(vi = 0|γ,v\i,y)

=


 |Σ̃(γ ,vi=1,v\i)||Σ(γ ,vi=0,v\i)|
|Σ(γ ,vi=1,v\i)||Σ̃(γ ,vi=0,v\i)|




1/2 (
SS(γ ,vi=1,v\i) + 2bτ

SS(γ ,vi=0,v\i) + 2bτ

)−n/2−aτ f(vi = 1,v\i)
f(vi = 0,v\i)

.

If we adopt the prior

β(γ)|σ2,v,γ ∼ N
(
0, c2

(
XT

(γ)Q
−1
v X(γ)

)−1
σ2
)

the sampler is reduced to

f(γj = 1|v,γ\j ,y)

f(γj = 0|v,γ\j ,y)
= (c2 + 1)−dj/2


SSγj=1,γ\j ,v + 2bτ

SSγj=0,γ\j ,v + 2bτ




−n/2−aτ

f(γj = 1,γ\j)

f(γj = 0,γ\j)

and
f(y|vi = 1,v\i,γ)
f(y|vi = 0,v\i,γ)

=

(
SSvi=1,v\i,γ + 2bτ

SSvi=0,v\i,γ + 2bτ

)−n/2−aτ f(vi = 1,v\i)
f(vi = 0,v\i)

SSv,γ = yTQ−1
v y − c2

c2 + 1
yTQ−1

v X(γ)

(
XT

(γ)Q
−1
v X(γ)

)−1
XT

(γ)Q
−1
v y.
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Chapter 4

Further Developments of MCMC

Model and Variable Selection

In this chapter we introduce new MCMC model selection algorithms, describe associations

and connections between MCMC methods, develop SSVS priors for factors with multiple

categories and log-linear models and provide implementational details. We focus on the

methods of Green (‘reversible jump’, 1995) and Carlin and Chib (1995), and describe a

connection between them. We also consider ‘variable selection’ problems where the models

under consideration can be naturally represented by a set of binary indicator variables so that

M⊆ {0, 1}p, where p is the total possible number of variables. We introduce a modification

of Carlin and Chib’s method for variable selection problems, which is more efficient in certain

examples. Elements of this chapter and comparisons of MCMC model selection methods are

also summarised in two research papers; see Dellaportas et al. (1998, 1999).

4.1 Further Gibbs Samplers for Variable Selection

4.1.1 Gibbs Variable Selection

The first approach is a natural hybrid of SSVS and the ‘Unconditional Priors’ approach of

Kuo and Mallick (1998). The linear predictor is assumed to be of the form of (3.2) where,

unlike SSVS, variables corresponding to γj = 0 are genuinely excluded from the model.

Furthermore, it does not require unnecessary generation from pseudopriors.

87
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We specify the prior for (β,γ) as f(β,γ) = f(β|γ)f(γ). If we consider a partition of β

into
{
β(γ),β(\γ)

}
corresponding to those components of β which are included (γj = 1) or

not included (γj = 0) in the model, then the prior f(β|γ) may be partitioned into model

prior f(β(γ)|γ) and pseudoprior f(β
(\γ)|β(γ),γ).

The full conditional posterior distributions are given by

f (β
(γ)|β(\γ),γ,y) ∝ f (y|β,γ)f(β(γ)|γ)f(β(\γ)|β(γ),γ) (4.1)

f (β
(\γ)|β(γ),γ,y) ∝ f(β

(\γ)|β(γ),γ) (4.2)

and

Oj =
f (γj = 1|γ\j ,β,y)

f (γj = 0|γ\j ,β,y)
=

f (y|β, γj = 1,γ\j)

f (y|β, γj = 0,γ\j)

f (β|γj = 1,γ\j)

f (β|γj = 0,γ\j)

f (γj = 1,γ\j)

f (γj = 0,γ\j)
(4.3)

Note that (4.1) seems less natural than (3.20) as f(β
(γ)|β(\γ),γ,y) may depend on β

(\γ).

One way of avoiding this is to assume prior conditional independence of βj terms given γ,

in which case f(β
(\γ)|β(γ),γ) vanishes from (4.1). This is a restrictive assumption but

may be realistic when priors are intended to be non-informative, particularly if the columns

of different Xj in (3.2) are orthogonal to each other. Then, each prior for βj |γ consists of

a mixture of two densities. The first, f (βj |γj = 1,γ\j), is the true prior for the parameter

whereas the second, f (βj |γj = 0,γ\j), is a pseudoprior. Another way to make (4.1) usable

is to define priors f(β(γ)|β(\γ),γ) =f(β(γ)|γ) so that we need to calculate the true prior

conditional density as f (βj |β\j, γj = 1,γ\j).

This approach is simplified if we assume that the prior for βj depends only on γj and is

given by

f (βj|γj) = γjN(0,Σj) + (1− γj)N(µ̄j ,Sj), (4.4)

where µ̄j and Sj are pseudoprior parameters that can be specified carefully in order to achieve

optimal convergence of the MCMC algorithm. The above prior, f(βj |γj), potentially makes

the method less efficient and is most appropriate in examples where X is orthogonal. If

prediction, rather than inference about the variables themselves, is of primary interest, then

X may always be chosen to be orthogonal (see Clyde et al. , 1996).

There is a similarity between this prior and the prior used in SSVS. However, here the
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full conditional posterior distribution is given by

f (βj |β\j ,γ,y) ∝



f (y|β,γ)N(0,Σj) γj = 1

N(µ̄j ,Sj) γj = 0

and a clear difference between this and SSVS is that the pseudoprior f(βj|γj = 0) does not

affect the posterior distribution and may be chosen as a ‘linking density’ to increase the

efficiency of the sampler, in the same way as the pseudopriors of Carlin and Chib’s method.

Possible choices of µ̄j and Sj may be obtained from a pilot run of the full model; see,

for example, Dellaportas and Forster (1999). For more details on selection of pseudoprior

parameters see Section 4.5.1.

4.1.2 Variable Selection Using Carlin and Chib Sampler

Here we illustrate how Carlin and Chib (1995) sampler can be simplified for variable selection

problems. This variant will be called Carlin and Chib variable selection method (CCVS).

We substitute the model indicator m by the term indicator vector γ and therefore for model

γ we have to consider the corresponding parameter vector β(γ). This results in

O∗
j =

f(γj = 1|{βγ∗ ,γ∗ ∈M},γ\j,y)

f(γj = 0|{βγ∗ ,γ∗ ∈M},γ\j,y)
= LRj × PRj × PSRj ×

f(γj = 1,γ\j)

f(γj = 0,γ\j)
(4.5)

where {βγ∗ ,γ∗ ∈ M} denotes all possible parameter vectors, LRj , PRj and PSRj are the

likelihood ratio, the prior and pseudoprior density ratios given by

LRj =
f(y|β(γj=1,γ\j)

, γj = 1,γ\j)

f(y|β(γj=0,γ\j)
, γj = 0,γ\j)

,

PRj =
f(β(γj=1,γ\j)

|γj = 1,γ\j)

f(β(γj=0,γ\j)
|γj = 0,γ\j)

,

PSRj =
f(β(γj=0,γ\j)

|γj = 1,γ\j)

f(β(γj=1,γ\j)
|γj = 0,γ\j)

.

The sampling procedure of Carlin and Chib variable selection sampler can be summarized

by

• Generate β(γ) from the corresponding conditional posterior f(β(γ)|γ,y).

• For all j ∈ V repeat the steps
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– Generate β(1−γj ,γ\j)
from the pseudoprior f

(
β(1−γj ,γ\j)

|γ
)
.

– Generate γj according to (4.5).

The above modification simplifies the Carlin and Chib sampler and makes it efficient for

variable selection problems. Now we do not need to generate 2p vectors from pseudopriors

but only the ones necessary for the calculation of (4.5) reducing the number of pseudoprior

generations to p. Table 4.1 gives a brief comparison of Gibbs methods. Another approach

can be adopted is the Bedrick et al. (1996) prior setup as described in Section 3.2.1.5.

4.2 Extensions of Fast Variable Selection Algorithms

4.2.1 Extension to Error Dependent and Autoregressive Models

We can easily extend fast variable selection methodologies (including MC3) in error depen-

dent models. In the case where the model likelihood can be written as y ∼ N(η,Tσ2) where

T denotes a known covariance structure. If we use the MC3 algorithm then we propose

to move from model γ to model γ ′ that differ only in j term with probability j(γ,γ ′) and

accept the proposed move with probability equal to

α = min

(
1,

f(1− γj|T ,γ\j,y)j(γ
′,γ)

f(γj|T ,γ\j ,y)j(γ,γ
′)

)
.

Alternatively, a Gibbs sampler with prior setup given by normal inverse gamma distri-

bution (equations 3.6 and 3.7) will result to sequential generations of γj from the Bernoulli

with success probability Oj/(1 + Oj) with Oj given by (3.31) but the posterior covariance

matrix is now given by

Σ̃(γ) =
(
XT

(γ)T
−1X(γ) +Σ−1

(γ)

)−1

while the posterior residual sum of squares SSγ are substituted by

SST,γ = yTT−1y + µT
β(γ)

Σ−1
(γ)µβ(γ)

−
(
XT

(γ)T
−1y +Σ−1

(γ)µβ(γ)

)T
Σ̃(γ)

(
XT

(γ)T
−1y +Σ−1

(γ)µβ(γ)

)
.

(4.6)

If we use the prior mean µβ(γ)
= 0 and the prior covariance matrix is given by

Σ(γ) = c2
(
XT

(γ)T
−1X(γ)

)−1
σ2
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then the full conditional posterior odds of j term, Oj, are simplified to

Oj =
f(γj = 1|T ,γ\j ,y)

f(γj = 0|T ,γ\j ,y)
= (c2 + 1)−dj/2


SST,γj=1,γ\j

+ 2bτ

SST,γj=0,γ\j
+ 2bτ




−n/2−aτ

f(γj = 1,γ\j)

f(γj = 0,γ\j)
,

and the posterior sum of squares is reduced to

SST,γ = yTT−1y − c2

c2 + 1
yTT−1X (γ)

(
XT

(γ)T
−1X(γ)

)−1
XT

(γ)T
−1y.

In the case where T is unknown or it has special structure, the model might be given by

y ∼ N(η,T ) and using the prior β(γ)|T ∼ N
(
0, c2

(
XT

(γ)T
−1X (γ)

)−1
)
, results in the

posterior distribution

f(T ,γ|y) ∝ |T |−1/2exp
(
−1

2
SST,γ

)
f(T |γ)f(γ).

Fast variable selection methods have been also developed for autoregressive models by

Troughton and Godsill (1998) using reversible jump and MC3 while Barnett et al. (1996)

used a Gibbs sampler. Additionally, Smith et al. (1998) used similar Gibbs based approach

in nonparametric regression with autoregressive errors.

4.2.2 Fast Variable Selection Methods for Probit Models

Here we consider the probit regression model for categorical outcomes using continuous latent

variables as defined by Albert and Chib (1993). For dichotomous responses Yi we define the

latent values Zi that satisfy the condition Yi = 1 if Zi > 0 and Yi = 0 if Zi ≤ 0 and assume

that Zi follow a distributional law. If the assumed distribution is normal then we have the

probit model Z ∼ N(η, I). In this model formulation we can adopt the prior distribution

β(γ)|γ ∼ N
(
0, c2

(
XT

(γ)X(γ)

)−1
)

which results in

f(Z,γ|y) ∝ (c2 + 1)−d(m)/2exp
(
−1

2
SSZ,γ

)
f(γ)

n∏
i=1

Ei

with Ei = I(Zi > 0)I(Yi = 1) + I(Zi ≤ 0)I(Yi = 0) and SSZ,γ are the posterior sum of

squares as defined in (3.34) with response values given by the latent vector Z. The Gibbs

sampler can be constructed by two steps

f(Z|γ,y) = Nn


0,

[
I − c2

c2 + 1
X(γ)

(
XT

(γ)X(γ)

)−1
XT

(γ)

]−1

 n∏

i=1

Ei
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f(γj = 1|γ\j ,Z,y)

f(γj = 0|γ\j ,Z,y)
= (c2 + 1)−dj/2exp

(
−1

2
[SSZ,γj=1,γ\j

− SSZ,γj=0,γ\j
]
)
f(γ).

For polychotomous responses the procedure is similar but the limits Ei should be adjusted

equivalently. When other distributions, such as Student are preferred, then a Gibbs variable

or a reversible jump setup should be adopted. Similar approaches can be adopted if we want

to incorporate distribution selection or other characteristics.

4.3 Connections Between Markov Chain Monte Carlo

Model Selection Methods

Special cases of reversible jump sampler are described in detail here. The general sampling

scheme of the algorithm is given in Section 3.3.1 in which we can substitute m by γ when we

are interested in covariate selection only. Metropolised Carlin and Chib method is introduced

as a special case of reversible jump. Work on the relationships of MCMC methods was also

reported by Godsill (1998).

4.3.1 Reversible Jump and ‘Metropolised’ Carlin and Chib

The Gibbs sampler proposed by Carlin and Chib (1995) requires the calculation of all Am in

the denominator of (3.21). An alternative approach is a hybrid Gibbs/Metropolis strategy,

where the ‘model selection’ step is not based on the full conditional, but on a proposal for

a move to model m′, followed by acceptance or rejection of this proposal. If the current

state is model m and we propose model m′ with probability j(m,m′), then the acceptance

probability is given by

α = min

(
1,

Am′j(m′, m)

Amj(m,m′)

)

= min

(
1,

f(y|β(m′), m
′)f(β(m′)|m′)f(β(m)|m′)f(m′)j(m′, m)

f(y|β(m), m)f(β(m)|m)f(β(m′)|m)f(m)j(m,m′)

)
(4.7)

as all other pseudopriors cancel.

Note that when we are in model m and we propose model m′, we require only values

of β(m) and β(m′) to calculate α in (4.7). Furthermore, we are assuming that model m′ is

proposed with probability j(m,m′), independently of the values of any model parameters.
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Therefore if we reverse the order of sampling from j(m,m′) and the full conditional distribu-

tions for β(mk) in (3.20), there is no need to sample from any pseudopriors other than that

for m′. The method now consists of the following three steps

• Propose a new model m′ with probability j(m,m′).

• Generate β(m′) from the pseudoprior f(β(m′)|m �= m′).

• Accept the proposed move to model m′ with probability α given by (4.7).

It is straightforward to see that by a simple modification (‘Metropolising’ the model

selection step), Carlin and Chib’s method becomes a special case of reversible jump with

(
β′

(m′),u
′) = (u,β(m)

)
, u′ = {β(ml)

: ml �= m′}, u = {β(ml)
: ml �= m},

where {β(ml)
: ml �= m} are the parameter vectors β(ml)

for all ml ∈ M \ {m}, while the

proposal densities are replaced by

q(u|β(m), m,m′) =
∏

ml∈M\{m′}

{
f (β(ml)

|m′)
}

and

q(u′|β′
(m′), m

′, m) =
∏

ml∈M\{m}

{
f (β(ml)

|m)
}
.

We should further note that the above constructed reversible jump (and the equiv-

alent Metropolised Carlin and Chib) coincide to a simpler reversible jump scheme with(
β′

(m′),u
′
)
=
(
u,β(m)

)
, u′ = β(m), u = β′

(m′), and proposal q(u|β(m), m,m′) replaced by

pseudoprior f(β(m′)|m �= m′).

4.3.2 Using Posterior Distributions as Proposals

Suppose that, for each m, the posterior density f(β(m)|m,y) is available, including the

normalising constant which is the marginal likelihood f(y|m). If this distribution is used as

a pseudoprior then the acceptance probability in (4.7) is given by

α = min

(
1,

f (y|β′
(m′), m

′)f (β′
(m′)|m′)f (m′)j(m′, m)f (β(m)|m,y)

f (y|β(m), m)f (β(m)|m)f (m)j(m,m′)f (β′
(m′)|m′,y)

)

= min

(
1,

f (y|β′
(m′), m

′)f (β′
(m′)|m′)f (m′)j(m′, m)f (β(m), m,y)/f (m,y)

f (y|β(m), m)f (β(m)|m)f (m)j(m,m′)f (β′
(m′), m

′,y)/f (m′,y)

)

= min

(
1, Bm′m

f (m′)j(m′, m)

f (m)j(m,m′)

)
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where Bm′m is the Bayes factor of model m′ against model m. In practice, we can not

usually calculate Bm′m. In the special case where models are decomposable graphical models,

Madigan and York (1995) used exactly this approach, which they called MC3. From the

above it is clear that MC3 is a special case of both Metropolised Carlin and Chib and

reversible jump algorithms. Here there is no need to generate the model parameters β(m)

as part of the Markov chain. These can be generated separately from the known posterior

distributions f(β(m)|m,y) if required.

4.3.3 Reversible Jump for Covariate Selection

When model selection is restricted in covariate selection and the regressors are not highly

correlated then we can use simple reversible jump. In this simple version of reversible jump

we may substitute the model indicator m by the corresponding vector of binary indicators

γ. In such case the proposal j(m,m′) is substituted by j(γ,γ ′). Usually the strategy to

move in neighbourhood models as defined by Madigan and York (1995) and was also used

by Dellaportas and Forster (1999) is adopted. In such case j(γ,γ ′) can be substituted by

the product q1(γ, j)×q2(γj, 1−γj). The first proposal q1 denotes the probability we propose

to change j term when we are in model γ while q2 denotes the probability for this term to

change from γj to 1− γj. Usual choices are q1(γ, j) = 1/p and q2(γj, 1− γj) = 1.0, that is,

select equal probability one term j and alway propose to change it; for further details see

Section 4.5.1.2.

This simplified version of reversible jump is summarized by the following steps

• Generate β(γ) from the full conditional posterior distribution f(β(γ)|γ,y).

• Select a candidate term j to change with probability 1/p and propose to change from

γj to 1− γj with probability one.

• If γj = 0 then

[a] Generate the additional parameters β′
j from the proposal density qj(β

′
j),

[b] Set β′
(γ′) = [β(γ),β

′
j ] and

[c] Accept the proposed move with probability

α = min

(
1,

f (y|γ ′,β′
(γ ′))f (β

′
(γ ′)|γ ′)f (γ ′)

f (y|γ,β(γ))f (β(γ)|γ)f (γ)qj(β′
j)

)
. (4.8)
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• If γj = 1 then

[a] Set β′
(γ′) equal to the parameters of β(γ) removing the parameters that correspond

to j term and

[b] Accept the proposed move with probability

α = min

(
1,

f (y|γ ′,β′
(γ ′))f (β

′
(γ ′)|γ ′)f (γ ′)qj(βj)

f (y|γ,β(γ))f (β(γ)|γ)f (γ)
)
. (4.9)

If a different proposal scheme for the model indicators is desired then must propose the new

model with probability to move from model γ to γ ′ and further multiply the acceptance

probabilities by the ratio j(γ ′,γ)/j(γ,γ ′).

4.3.4 Metropolis within Gibbs Variable Selection

Gibbs variable selection as defined in Section 4.1.1 can be substituted by the corresponding

Metropolis within Gibbs step. Assuming that γj and γ′
j = 1 − γj are the current and

the proposed values of the indicator variable corresponding to βj, respectively, then the

Metropolis acceptance probability is given by

α = min

(
1,

f (y|β, γ′
j,γ\j)f (β|γ′

j,γ\j)f (γ
′
j,γ\j)j(γ

′
j, γj)

f (y|β, γj,γ\j)f (β|γj,γ\j)f (γj,γ\j)j(γj, γ
′
j)

)
(4.10)

where j(γj, γ
′
j) and j(γ′

j, γj) denote the probability of proposing the terms γ′
j and γj respec-

tively.

Each of the above Metropolis within Gibbs step is a reversible jump step. Suppose that

we propose to move to ‘neighbourhood’ models (models that differ in one term) and that

the current model m corresponds to an indicator vector γ and the proposed model m′ to the

vector γ ′ then

∃ j ∈ V : γ′
j = 1− γj and γ′

l = γl, ∀ l ∈ V \ {j}.

From the above we have that

f (m) = f (γ) = f (γj,γ\j), f (m′) = f (γ ′) = f (γ′
j,γ\j).

and

j(m,m′) = j(γ,γ ′) = q1(j)q2(γj, γ
′
j)
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where q1(j) is the probability to propose j term to change and q2(γj, γ
′
j) is the probability

that γj will change to γ′
j.

We will now show that the acceptance probability given in (4.10) is a special case of the

reversible jump with acceptance probability given by (3.19). First, we split the parameter

vector β into vectors β(γ) and β(\γ) elements of β which are included or not in model m

respectively. Thus, β(γ) contains only the elements βj with γj = 1 while β(\γ) contains

the remaining elements (with γj = 0). The above definition implies that β(m) = β(γ) and

therefore the prior distribution f(β(m)|m) is given by the density f(β(γ)|γ). Using u = β(\γ)

and as proposal the pseudoprior f(β(\γ)|β(γ),γ) results in

f (β(m)|m)q(u|β(m), m
′, m) = f (β(γ)|γ)f (β(\γ)|β(γ),γ) = f (β|γ) = f (β|γj,γ\j)

and

f (β′
(m′)|m′)q(u′|β′

(m′), m,m′) = f (β(γ ′)|γ ′)f (β(\γ ′)|β(γ ′),γ
′) = f (β|γ ′) = f (β|γ′

j,γ\j).

Finally, it is clear that for the likelihood terms in (3.19) we have

f (y|β(m), m) = f (y|β(γ),γ) = f (y|β, γj,γ\j),

f (y|β′
(m′), m

′) = f (y|β(γ′),γ
′) = f (y|β, γ′

j,γ\j).

Substituting the above equations in (3.19) the acceptance probability is equal to (4.10). If

in Gibbs variable selection we use priors (4.4) and pseudopriors given by

f (βj|γj,γ\j) = f (βj|γj) (4.11)

then the acceptance probability (4.10) simplifies to reversible jump one of Section 4.3.3. The

number of parameters that we need to generate drops from the dimension of the full model

model, to d(γ) + (1− γj)dj which is the maximum number of parameters between models γ

and γ ′.

The above Metropolis within Gibbs variable selection step is equivalent to a Metropolised

Gibbs sampler as defined by Liu (1996a,b), if we use q2(γj, 1 − γj) = 1. This version

of Metropolis within Gibbs variable selection, according to Liu (1996a,b), is optimal and

reaches convergence quicker than any other Metropolis or Gibbs sampler.
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4.4 Comparison of Variable Selection Methods

Expression (4.3) is similar to expressions (3.25) and (3.30) in other proposed variable selection

methods. George and McCulloch (1993) propose SSVS strategy which assumes the maximal

model throughout, but constrains βj parameters to be close to zero when γj = 0. In this

situation, f(y|β,γ) is independent of γ and so the first ratio on the right hand side of (4.3)

vanishes. Kuo and Mallick (1998) propose a similar approach to the above but use a prior

distribution for (γ,β) with β independent of γ. Then, the second term on the right hand

side of (4.3) vanishes. For this reason, Gibbs variable selection can be though as a trade

off between SSVS and Kuo and Mallick sampler since the variable selection step depends on

both likelihood and on prior densities ratios. The association between the variable selection

Gibbs samplers are summarized in Table 4.1.

Carlin and Chib’s method involves a single model indicator parameter. Therefore, at

each iteration of the Gibbs sampler all parameters β(m) of all models m ∈ M are gener-

ated from either posterior distribution or pseudoprior and the model selection step allows

a simultaneous change of all γjs. In Gibbs variable selection, an observation of γ is gener-

ated following generation of the whole parameter vector β =
[
β(γ),β(\γ)

]
from either the

posterior distributions for β(γ) or the pseudoprior densities for β(\γ). This procedure will

generally involve generating each term parameter vector βj from p conditional distributions,

a much smaller burden than required for Carlin and Chib’s method. Furthermore, it would

seem to be more efficient to generate pairs of (βj, γj) successively, possibly by a random

scan, so that more local moves in model space are attempted.

The modified version of Carlin and Chib sampler for variable selection is also efficient and

faster than the original method. The major difference between Gibbs variable selection and

this modified algorithm is that in the former we specify pseudopriors only for the additional

terms while in the latter for the whole parameter vector of each model. Although the latter is

a drawback in terms of computing time it gives to Carlin and Chib type of variable selection

sampler the flexibility to handle problems with highly correlated regressors where the simpler

Gibbs variable selection demonstrates convergence difficulties.

Clearly, moves between models m (γ) and m′ (γ′) may also be based on a Metropolis

step, as was suggested in Section 4.3.1. Then the pseudopriors may be thought of as part of
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the proposal density for parameters which are present in one model but not in the other. This

highlights a drawback of the variable selection approaches discussed in this section, namely

that parameters which are ‘common’ to both models remain unchanged, and therefore the

procedure will not be efficient unless posterior distributions of such parameters are similar

under both models. Note that Gibbs variable selection corresponds to the simple version of

reversible jump for variable selection while Carlin and Chib type variable selection sampler

corresponds to Metropolised version of Carlin and Chib sampler.

Oj

Method η PSRj LRj PRj

SSVS Xβ
√

KM
∑

γjXjβj

√

GVS
∑

γjXjβj

√ √ √

CCVS X(γ)β(γ)

√ √ √

Table 4.1: Components of Full Conditional Posterior Odds for Inclusion of Term j, Oj, in

Each Variable Selection Algorithm (PSR = Pseudoprior Ratio, LR = Likelihood Ration, PR

= Prior Density Ratio).

4.5 Further Considerations

This section discusses aspects of special interest involved in MCMC model selection methods

including proposed strategies for specification of proposal and pseudoprior densities and

parametrizations that we should use.

4.5.1 Proposal Distributions

A crucial aspect in MCMC for most model selection methods described in this thesis is

the choice of proposal or pseudoprior distributions which control the convergence rates of

the resulted chains. For this reason, we propose simple rules for the selection of proposal

or pseudoprior distributions for generalised linear models. Two subsections are presented;
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the first suggests proposal distributions for model parameters, while the second for model

indicator m.

4.5.1.1 Proposal Distributions for Model Parameters

The simplest way to specify of proposal or pseudoprior distributions is to consider indepen-

dent normal distributions for each term j given by

N(µ̄j,Sj) (4.12)

with mean µj and covariance matrix Sj estimated from a small pilot run of the full model.

In most cases, MCMC using these proposal distributions performs well but may exhibit

convergence difficulties in cases where highly correlated regressors are considered.

A second ‘automatic’ specification of proposal distributions is to consider distributions

of type

N(0dj
,Σj/k

2
j )

with covariance equal to the prior covariance matrix divided by the pseudoprior parameter

k2
j following the notion of SSVS prior setup (3.23). In such case, the parameters proposed

by the MCMC algorithm will be within a neighborhood of zero. The parameter kj is now

a pseudoprior parameter which controls the area of the proposed values and large values of

kj slow down the convergence of the chain. The choice of kj = 10 appears a good default

choice for the pseudoprior specification which performs sufficiently well in most cases. This

approach is closely related to the automatic choices proposed by Giudici and Roberts (1998)

in reversible jump sampler.

A better proposal can be based in model specific maximum likelihood estimates and

therefore for the normal model we may use

q(β′
(m′)|σ2,β(m), m

′, m) = N
(
β̂(m),

(
XT

(m)X(m)

)−1
σ2
)

where β̂(m) are the maximum likelihood estimates under model m. Under the generalised

linear model specification we can use as a proposal

q(β′
(m′)|β(m), m

′, m) = N
(
β̂(m),

(
XT

(m)Ĥ(m)X(m)

)−1
)
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where Ĥ(m) is given by (3.12). An alternative easy-to-use choice is given by

q(β′
(m′)|β(m), m

′, m) = N(β̂(m),Σ(m)/k
2).

The above choice greatly simplifies the computations in the model selection step and provides

the possibility to control the convergence of the chain via the parameter k2. These proposals

complicate the model selection step since, in each iteration, we need to calculate the max-

imum likelihood estimates for each proposed model but it highly increases the efficiency of

the MCMC algorithm.

In the case of simple reversible jump we may alternatively propose additional terms in

such a way that the likelihood of the proposed model m′ is maximized, conditionally on the

rest model parameters. Therefore we have

q(βj|β(γj=0,γ\j)
, γj = 1, γj = 0,γ\j) = N

((
XT

j ĤXj

)−1
XT

j Ĥη∗
j ,
(
XT

j ĤXj

)−1
)
,

where Ĥ is the weight matrix used in observed information matrix of the ‘saturated’ model

and η∗
j is a vector with elements given by

{η∗
j}i = g(yi)−

∑
l∈V\{j}

γlxilβl.

When the j term is univariate then the above proposal is simply given by

q(βj|β(γj=0,γ\j)
, γj = 1, γj = 0,γ\j) = N

(∑n
i=1 xijhi{η∗

j}i∑n
i=1 hix

2
ij

,
1∑n

i=1 hix
2
ij

)
.

Alternatively, for simplicity, we may substitute the covariance matrix by Σj/k
2.

Giudici and Roberts (1998) developed a method for automatic choice of scale parameter

in proposal distributions used in reversible jump for nested models. This scale parameter

varies in each iteration according to the proposed values and maximizes the acceptance

probability when the proposed parameters are considered equal to zero.

4.5.1.2 Proposal Distributions on Model Space

The most common proposal distribution used for model space is the uniform distribution over

a restrictive set of models. This restrictive set of models was originally called by Madigan

and York (1995) ‘neighborhood of model m’ including models that differ by one variable.

Dellaportas and Forster (1999) also used similar restrictive set of proposed models. This
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kind of proposal distributions will be called ‘local’ while proposals that consider all possible

models will be called ‘global’.

Global model proposals result in low acceptance rates and therefore local proposals are

preferred especially there is some natural structure in the model space, for example nested

models. Generally, reversible jump chains with local proposals perform well but may exhibit

difficulties in some ill-posed problems for example when highly correlated regressors are

included in one model. In such cases using a combination of local and global proposals may

be an optimal choice.

The choice of the value of the probability j(m,m) is of crucial interest. Liu (1996a,b)

suggested an improved Metropolis sampler for discrete random variables which combines the

advantages of Gibbs and Metropolis algorithms. According to his work it is more efficient

to use a Metropolis sampler in which we propose the same value with probability zero and

and the rest of the outcomes with probability equal to the full conditional posterior given

that the probability propose the same value is constraint to zero.

We propose to use his arguments in the variable selection samplers used in this thesis.

In the variable selection samplers we may adopt the following two sampling steps

1. Random scan Gibbs variable selection: Pick a latent term indicator γj at random and

update it from f(γj|β,γ\j ,y).

2. Simple Reversible Jump for variable selection: Propose to move to a new model γ ′ ∈
nb(γ) (or m′ ∈ nb(m)) which is equivalent to pick an indicator term γj and propose

to change it to 1 − γj. Therefore vector γ ′ differs from current γ only in the jth

coordinate. Accept the move with probability given by (4.8) or (4.9).

If we adopt the ideas of Liu (1996a,b) then a Metropolis algorithm always proposing to change

γj to 1− γj is better than the corresponding Gibbs algorithm. Furthermore, we argue that

practical work in generalised linear models has indicated that the choice of j(m,m) = 0 is

more efficient than j(m,m) > 0.

For this reason, reversible jump within Gibbs variable selection with q2(γj, 1 − γj) = 1

should be preferred. Similar arguments can be used for the variants of Carlin and Chib

sampler introduced in this thesis (Metropolised and variable selection versions). Generally,
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the choice of j(m,m) = 0 should be preferred. With similar arguments we can use Metropolis

steps for updating each γj in Smith and Kohn (1996) resulting to an optimal MCMC strategy.

Under this choice the above proposal slightly changes to

j(m′, m) = 1/|nb(m′)|

where nb(m) is the set of models that differ from m in one term.

A good choice for model proposals may be obtained by using either Laplace or BIC

approximation. For example we may use the proposal

j(m′, m) =
(2π)

d(m)
2 |XT

(m)Ĥ(m)X (m)| 12 f (y|β̂(m), m)f (β̂(m)|m)∑
ml∈nb(m′)

(2π)
d(ml)

2 |XT
(ml)

Ĥ(ml)X(ml)|
1
2 f (y|β̂(ml)

, m)f (β̂(ml)
|m)

based on the Laplace approximation or

j(m′, m) =
n−d(m)/2[f (y|β̂(m), m)]∑

ml∈nb(m′)
n−d(ml)/2[f (y|β̂(ml)

, ml)]

based on BIC approximation. The latter must be handled with care since in some cases may

not give accurate approximations.

Similarly in ‘global’ moves we may use any of the above approximations. In cases where

the number of models is huge we may use an MC3 type algorithm based on BIC or Laplace

approximations to get rough estimates of posterior weights. This may increase the compu-

tation effort but improve the efficiency of the reversible jump.

4.5.2 Parametrizations and Data Transformations

It is clear that when the data matrix X (m) is orthogonal model selection becomes straight-

forward; see for implementation Foster and George (1994), Clyde et al. (1996) and Clyde

(1999). Therefore, if our main interest is prediction rather than interpretation of casual rela-

tionships, then orthogonalizing is the ideal solution to our problems. Parameters have similar

interpretation across all models and simple methods with straightforward proposals can be

used without any difficulty; see Clyde et al. (1996) and Clyde (1999). On the other hand,

MC3 and Smith and Kohn (1996) samplers for normal models can handle non-orthogonal

data and provide accurate results very fast. Therefore, for normal models there is no need

for orthogonalizing. In generalised linear models the problem is more complicated.
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Since orthogonalizing simplifies model selection procedures, we shall adopt orthogonal

constraints when categorical factors are considered as possible regressors. Such an approach

was used by Dellaportas and Forster (1999) for log-linear model selection.

Another crucial question is whether we should standardise all variables. This will result

in a new transformed model. Moreover, using priors on the transformed model is straight-

forward since each model coefficient has similar interpretation (that is, as Xj increases by

one standard deviation, sj, Y will increase by βj times sy; where sy is the standard deviation

of Y ). This approach was adopted by Raftery et al. (1997). Although, standardizing may

solve some prior specification problems, it does not solve all problems appearing in model

selection since possible correlations between model parameters are not eliminated.

4.6 Implementation of MCMC Variable Selection Al-

gorithms in Generalised Linear Models

A very popular model formulation is given by the generalised linear models. For this reason, a

lot of work have been published on Bayesian model selection for members of the generalised

linear models including Lindley (1968), Atkinson (1978), Smith and Spiegelhalter (1980),

Spiegelhalter and Smith (1982), Mitchell and Beauchamp (1988), Albert (1991, 1996) and

Raftery (1996a). MCMC samplers were developed for generalised linear models after the

early nineties and include George and McCulloch (1993, 1996, 1997), George et al. (1996),

Carlin and Chib (1995), Green (1995), Hoeting et al. (1995, 1996), Smith and Kohn (1996),

Clyde et al. (1996), Geweke (1996), Chipman (1996, 1997), Chipman et al. (1997), Raftery

et al. (1997), Clyde and DeSimone-Sasinowska (1997), Clyde (1999), Troughton and Godsill

(1997), Albert and Chib (1997), Kuo and Mallick (1998), Petris and Tardella (1998) and

Dellaportas and Forster (1999).

The aim of this section is to formulate a general frame under which all MCMC meth-

ods can be summarized. Under this framework we can easily understand the peculiarities,

usefulness and the working mechanism of each algorithm.

The general form of the likelihood of a generalised linear model is given by

f (y|β(γ), φ,γ) = exp

{
n∑
i=1

yig
∗ (ηi)− b {g∗ (ηi)}

ai(φ)
+

n∑
i=1

c(yi, ai(φ))

}
(4.13)
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where ηi is the linear predictor for i observation and is given by different equation depending

the method used, g∗(x) is function connecting the parameter ϑi of the exponential family

and the linear predictor and is given by ϑi = ϑ(µi) = ϑ(g−1(ηi)) [hence g∗(x) = ϑ(g−1(x))

] and g(x) is the link function connecting the expected value of yi with the linear predictor

ηi. For the Gibbs variable selection

η =
∑
j∈V

γjXjβj (4.14)

which is equivalent to

η = X(γ)β(γ) (4.15)

where X(γ) and β(γ) denote the design or data matrix and the vector of coefficients con-

structed from all terms included in the model. The above linear predictor is also used in

Carlin and Chib type of samplers but each β(γ) takes different values. In SSVS the model

indicator γ is not involved in the linear predictor (or generally in the likelihood) and therefore

η = Xβ (4.16)

for all models. The inclusion of the variables is greatly controlled via the prior distribution

used.

To complete the Bayesian formulation of generalised linear models we use prior distribu-

tions discussed in Section 3.2. Although we may prefer to adopt independent prior distribu-

tions for their simplicity and straightforward interpretation, we generally should avoid them

since they affect the posterior model probabilities; see Chapter 6.

Generally the procedure of MCMC methods can be summarized in the following steps:

1. Generate β(γ) from f(β(γ)|φ,γ,y) ∝

exp


 n∑

i=1

yig
∗
(
[X(γ)β(γ)]i

)
− b
{
g∗
(
[X(γ)β(γ)]i

)}
ai(φ)

− 1
2

(
β(γ) − µβ(γ)

)T

Σ−1
(γ)

(
β(γ) − µβ(γ)

)
where [X(γ)β(γ)]i is the linear predictor for i observation and is substituted by [Xβ]i

is SSVS. The above distribution is not, in most cases, of known form but samples can

be generated using Gilks and Wild (1992) algorithm as described by Dellaportas and

Smith (1993).
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2. In most cases φ are known. In the case that φ is an unknown to be estimated parameter

then we generate it from the full conditional posterior distribution

f(φ|β(γ),γ,y) ∝ exp

{
n∑
i=1

yig
∗ (ηi)− b {g∗ (ηi)}

ai(φ)
+

n∑
i=1

c(yi, ai(φ))

}
f(φ).

3. Generate all pseudo-parameters from the pseudopriors or proposal distributions.

4. Generate the variable indicators γj according to one of the following procedures:

(a) For all j = 1, . . . , p propose a change from γj to 1−γj with probability q2(γj, 1−γj)
and accept the proposed move with probability

α = min

(
1,

q2(1− γj, γj)

q2(γj, 1− γj)
O

1−2γj

j

)
.

(b) Randomly select a new proposed model γ ′ ∈ nb(γ) with probability j(γ,γ ′).

In most cases this is equivalent to select a term j with probability q1(γ, j) and

propose a change from γj to 1−γj with probability q2(γj, 1−γj). The acceptance

probability is now given by j(γ,γ ′) = q1(γ, j)q2(γj, 1− γj) where j is the term in

which γ and γ ′ differ. Then accept the proposed move with probability

α = min

(
1,

j(γ ′,γ)
j(γ,γ ′)

O
1−2γj

j

)
.

The quantity Oj used above is the full conditional posterior odds to include j term in the

model given by the ratio

Oj =
f(γj = 1|β(γ),γ\j ,y)

f(γj = 0|β(γ),γ\j ,y)

and can be analysed as a product of a likelihood ratio (LRj), a prior density ratio (PRj), a

pseudoprior (or proposal) density ratio (PSRj) and the prior model odds f(γj = 1,γ\j) /

f(γj = 0,γ\j). For more details see Section 4.4 and the Sections describing the corresponding

model and variable selection samplers.
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4.6.1 Normal Linear Models

Normal linear models are the simplest and most frequently type of generalised linear models.

The model formulation is given is given by

Y ∼ N
(
η, Inσ

2
)
.

In normal models usually we assume common and unknown scale parameter such that ai(φ) =

σ2. Two type of prior setup may be used. The first is the conjugate normal inverse gamma

distribution given by (3.6) and (3.7). When we adopt this prior set up then fast variable

selection methods described in Section 3.5 should be adopted. The Smith and Kohn (1996)

type of prior is proposed. In special cases of orthogonal design matrices (e.g. analysis

of variance models with sum to zero constraints) then the samplers proposed by Clyde

et al. (1996) and or the extension proposed in Section 3.5.1 may be used. In the second

case the usual inverse gamma prior on residual variance (or gamma on residual precision;

see equation 3.6) can be used but the model parameters do not depend on σ2. In these cases

reversible jump or more complicated Gibbs sampler should be adopted.

Provided that we use the prior distribution (3.3) for model coefficients and independent

proposal densities of type (4.12), the sampling procedure for the model parameters in all

MCMC variable selection algorithms (except SSVS) are as following

1. Generate β(γ) from the β(γ)|σ2,γ,y ∼ N
(
β̃(γ), Σ̃(γ)

)
with mean

β̃(γ) = Σ̃(γ)

(
σ−2XT

(γ)y +Σ−1
(γ)µβ(γ)

)

and covariance matrix

Σ̃(γ) =
(
σ−2XT

(γ)X(γ) +Σ−1
(γ)

)−1
.

2. Generate τ = σ−2 from G
(
aτ + n/2, bτ +

(
y −X(γ)β(γ)

)T (
y −X(γ)β(γ)

)
/2
)
.

If SSVS is preferred with prior distribution given in Section 3.4.1.2 then the generation

of the model parameters is different since

1. Generate the full parameter vector β from the β|σ2,γ,y ∼ N
(
β̃(γ), Σ̃(γ)

)
with mean

β̃(γ) = σ−2Σ̃(γ)X
Ty
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and covariance matrix

Σ̃(γ) =
(
σ−2XTX + (DγRγDγ)

−1
)−1

.

2. Generate τ = σ−2 from G
(
aτ + n/2, bτ + (y −Xβ)T (y −Xβ)/2

)
.

4.6.1.1 Simulated Regression Examples

To evaluate the performance of the methods, we use a series of simulated linear regression

examples, as presented by Raftery et al. (1997). The regression model can be written as

y ∼ N(η, Iσ2) with η given by (3.2). In all examples independent N(0, 100) priors were

used for the regression coefficients and G(10−4, 10−4) for the residual precision, σ−2. Finally,

we used uniform prior of model space given by f(γj = 1) = πj = 0.5 for all j ∈ V. The

data generation details are given in Table 4.2. For all variable selection procedures we also

included the constant term (noted by X0) as a possible regressor. For SSVS we used the

same prior as above for variables included in the model and reduced the variance by a factor

of k = 1000, for each variable ‘excluded’ from the model.

Design Generated Model Supported Model

Dataset n p Structure η σ Backward/Forward MCMC

1 50 15 1 X4 +X5 2.50 X4 +X5 +X12 X4 +X5

2 50 15 2
∑5

j=1 Xj 2.50
∑5

j=1 Xj +X12/ X14 X14

3 50 15 1 0 2.50 Empty Empty

4 50 15 2 0 2.50 X3 +X12 X3

5 100 50 1 0 1.00 X19 Empty

6 100 30 1 0.5X1 0.87 X1 X1

Table 4.2: Simulated Regression Datasets Details (n is the sample size, p is the number of

variables considered excluding the constant term. Design structure 1: X0 = 1, Xj ∼ N(0, 1),

for j = 1, . . . , p. Design structure 2: X0 = 1, Xj ∼ N(0, 1), for j = 1, . . . , 10 and Xj ∼
N(0.3X1 + 0.5X2 + 0.7X3 + 0.9X4 + 1.1X5, 1), for j = 11, . . . , 15).

The proposal distributions, needed for the implementation of Gibbs variable selection,

reversible jump and the Metropolised Carlin and Chib method, were constructed from the
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sample mean and standard deviation of an initial Gibbs sample run of size 500 of the full

model, with initial values taken as zero. To compare the performance of all methods we

divided the sample output taken at fixed time intervals (5, 15 and 10 minutes for datasets

1-4, 5 and 6 respectively) into 30 equal batches and reported in Table 4.3 the batch standard

deviation of the highest posterior model probability. The evolution of the corresponding

ergodic posterior probabilities is displayed in Figures 4.1 and 4.2.

Table 4.4 presents posterior model probabilities estimated by all MCMC methods, as

well as, the values of adjusted R2 and maximum likelihood estimates of residual variance.

Valuable information may be also extracted by the marginal posterior variable probabilities

presented in Table 4.5. The corresponding p-values when we fit the full model are also

presented for comparison purposes. Both Tables 4.4 and 4.5 were constructed after 100,000

iterations for Gibbs variable selection, 1,000,000 iterations for reversible jump and 10,000,000

iterations for Kuo and Mallick, Metropolised Carlin and Chib and SSVS and additional burn-

in of ten thousand iterations for all methods.

Dataset

1 2 3 4 5 6

GVS 0.017 0.077 0.024 0.016 0.041 0.027

KM 0.039 0.059 0.032 0.037 0.089 0.059

RJ 0.042 0.102 0.032 0.028 0.062 0.062

MCC 0.044 —— 0.043 0.026 0.143 0.078

SSVS 0.138 0.122 0.065 0.111 0.109 0.138

Table 4.3: Simulated Regression Datasets: Batch Standard Deviations of Highest Posterior

Model Probability.

As would be expected, all methods gave similar results after a reasonably long run.

Generally, Gibbs variable selection seems to have lower batch mean standard deviation than

the rest algorithms which indicates greater efficiency. Metropolised Carlin and Chib method

seems to have slower rates of convergence and demands more time because in each step (4.7)

requires to propose many new values. Note that in the multi-collinear problem (dataset 2),

the Metropolised Carlin and Chib sampler did not visit the model selected by the other
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models. This is not due to the sampler itself but due to the naive proposal pseudoprior

setup used that does not exploit the advantages of this sampler; see Section 4.5.1. However,

after ten million iterations this method did eventually support the same model. Kuo and

Mallick’s method generally performs worse than Gibbs variable selection but reasonably well

in general, and only in dataset 5 it has considerably higher standard deviation than all the

other methods. Finally, SSVS has systematically higher standard deviations than all the

other methods.
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Figure 4.1: Simulated Regression Datasets: Batch Highest Posterior Model Probabilities

(GVS: Gibbs variable selection, KM: Kuo and Mallick sampler, RJ: reversible jump, MCC:

Metropolised Carlin and Chib SSVS: stochastic search variable selection).
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Figure 4.2: Simulated Regression Datasets: Ergodic Highest Posterior Model Probabilities.
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Posterior Probabilities of

MCMC Algorithms ML Measures

Dataset Model GVS KM RJ MCC SSVS R2
adj σ̂

1 X4 +X5 0.358 0.371 0.358 0.363 0.361 0.468 2.44

X4 +X5 +X12
∗∗ 0.185 0.180 0.186 0.183 0.180 0.507 2.35

Models with p < 0.05 0.457 0.449 0.456 0.454 0.459

2 X14
∗ 0.383 0.375 0.380 0.388 0.380 0.452 2.73

X13 +X14 0.052 0.052 0.056 0.055 0.053 0.476 2.67

Models with p < 0.05 0.565 0.573 0.564 0.557 0.567

3 Empty ∗∗ 0.504 0.509 0.504 0.503 0.500 —– 2.24

X1 0.057 0.058 0.060 0.059 0.056 0.033 2.20

Models with p < 0.05 0.439 0.433 0.436 0.438 0.444

4 X3 0.207 0.213 0.209 0.211 0.204 0.165 2.65

X3 +X12
∗∗ 0.098 0.099 0.097 0.096 0.096 0.221 2.56

Models with p < 0.05 0.695 0.688 0.694 0.693 0.700

5 Empty 0.373 0.374 0.366 0.373 0.375 —– 0.98

X19
∗∗ 0.073 0.071 0.072 0.072 0.071 0.045 0.96

X38 0.057 0.059 0.058 0.056 0.059 0.071 0.94

Models with p < 0.05 0.497 0.496 0.504 0.499 0.495

6 X1
∗∗ 0.621 0.623 0.613 0.618 0.619 0.235 0.79

X1 +X11 0.064 0.064 0.065 0.064 0.062 0.266 0.77

Models with p < 0.05 0.315 0.313 0.322 0.318 0.319

Table 4.4: Simulated Regression Datasets: Posterior Model Probabilities (* = selected by

forward procedure, ** = selected by both forward and backward procedures).
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Posterior Probabilities of

MCMC Algorithms Full Model

Dataset Model GVS KM RJ MCC SSVS P-value

1 X5 1.000 1.000 1.000 1.000 1.000 0.000

X4 0.969 0.967 0.970 0.969 0.969 0.001

X12 0.341 0.327 0.340 0.337 0.339 0.041

X15 0.078 0.073 0.075 0.078 0.077 0.102

X11 0.050 0.048 0.051 0.049 0.051 0.338

2 X14 0.902 0.903 0.907 0.944 0.915 0.788

X13 0.158 0.158 0.160 0.157 0.153 0.591

X1 0.127 0.122 0.127 0.124 0.123 0.002

X11 0.084 0.087 0.084 0.078 0.083 0.338

X12 0.072 0.075 0.064 0.057 0.072 0.041

X3 0.064 0.061 0.066 0.065 0.061 0.002

X2 0.053 0.052 0.054 0.040 0.052 0.010

X10 0.051 0.051 0.051 0.050 0.052 0.439

3 X1 0.098 0.100 0.100 0.101 0.098 0.934

X2 0.080 0.075 0.079 0.080 0.082 0.070

X9 0.060 0.060 0.061 0.059 0.060 0.204

X10 0.057 0.055 0.056 0.059 0.059 0.653

X6 0.050 0.051 0.050 0.051 0.051 0.806

4 X3 0.810 0.810 0.812 0.812 0.804 0.031

X12 0.322 0.316 0.324 0.319 0.323 0.094

X1 0.154 0.145 0.154 0.153 0.157 0.226

X0 0.123 0.118 0.121 0.122 0.122 0.204

5 X19 0.147 0.146 0.152 0.146 0.145 0.036

X38 0.127 0.127 0.131 0.125 0.126 0.195

X46 0.073 0.072 0.072 0.072 0.069 0.623

6 X1 1.000 1.000 1.000 1.000 1.000 0.000

X11 0.091 0.091 0.094 0.091 0.089 0.126

Table 4.5: Simulated Regression Datasets: Posterior Variable Probabilities Higher than 0.05.
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4.6.2 Poisson Models

This section provides details of how to implement model selection methods in Poisson log-

linear models. Results of this section are also given in two research papers; see Ntzoufras

et al. (1996) for a comparison of MCMC model selection algorithms in log-linear models and

Ntzoufras et al. (1998) for the implementation of SSVS in log-linear models.

The model formulation is given is

Yi ∼ Poisson (eηi) .

The linear predictor ηi is generally defined by equation (4.15) and by (4.14) for Gibbs variable

selection and (4.16) for SSVS. Therefore the likelihood is given by

f(y|β(γ),γ) = exp

{
−

n∑
i=1

eηi +
n∑
i=1

yiηi −
n∑
i=1

log(yi!)

}
.

Provided that we use the prior distribution (3.3) for model coefficients and independent

proposal densities of type (4.12), the sampling procedure for the model parameters for the

MCMC variable selection algorithms are as following

1. Generate β(γ) from equation (4.17) in Carlin and Chib variants, (4.18) in Gibbs vari-

able selection and (4.19) in SSVS. The first equation can also be used in Gibbs variable

selection without any complication. f(β(γ)|γ,y) ∝

(RJ/CCV S) ∝ exp

{
−

n∑
i=1

e

[
X(γ)β(γ)

]
i +

n∑
i=1

yi

[
X(γ)β(γ)

]
i

}
f
(
β(γ)|γ

)
, (4.17)

(GV S) ∝ exp


−

n∑
i=1

exp


∑

j∈V
γjXijβj


+ n∑

i=1

∑
j∈V

yiγjX ijβj


 f
(
β(γ)|γ

)
, (4.18)

(SSV S) ∝ exp


−

n∑
i=1

exp


∑

j∈V
Xijβj


+ n∑

i=1

∑
j∈V

yiXijβj


 f (β|γ) , (4.19)

where X ij is the 1× dj sub-matrix corresponding to i observation and j term.

2. The scale parameter is known and therefore we do not have to estimate it.

4.6.2.1 SSVS Prior Distributions for Contingency Tables Problems with Two

Leveled Factors

Here we introduce an approach similar to the one described in Section 3.4.1.2 to define

sensible prior distributions for implementing SSVS in Poisson log-linear models. For log-

linear models the specification of Σj and kj is more straightforward than for linear regression
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Figure 4.3: The Relationship between Cross-product Ratio Boundary (= e4δ) and k for the

2× 2 Table

models, as there is no intrinsic unknown scale parameter σ2 and hence parameter values have

the same interpretation in different examples. We adopt the prior of Dellaportas and Forster

(1999) for which V ar(βj) = Σj = c2
jV j , where V j is given by (3.5). When βj is one-

dimensional it is straightforward to define the parameters kj. Consider the simplest possible

example, the 2 × 2 contingency table. When j is the interaction between the two binary

factors, then dj = 1, Vj = (1/d) (or Σj = c2
j/d) and βj is equal to one quarter of the log

cross-product ratio. Now, suppose that δj is the smallest value of βj of practical significance.

Then

δj =

√√√√c2
j

2 log kj
d(k2

j − 1)
≈ cjk

−1
j

√
2 log kj

d
.

Therefore the prior may be constructed by specifying δj and either kj or cj. If, as suggested

above, c2
j = 2d, then the prior is specified through

δj = 2

√√√√ log kj
k2
j − 1

≈ 2k−1
j

√
log kj.

When the model consists completely of one-dimensional parameters, this approach can

be adopted for every model term j since each parameter is associated with a corresponding
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odds ratio. Indeed, for a reference analysis, it may be appropriate to choose the same values

for kj for every term j. For example, if kj = 103 and c2
j = 2d = 8, then Σj = 2 as suggested

by Dellaportas and Forster (1999), and e4δj ≈ 1.021. So, the boundary between significant

and insignificant cross product ratios would be represented by an increase in ‘risk’ of around

2.1%. The relationship between k and δ for the 2 × 2 reference example is illustrated in

Figure 4.3.

4.6.2.2 A Large 26 Contingency Table Example

Consider the 26 table of risk factors for coronary heart disease presented by Edwards and

Havránek (1985). This table has also been analysed by Madigan and Raftery (1994) and

Madigan et al. (1995) using both stepwise and MCMC Bayesian model selection algorithms

for decomposable log-linear models. Decomposable models are a subset of the hierarchical

models which we consider in this example. However, there are many interesting models

which are not decomposable, and therefore we present the results of our SSVS hierarchical

model selection approach. Here, the six variables are: A, smoking; B, strenuous mental work;

C, strenuous physical work; D, systolic blood pressure; E, ratio of α and β lipoproteins; F,

family anamnesis of coronary heart disease; see Table 4.6.

C No Yes

B No Yes No Yes

F E D A No Yes No Yes No Yes No Yes

Negative < 3 < 140 44 40 112 67 129 145 12 23

≥ 140 35 12 80 33 109 67 7 9

≥ 3 < 140 23 32 70 66 50 80 7 13

≥ 140 24 25 73 57 51 63 7 16

Positive < 3 < 140 5 7 21 9 9 17 1 4

≥ 140 4 3 11 8 14 17 5 2

≥ 3 < 140 7 3 14 14 9 16 2 3

≥ 140 4 0 13 11 5 14 4 4

Table 4.6: 26 Contingency Table: Edwards and Havránek (1985) Dataset.

The posterior distribution of γ is summarised in Table 4.7 by presenting the models
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corresponding to the most probable γ together with the corresponding posterior probability

f(γ|y).

Posterior Probability

Model RJ KM GVS SSVS

AC+BC+AD+AE+CE+DE+F 0.260 0.268 0.270 0.270

AC+BC+AD+AE+BE+DE+F 0.166 0.157 0.154 0.164

AC+BC+AD+AE+CE+DE+BF 0.075 0.073 0.077 0.070

AC+BC+AD+AE+BE+CE+DE+F 0.063 0.073 0.069 0.054

Other Models 0.460 0.429 0.430 0.443

Mean of Batch Standard Deviation 0.064 0.039 0.025 0.107

Table 4.7: 26 Contingency Table: Posterior Model Probabilities.

We use the same N(0,Σ) prior distribution for each βj , j = 1, . . . , 64, under all possible

models. We use the prior of Dellaportas and Forster (1999) resulting in N(0, 2) for each all

βj , j = 1, . . . , 64 In SSVS we used the same ‘large’ variance while the ‘small’ one was reduced

by kj = 1000 for all model parameters in order to give approximately the same results as the

other methods. As model spaceM we consider the set of hierarchical models for contingency

tables. Also note that the terms involving single factors were always included in the model

since we are interested in the association between the six factors used. A uniform prior on

the model space of hierarchical log-linear models was adopted.

All Markov chains were initiated at the full model with starting points βj = 0 for all

j = 1, . . . , 64. For the reversible jump methods we always propose a ‘neighbouring’ model

which differs from the current model by one term, hence j(m,m) = 0. Within each model,

updating of the parameters βj was performed via Gibbs sampling steps as described in

Dellaportas and Smith (1993). Finally, each Markov chain ran for 110,000 iterations and the

output summaries are based on ergodic averages taken on the last 100,000 iterations.

All samplers were extremely mobile, and as would be hoped, gave similar results of the

model probabilities in a reasonably short time. SSVS with k = 1000 gave similar results to
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the other model selection methods while the choice of k = 100 resulted in support of different

models (see Figure 4.7). The full results are given in Table 4.7. The proposal distributions

for βj in reversible jump as well as the pseudopriors in Gibbs variable selection of Table 4.7

are N(0,Σ/100). This proposal worked better than using pseudopriors from a pilot run of

the full model mainly due to the small standard error of these estimates. An alternative

to use variances of type Σ/k2 for various values of k. It is interesting to note that the two

models with highest probability are the same as those determined by Edwards and Havránek

(1985) using their procedure for identifying acceptable parsimonious models. Furthermore,

none of these models are decomposable, and hence they were not identified by Madigan and

Raftery (1994) or Madigan et al. (1995).

Mean values of batch standard deviations are presented as a measure of convergence.

Gibbs variable selection has the lowest value while SSVS the largest. Kuo and Mallick

sampler performs well enough. Metropolised Carlin and Chib was not used since they are

not efficient in such examples.

The resulting 110,000 iterations (discarding the first 10,000) were divided in batches of

length of 2,000 iterations. Probabilities of the best four models over different batches are

given in barplots (see Figure 4.5) while their ergodic probabilities are given in Figure 4.6.

Assessment of convergence can be done via these figures. Smooth changes of models in

barplots indicate convergence of the posterior distribution of the model indicator m.

Different values of the proposal parameter k in Gibbs variable selection were used in order

to assess which choice leads to faster convergence. From the plots it is obvious that k = 10 for

automatic proposal works better than the other choices. Densities with maximum likelihood

values perform worst than automatic proposals and therefore a calibration of their variance is

suggested. Figure 4.4 presents the mean of batch standard deviations in automatic proposal

densities for different values of k2. Optimal values of k (for this example) seem to be close

to k = 10.

Dellaportas and Forster (1999) type of prior densities were also used with larger c2 = c′d

for c′ = 2, 5, 10, 100 to assess robustness. The value of c2 = n (c′ = 28.76) was also used.

In all prior choices used the two supported models using Dellaportas and Forster (1999)

originally proposed prior (c′ = 2) have still the highest posterior probabilities (see Figure

4.8). The fitted lines are produced using a logistic regression model with covariates the
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GVS With Pilot Proposals
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Figure 4.5: 26 Contingency Table: Barplot Comparison of Different GVS Proposal Setups.
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SSVS k=1000
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Figure 4.7: 26 Contingency Table: Plots for SSVS.



Chapter 4: Further Developments of MCMC in Model and Variable Selection Methods 123

values of c′ and its logarithm. This model was used due to the form of the Bayes factor in

the normal model when conjugate normal inverse gamma prior was used. The fitted logit

model for the posterior probability for model AC+BC+AD+AE+CE+DE+F is given

by log[p/(1− p)] = −1.133 + 0.307log(c′) − 0.012c′ with maximum achieved at c′ = 24.90.

Similarly the maximum posterior probability for the second best model is achieved for prior

with c′ = 24.98. The posterior probabilities increase until these values and then drop since

flatter priors support simplest models. If we extend the graph in larger values the four model

probabilities examined here will degenerate to zero. In this example it is very important that,

for this range of priors, the models with the two highest posterior probabilities remain the

same and for this reason we have an additional strong argument in favour of these two

models.
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4.6.2.3 SSVS Prior Distribution for Factors with Multiple Categories

One problem that we may face up when using SSVS is what prior distributions we shall adopt

when multidimensional terms are involved in the model selection procedure (for example in

analysis of variance or contingency table models). In such cases some adjustment is required

otherwise the algorithm either will stuck in the more complicated model or will move very

slowly.

A first simple approach is to ensure that the ratio of the two components of the mixture

prior density at βj = 0 is invariant to the dimension dj of βj by setting log kj proportional

to 1/dj. Then f(γj|βj = 0) will not depend on the dimension dj of βj . This seems to

ensure sensible results in problems where the dj vary, and is intuitively plausible as the

interpretation of βj = 0 is invariant to the dimension dj.

An alternative approach for multidimensional βj is to adopt an approach similar to semi-

automatic method of George and McCulloch (1993). If we consider the SSVS prior (3.23)

with Σj = c2
jV j the we can choose kj by considering the values of βj

βT
j V −1

j βj = 2djc
2
j

log kj
k2
j − 1

where the two components of the mixture prior densities have equal values. Suppose that

Gj =

{
βj : βT

j V −1
j βj ≤ 2djc

2
j

log kj
k2
j − 1

}

denotes the ‘region of insignificance’. Then it is possible to determine cj and kj so that

P (βj ∈ Gj |γj = 0) is the same for all j, regardless of the value of dj . We have

P (βj ∈ Gj |γj = 0) = Fχ2
dj

(
2dj

k2
j

k2
j − 1

logkj

)

where Fχ2
d
is the distribution function of a chi-squared random variable with d degrees of

freedom. Therefore, if k is the value of kj when dj = 1, then the corresponding value for

dj > 1 is given by the solution of the equation

Fχ2
dj

(
2dj

k2
j

k2
j − 1

log kj

)
= Fχ2

d1

(
2

k2

k2 − 1
log k

)
(4.20)

and approximately,

kj = exp

(
1

2dj
F−1
χ2

dj

[
Fχ2

d1
(2 log k)

])
. (4.21)
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Equivalent arguments can be used for defining priors for multivariate terms in logistic re-

gression and ANOVA models.

To see how kj varies with dimension, see Figure 4.9, which is a plot of log kj against dj

when k = 1000. The solid line represents log kj ∝ 1/dj while the dotted line represents the

values given by (4.21).
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Figure 4.9: The Relationship between log kj and dj for k = 1000 (Solid line for log kj ∝ 1/dj

and Dotted line for equation 4.21).
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4.6.2.4 An Example with Multiple Categories Factors: 3 × 2 × 4 Contingency

Table

This example is a 3×2×4 contingency table presented by Knuiman and Speed (1988) where

491 individuals are classified by three categorical variables: obesity (O: low,average,high),

hypertension (H: yes,no) and alcohol consumption (A: 1,1–2,3–5,6+ drinks per day); see

Table 4.8.

Alcohol Intake

Obesity High BP 0 1-2 3-5 6+

Low Yes 5 9 8 10

No 40 36 33 24

Average Yes 6 9 11 14

No 33 23 35 30

High Yes 9 12 19 19

No 24 25 28 29

Table 4.8: 3× 2× 4 Contingency Table: Knuiman and Speed (1988) Dataset.

The results are summarised in Tables 4.9 and 4.10. There are nine possible hierarchical

models in total, but the data strongly favour the model of mutual independence of H, O and

A, with some evidence of an interaction between O and H.

We use the prior proposed by Dellaportas and Forster (1999). We adopt here the proposal

and pseudoprior densities of type N(0,Σj/k
2) for various choices of k. Pilot run estimates

were avoided in order to simplify computations. In SSVS the two adjustment approaches

were used for two different ‘small’ variances (k = 1000 and k = 5000).

All methods support the model independence with high probability. Gibbs variable

selection methods and reversible jump support model H + O + A with probability about

68%. All SSVS samples support the same model with higher probabilities. Generally the

first adjustment method supports more complicated models.

In terms of convergence both reversible jump and Gibbs variable selection with k = 10

seem to reach convergence very fast (see Figure 4.11) while Kuo and Mallick and Gibbs
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Posterior Probability

RJ KM GVS GVS

Model (k = 10) (k = 1) (k = 10) (k = 100)

O +H + A 0.685 0.688 0.674 0.680

OH + A 0.309 0.307 0.320 0.315

Other Models 0.006 0.005 0.006 0.005

Mean of Batch

Standard Deviation 0.046 0.129 0.030 0.174

Table 4.9: 3×2×4 Contingency Table: Posterior Model Probabilities Estimated by Reversible

Jump and Gibbs Variable Selection Methods (Proposals and Pseudopriors: N(0,Σj/k
2).

Multivariate Adjustment Criterion

[1] log cj ∝ 1/δj [2] Equation (4.21)

Model k = 1000 k = 5000 k = 1000 k = 5000

O +H + A 0.948 0.853 0.829 0.764

OH + A 0.049 0.145 0.169 0.233

Others 0.003 0.002 0.002 0.003

Mean of Batch

Standard Deviation 0.012 0.053 0.064 0.233

Table 4.10: 3× 2× 4 Contingency Table Example: Posterior Model Probabilities estimated

by SSVS.
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variable selection with k = 100 demonstrate more variability among the batches. Similar

arguments hold for SSVS methods. The chain resulted from SSVS that reached conver-

gence faster in terms of batch standard deviation is the one with k = 1000 and the first

criterion. This result was expected since the first criterion utilizes smaller values for kj of

multidimensional terms.

Finally, flatter prior distributions were also used to assess the effect on the posterior

distribution. We use the variance multiplicator c2 = c′d (c′ = 2 results to Dellaportas and

Forster prior) for values of c′ ∈ {2, 5, 10, 30, 50, 100}. Results are presented in Figure 4.10.

The fitted line is produced by fitting a logistic regression model on the probability of the

best model with regressors c′ and log(c′). As expected the probability of model H +O + A

tends to zero as the variance becomes larger. The supported model even for c′ = 2 is the

simplest possible in the set of models that we consider and for this reason when the prior

becomes flatter the probability of the simplest model tends to one.
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Figure 4.10: 3 × 2 × 4 Contingency Table Example: Variation of Posterior Probability of

Model H +O + A for Different log(c′).
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Figure 4.11: 3×2×4 Contingency Table Example: Barplot Comparison of Different MCMC

Model Selection Methods.
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4.6.3 Binomial Regression Models

Binomial models are used when the dependent variable is binary and interest lies in de-

termining the factors that affect the resulted probability. The model formulation is given

by

Yi ∼ Binomial (pi, Ni) .

The probability pi has a different form depending on the link function g(pi) used. The most

frequent link functions are the logit [ pi = g−1(ηi) = exp(ηi)/{1 + exp(ηi)} ] the probit

[ pi = g−1(ηi) = Φ−1(ηi) ] and the complementary log-log [ pi = g−1(ηi) = 1 − exp(−eηi) ].

Therefore the likelihood is given by

f(y|β(γ),γ) = exp




n∑
i=1


 Ni

yi


+

n∑
i=1

yilog

(
pi

1− pi

)
+

n∑
i=1

Nilog(1− pi)


 .

For binomial models the procedure for sampling model parameters is equivalent to the

Poisson log-linear models. The general sampling procedure is given by

1. Generate β(γ) from

f(β(γ)|γ,y) ∝ exp

{
n∑
i=1

yilog

(
pi

1− pi

)
+

n∑
i=1

Nilog(1− pi)

}
f
(
β(γ)|γ

)

substituting pi by g∗
([

X(γ)β(γ)

]
i

)
in reversible jump or Carlin and Chib samplers,∑

j∈V γjX ijβj in Gibbs variable selection and g∗ ([Xβ]i) for SSVS. When the canonical

(logit) link is used the above full conditional posteriors (without their normalising

constants) may be given by (4.22) in Carlin and Chib variants, (4.23) in Gibbs variable

selection and (4.24) in SSVS:

exp

{
n∑

i=1

yilog
[
X(γ)β(γ)

]
i
−

n∑
i=1

Nilog
[
1 + exp

([
X(γ)β(γ)

]
i

)]}
f(β(γ)|γ) (4.22)

exp




n∑
i=1

yilog


∑

j∈V
γjXijβj


− n∑

i=1

Nilog


1 + exp


∑

j∈V
γjXijβj






 f(β(γ)|γ) (4.23)

exp

{
n∑

i=1

yilog [Xβ]i −
n∑

i=1

Nilog [1 + exp ([Xβ]i)]

}
f (β|γ) (4.24)

where X ij is the 1× dj sub-matrix corresponding to i observation and j term.

2. The scale parameter is known and therefore we do not have to estimate it.

Further details are omitted and we directly present an illustrated example.
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4.6.3.1 A Logistic Regression Example

We consider a dataset analysed by Healy (1988). The data, presented in Table 4.11, reflect

the relationship between the number of survivals, the patient condition (more or less severe)

and the received treatment (antitoxin medication or not). We wish to select one of the five

Antitoxin Death Survivals

More Severe Yes 15 6

No 22 4

Less Severe Yes 5 15

No 7 5

Table 4.11: Logistic Regression Example: Healy (1988) Dataset.

possible nested logistic regression models with response variable the number of survivals and

explanatory factors the patient condition and the received treatment. The full model is given

by

Yil ∼ Bin(Nil, pil), log

(
pil

1− pil

)
= µ+ ai + bl + (ab)il, i, l = 1, 2,

where Yil, Nil and pil are the number of survivals, the total number of patients and the

probability of survival under i level of severity and l treatment respectively; µ, ai, bl and

(ab)il are the model parameters corresponding to the constant term, i level of severity, l level

of treatment, and interaction of i severity and l treatment.

We consider, for our illustration, the reversible jump, the Metropolised version of Carlin

and Chib’s method presented in Section 4.3.1, the Gibbs variable selection introduced in

Section 4.1.1, the Kuo and Mallick (1998) method presented in Section 3.4.2 and the SSVS

method presented in 3.4.1. A rough guideline for our comparisons is an approximation to

Bayes factor B10 of model m1 against model m0 based on Bayes information criterion (BIC)

given by (2.4) with sample size given by the sum of all Bernoulli trials, that is
∑

ilNil for this

logistic regression example; see Raftery (1996a) for details. Calculation of all Bayes factors

against the full model leads immediately to posterior model probabilities.

Assuming the usual sum-to-zero constraints, the parameter vector for the full model is

given by β = (β0, β1, β2, β3) = (µ, a2, b2, (ab)22). We use the same N(0,Σ) prior distribution
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for each βj , j = 0, . . . , 3, under all five models. Following the ideas of Dellaportas and

Forster (1999) we choose Σ = 4 × 2 as a variance which gives a diffuse but proper prior.

In SSVS we used as variance divisor kj = 1000 for all model parameters in order to give

approximately the same results as the other methods.

All Markov chains were initiated at the full model with starting points βj = 0 for all

j = 0, . . . , 3. For the reversible jump and Metropolised Carlin and Chib methods we always

propose only a ‘neighbouring’ model which differs from the current model by one term,

hence j(m,m) = 0. The proposal distributions for βj in the above methods as well as

the pseudopriors in Gibbs variable selection are N(µ̄j , Sj) where µ̄j and Sj were estimated

from a pilot run of 500 iterations in the full model, after discarding the first 100 as burn-in

iterations. The resulting values of µ̄j and Sj turned out to be (−0.47,−0.87, 0.56,−0.17)
and (0.27, 0.27, 0.28, 0.27) for j = 0, . . . , 3 respectively. Within each model, updating of the

parameters βj was performed via Gibbs sampling steps as described in Dellaportas and Smith

(1993). Finally, each Markov chain ran for 110,000 iterations and the output summaries are

based on ergodic averages taken on the last 100,000 iterations. All of the MCMC approaches

took a similar length of time (around 4 minutes in a Pentium 100 PC). The full results are

given in Table 4.12.

Model Deviance AP SSVS GVS KM RJ MCC

Constant 18.656 0.004 0.011 0.005 0.005 0.005 0.005

A 4.748 0.460 0.498 0.493 0.496 0.491 0.491

B 12.171 0.011 0.017 0.011 0.010 0.012 0.012

A+B 0.368 0.462 0.416 0.439 0.436 0.439 0.440

AB 0.000 0.063 0.057 0.051 0.053 0.052 0.052

Table 4.12: Logistic Regression Example: Posterior Model Probabilities; AP = approximate

probabilities, SSVS = stochastic search variable selection, GVS = Gibbs variable selection,

KM = Kuo and Mallick Gibbs sampler, RJ = reversible jump, MCC = Metropolised Carlin

and Chib method.

As would be hoped, all MCMC methods give similar results, with the combined probabil-

ity of the two most probable models to be at least 0.93. SSVS gives slightly different results
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Batch Standard Deviation

Model A Model A+B

GVS 0.012 0.010

KM 0.021 0.019

RJ 0.017 0.014

MCC 0.016 0.013

SSVS 0.196 0.168

Table 4.13: Logistic Regression Example: Batch Standard Deviation of Posterior Model

Probabilities.

as expected. The resulting 110,000 iterations were divided in 44 batches of length of 2,500

iterations. Probabilities of the best two models over different batches are given in Figure

4.14 while ergodic probabilities are given in Figure 4.15. Assessment of convergence can be

done via these figures and Table 4.13 gives the between batches standard deviation. The

smaller the standard deviation the quicker the convergence. From both plots and standard

deviations we clearly see that SSVS demonstrates more variability than all the other methods

and therefore we need more iterations to reach convergence. The smallest standard deviation

is achieved by Gibbs variable selection while standard deviation of Kuo and Mallick sampler

is about twice as much. Reversible jump and Metropolised Carlin and Chib have about the

same standard deviation.

We finally performed a robustness analysis. We assume that c2 = 4×c′ and we calculated

the posterior probabilities for various values of c′. For values of c′ between 2 and 100, the

model including the severity effect (A) is supported. Its probability reaches its maximum

(0.834) at the value c′ = 57.6 (estimated by the fitted model). Note that the more compli-

cated model which includes both severity and antitoxin effect decreases its probability when

the prior parameter c′ increases.
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Figure 4.13: Logistic Regression Example: Posterior Probabilities for Different Prior Distri-

butions.
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Figure 4.14: Logistic Regression Example: Batch Posterior Probabilities.
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Figure 4.15: Logistic Regression Example: Ergodic Posterior Probabilities.



Chapter 5

Simultaneous Covariate and

Structural Identification in

Generalised Linear Models

We concentrate in model selection aspects that may appear in generalised linear models.

The usual latent model indicator m ∈M is used to represent the general model formulation

including error structure, link function and covariate selection. The set of all possible models

M can be written as a product of two subsets S×{0, 1}p, where S is the set of all structural

properties and {0, 1}p the set of all possible combinations of covariates included in the model.

Therefore, there is a one-to-one transformation G : M → S × {0, 1}p. The set S can be

further analysed to a product of various other sets such as the set of available links L or

the set of error distributions D. Covariates to be selected are denoted by the usual vector

of binary indicator parameters γ (γj = 1 indicates that the j term is included in the model

while γj = 0 indicates that the j term is excluded from the model). For example, in a model

selection problem where we account uncertainty on the error distribution, link function and

covariate selection we use the latent variables (D,L,γ) ∈ D × L× {0, 1}p.
In generalised linear models interest usually lies in covariate identification. However, the

selection of structural properties is closely related with the validity of the model, its sensitiv-

ity to extreme or outlying values, and the structure of randomness in the response variable

that we study. Therefore here we discuss and present some implementation details when we

are interested in other modelling aspects. We focus in link selection but the methodology

139
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developed for the link identification can be implemented without any further problems to

the determination of other structural properties. The main theory and results of this chapter

have also given in a form of a technical report; see Ntzoufras et al. (1999b)

The following chapter is organized into five sections. The first one gives variable and link

selection details. Detailed samplers are presented together with a straightforward technique

to develop ‘equivalent’ (in a loose sense) prior distributions among different link functions.

The second section introduces a method for outlier identification while the third discusses

and compares link and transformation selection. The fourth section discusses the problem

of distribution selection and gives details of special cases. The final section presents an

illustrative example using simultaneous variable and link selection methods.

5.1 Covariate and Link Function Identification

Variable and link selection breaks into two steps by using the latent variables γ for covariate

selection and L for link identification. Then we may use any of the available MCMC methods

for the covariate selection. We may also incorporate both link and variable selection in one

reversible jump Metropolis step though it is quite inefficient. The linear predictor will slightly

change to

gL(µi) = ηLi , ηL =
∑
j∈V

γjXjβj,(L) (5.1)

where βj,(L) is the parameter vector that corresponds to j term and L link while the vector

of the full model for L link, is noted by β(L).

5.1.1 ‘Equivalent’ Priors for Non-canonical Link Functions

An important issue in link selection is the specification of prior distributions that represent

the ‘equivalent’ beliefs for different link functions. Suppose that we use independent prior

distributions for each term conditionally on the link function used. Then the prior of type

βj,(L)|γj = 1, L ∼ N(0,ΣL
j ), for all L ∈ L

can be utilized.

A simple approach is based on the notion of semiautomatic selection used in SSVS by

George and McCulloch (1993). In the simple case of one dimensional regressors we simply
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use the equation [V ar(β̂Lj )]
−1ΣL

j = [V ar(β̂Cj )]
−1ΣC

j resulting in

ΣL
j =

V ar(β̂Lj )

V ar(β̂Cj )
ΣC
j

where ΣC
j and ΣL

j are the prior variances for the canonical link function C and any other

link function L ∈ L, while V ar(β̂Cj ) and V ar(β̂Lj ) are the standard errors of the maximum

likelihood estimates β̂Cj and β̂Lj of links C and L, respectively.

In more complicated cases we may use multivariate normal distributions and adjust the

variance of each parameter and the prior covariances of parameters βk and βl using the

equation

Cov(βLk , β
L
l ) =

Cov(β̂Lk , β̂
L
l )

Cov(β̂Ck , β̂
C
l )

Cov(βCk , β
C
l ).

A more sophisticated adjustment can be based on the first order approximation of Taylor

expansion. This is given by

ηL = gL(µ) ≈ gL(µ0) + (µ− µ0)g
′
L(µ0) (5.2)

where L ∈ L is a link indicator gL(µ) is the link function and ηL the linear predictor

corresponding to L indicator. The linear function

TEL(µ0) = [gL(µ0)− µ0g
′
L(µ0)] + µg′L(µ0)

will be called Taylor expansion linear approximation of link function gL around µ0. Then,

solving the equation
ηL1 − gL(µ0)

g′L1
(µ0)

=
ηL2 − gL(µ0)

g′L2
(µ0)

(5.3)

we have

ηL1 = δ∗L1L2
(µ0)η

L2 + δ∗∗L1L2
(µ0) (5.4)

δ∗L1L2
(µ0) =

g′L1
(µ0)

g′L2
(µ0)

(5.5)

δ∗∗L1L2
(µ0) = gL1(µ0)− δ∗L1L2

(µ0)η
L2gL2(µ0). (5.6)

The most frequent application of link selection in generalised linear models is considered

in binomial models where the most popular links are logistic, probit and complementary

log-log. A common choice for µ0 is µ0 = p0 = 0.5 but this approximation is not effective

when data contain many values resulting in binomial probabilities close to one or zero. In
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L Link g(p0) g′(p0)

L1 Logit log[p0/(1− p0)] [p0(1− p0)]
−1

L2 Probit Φ−1(p0) [ϕ(p0)]
−1

L3 clog-log log[−log(1− p)] −[(1− p0)log(1− p0)]
−1

L4 log-log log[−log(p)] [p0log(p0)]
−1

Table 5.1: Table of Taylor Expansion for Binomial Example.

L Link g(0.5) g′(0.5) TE(0.5) δ∗LL1
δ∗∗LL1

L1 Logit 0.000 4.000 4p− 2 1.000 0.000

L2 Probit 0.000 2.507 2.507p− 1.253 0.627 0.000

L3 clog-log -0.367 2.885 2.885p− 1.809 0.721 -0.367

L4 log-log -0.367 -2.885 −2.885p+ 1.076 -0.721 -0.367

Table 5.2: Table of Taylor Expansion (TE) for Binomial Example; p0 = 0.5.

such cases, a more effective choice is provided by the mean or median probability of available

binomial trials. Details for the binomial case are given in Tables 5.1 and 5.2.

We suggest that the linear transformation

β0,(L) = δ∗LL1
(µ0)β0,(L1) + δ∗∗LL1

(µ0) (5.7)

βL
j = δ∗LL1

(µ0)β
L1
j (5.8)

is a good approximation between the parameters of the two different links since they satisfy

(5.4).

An alternative approach given by Raftery (1996a) is described in Section 3.2.1.3. We may

also use the prior (3.10) with covariance matrix proportional to the inverse of the observed

information matrix as defined by (3.13) or the unit root prior approach. Similar approaches

can be used for transformation identification or distribution selection problems.
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5.1.2 Reversible Jump Link Selection for Given Covariate Struc-

ture

The Metropolis step for link selection involves switching link functions while the dimension

of the two models remain unchanged and equal to d(γ). Two types of reversible jump are

appropriate for link selection. The first is to use a suitable transformation without generating

any additional terms. The identity transformation may also be used but in some cases (where

posterior distribution of parameters in different links are quite distinct) it turned out to be

very inefficient. The second reversible jump type involves a Metropolised Carlin and Chib

step where all the parameters are generated from appropriate proposals.

The reversible jump link step with transformation has acceptance probability

α = min

(
1,

f (y|β′
(γ ,L′),γ, L

′)f (β′
(γ ,L′)|γ, L′)f (γ, L′)j(L′, L)

f (y|β(γ ,L),γ, L)f (β(γ ,L)|γ, L)f (γ, L)j(L,L′)

∣∣∣∣∣
∂hL,L′(β(γ ,L))

∂(β(γ ,L))

∣∣∣∣∣
)

(5.9)

with hL,L′(β(γ ,L)) = β′
(γ ,L′).

A simple but well performed transformation can be achieved by using the first two terms

of the Taylor expansion given by (5.2). The simple linear transformation given by equations

(5.7) and (5.8) can be used to assist the chain to jump easily from one link to another. This

transformation has the property that the expected values µi remain approximately equal

among different links since

ηL′
= β0,(L′) +

∑
j∈V\{0}

γjXjβj,(L′)

= δ∗L′L(µ0)β0,(L) + δ∗∗L′L(µ0) + δ∗L′L(µ0)
∑

j∈V\{0}
γjXjβj,(L)

= δ∗L′L(µ0)η
L + δ∗∗L′L(µ0),

which is the result we get when we equate the Taylor approximated expected values for two

different links; see (5.3) and (5.4).

In general, we may use the value of p0 = 0.5 but in some situations may not be efficient

(for example when all the probabilities are small). A better choice for p0 may be the average

probability of the binomial trials. This linear transformation improves the reversible jump

step efficiently without having to calculate a complicated Jacobian but the simple |δ∗d(γ)
LL′ |.

An alternative approach is to consider Metropolised Carlin and Chib and generate all

model parameters of the new proposed link from an appropriate proposal distribution. In
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such case the Metropolis step is given by

α = min

(
1,

f (y|β′
(γ ,L′),γ, L

′)f (β′
(γ ,L′)|γ, L′)f (γ, L′)j(L′, L)qL(β(γ ,L))

f (y|β(γ ,L),γ, L)f (β(γ ,L)|γ, L)f (γ, L)j(L,L′)qL′(β′
(γ ,L′))

)
(5.10)

Note that the Jacobian here is equal to one since hm,m′(β(γ ,L),β
′
(γ ,L′)) = (β′

(γ ,L′),β(γ ,L)).

The proposal distributions can have the form qL(β(γ ,L)) = N(µ̄β(γ,L)
,S(γ ,L)), where µ̄β(γ,L)

and S(γ ,L) can be taken by a pilot chain for the corresponding model.

5.1.3 Gibbs Variable and Link Selection for Generalised Linear

Models

This section demonstrates how we can extend Gibbs variable selection methods to other se-

lection problems such as link selection. Similar methodology may be followed for distribution

selection problems.

The first approach in applying the variable and link selection via Gibbs is to generalise

Gibbs variable selection or SSVS. We use again the same notation as in Gibbs variable

selection and therefore β denotes the parameter vector of the full model for any link. The

resulting posterior conditional distributions for Gibbs variable selection are equivalent to

(4.1), (4.2) and (4.3) adding the link indicator L while the conditional posterior for the link

selection step is given by

f (L|β,γ,y) = f (y|β,γ,L)f (β|γ,L)f (γ,L)∑
L′∈L

f (y|β,γ,L′)f (β|γ,L′)f (γ,L′)
(5.11)

where f (y|β,γ,L) is the likelihood for the L link.

The main drawback of the above chain is that when the distance of the posterior dis-

tributions of the parameters for different links is large then the part of the prior referring

to the coefficients outside the current model will slow down the link jumps. A proposed

modification is to use of same pseudoprior for all links resulting to their elimination from

the link selection step. This will considerably slow down the variable selection step, since

proposed values are not optimal, making the Markov chain inefficient. For these reason we

shall develop other Gibbs based samplers for simultaneous variable and link selection.

Similarly SSVS can be extended to stochastic search variable and link selection. This

extension will be given by posterior equivalent to (3.24), (3.25) and the above link step
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(equation 5.11). Stochastic search variable and link selection demonstrates convergence

problems similar to Gibbs variable and links selection sampler especially when the parameters

of different links are distinct.

A possible solution to the above problem is given by combining Gibbs variable selection

for variable selection and Carlin and Chib approach for link selection. Instead of β for all link

functions we use one vector β(L) for each L ∈ L. Therefore we need to define f(β(L)|γ, L′) for

all L,L′ ∈ L. When L = L′ then the parameter vector β(L) is generated from f(β(L)|γ, L,y)
which is equivalent to Gibbs variable selection steps given by (4.1) and (4.2) adding the link

indicator L in all conditional distributions and to all model vectors β, β(γ) and β(\γ). In

the case where L �= L′ we generate β(L) from the pseudoprior f(β(L)|γ, L′ �= L). The link

selection step is given by the conditional posterior

f (L|{βL′, L′ ∈ V},γ,y) =
f (y|β(L),γ,L)f (γ,L)

∏
L′∈L

f (β(L′)|γ,L)
∑
0∈L

f (y|β(0),γ, <)f (γ, <)
∏

L′∈L
f (β(L′)|γ, <) . (5.12)

The above Gibbs sampler solves the problem appeared in Gibbs variable selection or SSVS

extension to link identification problems. The major drawback of this Gibbs sampler is the

prerequisite of proposing many parameters from the pseudopriors. This can be solved if we

metropolise this step resulting to Metropolised Carlin and Chib link selection step described

in the previous section. This sampler was mainly constructed to illustrate how we can create

a Gibbs sampler that can easily be implemented by easy-to-use packages such as BUGS.

Similar procedures can be used to construct flexible samplers that give accurate results in

reasonable time. We can also construct a Gibbs sampler that applies SSVS methodology for

variable selection and Carlin and Chib methodology for link selection as described above.

5.1.4 Metropolised Gibbs Sampler for Link Selection

The optimal Metropolised Gibbs sampler described in Section 4.5.1.2 for discrete random

variables can also be implemented for the link selection samplers. We develop this variant

in which we propose a new link L′ �= L from the distribution

j(L,L′) =
f (y|β(L′),γ,L

′)f (γ,L′)
∏

L′′∈L
f (β(L′′)|γ,L′)

∑
0∈L\{L}

f (y|β(0),γ, <)f (γ, <)
∏

L′′∈L
f (β(L′′)|γ, <)
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and accept the proposed term with acceptance probability

α = min


1,

∑
0∈L\{L}

f (y|β(0),γ, <)f (γ, <)
∏

L′′∈L
f (β(L′′)|γ, <)∑

0∈L\{L′}
f (y|β(0),γ, <)f (γ, <)

∏
L′′∈L

f (β(L′′)|γ, <)


 .

Although the above sampler seems complicated it does not require more computations than

Gibbs variable and Carlin and Chib link selection defined above. On the other hand, it is

more complicated than both versions of reversible jump for link selection proposed in Section

5.1.2. The above sampler is given in a simpler form if we set

Ξ(β∗,γ, <) = f (y|β(0),γ, <)f (γ, <)
∏

L′′∈L
f (β(L′′)|γ, <),

Ξ(β∗,γ) =
∑
0∈L

Ξ(β(0),γ, <),

where β∗ = {β(L′′), L′′ ∈ L}. The proposal is now given by

j(L,L′) =
Ξ(β∗,γ, L′)

Ξ(β∗,γ)− Ξ(β∗,γ, L)

and accept the proposed term with probability

α = min

(
1,

Ξ(β∗,γ)− Ξ(β∗,γ, L)
Ξ(β∗,γ)− Ξ(β∗,γ, L′)

)
.

5.1.5 Other Approaches in Link Selection

The above link selection methods considered a limited number of distinct link functions.

More general link functions can be adopted by considering a family of link function depending

on one or more (unknown) parameters. The set of all possible links will depend on the

possible values that these parameters can take. For example Mallick and Gelfand (1994)

consider mixtures of beta distributions while Basu and Mukhopadhyay (1994) normal scale

mixtures. Lang (1997) considers the link function

g1(µi) = m1(G)F−∞(µi) +m2(G)F (µi) +m3(G)F∞(µi)

where G is a mixing parameter to be estimated and mi(G) for i = 1, 2, 3 are mixing func-

tions. As mixing functions, he proposed m1(G) = exp(−e3.51+2) m3(G) = exp(−e−3.51+2)

and m2(G) = 1 − m1(G) − m3(G) while F−∞(µ) = 1 − exp(−eµ) (extreme minimum value

function), F∞(µ) = exp(−eµ) (extreme maximum value function) and F (µ) = eµ/(1 + eµ)
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(logistic function). For the mixing parameter G, a normal prior distribution was suggested.

A straightforward modification can be done by

g1(µ) = m1F−∞(µ) +m2F (µ) + (1−m1 −m2)F∞(µ)

where mi are now mixing proportions to be estimated. A Dirichlet prior on [m1, m2] can be

used.

Finally, Albert and Chib (1997) propose to use the family of symmetric links given by

µi = g−1
1 (ηi) =

2

G
× η1i − (1− ηi)

1

η1i + (1− ηi)1

where G = 0.0, 0.4, 1.0 correspond to the logit, (approximately) probit and linear link respec-

tively. Alternatively for binomial models we may use

g1(pi) = a1

(
pi

1− pi

)1
+ b1.

The choice of G = 0, a1 = 1 and b1 = 0 corresponds to the logit link. We decided not to

proceed in comparative studies since these approaches are of different notion.

5.2 Alternative Procedures for Outlier Identification

An alternative methodology for outlier identification is proposed in this subsection. This

proposed method removes all outliers from the estimation procedure. We also use the latent

vector of binary variables v which indicates outliers by vi = 0.

We consider the model

Yi ∼ N


vi∑

j∈V
γjX ijβj + (1− vi)oi, σ

2




where oi is a parameter estimating the expected value of i observation when it is outlier.

Using MC3 for both variable and outlier identification results in two Metropolis steps.

In the first we propose a new model with covariates given by γ ′ differing by γ only in

one term and accept the move with probability given by (3.39). Then we propose with

probability j(v,v′) to move from v to v′ that differ only i coordinator and accept the move

with probability (3.40).
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If we adopt priors of the general form

β(γ ,v)|σ2,γ,v ∼ N
(
µβ(γ,v)

,Σ(γ ,v)σ
2
)

for model parameters and the prior distribution

oi ∼ N(0, K2σ2)

for outlying parameters oi, then the full conditional posterior distributions are given by a

Bernoulli distribution with success probability Oj/(1 + Oj) with Oj given by (3.31). In the

whole procedure the posterior covariance matrix is now given by

Σ̃(γ ,v) =
(
XT

(γ ,v)X(γ ,v) +Σ−1
(γ ,v)

)−1

where X(γ ,v) is the design matrix constructed from non-outlier observations (vi = 1) and

from the included covariates (γj = 1). Moreover, the posterior residual sum of squares SSγ

are substituted by

SSγ ,v = yT
(v)y(v) + (K2 + 1)−1yT

(\v)y(\v) + µT
β(γ,v)

Σ−1
(γ ,v)µβ(γ,v)

−(XT
(γ ,v)y(v) +Σ−1

(γ ,v)µβ(γ,v)
)T Σ̃(γ ,v)(X

T
(γ, v)y(v) +Σ−1

(γ ,v)µβ(γ,v)
).

where y(v) and y(\v) are the vectors with the response values that are included or excluded

from the model.

Similarly the outlier identification step will involve sequential generations from a similar

Bernoulli with success probability O∗
j/(1 +O∗

j ) step with

O∗
i = (K2 + 1)−1

(
|Σ̃(γ,vi=1,v\i)||Σ(γ,vi=0,v\i)|
|Σ(γ,vi=1,v\i)||Σ̃(γ,vi=0,v\i)|

)1/2(
SS(γ,vi=1,v\i) + 2bτ
SS(γ,vi=0,v\i) + 2bτ

)−n/2−aτ

f(vi = 1,v\i)
f(vi = 0,v\i)

.

If a prior distribution equivalent to Smith and Kohn (1996) prior given by

β(γ ,v)|σ2,γ,v ∼ N
(
0, c2

(
XT

(γ ,v)X(γ ,v)

)−1
σ2
)

is used, then the ratios of determinants simplify to


 |Σ̃(γ ,vi=1,v\i)||Σ(γ ,vi=0,v\i)|
|Σ(γ ,vi=1,v\i)||Σ̃(γ ,vi=0,v\i)|




1/2

= (c2 + 1)−dj/2

and the posterior sum of squares simplifies to

SSγ ,v = yT
(v)y(v)+(K2+1)−1yT

(\v)y(\v)−
c2

c2 + 1
yT

(v)X (γ ,v)

(
XT

(γ ,v)X(γ ,v)

)−1
XT

(γ ,v)y(v)
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where y(v) and y(\v) are the vectors with the response values that are included or excluded

from the model. The problem is that this residual variance inherits the Lindley (1957)

paradox since now oi is to be estimated. This problem may be eliminated if we adopt a model

formulation in which the model likelihood totally ignores outliers. In this case no additional

prior is needed for outlying parameters and hence (K2+1) and (K2+1)−1yT
(\v)y(\v) disappear

from the above equations.

Both of the above proposed method can be adopted in Poisson or binomial model or other

non-normal models. In such cases advanced MCMC algorithms, such as reversible jump or

a Gibbs variable setup, should be adopted in order to identify identify outliers. For example

in Poisson model we may adopt the linear predictor

ηi = log(λi) = vi
∑
j∈V

γjX ijβj + (1− vi)log(oi)

where oi|γi = 0 ∼ G(ao, bo) or in binomial models we may generally consider

pi =


g∗


∑
j∈V

γjX ijβj





vi

× o1−vi
i

where oi|γi = 0 ∼ Beta(ao, bo). We additionally need to define proposal distributions for

these parameters when they are not included in the likelihood. Straightforward proposal

are given by oi|γi = 1 ∼ G(yi, 1) in the Poisson case and oi|γi = 1 ∼ Beta(yi, Ni − yi) in

binomial.

In the case where we simply ignore outliers from the likelihood, the procedure for sampling

model parameters and covariate indicators is the same to the simple covariate selection

methods but the summations (or products) involved in the likelihood are limited to non-

outlying observations. The additional outlier step is given by a Metropolis or Gibbs step as

described in the previous chapter with

O∗
i =

f(vi = 1|β(γ ,vi=1,v\i)
,γ,v\i,y)

f(vi = 0|β(γ ,vi=0,v\i)
,γ,v\i,y)

which is again a product of a likelihood ratio, a prior density ratio, a pseudoprior density ratio

and prior model probability ratio. If a Gibbs variable selection type algorithm is adopted it

is natural to assume that the prior distribution of model parameters and the covariate prior

probability are independent of the outlier structure resulting to

O∗
i = f(yi|β(γ ,vi=1,v\i)

,γ, vi = 1,v\i)
f(vi = 1,v\i)
f(vi = 0,v\i)

.
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The above equation can be interpreted as a measure of how close is observation i to the

current model formulation. If the mean value of the current model is close to the mode of

the likelihood for i observation then we include this term in the model with high probability.

5.3 Link or Transformation Selection?

On many cases we will face the problem whether we should concentrate on the link or

transformation selection. Using transformations of the responses in linear models changes

the distribution of the original response while link selection does not affect the distribution

of the original response but changes the connection between the mean and the covariates.

For example, if we use the same transforming function then we have E[g(Y )] = Xβ in

transformation selection while g[E(Y )] = Xβ in link selection. Using the first two terms

of the Taylor expansion we get an approximation for E[g(Y )] in transformation problems

resulting to

E[g(Y )] ≈ g[E(Y )] + g′′[E(Y )]V ar(Y )/2.

V ar[g(Y )] ≈ g′[E(Y )]V ar(Y ).

The above approximation implies that transformation can handle even problems with het-

eroscedastic errors and adopt more complicated distributional structures while the link se-

lection only considers possible different connections between the mean of the response and

the covariates. An initial exploratory analysis may help to decide what is more appropriate.

In other cases we may incorporate both transformation and link selection in MCMC and let

the data decide which is more appropriate. The latter approach may result to selection of

complicated models with no practical interpretation.

Distribution of Y Linear Predictor ηi V ar(Yi)

No Link or Transformation Normal E(Yi) σ2

Link Normal g[E(Yi)] σ2

Transformation Unknown g[E(Yi)] + g′′(E(Yi))V ar(Yi)/2 σ2/g′[E(Yi)]

Table 5.3: Comparison of Link and Transformation Attributes in Normal Regression.
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5.4 Distribution Selection

Distribution selection can easily be handled in a similar way as link selection in the case where

we consider a discrete number of distributions. Two usual cases of distribution selection

problems are the normal/Student distribution and the Poisson/negative binomial.

For the selection between normal and Student’s we may simply handle it as a model with

Student distribution with the degrees of freedom taken as an extra parameter and then draw

inferences from its posterior distribution. The likelihood of the equivalent linear model with

Student distribution is given by

f(y|η, σ2, df) =
Γ([df + n]/2)

Γ(df/2)(2πσ2)n/2

[
1 +

1

dfσ2
(y − η)T (y − η)

]−(df+n)/2

where η is the usual vector of linear predictors and df are the degrees of freedom. For large

df the Student distribution is well approximated by the normal.

The negative binomial, can be written as a mixture Poisson distribution with

yi ∼ Poisson(εδi e
ηi), εi ∼ G(θ, θ)

where δ is an indicator parameter for switching from Poisson (δ = 0) to negative binomial

(δ = 1) setup. The parameter θ controls the over-dispersion since E(Yi) = eηi and V ar(Yi) =

eηi + e2ηi/θ. Large values of θ imply low over-dispersion. The full likelihood is given by

f(y, ε|η, θ,γ, δ) = f(y|η, ε,γ)f(ε|θ, δ).

For the canonical link we have

f(y|η, ε,γ) = exp

{
−

n∑
i=1

εδi e
ηi + δ

n∑
i=1

yilog(εi) +
n∑
i=1

yiηi −
n∑
i=1

log(yi!)

}

and

f(ε|θ, δ = 1)exp

{
−θ

n∑
i=1

εi + (θ − 1)
n∑
i=1

log(εi) + nθlog(θ)− nlog[Γ(θ)]

}
.

The sampling procedure is similar to simple variable selection including some parts for

generating from the latent variables εi and the dispersion parameter from the corresponding

posterior distributions or a suitably selected pseudoprior. The distribution selection step

can be constructed using similar procedures as described in chapter for variable selection.
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5.5 Illustrated Example

In this Section we illustrate various variable and link selection methods applied on the Healy

(1988) dataset presented at page 133. The prior used is the same as in Section 4.6.3.1 for

the logit link while the other link functions were defined using the Taylor adjustment around

0.4 which is calculated by

p̄ =
1

4

2∑
i=1

2∑
l=1

(
Yil
Nil

)

where Yil and Nil are the number of survivals and the total number of patients under i

severity and l treatment respectively. We considered four possible link functions: the logit,

complementary log-log, probit and log-log. The log-log link was used in order to illustrate

convergence difficulties when one link function produces posterior parameter densities far

away from the others.

Details of the methods used are provided in Table 5.4. For all methods a total of 110,000

iteration were considered discarding the first 10,000 as burn in. Reversible jump and Carlin

and Chib variable and link modification performed very well and reached convergence very

fast (mean batch standard deviation lower than 0.005). The simple extensions of Gibbs

variable selection, SSVS and Kuo and Mallick methods did not perform well and did not

reach convergence (mean batch standard deviation of 0.027, 0.053, 0.028 respectively). This

is confirmed also by the barplots of Figure 5.1 where the two reversible jumps and Carlin and

Chib variable and link selection (CCVLS) have very smooth distributions while the other

samplers demonstrate rough changes. Note that Gibbs variable selection (GVLS) using pilot

run proposal seems to have reached convergence but this is not the case. The log-log link

was not visited at all in the 110,000 iterations examined due to the difficulties discussed in

Section 5.1.3. On the other hand, using proposal centered at zero with pseudoprior variance

100 times smaller than the prior variance worked better but convergence was very slow

compared to reversible jump or Carlin and Chib based schemes.

In the three converged methods eight out of the twenty possible models had posterior

probability higher than 5%. All these models include the factor severity (A) while four

of them additionally include the treatment factor (B). The model with logit link and the

severity factor has the highest probability (about 14%) while the second model is given by

log-log link and the severity factor with probability of of about 13%. Note that all these eight
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models are quite close in terms of posterior probabilities and a selection of a single model

is not suggested. In such cases Bayesian model averaging is proposed instead of selecting a

single model.

Figures 5.2 and 5.3 give comparisons of the ergodic posterior probabilities of the best

eight models for different algorithms. In Figure 5.2 we clearly see that the reversible jumps

and Carlin and Chib variable and link selection are quite close. In Figure 5.3 we compare

the rest of the methods used with the first reversible jump scheme. Only GVLS with k = 10

seems to give close results although demonstrates greater variability. Finally, Figure 5.4

compares the ergodic probabilities when the adjustment of non-canonical link is made by

Taylor expansion around p̄ = 0.4, Taylor expansion around 0.5 and maximum likelihood

standard deviations. Taylor approximation around 0.4 and Maximum likelihood estimates

adjustment gave similar results in clog-log and log-log link functions while two the Taylor

based approximations gave similar results for in the probit link. This may indicates that for

the probit link the Taylor expansion round 0.5 is sufficient (probably due to the symmetry

of the link) while for the other two (asymmetric) links more complicated adjustments are

demanded (based on maximum likelihood estimates or Taylor expansion round p̄).

Algorithm for Selection of

Abbreviation Variable Link

1 RJ1 Simple RJ (eq. 4.8-4.9 ) RJ with Transformation (eq. 5.9)

[Transformation: eq. 5.7 & 5.8 with p = p̄]

2 RJ2 Simple RJ (eq. 4.8-4.9 ) RJ with Pilot Run Proposals (eq. 5.10)

3 CCVLS GVS (eq. 4.3) Carlin and Chib Type (eq. 5.12)

4 GVLS (k = 10) GVS (eq. 4.3) Simple Gibbs Step (eq. 5.11)

[Pseudoprior: N(0,Σj/k
2) for Each Link ]

5 SSVLS SSVS (eq. 3.25) Simple Gibbs Step (eq. 5.11)

6 KMVLS KM (eq. 3.30) Simple Gibbs Step (eq. 5.11)

7 GVLS GVS (eq. 3.30) Simple Gibbs Step (eq. 5.11)

[Pseudoprior: Full Model Pilot Run for Each Link ]

Table 5.4: Variable and Link Algorithms Used in Healy Data.
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Model Posterior Probability

Factors Link RJ1 RJ2 CCVLS GVLS (k = 10)

A logit 0.139 0.138 0.137 0.140

A log-log 0.130 0.131 0.130 0.134

A probit 0.127 0.127 0.126 0.126

A+B logit 0.125 0.125 0.130 0.123

A cloglog 0.121 0.121 0.122 0.121

A+B cloglog 0.121 0.121 0.122 0.121

A+B probit 0.100 0.101 0.103 0.096

A+B log-log 0.073 0.072 0.077 0.078

Table 5.5: Link and Variable Selection for Healy Data: Posterior Model Probabilities Higher

than 0.05; See Table 5.4 for Acronyms.

Posterior Probability

Link RJ1 RJ2 CCVLS GVLS (k = 10)

Logit 0.284 0.283 0.282 0.282

Cloglog 0.253 0.254 0.257 0.251

Probit 0.243 0.244 0.242 0.238

Loglog 0.220 0.220 0.219 0.230

Table 5.6: Link and Variable Selection in Healy Data: Marginal Posterior Distribution of

Link Functions; See Table 5.4 for Acronyms.
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Figure 5.1: Link and Variable Selection in Healy Data: Batch Posterior Model Probabilities

of Different Variable and Link Selection Methods; See Table 5.4 for Acronyms.
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Figure 5.2: Link and Variable Selection in Healy Data: Ergodic Posterior Model Probabilities

of RJ1, RJ2 and CCVLS; See Table 5.4 for Acronyms.
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Figure 5.3: Link and Variable Selection in Healy Data: Ergodic Posterior Model Probabilities

Comparison of RJ1, SSVLS, GVLS (k=10), KMVLs and GVLS; See Table 5.4 for Acronyms.
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Figure 5.4: Link and Variable Selection in Healy Data: Comparison of Ergodic Posterior

Model Probabilities for Different Prior Distribution Link Adjustment.



Chapter 6

On Prior Distributions for Model

Selection

6.1 Introduction

In this chapter we consider the problem of prior specification for model selection with empha-

sis on the normal linear model. The main problem in prior specification when no information

is available is that we cannot use improper priors on model parameters due to the unknown

normalizing constants involved in the calculation of the posterior odds. Moreover, even if we

use proper prior distributions on model parameters, the posterior odds are very sensitive on

the magnitude of the prior variance, tending to support the simpler model as the prior vari-

ance increases (Lindley-Bartlett paradox, 1957). We would like to find a prior distribution

that will be non-informative within each model (in the sense that the posterior modes will

be close to the maximum likelihood estimates), and coherent in terms of dimension penalty

imposed between models.

In Section 6.2 we briefly describe the general model comparison in linear model and two

simple examples that motivated our work. We also propose that −2log(PO01), where PO01

is the posterior odds of model m0 against model m1, can be expressed in a similar way as

information criteria which can be divided into two parts. The first one can be called as

ratio of posterior sum of squares (in analogy to the maximum likelihood residual sum of

squares used in most information criteria) and a penalty function which depends on the

prior variance of model parameters and the prior model probabilities. We further investigate

159
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whether we can use independent prior distributions in variable selection setups and we argue

that in collinear cases this leads to paradoxes. In Section 6.3 we argue that the usual uniform

distribution on the model space leads to incoherent prior distributions if we use alternative

measures such as conditional prior odds at zero which are based on an idea of Robert (1993).

In Section 6.4 we propose a prior specification technique which enables us to eliminate the

prior variance effect on the posterior odds, to impose the penalty we prefer for each additional

parameter included in the model, and to achieve the desired coherency. Following Lindley’s

(1957) arguments we investigate the behaviour of posterior odds in the limit of significance

in normal linear model in Section 6.5. In Section 6.6 we present how we can specify prior

distributions with low information via penalty determination in generalised linear models.

Finally, in Section 6.7 we discuss the behaviour Bayes factor variants including the SSVS

based Bayes factor. Note that some early results of this chapter have been presented in

Ntzoufras et al. (1999a).

6.2 The Normal Linear Model

6.2.1 A General Model Comparison

Let us consider two models m0 and m1 given by

y ∼ N
(
X (m)β(m), σ

2In
)
,

where m ∈ {m0, m1}, n is the sample size, β(m) is the d(m)× 1 vector of model parameters,

X(m) is the n×d(m) design (or data) matrix of model m, N(µ,Σ) is the multivariate normal

distribution with mean µ and variance covariance matrix Σ and In is n×n identity matrix.

We adopt the conjugate prior distribution given by

f(β(m)|σ2, m) ∼ N
(
µβ(m)

, c2V (m)σ
2
)

and the improper prior for the residual variance f(σ2) ∝ σ−2.

The resulting posterior odds for comparing model m0 with model m1 are given by

PO01 = cd(m1)−d(m0)

( |V (m0)|
|V (m1)|

)−1/2 ( |Σ̃(m0)|
|Σ̃(m1)|

)1/2 (
SSm0

SSm1

)−n/2
f(m0)

f(m1)
(6.1)
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where SSm are the posterior sum of squares given by

SSm = yTy − β̃
T

(m)Σ̃
−1

(m)β̃(m) + c−2µT
β(m)

V −1
(m)µβ(m)

, (6.2)

β̃(m) = Σ̃(m)

(
XT

(m)X(m)β̂(m) + c−2V −1
(m)µβ(m)

)
, Σ̃

−1

(m) = XT
(m)X(m) + c−2V −1

(m), (6.3)

µβ(m)
and V (m) are the prior mean vector and a prior matrix associated with the prior

variance-covariance matrix of the parameter vector β(m) respectively, and β̃(m) and Σ̃(m) are

the corresponding posterior measures.

An alternative expression of the posterior sum of squares is given by Atkinson (1978) and

Pericchi (1984) where

SSm = RSSm +
(
β̂(m) − µβ(m)

)T [(
XT

(m)X(m)

)−1
+ c2V (m)

]−1 (
β̂(m) − µβ(m)

)
(6.4)

with RSSm = yTy−β̂
T

(m)X
T
(m)X(m)β̂(m) being the usual residual sum of squares. The above

quantity is the sum of two measures: a goodness of fit and a measure of distance between

maximum likelihood estimates and the prior mean.

6.2.2 Motivation

Our motivation for searching a suitable prior emerges from our need to use:

1. Non-informative priors within each model.

2. Independent priors on model parameters.

Unfortunately, when we try to use either non-informative or independent prior distribu-

tions in model selection, paradoxes emerge. In the first case we have the Lindley-Bartlett

paradox while in the second case the posterior probabilities of two collinear models are close;

see Section 6.2.4 at page 168.

Example One

Consider the model y ∼ N(β1X1, In) with a normal prior distribution on β1 given by

N(µβ1, σ
2
β1
). Then the posterior density is given by

f(β1|y) ∼ N
(
wβ̂1 + (1− w)µβ1, wV ar(β̂1)

)
, V ar(β̂1) =

(
n∑
i=1

X2
i,1

)−1

,
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where w = σ2
β1

(
σ2
β1
+ V ar(β̂1)

)−1
. Consider now a simpler normal prior with µβ1 = 0 and

σ2
β1

= c2[
∑n

i=1 X
2
i,1]

−1. The posterior is simplified to

f(β1|y) ∼ N

(
c2

c2 + 1
β̂1,

c2

c2 + 1
V ar(β̂1)

)
.

In such case it is natural to assume that c2 = 1000 can be considered as non-informative

since w = 0.999 ≈ 1. This is not always the case. Consider a case where the z statistic is

very large, for example β̂1 = 106 and V ar(β̂1) = 10 [
∑n

i=1 X
2
i,1 = 1/10 and

∑n
i=1 YiXi,1 = 105].

Then a choice of c2 = 1000 will result to a posterior density

f(β1|y) ∼ N (999001, 10) ,

while for improper flat prior the posterior density is equal to

f(β1|y) ∼ N (1000000, 10) .

The two densities are far away and therefore the choice of c2 = 1000 cannot be thought

as non-informative. Clearly, if such a prior is used for one model parameter the results

from a Bayesian model averaging approach will contain prior information that influences the

posterior densities.

Example Two: Collinearity, Independent Priors and Model Selection

Consider two normal models m0 : y ∼ N(β1X1, Inσ
2) and m1 : y ∼ N(β1X1 +β2X2, Inσ

2)

with priors

βj ∼ N


0, c2

[
n∑
i=1

X2
ij

]−1

σ2


 for j = 1, 2.

In the extreme (collinear) case where X2 ∝ X1, for large c2 and equal prior model proba-

bilities, we have that the posterior odds are equal to 1.41 in favour of the simplest model

whatever the relationship of X1 and Y is! More details of this motivated example are given

in Section 6.2.4 (page 168). This paradox is true for all Y and X and clearly indicates that

independent prior distributions may be inappropriate for regression models.

6.2.3 Posterior Odds and Information Criteria

Generally, most information criteria select the model that minimizes a quantity which is

usually equal to the maximum likelihood ratio penalized for each additional term used in the
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model; see equation (2.14). There are many model selection criteria usually characterized by

the type of penalties; detailed discussion is presented in Section 2.3. In pairwise comparisons

of models m0 and m1 we will use the difference of two information criteria IC01 = IC0− IC1

defined by equation (2.14).

It is obvious that if IC01 < 0 we prefer the simpler model m0 and when IC01 > 0

we prefer the more complicated model m1. Further note that we have the same support

pattern when we use the minus twice the logarithm of the posterior odds of model m0 vs.

model m1 denoted by PO01 since −2log(PO01) < 0 supports the simpler model m0 while

−2log(PO01) > 0 supports the more complicated model m1. Moreover, there is a variety of

publications connecting specific information criteria with posterior odds and Bayes factor;

see Schwarz (1978), Smith and Spiegelhalter (1980), Poskitt and Tremayne (1983) and Kass

and Wasserman (1995).

Here we remind that we may write the information criteria in a general setup given by

IC01 = −2log
(
f (y|θ̂m0 , m0)

f (y|θ̂m1 , m1)

)
− ψ, (6.5)

where ψ is a penalty function depending on the difference of model dimensionalities d(m1)−
d(m0), the sample size n, and the design matrices X(m0) and X(m1). Also in normal linear

models the above quantity is simplified to

IC01 = nlog

(
RSSm0

RSSm1

)
− ψ, (6.6)

where RSSm are the residual sum of squares of model m.

In the model comparison proposed in Section 6.2.1, −2log(PO01) can be written as

−2log(PO01) = nlog

(
SSm0

SSm1

)
− ψ, (6.7)

ψ = { d(m1)−d(m0) }log(c2)+log
( |V (m1)|
|V (m0)|

)
+log


 |XT

(m1)X(m1) + c−2V −1
(m1)|

|XT
(m0)X(m0) + c−2V −1

(m0)|


−2log (f(m1)

f(m0)

)
.

(6.8)

Note that if we consider equation (6.4) then it is obvious that the posterior sum of squares

incorporate both prior and data information. In addition, if we consider large c2 then

posterior sum of squares becomes approximately equal to the usual residual sum of squares.
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Proposition 6.1 Consider two normal linear models m0 and m1 given by

y ∼ N
(
X(m)β(m), σ

2In
)

and prior setup

f(β(m)|σ2, m) ∼ N
(
0, c2V (m)σ

2
)

and f(σ2) ∝ σ−2

for both m ∈ {m0, m1}. Then −2log(PO01), for large c2, is approximately equal to an

information criterion of type (6.5) with penalty function

ψ = { d(m1)− d(m0) }log(c2) + log
( |V (m1)|
|V (m0)|

)
+ log

( |XT
(m1)X(m1)|

|XT
(m0)X(m0)|

)
− 2log

(
f(m1)
f(m0)

)
. (6.9)

Proof: See appendix, page 201. W

From the above proposition, it is evident that, for large c2, the −2log(PO01) is equivalent

to an information criterion with penalty affected by the prior parameter c2. What is desirable

is to eliminate the effect of c2 from the penalty imposed to the ratio of posterior odds.

Furthermore, adopting the prior distribution suggested by Smith and Kohn (1996) leads to

the following proposition.

Proposition 6.2 Consider two normal linear models m0 and m1 given by

y ∼ N
(
X(m)β(m), σ

2In
)

and prior setup

f(β(m)|σ2, m) ∼ N
(
0, c2

(
XT

(m)X(m)

)−1
σ2
)

and f(σ2) ∝ σ−2 (6.10)

for both m ∈ {m0, m1}. Then −2log(PO01) is equal to an information like criterion given

by (6.7) and, for large c2, approximately equal to an information criterion of type (6.5) with

penalty function

ψ = {d(m1)− d(m0)}log(c2 + 1)− 2log

(
f(m1)

f(m0)

)
. (6.11)

Proof: See appendix, page 201. W

The above prior setup results in a Bayes factor that allows us to fully control the penalty

of the log-likelihood via c2. Both c2 and the prior odds have different influence on the

penalty (and the posterior odds). The above result was independently reported by Fernandez

et al. (1998).
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This prior cannot be computed if an explanatory variable is an exact linear function of

the others. In such extreme case we should remove this term from the model. Consider

now the case of the comparison between two models that differ only by one explanatory

variable involving a single parameter. When the additional variable is highly correlated with

the other variables in the model m0 (e.g. regression R2 = 0.99 of the new variable over

the others) then the likelihood ratio test will be very small and therefore the Bayes factor

will be close to c2 + 1 in favour of the simpler model. Therefore, the prior parameter c2

in this prior setup has two straightforward interpretations. The first is closely related with

the penalty attributed to the log-likelihood ratio for each additional parameter used and

the second is related with the Bayes factor of the model m0 vs. the same model with one

additional variable which is highly correlated with the rest variables in the model.

6.2.4 Independent Prior Distributions for Variable Selection

In linear models it is convenient to use the approach of variable selection. For this reason we

can express the data matrix of the full model X and its parameter vector β as a collection

of distinct n × dj sub-matrices Xj and dj × 1 sub-vectors βj, each one corresponding to j

term (factor, variable or interaction term); where dj are the number of parameters involved

in j term. Therefore we can write

X = [X1,X2, . . . ,Xp] and βT = [βT
1 ,β

T
2 , . . . ,β

T
p ],

where p is the number of terms in the full model. Under such consideration, a convenient

setup is to use independent normal priors on these sub-vectors. Moreover, each design matrix

X(m) and each parameter vector β(m) is constructed by the corresponding sub-matrices Xj

and sub-vectors βj for all terms j included in model m.

Suppose we use the priors

f(βj|σ2) ∼ N
(
0, c2(XT

j Xj)
−1σ2

)

for all j ∈ V(m), where V(m) is the set of all terms included in model m, m ∈ V. Raftery

et al. (1997) proposed similar priors for generalised linear models. To facilitate and link the

connection between model and variable selection we use a vector of variable indicators γm

denoting which terms are included in model m and γj,m is the value of the indicator of j



166 I.Ntzoufras: Aspects of Bayesian Model and Variable Selection Using MCMC

term for model m. The prior of each β(m) is given by the product of all priors f(βj |σ2) for

the terms included in model m (for which γj,m = 1).

Let us firstly consider a simple model comparison of two models m0 and m1 in which m1

differs from m0 by only one additional term j. Then we have the following proposition.

Proposition 6.3 Consider two nested normal models m0 and m1 given by

y ∼ N(X (m)β(m), σ
2In)

for both m ∈ {m0, m1} and additionally that

X(m1) = [X (m0),Xj] and βT
(m1) = [βT

(m0),β
T
j ]

(that is γj′,m0 = γj′,m1 for all j′ �= j and γj,m0 = 0, γj,m1 = 1) with independent normal prior

distributions that can be summarised by

f(β(m)|σ2, m) ∼ N
(
0, c2D−1

(m)(X
T
j Xj)σ

2
)

and f(σ2) ∝ σ−2 (6.12)

where D(m)(X
T
j Xj) is a d(m) × d(m) block diagonal matrix with elements the matrices

XT
j Xj for all j terms included in model m. Then the resulted penalty is given by

ψ = djlog(c
2 + 1)− log|XT

j Xj |+ log|XT
j ∆(m0)Xj |+ 2log

(
f(m0)

f(m1)

)
, (6.13)

∆(m0) = In − c2

c2 + 1
X(m0)Σ̃(m0)X

T
(m0), Σ̃

−1

(m0) = XT
(m0)X(m0) + c−2D(m0)(X

T
j Xj).

Proof: See appendix, page 202. W

Furthermore, if the design matrix of the full model is orthogonal we have the following

corollary.

Corollary 6.3.1 Consider two nested normal models m0 and m1 given by

y ∼ N(X (m)β(m), σ
2In)

for both m ∈ {m0, m1} with independent normal prior distributions that can be summarised

by

f(β(m)|σ2, m) ∼ N
(
0, c2D−1

(m)(X
T
j Xj)σ

2
)

and f(σ2) ∝ σ−2
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where D(m)(X
T
j Xj) is a d(m)×d(m) block diagonal matrix with elements the matrices XT

j Xj

for all j terms included in model m. If the design (or data) matrix of the additional j term

is orthogonal to the design (or data) matrix of the null model then the penalty degenerates to

ψ = { d(m1)− d(m0) }log(c2 + 1) + 2log

(
f(m0)

f(m1)

)
. (6.14)

Proof: See appendix, page 203. W

Further, consider the case that Xj is a vector corresponding to one dimensional term

then the regression model

Xj ∼ N(X (m0)β(m0,xj), σ
2In)

using independent normal prior distributions for the model parameters for β(m0,xj)
similar

to (6.12) given by

f(β(m0,xj)
|σ2, m0) ∼ N

(
0, c2D−1

(m0)(X
T
j Xj)σ

2
)
and f(σ2) ∝ σ−2.

For this new model, the posterior sum of squares is given by

SSm0,xj
= XT

j Xj −XT
j X(m0)

[
XT

(m0)X(m0) + c−2D(m0)(X
T
j Xj)

]−1
XT

(m0)X j.

Therefore for large c2

XT
j ∆(m0)Xj = XT

j Xj − c2

c2 + 1
XT

j X(m0)

[
XT

(m0)X(m0) + c−2D(m0)(X
T
j Xj)

]−1
XT

(m0)X j

≈ XT
j Xj −XT

j X (m0)

[
XT

(m0)X(m0) + c−2D(m0)(X
T
j Xj)

]−1
XT

(m0)Xj

≈ SSm0,xj
.

It is obvious that the determinant |XT
j ∆(m0)Xj| is a measure of collinearity between the

additional term j and the terms of model m0. When Xj is orthogonal to X(m0) then the

above determinant and the corresponding penalty are maximized resulting to (6.14). On the

other hand, the corresponding penalty of proposition 6.3 is minimized when Xj is collinear

to the terms of model m0 since the above determinant will be close to zero. Furthermore,

in the collinear case the ratio of the sum of squares will be equal to one and therefore the

Bayes factor will depend only on the imposed penalty (ψ = djlog(c
2 + 1) − log|XT

j Xj| +
2log

(
f(m0)
f(m1)

)
). What is desirable and plausible is that when X1 and X2 are collinear and

X(m) denotes a collection of terms that define model m for any m ∈M, then a Bayes factor
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of any model with one of the collinear variables m+X1 (or m+X2) versus the same model

with the two collinear variables, m +X1 +X2, should fully support the simpler model. On

the other hand, any comparison of the m+X1 and m+X2 should result to a Bayes factor

equal to one since both models have the same posterior distributions. This is true since the

dimensionality difference of the two models is equal to zero and the posterior sum of squares

are the same resulting in Bayes factor equal to one. For this reason, we should be careful

and try to satisfy the first plausible statement (fully support models m+X1 against models

m + X1 + X2 for all m ∈ M). The example which follows clearly demonstrates that this

statement is not satisfied when independent prior distributions are used.

A Simple Example

In this example we use the simplest possible case where d(m0) = 1 and d(m1) = 2

in order to illustrate the effect of such priors in model selection. We compare a

model m0 with X(m0) = [X1] with parameter vector β(m0) = [β1] and a model

m1 with XT
(m1) = [X1,X2] and β(m1) = [β1, β2]. The resulting penalty (6.13)

using the f(m0) = f(m1) is equal to

ψ = log(c2 + 1) + log


1−

(
c2

c2 + 1

)2

r∗x1x2




with

r∗x1x2
=

(
rx1x2 +

x̄1

σx1

x̄2

σx2

)2
(
1 +

x̄2
1

σ2
x1

)(
1 +

x̄2
2

σ2
x2

) =

(
rx1x2 +

x̄1

σx1

x̄2

σx2

)2
(
1 + x̄1

σx1

x̄2

σx2

)2
+
(
x̄1

σx1
− x̄2

σx2

)2 ≤ 1

where rx1x2 are correlation coefficients of X1 and X2 with rx1x2 ≤ 1 and σ2
xj

are

the biased estimates of variance for Xj variable .

Consider the extreme case where X2 ∝ X1; then rx1x2 = 1 and r∗x1x2
= 1.

In such a case both variables carry exactly the same information and only one

of them should be included in the model. The above setup results to penalty

ψ = log
(

2c2+1
c2+1

)
. For large c, ψ ≈ log(2) resulting in Bayes factor equal to

1.41 (58.5% over 41.5%) in favour of the simpler model whatever is the relation

between X1 and Y ! Similar is the case in which the parameter vector of each

term is multidimensional. Note that Aitkin’s posterior odds (1991) give penalty

equal to log(2) to the log-likelihood; see Aitkin (1991) and O’Hagan (1995).
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Possible ways to avoid the effect of collinearity on posterior odds are to use

the orthogonal transformed data, see Clyde et al. (1996), Clyde (1999), or use

the model dependent priors used by Smith and Kohn (1996) and George and

Foster (1997); see Section 6.2.1 for details.

We may generalise the result of the above example for any one dimensional additional

term Xj . In these cases all matrices involved in the penalty function (6.13) are of 1 × 1

dimension and therefore we can omit all determinants.

Proposition 6.4 Consider two nested normal models m0 and m1 given by

y ∼ N(Xβ(m), σ
2In)

for both m ∈ {m0, m1} and additionally that

X(m1) = [X (m0),Xj] and βT
(m1) = [βT

(m0),β
T
j ]

(that is γj′,m0 = γj′,m1 for all j′ �= j and γj,m0 = 0, γj,m1 = 1) with independent normal prior

distributions that can be summarised by the prior setup

f(β(m)|σ2, m) ∼ N
(
0, c2D−1

(m)(X
T
j Xj)σ

2
)

and f(σ2) ∝ σ−2

and Xj one dimensional term, collinear to the terms included in model m0 then, for large

c2, 2log(PO01) is approximately equal

2log(PO01) ≈ ψ = log[R∗(m0, Xj) + 1] + 2log

(
f(m0)

f(m1)

)

where

R∗(m0, xj) =
β̂
T

(m0,xj)
D(m0)(X

T
j Xj)β̂(m0,xj)

XT
j X j

, (6.15)

=
β̂
T

(m0,xj)
D(m0)(X

T
j Xj)clearβ̂(m0,xj)

β̂
T

(m0,xj)
XT

(m0)X(m0)β̂(m0,xj)

(6.16)

= 1− α∗
1

α∗
1 + α∗

2

(6.17)

with

α∗
1 =

∑
ν∈V(m0)

∑
ν′∈V(m0)\{ν}

[β̂(m0,xj)
]Tν XT

ν Xν′[β̂(m0,xj)
]ν′

α∗
2 =

∑
ν∈V(m0)

[β̂(m0,xj)]
T
ν XT

ν Xν [β̂(m0,xj)]ν ,
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where [β̂(m0,xj)
]ν are the maximum likelihood estimates for term ν of a normal linear model

with Xj as response and X(m0) design matrix and V(m) is the set of terms included in model

m.

Proof: See appendix, page 203. W

In the above proposition we clearly see that when we use independent prior distributions

on model terms and compare two nested models that differ only by j term then the poste-

rior odds depend only on the quantity R∗(m0, xj) or the ratio α∗
1/(α

∗
1 + α∗

2) whatever the

relationship between Xj and Y . Additionally, R∗(m0, xj) takes values between zero and one

and therefore the Bayes factor will be between 1 and 1.41 (the posterior probability, when

equal weights are assumed, is between 0.500 and 0.586) in favour of the simpler model. This

is clearly a paradox since, in such case, any model selection procedure should fully support

the simpler model which carries the same information as the most complicated one. This is

a serious drawback of the independent priors setup. The following corollary considers the

case where the maximum of the penalty is observed under the extreme case of collinearity

and it is a more general case of the simple example presented above.

Corollary 6.4.1 Consider the model comparison of proposition 6.4 and additionally assume

that the design matrix of the null model is orthogonal then, for large c2,

2log(PO01) ≈ ψ = log(2) + 2log

(
f(m0)

f(m1)

)
. (6.18)

Proof: See appendix, page 206. W

6.3 Conditional Prior Odds at Zero

In Bayesian model selection it is a usual practice to adopt the uniform prior on model

space as a ‘non-informative’ prior distribution and then specify the prior distribution of each

parameter vector conditionally on the model. We argue that this uniform prior on model

space leads to incoherency if we use measures of conditional prior odds based on the ideas

proposed by Robert (1993).

Robert (1993) extensively discussed Lindley’s paradox and argued that increasing the

prior variance of a parameter is essentially giving more prior weight to the simpler hypothesis.
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He examined the simple case with Yi ∼ N(µ, σ2) for i = 1, . . . n where

H0 : µ = 0 vs. H1 : µ �= 0.

He used the term ‘conditional prior odds at a neighbourhood of zero’ [−ξ, ξ] (CPONZξ)

which is defined as following.

Definition 6.1 The ‘conditional prior odds at a neighbourhood of zero’ [−ξ, ξ] (CPONZξ)

is given by the ratio

CPONZξ =
f(m1 | − ξ < µ < ξ)

f(m0 | − ξ < µ < ξ)
.

We adopt a similar approach for normal linear and generalised linear models. The case of

model selection in these models is far more complicated than the simple case illustrated by

Robert (1993).

Consider two nested normal models m0 and m1 given by

y ∼ N(Xβ(m), σ
2In)

for both m ∈ {m0, m1} and additionally that

X(m1) = [X(m0),Xj] and βT
(m1) = [βT

(m0),β
T
j ].

The hypothesis test may be written as

H0 : βj = 0 vs. H1 : βj �= 0.

We can also facilitate the use of a variable indicator γj and summarize both models by

µ(mγj
) = X(m0)β(m0)+γjXjβj for γj = 0, 1. Instead of the usual prior odds f(m1)/f(m0) =

f(γj = 1)/f(γj = 0) we may adopt the approach of ‘conditional prior odds at a neighbour-

hood of zero’ [−ξ, ξ] which is given by the following definition.

Definition 6.2 The conditional prior odds for comparing two normal linear models y ∼
N(µ(mγj ), σ

2In) with mγj
: X(m0)β(m0) + γjXjβj for γj ∈ {0, 1} is defined as

CPONZξ =
f(m1 | − ξ < βj < ξ, σ2)

f(m0 | − ξ < βj < ξ, σ2)
(6.19)

when j term is one dimensional and by

CPONZξ =
f(m1 | βT

j βj < ξ2, σ2)

f(m0 | βT
j βj < ξ2, σ2)

(6.20)

when j term is multi-dimensional.
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The above definition can be generalised by using a more general condition given by F(βj) <

ξ′ instead of the neighbourhood defined by the condition βT
j βj < ξ2; where F is a function

defining the neighbourhood of zero.

Proposition 6.5 The conditional prior odds of definition 6.2 for comparing two normal

linear models y ∼ N(µ(mγj
), σ

2In) with µ(mγj
) = X(m0)β(m0) + γjXjβj for γj ∈ {0, 1} are

given by

CPONZξ = f (βT
j βj < ξ2|γj = 1, σ2)

f(σ2|m1)

f(σ2|m0)

f(m1)

f(m0)
(6.21)

Proof: See appendix, page 206. W

Robert (1993) holds CPOZξ constant for a specific ξ. George and McCulloch (1993)

adopt a similar methodology in defining the prior distributions in semiautomatic prior selec-

tion of SSVS. We further propose a simpler approach based on the ‘conditional prior odds

at zero’ (CPOZ) which is given by the following definition.

Definition 6.3 The conditional prior odds at zero for comparing two normal linear models

y ∼ N(µ(mγj ), σ
2In) with µ(mγj ) = X(m0)β(m0) + γjXjβj for γj ∈ {0, 1} is defined as

CPOZ =
f(m1 | βj = 0, σ2)

f(m0 | βj = 0, σ2)
. (6.22)

Proposition 6.6 The conditional prior odds at zero of the definition 6.3 for comparing

two normal linear models y ∼ N(µ(mγj ), σ
2In) with µ(mγj ) = X(m0)β(m0) + γjXjβj for

γj ∈ {0, 1} are given by

CPOZ =
f(m1| βj = 0, σ2)

f(m0|βj = 0, σ2)
= f(βj = 0|σ2, γj = 1)

f(σ2|m1)

f(σ2|m0)

f(m1)

f(m0)
. (6.23)

Proof: See appendix, page 206. W

From the above proposition it is clear that when the prior variance of βj increases then

the conditional density f(βj = 0|γj = 1) decreases and hence the conditional prior odds

support more strongly the simplest model. Under this view it is natural that the posterior

odds will also tend to support the simplest model.

If we consider the independent normal prior setup (6.12) then we have that the conditional

prior odds at zero are equal to

CPOZ =
f(m1| βj = 0, σ2)

f(m0|βj = 0, σ2)
=

f(m1)

f(m0)
(2πc2σ2)−dj/2|XT

j Xj|1/2 (6.24)
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which demonstrates the same type of incoherency for large values of c2.

In the cases of non-nested models we may adopt the following more general definition of

conditional prior odds.

Definition 6.4 The conditional prior odds at zero for comparing two linear normal models

m0 and m1 with y ∼ N(µ(mγ ), σ
2In) where µ(mγ ) = (1 − γ)X(m0)β(m0) + γX(m1)β(m1) for

γ ∈ {0, 1} is defined as

CPOZ =
f(m1 | β(m0) = 0,β(m1) = 0, σ2)

f(m0 | β(m0) = 0,β(m1) = 0, σ2)
. (6.25)

Proposition 6.7 The conditional prior odds at zero of the definition 6.4 for comparing two

linear normal models m0 and m1 with y ∼ N(µ(mγ), σ
2In) where µ(mγ) = (1−γ)X (m0)β(m0)+

γX(m1)β(m1) for γ ∈ {0, 1} are given by

CPOZ =
f(β(m1) = 0|σ2, m1)

f(β(m0) = 0|σ2, m0)

f(σ2|m1)

f(σ2|m0)

f(m1)

f(m0)
. (6.26)

Proof: See appendix, page 206. W

The problem of incoherency is not directly evident in the above quantity but if we consider

the general prior setup of Section 6.2.1 then we have

CPOZ =
f(m1)

f(m0)
(2πc2σ2)−(d(m1)−d(m0))/2

( |V (m1)|
|V (m0)|

)−1/2

× exp
(
− 1

2c2σ2

{
µT
β(m1)

V −1
(m1)µβ(m1)

− µT
β(m0)

V −1
(m0)µβ(m0)

})

in which we clearly see that, for fixed matrices V (m), as c2 gets larger then the above

conditional prior odds fully support the simpler model. Similar results are obtained if we

use the prior setup of (6.10) resulting in

CPOZ =
f(m1)

f(m0)
(2πc2σ2)−(d(m1)−d(m0))/2


 |XT

(m1)X (m1)|
|XT

(m0)X (m0)|




1/2

which clearly depends on the magnitude of c2.

Finally, if we consider the independent normal prior setup (6.12) then both definitions

6.3 and 6.4 (for nested and non-nested models) give the same conditional prior odds at zero

(equation 6.24).
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6.4 Prior Specification via Penalty Determination

6.4.1 Prior Odds and Penalty Specification

A different approach is proposed here following the logic that prior odds and prior variance

of model parameters should depend on each other. From previous sections we clearly saw

that different prior distributions (indirectly) impose different penalty to the log-likelihood

ratio. This penalty depends on three elements:

1. the magnitude of the prior variance expressed by c2 (see equation 6.9),

2. the logarithm of the determinants ratio of prior and posterior covariance structure of

the two models (see equation 6.9) and

3. the prior odds (see equation 6.9).

We propose a calibrating method that will enable us to use a prior distribution as non-

informative as we would like, within each model, and, at the same time, apply the di-

mensionality penalty we wish. We limit ourselves in the normal cases described above but

generalization to other models can be done using Laplace approximation; see Section 6.6.

As we have already mentioned the posterior odds can be written as model selection criteria

given by (6.7). The penalty function ψ can be further written as

ψ = ψ′ − 2log

(
f(m1)

f(m0)

)

where ψ′ is the penalty function when equal prior model probabilities are considered. In

such cases, instead of using the uniform prior distribution on model space we may express

our ‘model selection’ opinion or prior information in terms of penalty for each additional

parameter used. Therefore, if we want to assign penalty F = log(κ) for each additional

parameter we would simply use prior probabilities that satisfy the equality

f(m1)

f(m0)
= exp

(
1

2
{ψ′ − [d(m1)− d(m0)]F}

)
= eψ

′/2/κ[d(m1)−d(m0)]/2.

Moreover, if the penalty ψ′ can be written as a difference between two penalties ψ′ =

ψ′
m1
− ψ′

m0
attributed to each model then we can simply set

f(m) ∝ exp
(
1

2
{ψ′

m − d(m)F}
)
= eψ

′
m/2/κd(m)/2.
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In the cases examined (general multivariate normal prior distribution and independent

normal distributions), both c2 and the prior odds have great effect on the penalty imposed

on the likelihood. Our aim is to use ‘non-informative’ priors on model parameters without

being informative in the model selection process. This can be achieved by suitably specifying

the prior probabilities which control the model selection procedure with the desired penalty

imposed by the user. Similar ideas were used by Poskitt and Tremayne (1983) for Jeffreys

prior and Pericchi (1984). A suitable specification of prior model probabilities via penalty

determination leads to the following propositions.

Proposition 6.8 Consider two nested normal linear models m0 and m1 given by

y ∼ N
(
X(m)β(m), σ

2In
)

and prior setup

f(β(m)|σ2, m) ∼ N
(
0, c2V (m)σ

2
)

and f(σ2) ∝ σ−2

for both m ∈ {m0, m1}. When we use prior probabilities given by

f(m) ∝
(
c2

κ

)d(m)/2 ∣∣∣V (m)

∣∣∣1/2 ∣∣∣XT
(m)X(m) + c−2V −1

(m)

∣∣∣1/2 (6.27)

then, for large c2, −2log(PO01) is approximately equal to an information criterion of type

(6.5) with penalty function

ψ = {d(m1)− d(m0)}log(κ),

or penalty for each additional parameter equal to F = log(κ).

Proof: See appendix, page 207. W

Corollary 6.8.1 Consider two normal linear models m0 and m1 given by

y ∼ N
(
X(m)β(m), σ

2In
)

and prior setup

f(β(m)|σ2, m) ∼ N
(
0, c2

(
XT

(m)X(m)

)−1
σ2
)

and f(σ2) ∝ σ−2

for both m ∈ {m0, m1} . When we use prior probabilities

f(m) ∝
(
c2 + 1

κ

)d(m)/2

(6.28)
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then, for large c2, −2log(PO01) is equal to a criterion of type (6.5) with penalty function

ψ = {d(m1)− d(m0)}log(κ),

or penalty for each additional parameter equal to F = log(κ).

Proof: See appendix, page 207. W

The parameter κ now fully controls the penalty that is imposed on the log-likelihood.

We can easily adopt this kind of prior in variable selection problems using binary indicator

variables γ as in George and McCulloch (1993). When no restrictions on the model space

are imposed, a common prior for each term probability is given by γj ∼ Bernoulli(π) which

can be written as

f(γ) ∝
(

π

1− π

)d(γ)

= [PrO]d(γ) (6.29)

denoting that the prior probability of a model depends on its dimension and parameter PrO

which measures the prior odds of including any term in the model equation. A common

choice, considered as non-informative prior, is given for PrO = 1.

Corollary 6.8.2 Consider the model comparison of proposition 6.8.1. If we use the variable

selection approach using the latent variables γ instead of the model indicator m with prior

γj ∼ Bernoulli(πj)

and

PrOj =
f(γj = 1)

f(γj = 0)
=

πj
1− πj

=

(
c2 + 1

κ

)dj/2

(where dj are the number of parameters for the j term) then, for large c2, −2log(PO01) is

equal to a criterion of type (6.5) with penalty function

ψ = {d(m1)− d(m0)}log(κ)

or penalty for each additional parameter equal to F = log(κ).

Proof: See appendix, page 207. W

Corollary 6.8.3 Consider two normal models m0 and m1 given by

y ∼ N(X (m)β(m), σ
2In)
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for both m ∈ {m0, m1} and additionally that

X(m1) = [X (m0),Xj] and βT
(m1) = [βT

(m0),β
T
j ]

with independent normal prior distributions that can be summarised by the prior setup

f(β(m)|σ2, m) ∼ N
(
0, c2D−1

(m)(X
T
j X j)σ

2
)

and f(σ2) ∝ σ−2,

and prior probabilities

f(m) ∝
(
c2

κ

)d(m)/2 ∣∣∣XT
(m)X(m) + c−2D(m)(X

T
j Xj)

∣∣∣1/2 p∏
j=1

|XT
j Xj|−γj,m/2. (6.30)

Then the resulted penalty is given by

ψ = {d(m1)− d(m0)}log(κ),

or penalty for each additional parameter equal to F = log(κ).

Proof: See appendix, page 207. W

6.4.2 Conditional Prior Odds Using Penalty Determination

The above proposed method is coherent in terms of conditional posterior odds at zero since

this measure remains constant as c2 increases. The following propositions give the form of

conditional prior odds at zero when prior model probabilities are constructed via penalty

specification. Their behaviour when c2 is large, and hence when low prior information within

each model is used, is discussed in detail.

Proposition 6.9 Consider two normal linear models m0 and m1 which are given by

y ∼ N
(
X (m)β(m), σ

2In
)
,

prior setup

f(β(m)|σ2, m) ∼ N
(
0, c2V (m)σ

2
)

and f(σ2) ∝ σ−2

for both m ∈ {m0, m1}, and prior model probabilities given by

f(m) ∝
(
c2

κ

)d(m)/2 ∣∣∣V (m)

∣∣∣1/2 ∣∣∣XT
(m)X(m) + c−2V −1

(m)

∣∣∣1/2 .
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Then the prior odds at zero are given by

CPOZ = (2πκσ2)−(d(m1)−d(m0))/2



∣∣∣XT

(m1)X(m1) + c−2V −1
(m1)

∣∣∣∣∣∣XT
(m0)X(m0) + c−2V −1

(m0)

∣∣∣



1/2

× exp
(
− 1

2c2σ2

{
µT
β(m1)

V −1
(m1)µβ(m1)

− µT
β(m0)

V −1
(m0)µβ(m0)

})

Proof: See appendix, page 208. W

When we use the above prior setup and c2 is very large (and therefore non-informative

within each model) then

CPOZ ≈ (2πκσ2)−(d(m1)−d(m0))/2



∣∣∣XT

(m1)X(m1)

∣∣∣∣∣∣XT
(m0)X(m0)

∣∣∣



1/2

<∞,

that is the conditional prior odds do not fully support the simpler model and therefore the

above prior setup is coherent and robust for large values of c2.

Corollary 6.9.1 Consider two normal linear models m0 and m1 given by

y ∼ N
(
X(m)β(m), σ

2In
)

and prior setup

f(β(m)|σ2, m) ∼ N
(
0, c2

(
XT

(m)X(m)

)−1
σ2
)

and f(σ2) ∝ σ−2

for both m ∈ {m0, m1}. When we use prior probabilities

f(m) ∝
(
c2 + 1

κ

)d(m)/2

then the prior odds at zero are given by

CPOZ = (2πκσ2)−(d(m1)−d(m0))/2

(
c2

c2 + 1

)−[d(m1)−d(m0)]/2


∣∣∣XT

(m1)X(m1)

∣∣∣∣∣∣XT
(m0)X(m0)

∣∣∣



1/2

.

Proof: See appendix, page 208. W

Corollary 6.9.2 Consider two normal models m0 and m1 given by

y ∼ N(X (m)β(m), σ
2In)
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for both m ∈ {m0, m1} and additionally that

X(m1) = [X (m0),Xj] and βT
(m1) = [βT

(m0),β
T
j ]

with independent normal prior distributions that can be summarised by the prior setup

f(β(m)|σ2, m) ∼ N
(
0, c2D−1

(m)(X
T
j Xj)σ

2
)

and f(σ2) ∝ σ−2

and prior probabilities

f(m) ∝
(
c2

κ

)d(m)/2 ∣∣∣XT
(m)X(m) + c−2D(m)(X

T
j Xj)

∣∣∣1/2 p∏
j=1

|XT
j Xj |−γj,m/2

then the prior odds at zero are equal to

CPOZ = (2πκσ2)−(d(m1)−d(m0))/2



∣∣∣XT

(m1)X(m1) + c−2D(m1)(X
T
j Xj)

∣∣∣∣∣∣XT
(m0)X(m0) + c−2D(m0)(X

T
j Xj)

∣∣∣



1/2

.

Proof: See appendix, page 208. W

From the above we may conclude that using the prior probabilities proposed in Section

6.4.1 then the ‘conditional prior odds at zero’ do not depend on variance multiplicator c2.

Moreover, we can use this quantity to define the appropriate a-priori penalty which, according

to our prior belief, is correct. For example, a quick approach can be based on defining the

conditional prior odds at zero such that strongly support the simpler model. Therefore,

defining CPOZ = 1/99 for nested models is equivalent to giving a-priori a probability 1% to

the simplest model when the model parameter vector is equal to zero. The more we support

the simplest model via CPOZ the more penalty is applied to the log-ratio of posterior sum

of squares.

6.5 Posterior Odds at the Limit of Significance

In this section we use the posterior odds at the limit of significance and the logic of Lindley

(1957) in order to examine its behaviour in normal linear models and associate classical

and Bayesian approach in hypothesis tests and model selection. The section is divided into

three sub-sections. We firstly define the posterior odds at the limit of significance and we

present its behaviour in both Lindley’s example and normal linear model. Then, we consider
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their robustness after eliminating the variance effect and finally we present an alternative

methodology which equates posterior probability of the null hypothesis (or model) to a

prespecified significance level q.

6.5.1 Posterior Odds at the Limit of Significance and Lindley’s

Example

Lindley (1957) used the simple example where y ∼ N(µ, σ2), with σ2 known, to test the

hypothesis that H0 : µ = µ0 vs. H1 : µ �= µ0. We will alternatively consider a normal

prior distribution with mean µ0 and variance c2σ2 in order to have similar patterns with the

previous sections.

Definition 6.5 The ‘posterior odds at the limit of significance’ (POLS) are defined as the

posterior odds resulting from observed samples that are in the limit of rejection area of a

significance test of level q.

For Lindley’s example such samples satisfy the equality ȳ = µ0 ± zq/2σ/
√
n.

Proposition 6.10 Consider the simple case with y ∼ N(µ, σ2) where σ2 is known. We

want to assess which of the hypotheses H0 : µ = µ0 vs. H1 : µ �= µ0 is supported by the data

(and prior beliefs) using the prior f(µ|σ2) ∼ N(µ0, c
2σ2). The posterior odds at the limit of

significance are then given by

POLSq
01 =

f(m0)

1− f(m0)

√
nc2 + 1 exp

(
−1

2

nc2

nc2 + 1
z2
q/2

)
(6.31)

where zq is the q quantile of the standardised normal distribution.

Proof: See appendix, page 208. W

The paradox noted by Lindley (1957) also holds for this alternative prior and therefore for

n→∞, POLSq
01 →∞. Similarly for fixed sample size when c2 →∞, then POLSq

01 →∞.

Figure 6.1 shows how log-posterior odds at the limit of 5% significance, increase for sample

sizes from one to 100 when M = {m0, m1} and f(m0) = f(m1) = 1/2 for various values of

c, while Figure 6.2 gives the corresponding plot for the posterior probability f(m0|y).
Similarly, we can define the posterior odds at the limit of significance for normal linear and

generalised linear models using either the F-distribution or the χ2 distribution respectively.
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We will briefly examine the two special model comparisons presented in propositions 6.2 and

6.3 and the behaviour of these posterior odds at the limit of significance.

Let us consider the general case of Section 6.2.1 in which the two models under comparison

differ only in j term. In such case and for large c2 we have from proposition 6.1 that the

posterior odds at the limit of significance are given by

POLSq01 ≈ cd(m1)−d(m0)

( |V (m0)|
|V (m1)|

)−1/2 ( |Σ̃(m0)|
|Σ̃(m1)|

)1/2
f(m0)
f(m1)

(
1 +

dj
n− d(m1)

Fdj ,n−d(m1),1−q
)−n/2

where Fn1,n2,q is the qth quantile of F distribution with degrees of freedom n1 and n2; see

also Spiegelhalter and Smith (1982). If we further consider the prior setup (6.12) the above

quantity simplifies to

POLSq01 ≈ (c2 + 1)dj/2|XT
j Xj|−1/2|XT

j ∆(m0)Xj |1/2 f(m0)
f(m1)

(
1 +

dj
n− d(m1)

Fdj ,n−d(m1),1−q
)−n/2

.

(6.32)

6.5.2 Posterior Odds at the Limit of Significance and Prior Spec-

ification Using Penalty Determination

In following section we present the simple Lindley’s example and the general model compari-

son of two nested models using prior odds proposed in Section 6.4.1. This prior specification

leads to the following two propositions.

Proposition 6.11 Consider the simple case with y ∼ N(µ, σ2) where σ2 is known and we

want to assess which of the hypotheses H0 : µ = µ0 vs. H1 : µ �= µ0 is supported by the data

(and prior beliefs) using the prior f(µ|σ2) ∼ N(µ0, c
2σ2) and prior probability for the null

model f(m0) = 1/(1 + c). The posterior odds at the limit of significance are then, for large

c2, given by

POLSq
01 ≈

√
n exp

(
−1

2
z2
q/2

)
. (6.33)

Proof: See appendix, page 208. W

Similar arguments can be used in nested model comparisons of normal models leading to

the following proposition.
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Proposition 6.12 Consider two normal models m0 and m1 given by

y ∼ N(X (m)β(m), σ
2In)

for both m ∈ {m0, m1} and additionally that

X(m1) = [X (m0),Xj] and βT
(m1) = [βT

(m0),β
T
j ]

with independent normal prior distributions that can be summarised by the prior setup

f(β(m)|σ2, m) ∼ N
(
0, c2D−1

(m)(X
T
j Xj)σ

2
)

and f(σ2) ∝ σ−2

and prior probabilities

f(m) ∝
(
c2

κ

)d(m)/2 ∣∣∣XT
(m)X(m) + c−2D(m)(X

T
j Xj)

∣∣∣1/2 p∏
j=1

|XT
j X j|−γj,m/2.

Then the posterior odds at the limit of significance are given by

POLSq
01 ≈ κdj/2

(
1 +

dj
n− d(m1)

Fdj ,n−d(m1),1−q

)−n/2
.

Proof: See appendix, page 209. W

From the previous two propositions it is evident that the dimensionality adjustment of

prior odds proposed in Section 6.4.1 eliminates the effect of the prior variance on the posterior

odds at the limit of significance. Figures 6.3 and 6.4 show clearly that log-posterior odds

and posterior probabilities are now sensitive only to the sample size n.

6.5.3 Specification of Prior Distributions Using P-values

An alternative method for the specification of the prior model probabilities can be adopted

using the relation of posterior odds at the limit of significance and p-values. For example, we

may want to set the posterior probability at the limit of significance equal to q and therefore

the posterior odds at the limit of significance equal to q/(1 − q). This approach is briefly

presented here for Lindley’s example and the nested model comparison of normal models.

Proposition 6.13 Consider the simple case with y ∼ N(µ, σ2) where σ2 is known and we

want to assess which of the hypotheses H0 : µ = µ0 vs. H1 : µ �= µ0 is supported by the data
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(and prior beliefs) using the prior f(µ|σ2) ∼ N(µ0, c
2σ2) and prior probability for the null

model

f(m0) =
1

1 +
√
ncexp

(
−1

2
z2
q/2

)
(1− q)/q

. (6.34)

The posterior odds at the limit of significance are then, for large c2, given by

POLSq
01 ≈

q

1− q

and the corresponding posterior probability is equal to the significance level q, and therefore

we have f(m0|y) = q.

Proof: See appendix, page 209. W

Proposition 6.13 shows that, for this simple example, we can find prior odds that will

result to posterior probability for samples at the limit of 100q% significance level approxi-

mately equal to q. Figures 6.5 and 6.6 show clearly that log-posterior odds and posterior

probabilities are robust to various choices of the prior parameter c2 and the sample size n.

Similar arguments can be used for unknown σ2 using the improper prior on the precision

f (τ) ∝ [τ ]−1 with τ = σ−2, resulting to posterior odds

PO01 =
√
nc2 + 1

(
(n− 1)s2 + n

nc2+1
(ȳ − µ0)

2

(n− 1)s2 + n(ȳ − µ0)2

)n/2

where s2 is the unbiased variance estimator. Using now the significance test based on the

Student distribution the limit is given by samples with ȳ = µ0 + tn,q/2s/
√
n; where tn,q is

the q quintile of the Student distribution with n degrees of freedom. The resulting posterior

odds are given by

POLSq
01 =

√
nc2 + 1


(n− 1) + 1

nc2+1
t2n,q/2

(n− 1) + t2n,q/2



n/2

.
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Figure 6.1: Logarithm of Posterior Odds of H0 : µ = 0 vs. H1 : µ �= 0 at the Limit of 5%

Significance with Prior Odds Equal to 1.
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Figure 6.2: Posterior Probabilities of Hypothesis H0 : µ = 0 (vs. H1 : µ �= 0 ) at the Limit

of 5% Significance with Prior Odds Equal to 1.
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Figure 6.3: Logarithm of Posterior Odds of H0 : µ = 0 vs. H1 : µ �= 0 at the Limit of 5%

Significance with Prior Odds Equal to 1/c.
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Figure 6.4: Posterior Probabilities of Hypothesis H0 : µ = 0 (vs. H1 : µ �= 0 ) at the Limit

of 5% Significance with Prior Odds Equal to 1/c.
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Significance Using Prior Probability which Eliminates Both Prior Variance and Sample Size

Effect.

Sample Size n

P
os

te
rio

r 
P

ro
ba

bi
lit

y

0 20 40 60 80 100

0.
0

0.
05

0.
10

0.
15

0.
20

c= 1

c= 2

c= 3
c= 4
c= 10

c= 100
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Size Effect.
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Consider now the model comparison of two nested models, then we have the following

proposition.

Proposition 6.14 Consider two normal nested models m0 and m1 given by

y ∼ N(X (m)β(m), σ
2In)

for both m ∈ {m0, m1} and additionally that

X(m1) = [X (m0),Xj] and βT
(m1) = [βT

(m0),β
T
j ]

with independent normal prior distributions that can be summarised by the prior setup

f(β(m)|σ2, m) ∼ N
(
0, c2D−1

(m)(X
T
j Xj)σ

2
)

and f(σ2) ∝ σ−2

and prior model probabilities

f(m1)

f(m0)
= (c2+1)dj/2

1− q

q
|XT

j Xj|−1/2|XT
j ∆(m0)Xj |1/2

(
1 +

dj
n− d(m1)

Fdj ,n−d(m1),1−q

)−n/2
.

(6.35)

Then the posterior odds at the limit of significance are given by

POLSq
01 ≈

q

1− q
.

Proof: See appendix, page 209. W

When we deal with more than two models, we may compare all models with a baseline

(e.g. either the full or the null) model and specify all these posterior odds at the limit of

significance to be equal to q/(1− q).

Under the p-value prior specification approach presented in proposition 6.14, the prior

odds at zero are given by

CPOZ =

(
c2 + 1

c2

)dj/2 1− q

q
(2πσ2)−dj/2|XT

j ∆(m0)Xj|1/2

×
(
1 +

dj
n− d(m0)− dj

Fdj ,n−d(m0)−dj ,1−q

)−n/2
.

The above prior odds, for large c2, tends to a given quantity for finite and fixed sample size

n and is consistent in terms of the behaviour of prior odds at zero when low information,

within each model, is used.
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Figure 6.7: Plot of Penalty Function Against the Dimension of the Null Model When the

Posterior Probability at the Limit of Significance is Fixed at 5% for 100 Observations.

Although the prior odds at zero are well behaved for large values of c2, the penalty

imposed on the logarithm of the posterior demonstrates the following implausible behaviour

for large sample sizes. Under the prior setup of proposition 6.14, the imposed penalty is

given by

ψ = nlog

(
1 +

dj
n− d(m0)− dj

Fdj ,n−d(m0)−dj ,1−q

)
− 2log

(
1− q

q

)
.

When n tends to infinity and for fixed dimensionality difference, the above penalty becomes

lim
n→∞ψ = lim

n→∞ log

(
1 +

dj
n− d(m0)− dj

Fdj ,n−d(m0)−dj ,1−q

)n
− 2log

(
1− q

q

)
(6.36)

= djFdj ,∞,1−q − 2log

(
1− q

q

)
(6.37)

= χ2
dj ,1−q − 2log

(
1− q

q

)
. (6.38)

Such a penalty is incoherent because, for large n and small dj, it is not only very small

but, in some extreme cases, also negative. The negative penalty supports more complicated

models and therefore the above expression also demonstrates why significance tests should be

avoided when the sample size is large; for example Figure 6.7 demonstrates how the penalty

function changes with the dimension of the simpler model, d(m0), when the model dimension
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difference dj is equal to one and the sample size n is equal to 100 (the first 33 values of the

penalty function are negative).

6.6 Prior Specification via Penalty Determination in

Generalised Linear Models

The primary purpose of this section is to extend the methodology presented in the previous

sections to the generalised linear model using the Laplace approximation. Two sub-sections

are presented. Firstly, a model selection criterion is presented as well as a different approach

based on the posterior distribution of imaginary prior data points. Secondly, construction

of prior distributions via specification of the penalty function in generalised linear models is

presented in detail.

6.6.1 Posterior Odds, Maximum Likelihood Ratios and Informa-

tion Criteria Using Laplace Approximation

If we use Laplace approximation it is straightforward to express the posterior odds in an

criterion form given by

−2log(PO01) ≈ −2log

f(y|β̆(m0), m0)fN(β̆(m0)|m0)

f(y|β̆(m1), m1)fN(β̆(m1)|m1)


− ψ

ψ = 2log


C[f(β̆(m1)|m1)]

C[f(β̆(m0)|m0)]


− log



|I ˘β(m1)

|
|I ˘β(m0)

|


− [d(m1)− d(m0)]log(2π)− 2log

(
f(m1)

f(m0)

)
,

(6.39)

where β̆(m) is the posterior mode and fN (x) is the non-normalised density function of f(x)

and C[f(x)] is the corresponding normalising constant, [that is f(x) = fN(x)/C[f(x)] ∝
fN(x)] and

I ˘β(m)

= −
[
∂2fm,y(β(m))

∂βi,(m)∂βj,(m)

]−1

β(m)=
˘β(m)

,

fm,y

(
β(m)

)
= log

[
f
(
y|β(m), m

)]
+ log

[
f
(
β(m)|m

)]
.

The ratio appearing in the above expression is not natural. We will try to interpret the

above result as functions of maximum likelihood ratios and therefore argue why such an



190 I.Ntzoufras: Aspects of Bayesian Model and Variable Selection Using MCMC

expression should used in generalised linear models instead of the simple log-likelihood ratio

in classical information criteria or the log-ratio of posterior sum of squares in the model

selection criteria presented for the normal linear case.

Consider an approach similar to Chen et al. (1999). We assume that instead of using an

arbitrary prior distribution, we have y∗ and X∗ prior points expressing our prior opinion.

We adopt the prior

f(β(m)|X∗
(m),y

∗) ∝ f(y∗|β(m),X
∗
(m), m).

Then we have the following proposition.

Proposition 6.15 The posterior odds of model m0 against model m1 using prior of the form

f(β(m)|y∗, m) ∝ f(y∗|β(m),X
∗
(m), m)

where y∗ are imaginary data that express our prior information, can be written in a form

equivalent to information criteria given by

−2log(PO01) ≈ −2log

f(y,y∗|β̂(y,y∗)

(m0) , m0)/f(y
∗|β̂(y∗)

(m0), m0)

f(y,y∗|β̂(y,y∗)

(m1) , m1)/f(y∗|β̂(y∗)

(m1), m1)


− ψ

ψ = log



|I

ˆβ
(y∗)

(m)

|

|I
ˆβ

(y∗)

(m)

|


− log



|I

ˆβ
(y,y∗)

(m1)

|

|I
ˆβ

(y,y∗)

(m0)

|


− 2log

(
f(m1)

f(m0)

)
,

where β̂
(y,y∗)

(m) is the maximum likelihood estimate using actual and prior data (y,y∗) while

β̂
(y∗)

(m0) is the maximum likelihood estimate using only the prior data (y∗). The determinants

involved in the penalty function are given by

I
ˆβ

(y,y∗)

(m)

= −

∂2

{
log
[
f
(
y,y∗|β(m), m

)]}
∂βi,(m)∂βj,(m)



−1

β(m)=
ˆβ

(y,y∗)

(m)

,

and

I
ˆβ

(y∗)

(m)

= −

∂2

{
log
[
f
(
y∗|β(m), m

)]}
∂βi,(m)∂βj,(m)



−1

β(m)=
ˆβ

(y∗)

(m)

.

Proof: See appendix, page 209. W

Alternatively, instead of the above prior, we may use the following ‘fractional’ prior

f(β(m)|X∗
(m),y

∗) ∝
[
f(y∗|β(m),X

∗
(m), m)

]1/c20
. (6.40)
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The parameter c2
0 controls the weight of information that prior points contribute in the

posterior. The actual data (and the likelihood) contribute in the posterior distribution total

weight equal to n/(n+ n0/c
2
0) (where n0 is the size of prior data). When low information is

entered it is natural to assume c2
0 = n0 and therefore the weight of the actual data becomes

equal to n/(n+ 1) while the weight of the prior data is equal to only one data point.

Let us now denote by

l(y,y∗, w1, w2|m) =
n∏
i=1

[f(yi|β(m), m)]w1

n0∏
i=1

[f(y∗i |β(m), m)]w2

the weighted likelihood of model m with real data y, each one having weight equal to w1,

and prior data y∗, each one having weight equal to w2. For example, l(y,y∗, 0, c−2
0 |m) is the

prior given by (6.41) while l(y,y∗, 1, 0|m) is the usual likelihood. The above considerations

lead us to the following proposition.

Proposition 6.16 The posterior odds of model m0 against model m1 using prior of the form

f(β(m)|y∗, m) ∝ [f(y∗|β(m),X
∗
(m), m)]1/c

2
0 (6.41)

where y∗ are imaginary data that express our prior information, can be written in a form

equivalent to information criteria given by

−2log(PO01) ≈ −2log
(
l(y,y∗, 1, c−2

0 |m0)/l(y,y
∗, 0, c−2

0 |m0)

l(y,y∗, 1, c−2
0 |m1)/l(y,y∗, 0, c−2

0 |m1)

)
− ψ

ψ = [d(m1)− d(m0)]log(c
2
0) + log



|I

ˆβ
(y∗

)

(m1)

|

|I
ˆβ

(y∗)

(m)0

|


− log



|I

ˆβ
∗(1/c2

0
)

(m1)

|

|I
ˆβ

∗(1/c2
0
)

(m0)

|


− 2log

(
f(m1)

f(m0)

)
,

where β̂
∗(1/c20)

(m) is the maximum of the weighted likelihood l(y,y∗, 1, c−2
0 |m) and the determi-

nants involved in the penalty are now given by

I
ˆβ

∗(1/c2
0
)

(m)

= −

∂2

{
log
[
l(y,y∗, 1, c−2

0 |m)
]}

∂βi,(m)∂βj,(m)



−1

β(m)=
ˆβ

∗(1/c2
0
)

(m)

,

I
ˆβ

(y∗)

(m)

= −

∂2

{
log
[
f
(
y∗|β(m), m

)]}
∂βi,(m)∂βj,(m)



−1

β(m)=
ˆβ

(y∗)

(m)

.
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Proof: See appendix, page 210. W

Without loss of generality we may assume that for every prior density assigned on the

model parameters, there exists a prior distribution of type (6.40) for which the product

f(y|β̆(m), m)fN (β̆(m)|m) can be expressed as a ratio of two maximum weighted likelihoods.

The likelihood in the numerator is a measure of fit if information resulting from both prior

and data is used while the likelihood of the denominator is the measure of fit resulting if

only the prior information is used. The parameter c2
0 plays similar role as the variance

multiplicator c2 in normal linear models.

Straightforward examples can be given in normal linear and generalised linear models.

In normal models a prior of type (6.40) results in

f
(
β(m)|σ2,y∗,X∗

(m)

)
∼ N

(
β̂

(y∗)

(m) , c2
0

(
X∗T

(m)X
∗
(m)

)−1
σ2
)
.

The prior setup (6.10) used by Smith and Kohn (1996) corresponds to an experiment with

n0 = n observations, the same data matrix for both prior and actual data (X∗
(m) = X (m)),

and all the response data equal to zero, y∗ = 0. The choice c2 = n in such case is natural

since the prior will contribute in the posterior density only by 1/(n+ 1) fraction.

In generalised linear models with likelihood

f(β(m)|y∗,X∗
(m), φ,m) = exp

(
n∑
i=1

yiϑi − b(ϑi)

ai(φ)
+

n∑
i=1

c(yi, ai(φ))

)

where ϑi is a function of the expected value µi = E[Yi] linked with the parameters of interest,

β(m), via the link function g(ηi) and η is the linear predictor. In this case the prior of type

(6.40) is given by

f(β(m)|y∗,X∗
(m), φ,m) ∝ exp

(
n0∑
i=1

y∗i ϑi − b(ϑi)

c2
0ai(φ)

+ c−2
0

n0∑
i=1

c(y∗i , ai(φ))

)

which can be well approximated by

f(β(m)|y∗,X∗
(m), φ,m) ≈ N

(
β̂

(y∗)

(m) , c2
0

(
X∗T

(m)H
∗
(m)X

∗
(m)

)−1
)
,

where H∗
(m) = Diag(h∗

i ) with h∗−1
i = g′(E[Y ∗

i ])
2ai(φ)v(E[Y ∗

i ]); g(x) is the link function used.

If we assume µβ(m)
= 0 we essentially set E(Y ∗

i ) = g−1(0). The weights h∗
i involved in

matrix H∗
(m) are now given by

h∗
i = {[g′(g−1(0))]2ai(φ)v(g

−1(0))}−1.
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Usually ai(φ) = φ/wi; where wi are weights for each observation (equal to one when un-

grouped data are used). Here we assume that our prior data are ungrouped and hence

wi = 1 resulting in h∗
i = {φ[g′(g−1(0))]2v(g−1(0))}−1 which is constant over all prior data.

Therefore the prior distribution of type

f(β(m)|y∗,X∗
(m), φ,m) = N

(
0, c2

(
X∗T

(m)X
∗
(m)

)−1
φ
)

corresponds to n0 prior points, each one weighted by 1/c2
0, data matrix X∗

(m), y∗ = 0 and

c2
0 = c2{[g′(g−1(0))]2v(g−1(0))}−1. When the design matrix of the prior data is set equal to

X∗
(m) = X(m) then n0 = n and hence plausible choice for c2 = n[g′(g−1(0))]2v(g−1(0)) which

results in n/(n+ 1) contribution of the data and 1/(n+ 1) of the prior information.

6.6.2 Prior Distributions via Penalty Determination in Gener-

alised Linear Models

In the section which follows we specify the prior distributions via prior determination of

the desired penalty imposed to the prior and posterior weighted maximum likelihood ratios

presented in proposition 6.16.

Proposition 6.17 The posterior odds of model m0 against model m1 with prior distribution

f(β(m)|m) ∼ N
(
µβ(m)

, c2V (m)

)

for m ∈ {m0, m1} can be written in a form equivalent to information criteria given by

−2log(PO01) ≈ −2log

f(y|β̆(m0), m0)fN(β̆(m0)|m0)

f(y|β̆(m1), m1)fN(β̆(m1)|m1)


− ψ

with penalty function

ψ = {d(m1)− d(m0)}log(c2) + log
( |V (m1)|
|V (m0)|

)
+ log

(
|XT

(m1)H(m)X(m1) + c
−2V (m1)|

|XT
(m0)H(m)X(m0) + c−2V (m0)|

)
− 2log

(
f(m1)
f(m0)

)
,

where H(m) = Diag(hi), hi = {g′(E[Yi])
2ai(φ)v(E[Yi])}−1.

Proof: See appendix, page 210. W

The above penalty function is similar to the penalty of the general case of normal models

given by (6.9).
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Corollary 6.17.1 The posterior odds of model m0 against model m1 with prior distribution

β(m) ∼ N
(
0, c2

(
XT

(m)H(m)X (m)

)−1
)

for m ∈ {m0, m1} can be written in a form equivalent to information criteria given by

−2log(PO01) ≈ −2log

f(y|β̆(m0), m0)fN(β̆(m0)|m0)

f(y|β̆(m1), m1)fN(β̆(m1)|m1)


− ψ

ψ = {d(m1)− d(m0)}log(c2 + 1)− 2log

(
f(m1)

f(m0)

)
,

where H(m) = Diag(hi), hi = {g′(E[Yi])
2ai(φ)v(E[Yi])}−1.

Proof: See appendix, page 210. W

For large c2, the posterior mode becomes approximately equal to the maximum likelihood

estimate and the ratio fN(β̆(m0)|m0)/fN(β̆(m1)|m1) will be approximately equal to one. In

such cases the −2log(PO01) will be equivalent to information criteria with the above penalty

functions. If we apply the prior specification method proposed in Section 6.4.1 then we have

the following proposition.

Proposition 6.18 Consider two generalised linear models m0 and m1 with prior distribu-

tions

f(β(m)|m) ∼ N
(
µβ(m)

, c2V (m)

)

for both m ∈ {m0, m1} and prior model probabilities

f(m) ∝
(
c2

κ

)d(m)/2

|V (m)|1/2|XT
(m)H(m)X(m) + c−2V (m)|1/2.

Then the posterior odds of model m0 against model m1 can be written in a form equivalent

to information criteria given by

−2log(PO01) ≈ −2log

f(y|β̆(m0), m0)fN(β̆(m0)|m0)

f(y|β̆(m1), m1)fN(β̆(m1)|m1)


− ψ

with penalty function

ψ = {d(m1)− d(m0)}log(κ).

Proof: See appendix, page 210. W

Similarly to the above proposition we have the following corollary for the simpler case.
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Corollary 6.18.1 Consider two generalised linear models m0 and m1 with prior distribu-

tions

β(m) ∼ N
(
0, c2

(
XT

(m)H(m)X (m)

)−1
)

for both m ∈ {m0, m1} with prior model probabilities

f(m) ∝
(
c2 + 1

κ

)d(m)/2

.

Then the posterior odds of model m0 against model m1 can be written in a form equivalent

to information criteria given by

−2log(PO01) ≈ −2log

f(y|β̆(m0), m0)fN(β̆(m0)|m0)

f(y|β̆(m1), m1)fN(β̆(m1)|m1)


− ψ

with penalty function

ψ = {d(m1)− d(m0)}log(κ).

Proof: See appendix, page 211. W

The prior odds at zero are similar to the normal linear model. The posterior odds at zero

can be calculated using χ2 distribution.

6.7 Bayes Factor’s Variants and Information Criteria

Here we briefly review the association of the three most popular variants of Bayes factor

(posterior, intrinsic and fractional) with the information criteria and we further investigate

the behaviour of the SSVS Bayes factor under certain conditions.

6.7.1 Posterior, Fractional and Intrinsic Bayes Factors.

The need to use non-informative priors in model selection led to the definition of three new

types of Bayes factors: the posterior, the fractional and the intrinsic Bayes factors by Aitkin

(1991), O’Hagan (1995) and Berger and Pericchi (1996a, 1996b), respectively. Here we briefly

review the association of Bayes factor with information criteria.

According to O’Hagan (1995) fractional Bayes factor can be written as

−2log(FBFb,01) = −2(1− b)log

(
f (y|θ̂m0 , m0)

f (y|θ̂m1 , m1)

)
− { d(m1)− d(m0) }log(1/b) (6.42)
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where b < 1 is the fractional parameter. It is obvious that the log-likelihood ratio test is

penalised by the fractional parameter. Moreover, instead of the full log-likelihood ratio we

use a fraction of it depending on parameter b. The posterior Bayes factor, introduced by

Aitkin (1991), is even more closely related to information criteria since it is given by

−2log(PBF01) = −2log
(
f (y|θ̂m0 , m0)

f (y|θ̂m0 , m0)

)
− { d(m1)− d(m2) }log(2), (6.43)

that is F = log(2). This penalty is quite small compared to AIC in which F = 2 and BIC in

which F = log(n) and therefore posterior Bayes factor supports more complicated models.

Note that BIC gives the same penalty only for samples with only two observations (minimal

required sample for estimating variance). Finally, it is clear that there is a prior for which

the corresponding usual Bayes factor is exactly the same as the posterior Bayes factor. If we

use the prior (6.10) with c2 = 1 then the penalizing part is the same as in posterior Bayes

factor but the ratio SSm1/SSm0 will no longer be equal to likelihood ratio RSSm1/RSSm0 .

On the other hand, if we adopt the setup of Section 6.4.1 with large c2 and κ = 2 then we

have a Bayes factor which is the same with the posterior Bayes factor without using any

information from the data y.

Berger and Pericchi (1996a) introduced the intrinsic Bayes factor. Generally, intrinsic

Bayes factor cannot be written in the general form of information criteria given by (6.5).

Intrinsic Bayes factor using Jeffreys prior is the only one from the three different improper

priors used in normal linear models by Berger and Pericchi (1996b) which results to an

intrinsic Bayes factor closely related to information criteria as defined above. The resulted

criterion has the form of (6.5) with penalty

ψ = log
|XT

(m1)X (m1)|
|XT

(m0)X (m0)|
+ 2log


L(n0)

−1
∑

l∈L(n0)




 |XT

(m0)(l)X(m0)(l)|
|XT

(m1)(l)X(m1)(l)|




1/2 (
RSSm0(l)

RSSm1(l)

)n0/2





for arithmetic intrinsic Bayes factor and

ψ = log
|XT

(m1)X(m1)|
|XT

(m0)X(m0)|
+

1

L(n0)

∑
l∈L(n0)

log
|XT

(m0)(l)X (m0)(l)|
|XT

(m1)(l)X (m1)(l)|
+

n0

L(n0)

∑
l∈L(n0)

log
RSSm0(l)

RSSm1(l)

for the geometric intrinsic Bayes factor; where n0 denotes the size of the training sample,

RSSm(l) and X(m)(l) are the residual sum of squares and the design matrix of model m

using training sample y(l) respectively, L(n0) and L(n0) are the set and the number of all

possible training samples of size n0 respectively.
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6.7.2 The SSVS Bayes Factor.

SSVS was introduced by George and McCulloch (1993); for details see Section 3.4.1. The

basic idea of SSVS is the use of prior distributions of the form

βj|γj ∼ γjN(0,Σj) + (1− γj)N(0, k−2
j Σj)

where γj is a binary variable indicator and k2
j is defined according to our prior beliefs for

significant and non-significant limits; see George and McCulloch (1993) semi-automatic se-

lection. Usually kj is substituted by a common k for all terms. Generally, SSVS gives

different results than traditional model selection methods since it uses different likelihood.

When k2
j →∞, k−2

j Σj → 0dj
and hence the prior becomes

βj |γj ∼ γjN(0,Σj) + (1− γj)I(0dj
)

where I(0dj
) is a mass prior at zero and therefore the posterior becomes the same as tra-

ditional model selection methods; for details see George and McCulloch (1997). For this

reason the posterior odds estimated by SSVS are approximately equal (for large k) to the

common posterior odds. We denote this posterior odds as POSSV S
01 and the corresponding

Bayes factor as BSSV S
01 . Generally we have that

POSSV S
01 → PO01, when k2 →∞.

In this section we will use the general prior setup

f(β|σ2,γ) ∼ N
(
0, c2V SSV S

(m)

)
, V SSV S

(m) = D(kγj−1Idj
)RD(kγj−1Idj

) and f(σ2) ∝ σ−2

(6.44)

where d is the dimension of the full model and D(kγj−1Idj
) is a d× d block diagonal matrix

with diagonal elements equal to the identity matrix of dimension dj multiplied by k−1 if

the corresponding j term is excluded from the model This generalised prior setup was also

proposed by George and McCulloch (1993). Interest lies in special families of prior distribu-

tions which correspond to the ones examined in the case of simple model comparison; that

is R−1 = XTX for the Smith and Kohn (1996) prior setup and R−1 = D(XjX j) for the

independent prior setup.
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6.7.2.1 The General Model Comparison

The calculation of posterior odds are straightforward following the calculation of Section

6.2.1 resulting to

−2log(POSSV S
01 ) = nlog

(
SSSSV S

m0

SSSSV S
m1

)
− ψ, (6.45)

ψ = log

( |V SSV S
(m1) |

|V SSV S
(m0) |

)
+ log

( |XTX + c−2[V SSV S
(m1) ]

−1|
|XTX + c−2[V SSV S

(m0) ]−1|

)
− 2log

(
f(m1)
f(m0)

)
. (6.46)

where SSSSV S
m is the SSVS based posterior sum of squares given by

SSSSV S
m = yTy − yTX

(
XTX + c−2[V SSV S

(m) ]−1
)−1

XTy.

We are going to examine the association of the above posterior odds and the usual posterior

odds when k2 is large. Without loss of generality, for every model m we can write

X = [X(m)X(\m)], βT = [βT
(m)β

T
(\m)], R =


 R(m) R(m,\m)

RT
(m,\m) R(\m)




where X(\m) and β(\m) refers to the components of X and β that are associated with terms

excluded from model m. The matrix R is partitioned to the matrices R(m) that corresponds

to covariances between terms included in model m, R(\m) that corresponds to covariances

between terms excluded from model m and R(m,\m) that corresponds to covariances between

each term included in model m with each term excluded from model m.

Proposition 6.19 Consider two normal linear models m0 and m1 given by

y ∼ N
(
Xβ, σ2In

)

and prior setup

f(β|σ2, m) ∼ N
(
0, c2D(kγj−1Idj

)RD(kγj−1Idj
)σ2
)

and f(σ2) ∝ σ−2

for both m ∈ {m0, m1}. Then

lim
k2/c2→∞

(POSSV S
01 ) = PO01

where POSSV S
01 and PO01 are the posterior odds for SSVS and usual model selection with

prior matrix V (m) given by

V (m) = R(m).
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Proof: See appendix, page 211. W

The above proposition clearly states that using such prior for large k2 is equivalent to

setting a prior matrix V (m) = R(m) for each model in the usual model selection.

6.7.2.2 Lindley-Bartlett’s Paradox and SSVS

In this section we briefly present the behaviour of the Bayes factor when the sample size or

the prior parameter c2 tend to infinity, for fixed k2.

Proposition 6.20 Consider two normal linear models m0 and m1 given by

y ∼ N
(
Xβ, σ2In

)

and prior setup

f(β|σ2, m) ∼ N
(
0, c2D(kγj−1Idj

)RD(kγj−1Idj
)σ2
)

and f(σ2) ∝ σ−2

for both m ∈ {m0, m1}. Then, under mild regularity conditions,

lim
n→∞

(
−2log(BSSV S

01 )
)
= {d(m1)− d(m0)}log(k2)

where BSSV S
01 is the Bayes factors for SSVS.

Proof: See appendix, page 214. W

Proposition 6.21 Consider two normal linear models m0 and m1 which are given by

y ∼ N
(
Xβ, σ2In

)

and prior setup given by

f(β|σ2, m) ∼ N
(
0, c2D(kγj−1Idj

)RD(kγj−1Idj
)σ2
)

and f(σ2) ∝ σ−2

for both m ∈ {m0, m1}. Then

lim
c2→∞

(
−2log(BSSV S

01 )
)
= {d(m1)− d(m0)}log(k2)

where BSSV S
01 is the Bayes factors for SSVS.

Proof: See appendix, page 214. W

A paradox similar to Lindley-Bartlett paradox also occurs for SSVS Bayes factor. The

SSVS Bayes factor is bounded and this bound depends on the magnitude of k2. Therefore,

the SSVS based Bayes factor does not avoid the Lindley-Bartlett paradox which still appears

in a slightly different form.
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6.8 Discussion

In this chapter we have presented some problems and possible solutions regarding the use of

‘non-informative’ priors in Bayesian model selection. Some specific model selection setups in

linear and generalised linear models have been presented. Also, the connection of posterior

odds and information criteria was reported. This connection was used to specify the prior

probabilities in order to achieve a desired penalty and remove the prior variance effect. The

notion of conditional prior odds was also discussed and implemented in simple normal linear

model examples. Bayes factor’s variants were also discussed including SSVS based Bayes

factor and its limiting behaviour.

We argue that the uniform prior on model space could be avoided. The combination

of the prior odds and the prior variance of model parameters may not reflect our real prior

beliefs for models and may support more complicated or simpler models than the ones a-priori

desired. Instead, a joint specification of both prior odds and prior variance is advocated.

Prior probabilities can be determined as a function of dimensionality and a new parameter

which controls the imposed penalty. Finally, implementation in generalised linear models

via the use of Laplace approximations is discussed in detail.
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6.9 Appendix: Proofs

Proof of Proposition 6.1. From equations (6.3) we have that

Σ̃
−1

(m) = XT
(m)X(m) + c−2V −1

(m)

which for large c2 becomes approximately equal to

Σ̃
−1

(m) ≈XT
(m)X(m).

Similarly

β̃(m) ≈
(
XT

(m)X(m)

)−1
XT

(m)X(m)β̂(m) = β̂(m).

Substituting the above two approximations in posterior sum of squares given by (6.2) we

have

SSm ≈ yTy − β̂
T

(m)X
T
(m)X(m)β̃(m) = RSSm.

Finally, if we consider the above approximation and the posterior odds (6.1) we have

−2log(PO01) ≈ nlog
(
RSSm0

RSSm1

)
− { d(m1)− d(m0) }log(c2)+

+log

( |V (m0)|
|V (m1)|

)
+ log


 |XT

(m0)X(m0)|
|XT

(m1)X(m1)|


+ 2log

(
f(m1)

f(m0)

)
.

which is equivalent to an information criterion (6.6) [or (6.5)] with penalty function given

by (6.8). W

Proof of Proposition 6.2. The prior setup of proposition 6.2 leads to posterior odds

given by

PO01 =
f(m0)

f(m1)

f (y|m0)

f (y|m1)
= (c2 + 1){d(m1)−d(m0)}/2

(
SSm0

SSm1

)−n/2

resulting in

−2log(PO01) = nlog

(
SSm0

SSm1

)
− {d(m1)− d(m0)}log(c2 + 1)− 2log

(
f(m1)

f(m0)

)
.

Under the above prior setup

β̃(m) =
c2

c2 + 1

(
XT

(m)X (m)

)−1
XT

(m)X(m)β̂(m) =
c2

c2 + 1
β̂(m),

Σ̃(m) =
c2

c2 + 1

(
XT

(m)X(m)

)−1
,
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and therefore the posterior sum of squares are simplified to

SSm = yTy − c2

c2 + 1
β̂
T

(m)

(
XT

(m)X(m)

)−1
β̂(m)

which, for large c2, becomes equal to the residual sum of squares:

SSm ≈ RSSm for large c2

and therefore IC01 ≈ −2log(PO01) with penalty function ψ given by (6.11). W

Proof of Proposition 6.3. In this case V (m) = D−1
(m)(X

T
j Xj) and therefore its de-

terminant is given by the product of the determinants |XT
j Xj|−1 for all terms included in

model m. Therefore

|V (m)| = |D−1
(m)(X

T
j Xj)| = |D(m)(X

T
j Xj)|−1 =

p∏
j′=1

|XT
j′Xj′|−γj′,m .

Since the two models differ by only j term we have that

|V (m1)|
|V (m0)| =

p∏
j′=1

|XT
j′X j′|−γj′,m1

+γj′,m0 = |XT
j Xj|−1.

The matrix Σ̃(m1) is given by

Σ̃
−1

(m1) = XT
(m1)X(m1) + c−2D(m1)(X

T
j X j)

= [X(m0),Xj]
T [X(m0),Xj ] + c−2D(m1)(X

T
j Xj)

=


 XT

(m0)X(m0) + c−2D(m0)(X
T
j Xj) XT

(m0)Xj

XT
j X(m0)

c2+1
c2

XT
j Xj




=


 Σ̃

−1

(m0) XT
(m0)Xj

XT
j X(m0)

c2+1
c2

XT
j Xj


 .

From the properties of partitioned matrices we have that

|Σ̃−1

(m1)| = |Σ̃
−1

(m0)|
∣∣∣∣∣c

2 + 1

c2
XT

j Xj −XT
j X(m0)Σ̃(m0)X

T
(m0)Xj

∣∣∣∣∣ ,
resulting in

|Σ̃−1

(m1)|
|Σ̃−1

(m0)|
=

|XT
(m1)X(m1) + c−2D(m1)(X

T
j Xj)|

|XT
(m0)X(m0) + c−2D(m0)(X

T
j Xj)|

=

(
c2 + 1

c2

)dj
∣∣∣∣∣XT

j Xj − c2

c2 + 1
XT

j X(m0)Σ̃(m0)X
T
(m0)Xj

∣∣∣∣∣
=

(
c2 + 1

c2

)dj
∣∣∣∣∣XT

j

(
In − c2

c2 + 1
X(m0)Σ̃(m0)X

T
(m0)

)
Xj

∣∣∣∣∣
=

(
c2 + 1

c2

)dj ∣∣∣XT
j ∆(m0)Xj

∣∣∣ .
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Using the above equations in the penalty function (6.8) we have the result of proposition

6.3. W

Proof of Corollary 6.3.1. The proof is immediate from proposition 6.3 since

XT
j X(m0) = 0 due to the assumed orthogonality. Therefore XT

j ∆(m0)Xj = XT
j Xj re-

sulting to the penalty of corollary 6.3.1 W

Proof of Proposition 6.4. In regression R2 coefficient is given by

R2 = 1− RSSm
(n− 1)s2

y

.

If we use as response the variable Xj then we have

R2
m0,xj

= 1− RSSm0,xj

(n− 1)s2
j

,

where RSSm0,xj
is the residual sum of squares of a regression with response Xj and ex-

planatory variables all terms included in model m0. The scalar XT
j ∆(m0)Xj for large c2 is

approximately equal to the posterior sum of squares if Xj is used as response. From equation

(6.4) the posterior sum of squares SSm0,xj
with response Xj , design matrix X(m0) and prior

distribution (6.12) is given by

SSm0,xj
= RSSm0,xj

+β̂
T

(m0,xj)

[(
XT

(m0)X(m0)

)−1
+ c2D−1

(m0)(X
T
j Xj)

]−1

β̂(m0,xj)

= (n− 1)s2
j(1−R2

m0,xj
)

+β̂
T

(m0,xj)

[(
XT

(m0)X(m0)

)−1
+ c2D−1

(m0)(X
T
j Xj)

]−1

β̂(m0,xj)

where β̂(m0,xj)
is the vector of maximum likelihood estimates of the coefficients of the re-

gression model with response Xj and covariates Xν for all ν ∈ V(m0) while R2
m0,xj

is the

R2 measure resulted from a regression model with response the additional variable Xj and

covariates all Xν for ν ∈ V(m0). Therefore, we have that

XT
j ∆(m0)X j = XT

j Xj − c2

c2 + 1
XT

j X(m0)Σ̃(m0)X
T
(m0)Xj

= XT
j Xj −XT

j X(m0)Σ̃(m)X
T
(m0)X j

+
1

c2 + 1
XT

j X(m0)Σ̃(m)X
T
(m0)Xj

= SSm0,xj
+

1

c2 + 1
XT

j X(m0)Σ̃(m)X
T
(m0)Xj
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= (n− 1)s2
j(1−R2

m0,xj
)

+β̂
T

(m0,xj)

[(
XT

(m0)X(m0)

)−1
+ c2D−1

(m0)(X
T
j Xj)

]−1

β̂(m0,xj)

+
1

c2 + 1
XT

j X(m0)Σ̃(m)X
T
(m0)Xj

where Σ̃(m) in the above equations is given by

Σ̃(m) =
(
XT

(m)X(m) + c−2D(m)(X
T
j Xj)

)−1
.

In the collinear case R2
m0,xj

= 1 since Xj = X(m0)β̂(m0,xj). Therefore, we have that

XT
j ∆(m0)Xj = 0 + β̂

T
(m0,xj)

[(
XT

(m0)X(m0)

)−1
+ c2D−1

(m0)(X
T
j Xj)

]−1

β̂(m0,xj)

+
1

c2 + 1
XT

j X(m0)Σ̃(m0)X
T
(m0)Xj.

If we multiply both sides of the equation by the scalar (c2 + 1) we have

(c2 + 1)XT
j ∆(m0)Xj =

c2 + 1
c2

β̂
T

(m0,xj)

(
c−2
(
XT

(m0)X(m0)

)−1

+
c2

c2 + 1
D−1

(m0)
(XT

j Xj)
)−1

β̂(m0,xj)

+XT
j X(m0)

(
XT

(m0)X(m0) + c
−2D(m0)(X

T
j Xj)

)−1

XT
(m0)Xj

≈ 1 β̂
T

(m0,xj)D(m0)(X
T
j Xj)β̂(m0,xj) +XT

j X(m0)

(
XT

(m0)X(m0)

)−1

XT
(m0)Xj

= β̂
T

(m0,xj)D(m0)(X
T
j Xj)β̂(m0,xj) +XT

j X(m0)β̂(m0,xj)

= 2 β̂
T

(m0,xj)D(m0)(X
T
j Xj)β̂(m0,xj) +XT

j Xj .

If we substitute the above result to the penalty (6.13), we have

ψ = log[R∗(m0, Xj) + 1] + 2log

(
f(m0)

f(m1)

)

with

R∗(m0, xj) =
β̂
T

(m0,xj)
D(m0)(X

T
j Xj)β̂(m0,xj)

XT
j Xj

.

Furthermore, the second expression of R∗(m0, xj) is given if we substitute Xj with

X(m0)β̂(m0,xj)
due to the assumed collinearity.

The third expression of R∗(m0, xj) is obtained if we analyse the quadratic forms of (6.16).

Therefore, we may write

β̂
T

(m0,xj)
D(m0)(X

T
j Xj)β̂(m0,xj) = 3

∑
ν∈V(m0)

[β̂(m0,xj)]
T
ν XT

ν Xν [β̂(m0,xj)]ν = α∗
2

1For large c2.
2Due to collinearity Xj = X(m0)β̂(m0,xj).
3Due to prior distribution (6.12)
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and

β̂
T

(m0,xj)
XT

(m0)X(m0)β̂(m0,xj)
=

∑
ν∈V(m0)

∑
ν′∈V(m0)

[β̂(m0,xj)
]Tν XT

ν Xν′[β̂(m0,xj)
]ν′

=
∑

ν∈V(m0)

[β̂(m0,xj)
]Tν XT

ν Xν [β̂(m0,xj)
]ν

+
∑

ν∈V(m0)

∑
ν′∈V(m0)\{ν}

[β̂(m0,xj)]
T
ν XT

ν Xν′ [β̂(m0,xj)]ν′

= α∗
1 + α∗

2

resulting in R∗(m0, xj) = 1− α∗
1/(α

∗
1 + α∗

2).

Moreover, in the case of collinearity the log-likelihood is maximized if we maximize the

quadratic form

l = (y −X(m1)β(m1))
T (y −X (m1)β(m1)).

Since we assume that m1 contains all terms of model m0 and the additional term Xj then,

without loss of generality, we can write

X(m1) = [X(m0),Xj ] and βT
(m1) = [β∗

(0)β
∗
j ]

where β∗
(0) is the parameter vector of model m1 corresponding to terms also included in

model m0, and β∗
j is the parameter vector of the additional term j of model m1. Now we

can write

l = (y −X(m0)β
∗
(0) −Xjβ

∗
j)
T (y −X (m0)β

∗
(0) −Xjβ

∗
j).

The maximum likelihood estimate can now be written as

β̂
∗
(0) =

(
XT

(m0)X(m0)

)−1
X(m0)y −

(
XT

(m0)X(m0)

)−1
X(m0)Xjβ̂

∗
j

= β̂(m0) + β̂(m0,xj)β̂
∗
j .

The residual sum of squares are given if we substitute the above quantity on the log-likelihood

l and therefore we have

RSSm1 = (y −X (m0)β̂
∗
(0) −Xjβ̂

∗
j)
T (y −X(m0)β̂

∗
(0) −Xjβ̂

∗
j ).

From the above maximum likelihood solution we have that

(y −X (m0)β̂
∗
(0) −Xjβ̂

∗
j) = (y −X(m0)β̂(m0) −X(m0)β̂(m0,xj)

β̂
∗
j −Xjβ̂

∗
j ).
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Finally, since Xj is collinear to the terms of model m0 we have that X j = X(m0)β̂m0,xj
and

therefore

(y −X(m0)β̂
∗
(0) −Xjβ̂

∗
j ) = (y −X(m0)β̂(m0) −Xjβ̂

∗
j −Xjβ̂

∗
j)

= (y −X(m0)β̂(m0))

resulting in

RSSm1 = (y −X(m0)β̂(m0))
T (y −X(m0)β̂(m0)) = RSSm0 .

For large c2 we have that SSm ≈ RSSm, SSm1 ≈ SSm0 and hence 2log(P001) = ψ. W

Proof of Corollary 6.4.1. The proof is immediate from proposition 6.4 since α∗
1 will

be equal to zero if X(m0) is orthogonal. W

Proof of Proposition 6.5. The conditional prior odds are given by

CPONZξ =
f(m1 | βT

j βj < ξ2, σ2)

f(m0 | βT
j βj < ξ2, σ2)

=
f(βT

j βj < ξ2|σ2, m1)f(σ
2|m1)f(m1)

f(βT
j βj < ξ2|σ2, m0)f(σ2|m0)f(m0)

= 1 f(βT
j βj < ξ2|σ2, m1)

f(σ2|m1)f(m1)

f(σ2|m0)f(m0)

= f(βT
j βj < ξ2|σ2, γj = 1)

f(σ2|m1)f(m1)

f(σ2|m0)f(m0)
. W

Proof of Proposition 6.6. The conditional prior odds are given by

CPONZ =
f(m1 | βj = 0, σ2)

f(m0 | βj = 0, σ2)

=
f(βj = 0|σ2, m1)f(σ

2|m1)f(m1)

f(βj = 0|σ2, m0)f(σ2|m0)f(m0)

= f(βj = 0|σ2, m1)
f(σ2|m1)f(m1)

f(σ2|m0)f(m0)

= f(βj = 0|σ2, γj = 1)
f(σ2|m1)f(m1)

f(σ2|m0)f(m0)
. W

Proof of Proposition 6.7. The conditional prior odds are given by

CPONZ =
f(m1 | β(m0) = 0,β(m1) = 0, σ2)

f(m1 | β(m0) = 0,β(m1) = 0, σ2)

1Since f(βT
j βj < ξ

2|m0) = f(βj = 0|m0) = 1
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=
f(β(m0) = 0|σ2, m1)f(β(m1) = 0|σ2, m1)f(σ

2|m1)f(m1)

f(β(m0) = 0|σ2, m0)f(β(m0) = 0|σ2, m1)f(σ2|m0)f(m0)

=
f(β(m1) = 0|σ2, m1)f(σ

2|m1)f(m1)

f(β(m0) = 0|σ2, m0)f(σ2|m0)f(m0)
. W

Proof of Proposition 6.8. The proof is immediate if we substitute

f(m1)

f(m0)
=

(
c2

κ

)[d(m1)−d(m0)]/2


∣∣∣V (m1)

∣∣∣ ∣∣∣XT
(m1)X(m1) + c−2V −1

(m1)

∣∣∣∣∣∣V (m0)

∣∣∣ ∣∣∣XT
(m0)X(m0) + c−2V −1

(m0)

∣∣∣



1/2

in the penalty function (6.9) of proposition 6.1. W

Proof of Corollary 6.8.1. The proof is immediate from the proposition 6.2 if we use

the equation

2log

(
f(m1)

f(m0)

)
= {d(m1)− d(m0)}log(c2 + 1)− {d(m1)− d(m0)}log(κ)

in the penalty function (6.11) of proposition 6.2. W

Proof of Corollary 6.8.2. The prior model probability is given by

2log

(
f(m1)

f(m0)

)
= 2log

(
f(γm1

)

f(γm0
)

)

= 2
∑
j∈V

(γj,m1 − γj,m0)log(πj)− 2
∑
j∈V

(γj,m1 − γj,m0)log(1− πj)

= 2
∑
j∈V

(γj,m1 − γj,m0)log

(
πj

1− πj

)

= 2
∑
j∈V

(γj,m1 − γj,m0)log

(
c2 + 1

κ

)dj/2

=
∑
j∈V

(γj,m1 − γj,m0)djlog

(
c2 + 1

κ

)

=


∑
j∈V

γj,m1dj −
∑
j∈V

γj,m0dj


 log

(
c2 + 1

κ

)

= {d(m1)− d(m0)}log
(
c2 + 1

κ

)
.

If we use the above equality in the penalty function (6.11) we obtain the penalty function of

corollary 6.8.2. W

Proof of Corollary 6.8.3. The proof is immediate if we substitute

V (m) = D−1
(m)(X

T
j Xj)
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in the result of proposition 6.8. W

Proof of Proposition 6.9. For the prior setup of proposition 6.9 the conditional prior

odds at zero are given by

CPOZ =
f(β(m1)|σ2, m1)f(σ

2|m1)f(m1)

f(β(m0)|σ2, m0)f(σ2|m0)f(m0)

= (2πc2σ2)−[d(m1)−d(m0)]/2 |V (m1)|−1/2

|V (m0)|−1/2

× exp
(

1

2c2σ2

(
µT
β(m0)

V −1
(m1)µβ(m1)

− µT
β(m1)

V −1
(m0)µβ(m0)

))

×
(
c2

κ

)[d(m1)−d(m0)]/2


∣∣∣V (m1)

∣∣∣ ∣∣∣XT
(m1)X(m1) + c−2V −1

(m1)

∣∣∣∣∣∣V (m0)

∣∣∣ ∣∣∣XT
(m0)X(m0) + c−2V −1

(m0)

∣∣∣



1/2

= (2πκσ2)−[d(m1)−d(m0)]/2



∣∣∣XT

(m1)X(m1) + c−2V −1
(m1)

∣∣∣∣∣∣XT
(m0)X(m0) + c−2V −1

(m0)

∣∣∣



1/2

× exp
(

1

2c2σ2

(
µT
β(m0)

V −1
(m1)µβ(m1)

− µT
β(m1)

V −1
(m0)µβ(m0)

))
. W

Proof of Corollary 6.9.1. For the prior setup of corollary 6.9.1 the conditional prior

odds at zero are given by

CPOZ =
f(β(m1)|σ2, m1)f(σ

2|m1)f(m1)

f(β(m0)|σ2, m0)f(σ2|m0)f(m0)

= (2πc2σ2)−[d(m1)−d(m0)]/2
|XT

(m1)X(m1)|1/2
|XT

(m0)X(m0)|1/2
(
c2 + 1

κ

)[d(m1)−d(m0)]/2

= (2πσ2κ)−[d(m1)−d(m0)]/2

(
c2

c2 + 1

)−[d(m1)−d(m0)]/2

 |XT

(m1)X(m1)|
|XT

(m0)X(m0)|




1/2

. W

Proof of Corollary 6.9.2. The proof is immediate from proposition 6.9 substituting

V (m) by D−1
(m)(X

T
j Xj). W

Proof of Proposition 6.10 . If we use the normal prior distribution f(µ|σ2) ∼
N(µ0, c

2σ2) then the posterior odds are equal to

PO01 =
f(m0)

1− f(m0)
[
√
nc2 + 1]exp

(
− n

2σ2

nc2

nc2 + 1
(ȳ − µ0)

2

)
.

The samples at the limit of significance satisfy the equality ȳ = µ0± zq/2σ/
√
n which results

in (6.31) if it is substituted in the above posterior odds. W

Proof of Proposition 6.11. We substitute f(m0) = 1/(1+ c) in the posterior odds at
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the limit of significance of lemma 6.10 and we obtain

POLSq
01 = c−1

√
nc2 + 1 exp

(
−1

2

nc2

nc2 + 1
z2
q/2

)

=

√
nc2 + 1

c2
exp

(
−1

2

nc2

nc2 + 1
z2
q/2

)
.

For large c2 we have that

POLSq
01 ≈ √

n exp
(
−1

2
z2
q/2

)
. W

Proof of Proposition 6.12. The proof is immediate if we substitute

f(m1)

f(m0)
=

(
c2

κ

)[d(m1)−d(m0)]/2



∣∣∣XT

(m1)X(m1) + c−2D(m1)(X
T
j Xj)

∣∣∣ p∏
j=1

|XT
j Xj |−γj,m1

∣∣∣XT
(m0)X(m0) + c−2D(m0)(X

T
j Xj)

∣∣∣ p∏
j=1

|XT
j Xj |−γj,m0




1/2

in equation (6.32). W

Proof of Proposition 6.13. We substitute (6.34) in the posterior odds at the limit of

significance of proposition 6.10 and we obtain

POLSq
01 =

√
nc2 + 1√

nc

q

1− q
exp

(
−1

2

nc2

nc2 + 1
z2
q/2 +

1

2
z2
q/2

)

=

√
nc2 + 1

nc2

q

1− q
exp
(
1

2

1

nc2 + 1
z2
q/2

)
.

For large nc2 we have that

POLSq
01 ≈ q

1− q
. W

Proof of Proposition 6.14. The proof is immediate if we substitute (6.35) in equation

(6.32). W

Proof of Proposition 6.15. Under the prior

f(β(m)|y∗, m) ∝ f(y∗|β(m),X
∗
(m), m)

the marginal likelihood is given by

f(y|y∗,X∗
(m), m) =

∫
f(y|β(m), m)f(y∗|β∗

(m),X
∗
(m), m)dβ(m)∫

f(y∗|β∗
(m),X

∗
(m), m)dβ(m)

=

∫
f(y,y∗|β(m), m)∫

f(y∗|β∗
(m),X

∗
(m), m)dβ(m)

.
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Applying the Laplace approximation in both the numerator and the denominator of the

above quantity we have the result of proposition 6.15. W

Proof of Proposition 6.16. Under the prior

f(β(m)|y∗, m) ∝ [f(y∗|β(m),X
∗
(m), m)]1/c

2
0

the marginal likelihood is given by

f(y|y∗,X∗
(m), m) =

∫
f(y|β(m), m)[f(y∗|β∗

(m),X
∗
(m), m)]1/c

2
0dβ(m)∫

[f(y∗|β∗
(m),X

∗
(m), m)]1/c

2
0dβ(m)

=

∫ ∏n
i=1 f(yi|β(m), m)

∏n0
i=1[f(y

∗
i |β(m),X(m), m)]1/c

2
0dβ(m)∫ ∏n0

i=1[f(y
∗
i |β(m),X(m), m)]1/c

2
0dβ(m)

=

∫
l(y,y∗, 1, c−2

0 |m)dβ(m)∫
l(y,y∗, 0, c−2

0 |m)dβ(m)

.

Applying the Laplace approximation in both the numerator and the denominator of the

above quantity we have the result of proposition 6.16. W

Proof of Proposition 6.17. In generalised linear models we have that


∂2log

[
f
(
y|β(m), m

)]
∂βi,(m)∂βj,(m)



−1

β(m)=
ˆβ(m)

= XT
(m)H(m)X(m)

where H(m) = Diag(hi), hi = {g′(E[Yi])
2ai(φ)v(E[Yi])}−1 (see McCullagh and Nelder, 1983,

for details). Using normal prior distribution f
(
β(m)|m

)
∼ N(0, c2V (m)) for model parame-

ters then, for large c2 we have

|I ˘β(m)

| = −
[
∂2fm,y(β(m))

∂βi,(m)∂βj,(m)

]−1

β(m)=
˘β(m)

≈
(
XT

(m)H(m)X(m) + c−2V −1
(m)

)−1
.

The normalising constants are given by

C[f(β(m)|m)] = (2πc2)d(m)/2|V (m)|1/2.

Substituting the above two equalities in the penalty of equation (6.39) we have the penalty

of proposition 6.17. W

Proof of Corollary 6.17.1. The proof is immediate from proposition 6.17 if we

substitute V (m) by
(
XT

(m)H(m)X (m)

)−1
. W

Proof of Proposition 6.18. The proof is immediate if we substitute

f(m1)

f(m0)
=

(
c2

κ

)[d(m1)−d(m0)]/2

 |V (m1)||XT

(m1)H(m)X(m1) + c−2V (m1)|
|V (m0)||XT

(m0)H(m)X(m0) + c−2V (m0)|




1/2
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in the penalty function of proposition 6.17. W

Proof of Corollary 6.18.1. The proof is immediate if we substitute

f(m1)

f(m0)
=

(
c2 + 1

κ

)[d(m1)−d(m0)]/2

in the penalty function of corollary 6.17.1. W

Proof of Proposition 6.19. Without loss of generality, for every model m we can

write

X = [X(m)X(\m)], βT = [βT
(m)β

T
(\m)], R =


 R(m) R(m,\m)

RT
(m,\m) R(\m)




where X(\m) and β(\m) refer to the components of X and β excluded from model m. The

matrix R is partitioned to matrices: R(m) that corresponds to covariances between terms

included in model m; R(\m) that corresponds to covariances between terms excluded from

model m; and R(m,\m) that corresponds to covariances between each term included in model

m and each term excluded from model m. In such case the prior matrix is given by

V SSV S
(m) =


 R(m) k−1R(m,\m)

k−1RT
(m,\m) k−2R(\m)




[V SSV S
(m) ]−1 =


 R−

(m) −kR−
(m,\m)

−kR−
(\m,m) k2R−

(\m)




R−
(m) = [R(m) −R(m,\m)R

−1
(\m)R

T
(m,\m)]

−1,

R−
(\m) = R−1

(\m) + R−1
(\m)R

T
(m,\m)R

−
(m)R(m,\m)R

−1
(\m)

= [R(\m) −R(\m,m)R
−1
(m)R

T
(\m,m)]

−1,

R−
(m,\m) = R−

(m)R(m,\m)R
−1
(\m)

= R−1
(m)R(m,\m)[R(\m) −R(\m,m)R

−1
(m)R

T
(\m,m)]

−1,

R−
(\m,m) = R−1

(\m)R
T
(m,\m)R

−
(m)

= R−1
(\m)R(\m,m)[R(m) −R(m,\m)R

−1
(\m)R

T
(m,\m)]

−1.

Furthermore, the determinant is given by

|V SSV S
(m) |−1 = [k2]d−d(m)|R−

(\m)||R−
(m) −R−

(m,\m)[R
−
(\m)]

−1R−
(\m,m)|.
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The posterior odds using the SSVS approach are given by

PO01 =


 |V SSV S

(m0) |
|V SSV S

(m1) |




−1/2
 |XTX + c−2[V SSV S

(m0) ]−1|
|XTX + c−2[V SSV S

(m1) ]−1|




1/2 (
SSSSV S

m0

SSSSV S
m1

)−n/2
f(m0)

f(m1)

with

SSSSV S
m = yTy − yTX

(
XTX + c−2[V SSV S

(m) ]−1
)−1

XTy

The
(
XTX + c−2V SSV S

(m)

)−1
is given by

(
XTX + c−2[V SSV S

(m) ]−1
)−1

=


 XT

(m)X(m) + c−2R−
(m) XT

(m)X(\m) + c−2kR−
(m,\m)

XT
(\m)X(m) + c−2kR−

(\m,m) XT
(\m)X(\m) + c−2k2R−

(\m)



−1

=


 Σ̃

−
(m) Σ̃

−
(m,\m)

Σ̃
−
(\m,m) Σ̃

−
(\m)




with

Σ̃
−
(m) =

[
XT

(m)X(m) + c
−2R−

(m) − [XT
(m)X(\m) + c

−2kR−
(m,\m)] ×

× [XT
(\m)X(\m) + c

−2k2R−
(\m)]

−1[XT
(\m)X(m) + c

−2kR−
(\m,m)]

]−1
,

Σ̃
−
(\m) = [XT

(\m)X(\m) + c
−2k2R−

(\m)]
−1 +

+[XT
(\m)X(\m) + c

−2k2R−
(\m)]

−1[XT
(\m)X(m) + c

−2kR−
(\m,m)]×

×Σ̃
−
(m)[X

T
(m)X(\m) + c

−2kR−
(m,\m)][X

T
(\m)X(\m) + c

−2k2R−
(\m)]

−1,

Σ̃
−
(m,\m) = −Σ̃

−
(m)

(
XT

(m)X(\m) + c
−2kR−

(m,\m)

) (
XT

(\m)X(\m) + c
−2k2R−

(\m)

)−1
,

Σ̃
−
(\m,m) = −

(
XT

(\m)X(\m) + c
−2k2R−

(\m)

)−1 (
XT

(\m)X(m) + c
−2kR−

(\m,m)

)
Σ̃

−
(m).

Σ̃
−
(m) =

[
XT

(m)X(m) + c
−2R−

(m) − [k−1XT
(m)X(\m) + c

−2R−
(m,\m)] ×

× [k−2XT
(\m)X(\m) + c

−2R−
(\m)]

−1[k−1XT
(\m)X(m) + c

−2R−
(\m,m)]

]−1

lim
l→∞

Σ̃
−
(m) =

[
XT

(m)X(m) + c
−2R−

(m) − c−2R−
(m,\m)[R

−
(\m)]

−1R−
(\m,m)

]−1
,

Σ̃
−
(\m) = k−2[k−2XT

(\m)X(\m) + c
−2R−

(\m)]
−1 + k−2[k−2XT

(\m)X(\m) + c
−2R−

(\m)]
−1 ×

×[k−1XT
(\m)X(m) + c

−2R−
(\m,m)]Σ̃

−
(m)[k

−1XT
(m)X(\m) + c

−2R−
(m,\m)]×

×[k−2XT
(\m)X(\m) + c

−2R−
(\m)]

−1,

lim
k→∞

Σ̃
−
(\m) = 0,

lim
k→∞

Σ̃
−
(m,\m) = 0,

lim
k→∞

Σ̃
−
(\m,m) = 0.
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From the above we have

lim
k→∞

SSSSV Sm = yTy − yTX(m)

[
XT

(m)X(m) + c
−2[R−

(m) −R−
(m,\m)[R

−
(\m)]

−1R−
(\m,m)]

]−1
XTy

= SSm.

The determinant is given by

|XTX + c−2V (m)| = |Σ̃−
(m)||Σ̃

−
(\m) − Σ̃

−
(\m,m)[Σ̃

−
(m)]

−1Σ̃
−
(m,\m)|

= |Σ̃−
(m)||I − Σ̃

−
(\m,m)[Σ̃

−
(m)]

−1Σ̃
−
(m,\m)[Σ̃

−
(\m)]

−1||Σ̃−
(\m)|

|V SSV S
(m) |−1|XTX + c−2V (m)| = |R−

(\m)||R−
(m) −R−

(m,\m)[R
−
(\m)]

−1R−
(\m,m)|

×|Σ̃−
(m)||I − Σ̃

−
(\m,m)[Σ̃

−
(m)]

−1Σ̃
−
(m,\m)[Σ̃

−
(\m)]

−1||k2Σ̃
−
(\m)|

lim
k→∞

(
k2Σ̃

−
(\m)

)
= lim

k→∞

(
[k−2XT

(\m)X(\m) + c−2R−
(\m)]

−1 + [k−2XT
(\m)X(\m) + c−2R−

(\m)]
−1 ×

× [k−1XT
(\m)X(m) + c−2R−

(\m,m)]Σ̃
−
(m)[k

−1XT
(m)X(\m) + c−2R−

(m,\m)] ×
× [k−2XT

(\m)X(\m) + c−2R−
(\m)]

−1
)

= c2[R−
(\m)]

−1 + [R−
(\m)]

−1R−
(\m,m)

×
[
XT

(m)X(m) + c−2R−
(m) − c−2R−

(m,\m)[R
−
(\m)]

−1R−
(\m,m)

]−1

R−
(m,\m)[R

−
(\m)]

−1

)
= c2[R−

(\m)]
−1 +R∗,

where R∗ is given by

R∗ = [R−
(\m)]

−1R−
(\m,m)

[
XT

(m)X(m) + c−2R−
(m) − c−2R−

(m,\m)[R
−
(\m)]

−1R−
(\m,m)

]−1

R−
(m,\m)[R

−
(\m)]

−1.

Consider now the limit

lim
k→∞

(
Σ̃

−
(\m,m)[Σ̃

−
(m)]

−1Σ̃
−
(m,\m)[Σ̃

−
(\m)]

−1
)

=

= lim
k→∞

((
XT

(\m)X(\m) + c−2k2R−
(\m)

)−1 (
XT

(\m)X(m) + c−2kR−
(\m,m)

)
Σ̃

−
(m)

×
(
XT

(m)X (\m) + c−2kR−
(m,\m)

) (
XT

(\m)X(\m) + c−2k2R−
(\m)

)−1
[Σ̃

−
(\m)]

−1
)

= lim
k→∞

((
k−2XT

(\m)X (\m) + c−2R−
(\m)

)−1 (
k−1XT

(\m)X(m) + c−2R−
(\m,m)

)
Σ̃

−
(m)

×
(
k−1XT

(m)X(\m) + c−2R−
(m,\m)

) (
k−2XT

(\m)X(\m) + c−2R−
(\m)

)−1
[k2Σ̃

−
(\m)]

−1
)

= [R−
(\m)]

−1R−
(\m,m) lim

k→∞

(
Σ̃

−
(m)

)
R−

(m,\m)R
−
(\m) lim

k→∞

[
k2Σ̃

−
(\m)

]−1

= R∗ (c2[R−
(\m)]

−1 + R∗)−1
.
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Therefore, from the above have

lim
k→∞

|V SSV S
(m) |−1|XTX + c−2V SSV S

(m) | =

= |R−
(\m)||R−

(m) −R−
(m,\m)[R

−
(\m)]

−1R−
(\m,m)|

×
∣∣∣XT

(m)X(m) + c−2[R−
(m) −R−

(m,\m)[R
−
(\m)]

−1R−
(\m,m)]

∣∣∣−1 |Σ̃−
(m)|

= [c2]d−d(m)|R−
(\m)||R−

(m) −R−
(m,\m)[R

−
(\m)]

−1R−
(\m,m)||Σ̃

−
(m)||R−

(\m)|−1

= [c2]d−d(m)|V (m)|−1|XT
(m)X(m) − c−2V −1

(m)|

with

V −1
(m) = R−

(m) −R−
(m,\m)[R

−
(\m)]

−1R−
(\m,m) = R−1

(m).

From the above result and the fact that SSSSV S
m → SSm, for large k

2, we obtain the statement

of proposition 6.19. W

Proof of Proposition 6.20. In linear regression the Fisher information matrix, I−1

β(m)

of model m is given by XT
(m)X(m)σ

−2. Standard asymptotic theory requires a regularity

condition in which 1
n
I−1

β(m)

has a positive definite limit. Therefore, under mild regularity

conditions

|XTX + c−2[V SSV S
(m1) ]−1|

|XTX + c−2[V SSV S
(m0) ]−1| =

|n−1σ−2XTX + c−2n−1σ−2[V SSV S
(m1) ]−1|

|n−1σ−2XTX + c−2n−1σ−2[V SSV S
(m0) ]−1| → 1.

From the above it is also direct that for n→∞ and fixed prior variances V SSV S
(m) then

SSSSV S
m = RSSfull

resulting to the proposition 6.20. W

Proof of Proposition 6.21. The proof is direct if we consider that

lim
c2→∞

(
XTX + c−2V SSV S

(m)

)
= XTX

and therefore

lim
c2→∞

(SSSSV S
m ) = RSSfull

where RSSfull is the residual sum of squares of the full model. Substituting the above limits

in the SSVS based posterior odds we have the result of proposition 6.21. W



Chapter 7

Gibbs Variable Selection Using Bugs

The aim of this chapter is to clearly illustrate how we can utilize BUGS (Spiegelhalter et al. ,

1996a) for the implementation of variable selection methods. We concentrate on Gibbs

variable selection, proposed in Chapter 4, using independent prior distributions. Extension

to SSVS and Kuo and Mallick samplers is straightforward. Note that this chapter is also

given in a form of research paper; see Ntzoufras (1999b).

7.1 Definition of likelihood

The likelihood (3.2) used in Gibbs variable selection and Kuo and Mallick sampler can be

easily incorporated in BUGS using the following code

for (i in 1:N) { for (j in 1:p) { z[i,j]<-x[i,j]*b[j]*g[j]}}

for (i in 1:N) { eta[i] <-sum(z[i,]) ;

y[i]~distribution [ parameter1, parameter2 ] }

where

• N denotes the sample size,

• p the number of total variables under consideration,

• x[i,j] is the i, j component of the data or design matrix X,

• y[i] is i element of the response vector y,

215
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• b[j] is the j element of the parameter vector β,

• g[j] is the inclusion indicator for j element of γ,

• z[i,j] is a matrix which is used to simplify calculations,

• eta[i] is the i element of linear predictor vector η and should be substituted by the

corresponding link function, for example logit(p[i]) in binomial logistic regression,

• distribution should be substituted by appropriate BUGS command for the distribu-

tion that the user wants to use (for example dnorm for normal distribution),

• parameter1,parameter2 should be substituted according to distribution chosen, for

example for the normal distribution with mean µi and variance τ−1 we may use mu[i],

tau.

Alternatively, if we prefer to use SSVS as defined by George and McCulloch (1993) should

change the first line of the above code to

for (i in 1:N) { for (j in 1:p) { z[i,j]<-x[i,j]*b[j]}}.

For the usual normal, binomial and Poisson models the model formulations are given by

the following lines of BUGS code

Normal: for (i in 1:N) { mu[i] <-sum(z[i,]) ; y[i]~dnorm (mu[i], tau) }

where mu[i] is the expected value for the ith observation and tau is the precision of

the regression model.

Poisson: for (i in 1:N) { log(lambda[i]) <- sum(z[i,]);

y[i] ~ dpois(lambda[i])}

where lambda[i] is the Poisson mean for the ith observation.

Binomial: for (i in 1:N) { logit(p[i]) <- sum(z[i,]);

y[i] ~ dbin(p[i], n[i])}

where p[i] is the probability of success and n[i] is the total number of Bernoulli trials

for the ith binomial experiment. Alternative link functions maybe used by substituting

logit(p[i]) by probit(p[i]) or cloglog(p[i]) for Φ−1(p) and log(−log(1 − p));

where Φ is the normal cumulative distribution function.
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7.2 Definition of Prior Distribution of β

In situations where we use independent priors similar to (4.4) and each covariate parameter

vector is univariate, the definition of the prior is straightforward. Our prior is a mixture of

independent normal distributions

βj ∼ (1− γj)N(µ̄j , Sj) + γjN(0,Σj), j = 1, 2, . . . , p (7.1)

where µ̄j, Sj are the mean and variance respectively, used in the corresponding pseudoprior

distributions and Σj is the prior variance, when the j term is included in the model. In order

to use (7.1) in BUGS we write

• b[j] ∼ dnorm( bpriorm[j], tprior[j]) denoting βj ∼ N(mj , τ
−1
j ),

• bpriorm[j] < − (1-g[j])*mean[j] denoting mj = (1− γj)µ̄j,

• tprior[j] < − g[j]*t[j]+(1-g[j])*pow(se[j],-2) denoting τj = (1− γj)S
−1
j +

γjΣ
−1
j ,

for j = 1, 2, . . . , p; where mj and τj are the prior mean and precision for βj depending on

γj and t[j], se[j], mean[j], bpriorm[j], tprior[j] are the BUGS variables for Σ−1
j ,√

Sj , µ̄j, mj and τj , respectively.

When we have multivariate βj then the vector β has greater dimensionality than γ. In

these situations we denote by p and d(> p) the dimensions of γ and the full parameter vector

β, respectively. Therefore, we need one variable to facilitate the association between these

two vectors. This vector is denoted by the BUGS variable pos. The pos vector, which has

dimension equal to the dimension of β, takes values from 1, 2, ..., p and denotes that βk is

related to γposk
for k = 1, 2, ..., d.

Here we illustrate the use of a mixture of normal prior distributions as in (4.4). This

prior can be expressed as a multivariate normal distribution on the ‘full’ parameter vector

β. Therefore we write in BUGS

• b[ ] ∼ dmnorm( bpriorm[ ], Tau[,]) denoting β ∼ Nd(m,T−1),

• bpriorm[k] < − (1-g[pos[k]])*mean[k] denoting mk = (1− γposk
)µ̄k,
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• Tau[k,l] < − (1-g[pos[k]]*g[pos[l]])*t[k,l]+

+ g[pos[k]]*gamma[pos[l]]*equals(k,l)*pow(se[k],-2) denoting that

Tkl =




[Σ−1]kl when γposk
= γposl

= 1

se−2
k when k = l & γposk

= 0

0 otherwise

for k, l = 1, 2, . . . , d;

where Nd is the d-dimensional normal distribution; mT = (m1, m2, . . . , md) and T are the

prior mean vector and precision matrix depending on γ; µ̄k is the corresponding pilot run

estimate for k element of model parameter vector β; Σ is the constructed prior covariance

matrix for the whole parameter vector β when we use for each βj the multivariate extension

of prior distribution 7.1; Tkl and [Σ−1]kl is the k row and l column elements of T and Σ−1

matrices respectively; and Tau[,], t[,] are the BUGS matrices for T andΣ−1, respectively.

For application of the above see example 1.

SSVS and Kuo Mallick sampler can be easily applied by slightly changing the above code.

In SSVS the prior (7.1) is used with µ̄j = 0 and Sj = Σj/k
2
j , where k

2
j should be large enough

in order that βj will be close to zero when γj = 0. For selection of the prior parameters in

SSVS see semiautomatic prior selection of George and McCulloch (1993, 1997). The above

restriction can be easily applied in BUGS by

bpriorm[j] <- 0

tprior[j] <- t[j]*g[j]+(1-g[j])*t[j]*pow(k[j],2) .

Kuo and Mallick sampler uses prior on β that does not depend on model indicator γ.

Therefore prior specification is the same as in simple modelling with BUGS; for more details

see Spiegelhalter et al. (1996a,b,c).

7.3 Definition of Prior Term Probabilities

In order to apply any variable selection method in BUGS we need to define the prior proba-

bilities f(γ). When we are vague about models we may set f(γ) = 1/|M|, where |M| is the
number of all models under consideration. When the explanatory variables do not involve

interactions (e.g. linear regression) then the number of models under consideration is 2p. In



Chapter 7: Gibbs Variable Selection Using Bugs 219

these situations the latent variables γj can be treated as a−priori independent and therefore

set in BUGS

• g[j] ∼ dbern(0.5) denoting that γj ∼ Bernoulli(0.5).

for all j = 1, 2, . . . , p. This prior results to f(γ) = 2−p ∀ γ ∈ {0, 1}p. When we are

dealing with models using categorical explanatory variables with interaction terms, such as

ANOV A or log-linear models, we usually want to restrict attention to hierarchical models.

The conditional distributions of f(γj|γ\j) need to be specified in such way that f(γ) = |M|−1

when γ is referring to hierarchical model and f(γ) = 0 otherwise.

For example, in a two way ANOV A we have three terms under consideration (p = 3). All

possible models are eight, while the plausible models are only five (constant, [A], [B], [A][B]

and [AB]). Therefore, we need to have f(γ) = 0.20 for the above five models and f(γ) = 0

for the rest. This can be applied by setting in BUGS

• g[3] ∼ dbern(0.2) denoting that γAB ∼ Bernoulli(0.2).

• pi < − g[3]+0.5(1-g[3]) denoting that π = γAB + 0.5(1− γAB),

• for (i in 1:2) { g[j] ∼ dbern(pi) } denoting that ∀ i ∈ {A,B}, γj|γAB ∼
Bernoulli(π)

From the above it is evident that

f([AB]) = f(γAB = 1)f(γA = 1|γAB = 1)f(γB = 1|γAB = 1) = 0.2× 1× 1 = 0.2

f([A][B]) = f(γAB = 0)f(γA = 1|γAB = 0)f(γB = 1|γAB = 0) = 0.8× 0.5× 0.5 = 0.2

Using similar calculations we find that f(γ) = 0.2 for all five models under consideration.

For further relevant discussion and application see Chipman (1996). For implementation in

BUGS see examples 1 and 4.

7.4 Calculating Model Probabilities in Bugs

In order to directly calculate in BUGS the posterior model probabilities and avoid saving

large output we can use matrix type variables with dimension equal to the number of models.
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Using a simple coding such as 1+
p∑

j=1
γj2

j−1 we transform the vector γ in a unique, for each

model index (noted by mdl) for which pmdl[mdl]=1 and pmdl[j]=0 for all j �= mdl. The

above statements can be written in BUGS with the code

for (j in 1:p) { index[j] < − pow(2,j-1) }
mdl < − 1+inprod(g[ ], index[ ])

for (m in 1:mdl) { pmdl[m] < − equals(m,mdl) }
Then using the command stats(pmdl) in BUGS environment (or cmd file) we can monitor

the posterior model probabilities. This is feasible only if the number of models is limited

and therefore applicable only in some simple cases.

7.5 Examples

The implementation of four illustrated examples are briefly presented. The first example is

a 3 × 2 × 4 contingency table presented in Section 4.6.2.4 used to illustrate how to handle

factors with more than two levels. Example 2 is a logistic regression example in which we

use the orthogonal transformed space of Clyde et al. (1996). Example 3 provides model

selection details in a regression type problem involving many different error distributions

while example 4 is a simple logistic regression problem with random effects. In all examples

posterior probabilities are presented while the associated BUGS codes are provided in the

appendix. Additional details (for example, convergence plots) are omitted since the aim of

this chapter is only to illustrate how to use BUGS for variable selection.

7.5.1 Example 1: 3× 2× 4 Contingency Table

This example was presented in Section 4.6.2.4. The BUGS results presented in Table 7.1

can be compared with the results of FORTRAN 77 code presented in Section 4.6.2.4. The

full model is given by

nilk ∼ Poisson(λilk), log(λilk) = m+ oi + hl + ak + ohil + oaik + halk + ohailk,

for i = 1, 2, 3, l = 1, 2, k = 1, 2, 3, 4. The above model can be rewritten with likelihood given

by (3.2) where β can be divided to βj sub-vectors with j ∈ {∅, O,H,OH,A,OA,HA,OHA};
where β∅ = m, βT

O = [o2, o3], βH = h2, βTOH = [oh22, oh32], βT
A = [a2, a3, a4], βT

OA =
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Pseudopriors k=10 Pilot Run

Burn-in 1,000 10,000 1,000 10,000

Iterations 1,000 10× 10, 000 1,000 10× 10, 000

Models

[O][H ][A] 62.80 68.87 65.20 67.80

[OH ][A] 36.90 30.53 34.40 31.63

[O][HA] 0.20 0.40 0.10 0.43

[OH ][HA] 0.10 0.20 0.30 0.14

Terms

γOH = 1 37.00 30.63 34.70 31.77

γHA = 1 0.30 0.20 0.40 0.57

Table 7.1: 3× 2× 4 Contingency Table: Posterior Model Probabilities Using BUGS.

[oa22, oa23, oa32, oa33], βT
HA = [ha22, ha23] and βT

OHA = [oha222, oha223, oha322, oha323]. Each

βj is a multivariate vector and therefore each prior distribution involves mixture multivariate

normal distributions. We use sum to zero constraints and prior variance Σj as in Dellaportas

and Forster (1999). We restrict attention in hierarchical models including always the main

effects since we are mainly interested for relationships between the categorical factors. Under

these restrictions the models under consideration are nine and in order to forbid to move to

non hierarchical models we use the following priors in BUGS

• g[8] ∼ dbern(0.1111) for γOHA ∼ Bernoulli(1/9).

• pi < − g[8]+0.5(1-g[8]) for π = γOHA + 0.5(1− γOHA),

• for (i in 5:7) { g[j] ∼ dbern(pi) } for ∀ i ∈ {OH,OA,HA}, γj|γOHA ∼
Bernoulli(π)

• for (j in 1:4) { g[j] ∼ dbern(1) } for ∀ i ∈ {, O,H,A}, γj ∼ Bernoulli(1)

These priors result to prior probability for all hierarchical models equal to 1/9 and zero

otherwise.
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Results, using both pilot run pseudoprior and automatic pseudoprior with k = 10, are

summarised in Table 7.1. The data give ‘strong’ evidence in favour of model of independence.

Model [OH][A], in which obesity and hypertension are depending on each other given the

level of alcohol consumption, is the model the second highest posterior probability. All the

other models have probability lower than 1%.

7.5.2 Example 2: Beetles Dataset

This dataset was used for illustration by many researchers including Spiegelhalter et al.

(1996b). In this dataset the number of beetles killed (and the total number of beetles)

after 5 hour exposure to carbon disuphlide at eight different concentrations are recorded.

We consider as the response variable the number of insects killed and as explanatory the

concentration. We also investigate whether the quadratic and cubic terms are significant for

the model. The full model will be

yi ∼ Bin(ni, pi), ηi = g(pi)

ηi = β0 + β1xi + β2x
2
i + β3x

3
i , i = 1, . . . , 8.

where yi and ni are the number of killed insects and the total number of insects under the i

exposure to carbon disuphlide; pi denotes the probability of an insect to die after accepting

i exposure to carbon disuphlide; g(pi) is the link function which is either logit, probit or

complementary log-log.

In order to have similar parameter estimates and avoid high correlations between polyno-

mial terms we useGram Schmidt transformation to orthogonalize the data matrix; see, for ex-

ample, Noble and Daniel (1977). Similar techniques have been applied by Clyde et al. (1996).

The orthogonalization will accelerate the chain ensure convergence and quick mixing. The

new transformed variables z1, z2 and z3 are are used in the full model instead the original

variables x1, x2 and x3. The new ’data’ matrix will be noted as Z

As non-informative prior variance we use V = c2ZTZ and c = 1.65 according to Raftery

(1996) for the logit link. The orthogonalisation of the matrix Z implies that the above priors

can be independent. The prior variances for the other links are similar multiplied by an

adjustment based on Taylor’s expansion (for more details see Section 5).
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Models Logit (%) Probit (%) C.log-log (%)

Constant 0.00 0.00 0.00

z1 18.43 20.19 52.66

z1 + z2 51.64 50.21 15.90

z1 + z3 12.74 13.70 25.01

z1 + z2 + z3 17.19 15.90 6.43

Terms

γz1 = 1 100.00 100.00 100.00

γz2 = 1 68.83 66.11 22.33

γz3 = 1 29.93 29.60 31.44

Table 7.2: Beetles Dataset: GVS Posterior Model Probabilities for each link Using BUGS

(orthogonalised data, pilot-run pseudopriors, burn-in 10,000 and 10× 10, 000 iterations).

For the logit and probit link, Gibbs variable selection strongly supports model with z1

and z2 in the model (about 51%). Three other models have high probabilities (from 10% to

20%). The marginal probabilities in logit link are 100%, 68% and 30% for inclusion of z1,z2

and z3 respectively. Similar are the corresponding probabilities for probit link.

The model mainly supported in complementary log-log is the model with only z1 in the

model. The main issue here is that in this link totally different terms are included in the

model. The only term with probability higher that 50% is z1.

7.5.3 Example 3: Stacks Dataset

Stacks example is a stack-loss data analysed by Spiegelhalter et al. (1996b) using Gibbs sam-

pling. The dataset features 21 daily responses of stack loss (y) which measures the amount

of ammonia escaping with covariates the air flow (x1), temperature (x2) and acid concen-

tration (x3). Spiegelhalter et al. (1996b) consider regression models with four different error

structures (normal, double exponential, logistic and t4 distributions). They also consider the

cases of ridge and simple independent regression models. We extend their work by applying
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SUMMARY TABLE

Independence Regression Ridge Regression

Models Normal D.Exp. Logistic t4 Normal D.Exp. Logistic t4

Constant 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

z1 14.12 58.48 41.19 56.46 3.26 22.54 14.42 13.30

z2 0.56 0.01 0.02 0.00 0.05 0.00 0.00 0.00

z1 + z2 81.25 38.64 55.25 40.46 79.79 65.00 73.32 70.92

z3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

z1 + z3 0.63 1.75 1.35 1.82 0.44 1.74 1.32 1.86

z2 + z3 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00

z1 + z2 + z3 3.39 1.11 2.18 1.26 16.46 10.72 11.01 13.92

Terms

γz1 = 1 99.30 99.98 99.97 100.00 100.00 100.00 100.00 100.00

γz2 = 1 84.90 39.76 57.45 41.72 96.50 75.72 84.33 84.84

γz3 = 1 4.30 2.86 3.53 3.08 16.10 12.46 12.33 15.78

Table 7.3: Stacks Dataset: GVS Posterior Model Probabilities Using BUGS (burn-in 10,000,

samples of 10× 10, 000, with pilot run pseudopriors).
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Gibbs variable selection on all these eight cases. The full model will be

yi ∼ D(µi, τ), µi = β0 + β1zi1 + β2zi2 + β3zi3, i = 1, . . . , 21

where Di(µi, τ) is the distribution of the errors with mean µi and variance τ−1 which here is

assumed to be normal, double exponential, logistic or t4; where zij = (xij−x̄j)/sd(xj) are the

standardised covariates. The ridge regression assumes a further restriction that the βj for j =

1, 2, 3 are exchangeable (Lindley and Smith, 1972) and therefore we have βj ∼ N(0, φ−1). We

use ‘non-informative’ priors with prior precision equal to 10−3 for the independent regression

and for φ in ridge regression we use gamma prior with parameters equal to 10−3. Since we

do not have restrictions for the model space we use γj ∼ Bernoulli(0.5) for j = 1, 2, 3 which

results to prior probability of 1/8 for all possible models. For the pilot run pseudoprior

parameters we use the posterior values as given Spiegelhalter et al. (1996b).

Table 7.3 contains the results from all eight distinct cases using pilot run pseudopriors.

In all cases flow of air (z1) has posterior probability of inclusion higher than 99%. The

temperature (z2) seems to be also an important term with posterior probability of inclusion

varying from 39% to 96%. The last term (z3) which measures the acid concentration in air

has low posterior probabilities of inclusion which are less than 5% for simple independence

models and less than 20% for ‘ridge’ regression models.

7.5.4 Example 4: Seeds Dataset, Logistic Regression with Ran-

dom Effects

This example involves the examination of a proportion of seeds that germinated on 21 plates.

For these 21 plates we have recorded the seed (bean or cucumber) and the type of root extract.

This data set is analysed by Spiegelhalter et al. (1996b) using BUGS; for more details see

references there in. The model is a logistic regression with 2 categorical explanatory variables

and random effects. The full model will be written

yilk ∼ Bin(nilk, pilk), log

(
pilk

1− pilk

)
= m+ ai + bl + abil + wk, i, l = 1, 2; k = 1, . . . , 21.

where yilk and nilk is the number of seeds germinated and total number of seeds respectively

for i seed l type of root extract and k plate; wk is the random effect for the k plate.
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We use sum to zero constraints for both fixed and random effects. The prior variance

used here for the fixed effects is Σ = 4 × 2. This prior is equivalent to the prior used by

Dellaportas and Forster (1999) for log-linear model selection. The prior for the precision

of the random effects is considered to be a gamma distribution with parameters equal to

10−3. The pseudoprior parameters were taken from a pilot chain of the saturated model.

The models under consideration are ten. The prior term probabilities for the fixed effects is

assigned similarly as in the example for two-way ANOVA models. For the random effects

term indicator we have that γw ∼ Bernoulli(0.5).

Fixed Effects Random Effects

Models k=10 Pilot k=10 Pilot

Constant 0.00 0.00 1.21 0.99

[A] 0.00 0.00 0.22 0.07

[B] 32.34 32.07 50.61 50.75

[A][B] 3.78 3.84 7.24 7.60

[AB] 2.80 2.83 1.80 1.85

Total 38.92 38.74 61.08 61.26

Table 7.4: Seeds Dataset: GVS Posterior Model Probabilities Using BUGS (burn-in 10,000,

samples of 10× 10, 000).

The results in Table 7.4 give the posterior model probabilities. We used both pilot run

proposals and automatic pseudoprior with k = 10. Both chains gave the same results as

expected and the type of root extract (B) is the only factor that influences the proportion of

germinated gems. The corresponding models with random and fixed effects have posterior

probability equal to 51% and 32%, respectively. The marginal posterior probability of ran-

dom effects is 61% which is about 56% higher than the posterior probability of fixed effects

models.
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7.6 Appendix of Chapter 7: BUGS CODES

Bugs code and all associated data files are freely available in electronic form at the internet

web site http://www.stat-athens.aueb.gr/∼jbn/ or by electronic mail request.

7.6.1 Example 1

model log-linear;
#
# 3x2x4 LOG-LINEAR MODEL SELECTION WITH BUGS (GVS)
# (c) OCTOBER 1996 ATHENS UNIVERSITY OF ECONOMICS AND BUSINESS
# (c) REVISED OCTOBER 1997 AUEB
#
# WRITTEN BY JOHN NTZOUFRAS UNDER THE SUPERVISION
# OF P.DELLAPORTAS AND J.J.FORSTER
#
#
const

terms=8, # number of terms
N = 24; # number of Poisson cells

var
include, # conditional prior probability for gi
pmdl[9], # model indicator vector
mdl, # code of model
b[N], # model coefficients
mean[N], # proposal mean used in pseudoprior
se[N], # proposal stand.deviation used in pseudoprior
bpriorm[N], # prior mean for b depending on g
Tau[N,N], # model coefficients precision
tprior[N,N],# prior value for Tau when all terms in model
x[N,N], # design matrix
z[N,N], # matrix with z_ij=x_ij b_j g_j, used in likelihood
n[N], # Poisson cells
pos[N], # position of each parameter
lambda[N], # Poisson mean for each cell
gtemp[N], # temporary term indicator vector
g[terms]; # term indicator vector

data pos,n in "ex2.dat", x in ’ex2des.dat’, mean, se in ’prop2.dat’,
tprior in ’cov.dat’;
inits in "ex2.in";
{
#
# Design Matrix can was calculated outside the bugs code
# (e.g. via S-plus) and then can be used as data to avoid
# useless intensive calculations. The Design matrix here was
# calculated as a Kronecker product of stz. design matrices
# for 3,2 and 4 levels
#
#
# associate g[i] with coefficients.
#

for (i in 1:N) {
gtemp[i]<-g[pos[i]];
}
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#
# calculation of the z matrix used in likelihood
#

for (i in 1:N) {
for (j in 1:N) {

z[i,j]<-x[i,j]*b[j]*gtemp[j]
}

}
#
# model configuration

for (i in 1:N) {
log(lambda[i])<-sum(z[i,])
n[i]~dpois(lambda[i]);
}

# defining model code
# 0-> independence model [A][B][C], 1 for [AB][C], 2 for [AC][B],
# 3 for [AB][AC], 4 for [BC][A], 5 for [AB][BC], 6 for [AC][BC],
# 7 for [AB][BC], 15 for [ABC].
#

mdl<-g[5]+2*g[6]+4*g[7]+8*g[8];
for (i in 0:7) {

pmdl[i+1]<-equals(mdl,i)
}

pmdl[9]<-equals(mdl,15)
#
# Prior for b model coefficient
# Mixture normal depending on current status of g[i]
#

for (i in 1:N) { for (j in 1:N) {
#
# GVS using se,mean from pilot run
# ********************************
#

Tau[i,j]<-0+tprior[i,j]*(gtemp[i]*gtemp[j])+
(1-gtemp[i]*gtemp[j])*equals(i,j)/(se[i]*se[i]);

#
# Automatic proposal using prior similar to SSVS with k=10
# ********************************************************
# Tau[i,j]<-tprior[i,j]*pow(100,1-gtemp[i]*gtemp[j]);
#
# Kuo and Mallick proposal is independent of g[i]
# ********************************************
# tau[i]=1/2 and bpriorm[i]=0
#
# Tau[i,j]<-tprior[i,j];
#

}
#
# GVS PRIOR M FROM PILOT RUN
# **************************

bpriorm[i]<-mean[i]*(1-gtemp[i]);
#
# PRIOR M FOR THAT DOES NOT DEPEND ON G.
# *************************************
# bpriorm[i]<-0.0;

}
b[]~dmnorm(bpriorm[],Tau[,]);
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#
# defining prior information for gi in such way that allow
# only hierarchical models with equal probability.
# We also ignore models nested to the model of independent [A][B][C]
# since we are interested in associations between factors.
#

g[8]~dbern(0.1111111);
include<-(1-g[8])*0.5+g[8]*1.0;
g[7]~dbern(include);
g[6]~dbern(include);
g[5]~dbern(include);
for (i in 1:4) {

g[i]~dbern(1.0);
}

}

7.6.2 Example 2

model beetlesgvs2;
#
# BINOMIAL REGRESSION VARIABLE SELECTION WITH BUGS (GVS)
# BUGS EXAMPLE: BEETLES, see BUGS examples vol.2
# using orthogonalised data and Raftery’s prior
#
# (c) OCTOBER 1997 ATHENS UNIVERSITY OF ECONOMICS
#
# WRITTEN BY JOHN NTZOUFRAS UNDER THE SUPERVISION
# OF P.DELLAPORTAS AND J.J.FORSTER
#
#
const
terms=3, # number of terms under consideration
models=8, # number of models
N = 8; # number of doses
var
r[N],n[N], # Binomial data, r successes out of n (total)
p[N], # Binomial probability of success
x1[N], # Data column x
x2[N], # Data column x^2
x3[N], # Data column x^3
alpha, # intercept coef. for original data
beta[terms], # model coef. for x, x^2, x^3
t[terms], #
bprior[terms],# prior mean of model coef. conditional on model
tprior[terms],# prior precision of model coef. conditional on model
mdl, # model index
pmdl[models], # model indicator
mean[terms], # mean of proposal from pilot run
se[terms], # se of proposal from pilot run
adj, # prior constant for link adjustment

# based on Taylor expansion
g[terms]; # term indicator

data r, n, x1, x2, x3 in "or.dat", mean,se in "prop4P.dat";
inits in "beetles.in";
{
for (i in 1:N) {
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r[i] ~ dbin(p[i], n[i]);
#
# Logit link
# ----------

logit(p[i]) <- alpha + g[1]*beta[1]*x1[i] + g[2]*beta[2]*x2[i]
+ g[3]*beta[3]*x3[i];

#
# Probit link
# ----------
# probit(p[i]) <- alpha + g[1]*beta[1]*x1[i] + g[2]*beta[2]*x2[i]
# + g[3]*beta[3]*x3[i];
#
# Cloglog link
# ----------
# cloglog(p[i]) <- alpha + g[1]*beta[1]*x1[i] + g[2]*beta[2]*x2[i]
# + g[3]*beta[3]*x3[i];
}
alpha~dnorm(0,0.5)
#
# priors for glm model choice
#
#
# No adjustment is needed for logit link

adj<-1.0
# adjustment for probit
# adj<-(4.1809*4.1809)/(2.7261*2.7261);
#
# adjustment for cloglog

adj<-4.1809*4.1809/(2.5944*2.5944)

t[1]<- 0.01169972*adj;
t[2]<- 0.00003586418*adj;
t[3]<- 9.605285E-8*adj;
for (j in 1:terms){
#
# ******** GVS PRIORS ***********
#
# GVS priors with proposals from pilot run

bprior[j]<-(1-g[j])*mean[j];
tprior[j] <-g[j]*t[j]+(1-g[j])*pow(se[j],-2);

#
# GVS priors with proposals a mixture of Normals(0,c^2t^2)
# bprior[j]<-0.0;
# tprior[j] <-pow(100,1-g[j])*t[j];

beta[j] ~ dnorm(bprior[j],tprior[j]); # coeffs independent
}

#
# Defining Model Code

mdl<- 1+g[1]*1+g[2]*2+g[3]*4
#
# defining vector with model indicators

for (j in 1:models){
pmdl[j]<-equals(mdl,j);}
for (i in 1:terms){g[i]~dbern(0.5)}
}
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7.6.3 Example 3

model stacks;
#
# LINEAR REGRESSION VARIABLE SELECTION WITH BUGS (GVS)
# BUGS EXAMPLE: STACKS, see BUGS examples vol.1
#
# (c) OCTOBER 1997 ATHENS UNIVERSITY OF ECONOMICS
#
# WRITTEN BY JOHN NTZOUFRAS UNDER THE SUPERVISION
# OF P.DELLAPORTAS AND J.J.FORSTER
#
#
const

p = 3, # number of covariates
N = 21, # number of observations
models=8, # number of models under consideration 2^8
PI = 3.141593;

var
x[N,p], # raw covariates
z[N,p] , # standardised covariates
Y[N],mu[N], # data and expectations
stres[N], # standardised residuals
outlier[N], # indicator if |stan res| > 2.5
beta0,beta[p], # standardised intercept, coefficients
b0,b[p], # unstandardised intercept, coefficients
phi, # prior precision of standardised coefficients
tau,sigma,d, # precision, sd and degrees of freedom of t distn
g[p], # variable indicators
mdl, # Model index
pmdl[models], # Vector with model indicators
mean[p],se[p], # pseudoprior mean and se error
bprior[p], # Conditional to model Prior prior mean
tprior[p]; # Conditional to model Prior prior precision

data Y,x in "STACKS.DAT",
# files with proposed values
mean,se in ’pnorm.dat’; # Normal distribution
#mean,se in ’pdexp.dat’; # Double exponential distribution
#mean,se in ’plogist.dat’;# Logistic distribution
#mean,se in ’pt4.dat’; # Student(4) distribution
inits in "STACKS.IN";
{
# Standardise x’s and coefficients

for (j in 1:p) {
b[j] <- beta[j]/sd(x[,j]) ;
for (i in 1:N) {

z[i,j] <- (x[i,j] - mean(x[,j]))/sd(x[,j]) ;
}

}
b0 <- beta0-b[1]*mean(x[,1])-b[2]*mean(x[,2])-b[3]*mean(x[,3]);

# Model
d <- 4; # degrees of freedom for t
for (i in 1:N) {

#
# Normal Distribution
# -------------------
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Y[i] ~ dnorm(mu[i],tau);
#
# Double Exponential Distribution
# -------------------
# Y[i] ~ ddexp(mu[i],tau);
#
# Logistic Distribution
# -------------------
# Y[i] ~ dlogis(mu[i],tau);
#
# Student t4 Distribution
# -------------------
# Y[i] ~ dt(mu[i],tau,d);
#

mu[i] <- beta0 + g[1]*beta[1]*z[i,1]+g[2]*beta[2]*z[i,2]
+ g[3]*beta[3]*z[i,3];

stres[i] <- (Y[i] - mu[i])/sigma;
#
# if standardised residual is greater than 2.5 then outlier

outlier[i] <- step(stres[i] - 2.5) + step(-(stres[i]+2.5) );
}

#
# Defining Model Code

mdl<- 1+g[1]*1+g[2]*2+g[3]*4
#
# defining vector with model indicators

for (j in 1:models){
pmdl[j]<-equals(mdl,j);}

# Priors
beta0 ~ dnorm(0,.00001);
for (j in 1:p) {

#
# ******** GVS PRIORS FOR INDEPENDENCE REGRESSION ***********
#
# GVS priors with proposals from pilot run
# bprior[j]<-(1-g[j])*mean[j];
# tprior[j] <-g[j]*0.001+(1-g[j])/(se[j]*se[j]);
#
# GVS priors with proposals a mixture of Normals(0,c^2t^2)

bprior[j]<-0.0;
tprior[j] <-pow(100,1-g[j])*0.001;

#
# ******** GVS PRIORS FOR RIDGE REGRESSION *****************
#
# GVS priors with proposals from pilot run
# bprior[j]<-(1-g[j])*mean[j];
# tprior[j] <-g[j]*phi+(1-g[j])/(se[j]*se[j]);
#
# GVS priors with proposals a mixture of Normals(0,c^2t^2)
# bprior[j]<-0.0;
# tprior[j] <-pow(100,1-g[j])*phi;

beta[j] ~ dnorm(bprior[j],tprior[j]); # coeffs independent

}
tau ~ dgamma(1.0E-3,1.0E-3);

#
# phi ~ dgamma(1.0E-3,1.0E-3);
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#
# when we use pilot run based pseudopriors bugs was unable to select
# update method. Therefore we use an upper limit which makes bugs
# work with Metropolis instead Gibbs
#
# phi ~ dgamma(1.0E-3,1.0E-3)I(0,10000);
# standard deviation of error distribution

sigma <- sqrt(1/tau); # normal errors
# sigma <- sqrt(2)/tau; # double exponential errors
# sigma <- sqrt(pow(PI,2)/3)/tau ; # logistic errors
# sigma <- sqrt(d/(tau*(d-2))); # t errors on d degrees of freedom
#
#
# Priors for variable indicators

for (j in 1:p) { g[j]~ dbern(0.5);}
}

7.6.4 Example 4

model seedszrogvs;
#
# LOGISTIC REGRESSION VARIABLE AND
# RANDOM EFFECTS SELECTION WITH BUGS (GVS)
#
# BUGS EXAMPLE: SEEDS, see BUGS examples vol.1
#
# (c) OCTOBER 1997 ATHENS UNIVERSITY OF ECONOMICS
#
# WRITTEN BY JOHN NTZOUFRAS UNDER THE SUPERVISION
# OF P.DELLAPORTAS AND J.J.FORSTER
#
#

const
terms=4, # Number of terms under consideration
models=16,# number of models under consideration 2^4
N = 21; # number of samples

var
alpha0, alpha1, alpha2, alpha12, # model coefficients
tau, sigma, # sigma= variance of random effects (tau=1/sigma)
x1[N], x2[N], # Design Column for factor a1 and a2

# here we used the STZ constraints
p[N], # Success probability for Binomial
n[N], # Total number of trials for Binomial
r[N], # Binomial data
b[N], # Random effects (standardised)
c[N], # Random effects c[i] (unstandardised)
include, # conditional model probability for main effects
g[terms], # terms indicator vector
mdl, # model index
pmdl[models], # model indicator
mean[terms-1], # proposal mean
se[terms-1], # proposal se
bprior[terms-1],# prior mean for model coefficients|model
tprior[terms-1];# prior precision for model coefficients|model

data r,n,x1,x2 in "seeds.dat", mean,se in ’prop6.dat’;
inits in "seeds.in";
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{
alpha0 ~ dnorm(0.0,1.0E-6); # intercept

for (j in 1:(terms-1)) {
# ******** GVS PRIORS ***********
#
# GVS priors with proposals from pilot run

bprior[j]<-(1-g[j])*mean[j];
tprior[j] <-g[j]/8+(1-g[j])/(se[j]*se[j]);

#
# GVS priors with proposals a mixture of Normals(0,c^2t^2)
# bprior[j]<-0.0;
# tprior[j] <-pow(100,1-g[j])/8;

}
#
#

alpha1 ~ dnorm(bprior[1],tprior[1]); # seed coeff
alpha2 ~ dnorm(bprior[2],tprior[2]); # extract coeff
alpha12 ~ dnorm(bprior[3],tprior[3]);
tau ~ dgamma(1.0E-3,1.0E-3); # 1/sigma^2
for (i in 1:N) {

c[i] ~ dnorm(0.0,tau);
b[i] <- c[i] - mean(c[]); # make sure b’s add to zero
logit(p[i]) <- alpha0 + g[1]*alpha1*x1[i] + g[2]*alpha2*x2[i] +

g[3]*alpha12*x1[i]*x2[i] + g[4]*b[i];
r[i] ~ dbin(p[i],n[i]);

}

sigma <- 1.0/sqrt(tau);
#
# Defining Model Code

mdl<- 1+g[1]*1+g[2]*2+g[3]*4+g[4]*8
#
# defining vector with model indicators

for (j in 1:models){
pmdl[j]<-equals(mdl,j);}

# Priors for variable indicators
g[4]~ dbern(0.50);
g[3]~ dbern(0.20);
include<-g[3]+(1-g[3])*0.5
g[2]~ dbern(include);
g[1]~ dbern(include);

}
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Discussion and Further Research

This thesis investigated various research avenues in Bayesian model selection. Although the

initial focus was on technicalities and various methodologies using MCMC, it later became

evident that prior considerations are very important in Bayesian model selection and efforts

strayed towards some more mathematical problems (Chapter 6).

At the time of writing, Bayesian model selection using MCMC is accepted as the lead-

ing procedure for model selection in Bayesian statistics. MCMC methods can be routinely

added in standard statistical software and facilitate Bayesian model averaging techniques

for safely estimating any quantities of interest. They can be used to discriminate a group

of good working models and further provide a quantitative comprehensive measure of model

uncertainty. The posterior probability of any model can be easily interpreted as the prob-

ability that this model is the best approximation of reality among the models considered.

The flexibility to compare models that have totally different structure, the automatic no-

tion of MCMC algorithms, the expression of posterior probabilities in simple percentages as

well as the serious drawbacks of standard classical model selection techniques are the main

arguments that promote the widespread of Bayesian model selection.

Future and current research is directed to the implementation of MCMC methods and

especially of reversible jump samplers in specific complicated model selection issues (for

example see Nobile and Green, 1997 or Vrontos et al. , 1998). Other general issues of

MCMC need also to be investigated, such as rates of convergence (Brooks and Giudici,

1998) or automatic choices of proposals (Giudici and Roberts, 1998).

An interesting issue for further research is the discrimination between models using differ-
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ent quantity and quality of data. This question became evident in the models implemented

in the actuarial case study presented in Chapter 1. In this case study, the first model is

a simple two-way anova model using only the claim amount data with structure presented

in Table 1.1. The second model incorporates the additional data of the claim count data

(the number of accidents, Table 1.2). Interest lies in comparing these two models. This

case study is also interesting due to the missing amounts. The construction of a MCMC

algorithm that will incorporate all four models presented in this case study will enable as to

directly estimate the missing counts using Bayesian model averaging techniques.

Another interesting area of future research is the use of MCMC methods presented in

this thesis in the calculation of fractional and intrinsic Bayes factors. Implementation for the

calculation of fractional Bayes factor seems to be straightforward and less challenging than

the more computationally demanding intrinsic Bayes factor. For the latter, interest also lies

in the selection of minimal samples and reference prior distributions.

Bayesian model choice is, and it will be, a very broad research area open for new math-

ematical and philosophical approaches. It is hoped that many of the arguments and ap-

proaches presented in this thesis may be relevant and helpful to other researchers.
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