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This presentation is based on Chapter 5 of
Ntzoufras (2009): Bayesian Modeling Using WinBUGS, Wiley.

Synopsis

1. General modeling principles

2. Model specification for normal regression models

3. Using vectors and multivariate priors

4. ANOVA models (one way and parametrizations)
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5.1 General modeling principles

Statistical Model

• DESCRIBES parsimoniously real life problems observed under uncertainty.

• is a collection of probabilistic statements (and equations) that describe and
interpret present behavior or predict future performance.

Three important components

1. Response variable (or variables) Y ,

2. Explanatory variables X1, X2, . . . , Xp,

3. Linking mechanism between the two sets of variables.
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The response variable Y

⇒ is the main study variable,

⇒ it represents the stochastic part of the model.

stochastic refers to ⇒ random variables whose outcome is uncertain before it is
observed.

We are frequently interested in

1. describing the mechanism leading to the appearance of a certain outcome of Y

2. predicting a future outcome of Y .
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The Stochastic Component

Y |X1, X2, . . . , Xp ∼ D(θ)

where D(θ) is a distribution with parameter vector θ. For normal regression
models:

Y |X1, X2, . . . , Xp ∼ N(μ, σ2),

where N(μ, σ2) is the normal distribution with mean μ and variance σ2.

• One response variable ⇒ univariate model.

• More than one response variables ⇒ multivariate model.
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Explanatory Variablaes

• Explanatory variables X1, . . . , Xp ⇒ all variables that potentially influence Y .

• The main focus in such models is to infer concerning

1. the significance,

2. the type (negative or positive), and

3. the magnitude of the effect of each Xi on Y is the main focus in such
models.
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The Stochastic Component (again)

• (Usually) Xi are considered as fixed, nonstochastic components, that is,
deterministic nodes in WinBUGS .

• This is the reason of defining the distribution of Y conditional on the observed
explanatory variables

Y |X1, . . . , Xp ∼ D
(
θ(β, φ, X1, . . . , Xp)

)
.

• Parameter vector θ is

– refers to the parameters of the distribution of Y

– it is expressed as a function of the explanatory variables and a new
alternative set of parameters (β, φ) that substitutes the original ones in
terms of estimation and inference.

• β summarizes the association between the response and the explanatory
variables,
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• φ refers to other characteristics of the distribution such as the variance or the
shape.

• (Usually) The mean of the response model is associated with the response
variables, but in more complicated models, the variance or other moment
functions can also be estimated via the explanatory variables.
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Linking the Response with the Covariates

• Use a function to connect the parameters describing Y (e.g. mean) with
covariates.

• Simpler case ⇒ express the mean of Y as a function of the linear combination
of the explanatory variables:

E(Y |X1, X2, . . . , Xp) = μ(β, X1, . . . , Xp) = g−1

⎛
⎝β0 +

p∑
j=1

βjXj

⎞
⎠ .

Here, the linear combination of Xis

– is used to predict the E(Y )

– It is called the linear predictor η of the model

• Terminology and principles were originally introduced in generalized linear
models (McCullagh and Nelder, 1989), but they can be adopted for a wide
range of models. Within this context, g(μ) is referred as the link function.
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Model Structure

General

1. Stochastic Component: Y ∼ D(θ)

2. Deterministic component: Covariates X1, . . . , Xp.

3. Link function: θ = g−1(X1, . . . , Xp).

Normal linear regression model

1. Stochastic Component: Y ∼ N(μ, σ2)

2. Deterministic component: Covariates X1, . . . , Xp and linear predictor
η = β0 + β1X1 + · · ·+ βpXp.

3. Link function: μ = η ⇔ μ = β0 + β1X1 + · · ·+ βpXp.
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The prior distribution

• To complete the Bayesian formulation, a prior distribution f(β, φ) for the
parameters (β, φ) remains to be specified (will be discussed later)

• Expresses prior information or knowledge about model parameters

• Usually no prior information is available and hence “vague” or “flat”
non-informative priors can be used.
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Random Covariates?

• Usually defined as deterministic (fixed) quantities.

• In practice are frequently random.

• The model can be extended by considering random Xi with additional
parameters under estimation; see Ryan (1997, pp. 34–35) for a discussion.

• This can be specified within the Bayesian framework using additional
hierarchical levels in our model (see Chapter 9 of my book for details).
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5.2 Model specification in normal regression

models

• The most popular models in statistical science.

• Based on the initial work of Sir Francis Galton in the late years of the 19th
century (Stanton, 2001).

• Y is considered a continuous random variable defined in the whole set of real
numbers

• We assume that Y follows the normal distribution with mean μ and variance
σ2.
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Regression Model Structure for n observations

This model structure holds for every observation i = 1, 2, . . . , n and it is denoted
with a subscript i:

Yi ∼ N(μi, σ
2)

μi = β0 + β1Xi1 + · · ·+ βXip

for i = 1, . . . , n

(1)

– θ = (μ1, . . . , μn, σ2) parameters describing Y (of length n + 1)

– β = (β0, β1, . . . , βp) describes the linear effect of Xis on Y (of length p + 1)

– φ = σ2 describes the variance of the around the predicted mean.

– τ = 1/σ2 described the precision (accuracy) of the predictions based on the
expected mean of the model.
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Alternative Expression

Frequently, the following alternative representation of the regression model is
adopted

Yi = β0 + β1Xi1 + · · ·+ βpXip + εi; εi ∼ N(0, σ2), for i = 1, . . . , n.

• Nice interpretation (Y = function of the Xis and a random normal error with
variance σ2)

• Expression (1) is more general and follows the model building principles
described in Section 5.1 of this presentation.
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Notation simplification

• The following notation is also used in WinBUGS

• Remove the condition on the explanatory variables.

– Denote Y |X1, . . . , Xp simply by Y

– E(Y |X1, . . . , X2) by E(Y ) or μ.

• In the normal distribution (and the regression model), we work with the
precision parameter τ = 1/σ2
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5.2.1 Specifying the likelihood

Let us observe a sample of size n with

• response values y = (y1, . . . , yn)T and

• xi1, . . . , xip, the values of the explanatory variables X1, . . . , Xp for individuals
i = 1, . . . , n.

The model will be now written in WinBUGS :

for i = 1, . . . , n
Yi ∼ N(μi, τ

−1)
μi = β0 + β1xi1 + · · ·+ βpxip

σ2 = 1/τ
σ =

√
σ2

for (i in 1:n){

y[i] ~ dnorm ( mu[i], tau )

mu[i] <- beta0 + beta1*x1[i] + ... +

betap*xp[i]

}

s2 <-1/tau

s <-sqrt(s2)
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Linear predictor - notation

μi = β0 + β1xi1 + · · ·+ βpxip mu[i] <- beta0 + beta1*x1[i] + ... +

betap*xp[i]

• Explanatory variables ⇒ vector nodes with names x1, ..., xp of length n

• μ ⇒ vector node with names of length n

• All βj are defined separately as single scalar nodes

• Each parameter must be monitored separately in the sample monitor tool of
WinBUGS
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Variance specification - deterministic nodes

σ2 = 1/τ

σ =
√

σ2

s2 <-1/tau

s <-sqrt(s2)

• The last two commands are used to deterministically specify the relation
between the variance, the standard deviation, and the precision parameter
τ = σ−2 used by the normal distribution in WinBUGS .

Sessions 8–9 (A): Normal Linear Models by Ioannis Ntzoufras



Workshop on Bayesian Modeling Using WinBUGS 5–20

5.2.2 Specifying a simple independent prior distribution

In normal regression models, the simplest approach is to assume that a priori all
parameters are independent having the structure

f(β, τ) =
p∏

j=0

f(βj)f(τ),

βj ∼ N(μβj , c
2
j) for j = 0, . . . , p and (2)

τ ∼ gamma(a, b) .

• The variance σ2 is substituted by the corresponding precision parameter τ in
order to make it compatible to the WinBUGSnotation.

• The gamma prior of τ ⇒ E(τ) = a
b and Var(τ) = a

b2 .

• Prior for σ2 ⇒ inverse gamma prior distribution with

E(σ2) =
b

a− 1
and Var(σ2) =

b2

(a− 1)2(a− 2)
.
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Prior when no information is available

• A usual choice for the prior mean is zero (μβj = 0).

– Centers our prior beliefs around zero ⇒ corresponds to the assumption of
no effect of Xj on Y .

– We express our prior doubts about the effect of Xj on Y , prompting
Spiegelhalter et al. (2004, pp. 90, 158–160) to call this a “sceptical” prior.

• The prior variance c2
j of the effect βj is set equal to a large value (e.g., 104) to

represent high uncertainty or prior ignorance.

• Similarly, for τ we use equal low prior parameter values, setting in this way

– Prior mean equal to one: E(τ) = 1

– Prior variance large: E(τ) = large.

– For example, a = b = 0.01 results in E(τ) = 1 and V (τ) = 100.

– This approach is adopted in all illustrations of the WinBUGSmanual and
example volumes.
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Within WinBUGS , the prior setup is specified with the following syntax

β0 ∼ N(0, 104)

β1 ∼ N(0, 104)

..........................

βp ∼ N(0, 104)

τ ∼ gamma(0.01, 0.01)

beta0 ~ dnorm ( 0.0 , 1.0E-4 )

beta1 ~ dnorm ( 0.0 , 1.0E-4 )

..........................

betap ~ dnorm ( 0.0 , 1.0E-4 )

tau ~ dgamma ( 0.01 , 0.01 )

• Value 1.0E-4 is the scientific notation for 1.0× 10−4 = 0.001, (prior precision
of each βj). It corresponds to prior variance equal to 104.

• The definition above can be considerably simplified by using vectors instead of
single nodes; see Section 5.3.3 for details.
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5.2.3 Interpretation of the regression coefficients

• Each βj refers to the effect of Xj on the expectation of Y adjusted for the
remaining covariates.

• Inference of model parameters can be divided into three basic stages:

1. Is the effect of Xj important for the prediction or description of Y ?

2. What is the association between Y and Xj (positive, negative, or other)?

3. What is the magnitude of the effect of Xj on Y ?
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Importance of the Effect

• Is the posterior distribution of βj is scattered around zero (or not)? Posterior
distributions away from zero ⇒ important effect of Xj on Y .

• Such analysis offers a first rough tool for tracing important variables.

• Within this analysis, we can calculate the posterior probability:

π0 = min
{
f(βj < 0|y), f(βj > 0|y)

}
.

When zero lies at the center of the posterior distribution ⇒ π0 → 1
2 ⇒ no clear

positive or negative effect of Xj on Y .

In WinBUGSwe calculate f(βj > 0|y) using the syntax

p.betaj <- step( betaj )

Obtaining the posterior mean via the sample monitor tool provides us the
estimate of the posterior probability f(βj > 0|y).
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Importance of the Effect & Model Comparison

• Deviance information criterion (DIC) (Spiegelhalter et al., 2002)

– Available in WinBUGS

– Compares two models (e.g. with and without a covariate)

– Similar to AIC

– Very popular nowadays because it can be easily implemented

• Formal Bayesian hypothesis testing is based on posterior model odds and
Bayes factors

– Difficult to describe in the level

– You can look at Chapter 11 of my book for examples (and a older
publication in JSS)
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Type of Association

• Is the relationship is positive or negative?

• Examine the signs of the posterior summaries of central and relative location
(e.g., mean, median, 2.5% and 97.5% percentiles).

• If all of them are positive or negative, then the corresponding association can
be concluded.

• Positive association ⇒ changes of Xj cause changes of the same direction for Y

• Negative association ⇒ changes of Xj cause changes of the opposite direction
for Y .

• Within this analysis, we can also use π0 = min
{

f(βj < 0|y), f(βj > 0|y)
}

.

When π0 is low (e.g., ≤ 2.5%, 1%, or 0.5%) ⇒ positive or negative association
depending on the sign of the posterior location summaries.

Sessions 8–9 (A): Normal Linear Models by Ioannis Ntzoufras

Workshop on Bayesian Modeling Using WinBUGS 5–27

Magnitude of the Effect

Interpretation of βj for j ≥ 1

• βj captures the magnitude of the effect of Xj on Y .

• We can obtain this by considering the difference of the expected values for
Xj = x + 1 and Xj = x without changing the remaining covariates.

ΔμXj = μ(β, X1, . . . , Xj−1,Xj = x + 1, Xj+1, . . . , Xp)

−μ(β, X1, . . . , Xj−1,Xj = x , Xj+1, . . . , Xp)

= β0 + β1X1 + · · ·+ βj−1Xj−1 + βj(x + 1) + βj+1Xj+1 + · · ·+ βpXp

−β0 − β1X1 − · · · − βj−1Xj−1 − βjx − βj+1Xj+1 − · · · − βpXp

= βj .

• Posterior mean or median of βj refers to the corresponding posterior measures
of the expected change of Y .
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• An increase of one unit of Xj , given that the remaining covariates will remain
stable, induces an a posteriori average change on the expectation of Y equal to
the posterior mean of βj ; see Table 5.1 for further details.
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Table 5.1: Summary interpretation table for regression coefficients βj

INTERPRETATION OF MODEL COEFFICIENTS βj (j = 1, . . . , p)

ΔμXj = βj

• ΔμXj denotes the expected difference of Y if Xj increases by one unit

and the rest of the covariates remain the same.

• If βj = 0 ⇒ no effect on Y .

• If βj < 0 ⇒ negative effect on Y (Y is expected to decrease when Xj

increases and vice versa).

• If βj > 0 ⇒ positive effect on Y (Y is expected to increase when of Xj

increases and decrease when Xj decreases).

• βj is the expected change (increase or decrease) when Xj increases by one

unit and the rest of the covariates remain unchanged.
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Interpretation of β0

β0 is the expected value of Y when all Xj = 0

• Such combination (Xj = 0 for all j = 1, . . . , p) drequently lies outside the range
of the observed covariate values.

• Interpretation of β0 is not reliable since we predict Y for values of Xj that
have not been observed.

• Direct interpretation of β0 may not lead to realistic and sensible interpretation.
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Interpretation of β0 - Expected Y for a Typical Subject

Alternatively we may center all Xj by subtracting their sample mean:

• βc
0 represents the expected value of Y when Xj = Xj ⇒ βc

0 is the expected
response Y for an “average” or “typical” subject according to our sample.

In WinBUGS :

typical.y<- beta0 + beta1 * mean(x1[]) + ... + betap * mean(xp[])

without changing the parametrization of the original model.

The approach described above can also be used to calculate the expected values of
Y for any combination of values of Xj .
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Interpretation of τ or σ2

Parameter τ (and the variance σ2) indicates the precision of the model.

• If τ is high (σ2 low), then the model can accurately predict (or describe) the
expected values of Y .

• According to the properties of the normal distribution

– μi ± σ includes 66% of the values of Y

– μi ± 2σ includes 95% of the values of Y

– μi ± 3σ includes 99% of the values of Y
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Interpretation of τ or σ2

• We can rescale this τ or σ2 using the sample variance of Y , namely, s2
Y :

R2
B = 1− τ−1

s2
Y

= 1− σ2

s2
Y

.

• R2
B ⇒ proportional reduction of uncertainty concerning the response variable

Y achieved by incorporating Xjs in the model.

• Is the Bayesian analog of R2.

• WinBUGS syntax

sy2 <- pow( sd(y[]) , 2)

R2B <- 1 - s2/sy2

or
R2B <- 1 - 1/(tau*sy2)

using the precision parameter τ
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5.2.4 A regression example using WinBUGS

Example 5.1. Soft drink delivery times.

• Example deals with the quality of the delivery system network of a soft
drink company; see example 4.1 in Montgomery and Peck (1992).

• We are interested in estimation of the required time needed by each
employee to refill an automatic vending machine.

• Response variable ⇒ total service time (measured in minutes) of each
machine

• Covariates

1. the number of cases of stocked products and

2. the distance walked by the employee (measured in feet).

• 25 observations

• This dataset is reproduced in the book’s Website with permission of John
Wiley and Sons, Inc.
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Setting up the data and the model code

• Model code according to Sections 5.2.1 and 5.2.2

• Data can be defined in either a rectangular or a list format.

• Rectangular format of the data are provided in Table 5.2

• Full model code of the example, including the list data format and the initial
values, is given in Table 5.3.

• All three variables used in the model (time, cases, distance) are defined as
separate vectors in the list data format

• In the initial values, each parameter τ , β0, β1, and β2 was initialized separately.
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Table 5.2: Rectangular data WinBUGS format of “soft drink delivery times” example

time[] cases [] distance []

16.68 7 560

11.5 3 220

12.03 3 340

14.88 4 80

13.75 6 150

18.11 7 330

8 2 110

17.83 7 210

79.24 30 1460

21.5 5 605

40.33 16 688

21 10 215

13.5 4 255

19.75 6 462

24 9 448

29 10 776

15.35 6 200

19 7 132

9.5 3 36

35.1 17 770

17.9 10 140

52.32 26 810

18.75 9 450

19.83 8 635

10.75 4 150

END

← Empty line
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Table 5.3: Full model code for “soft drink delivery times” example

model{

# model ’s likelihood

for (i in 1:n){

time[i] ~ dnorm ( mu[i], tau ) # stochastic componenent

# link and linear predictor

mu[i] <- beta0 + beta1 * cases[i] + beta2 * distance[i]

}

# prior distributions

tau ~ dgamma ( 0.01 , 0.01 )

beta0 ~ dnorm ( 0.0 , 1.0E-4)

beta1 ~ dnorm ( 0.0 , 1.0E-4)

beta2 ~ dnorm ( 0.0 , 1.0E-4)

# definition of sigma

s2 <-1/tau

s <-sqrt(s2)

# calculation of the sample variance

for (i in 1:n){ c.time[i]<-time[i]-mean(time []) }

sy2 <- inprod( c.time[], c.time [] )/(n-1)
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# calculation of Bayesian version R squared

R2B <- 1 - s2/sy2

# Expected y for a typical delivery time

typical.y <- beta0 + beta1 * mean(cases []) + beta2 * mean(distance

[])

}

INITS

list( tau=1, beta0 =1, beta1 =0, beta2 =0 )

DATA (LIST)

list( n=25,

time = c(16.68 , 11.5 , 12.03 , 14.88 , 13.75 , 18.11 , 8, 17.83,

79.24 , 21.5 , 40.33 , 21 , 13.5 , 19.75 , 24 , 29 , 15.35 ,

19 , 9.5 , 35.1 , 17.9 , 52.32 , 18.75 , 19.83 , 10.75),

distance = c(560 , 220 , 340 , 80 , 150 , 330 , 110 , 210 , 1460 ,

605 , 688 , 215 , 255 , 462 , 448 , 776 , 200 , 132 ,

36 , 770 , 140 , 810 , 450 , 635 , 150) ,

cases = c( 7, 3, 3, 4, 6, 7, 2, 7, 30, 5, 16, 10, 4, 6, 9,

10, 6, 7, 3, 17, 10, 26, 9, 8, 4) )
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Results

• 3000 iterations and discarding the initial 1000 ones

• Posterior summaries are provided in Table 5.4

• Posterior densities are provided in Figure 5.1

• Descriptive analysis of the posterior distribution of R2
B indicates a considerable

improvement of the precision (posterior mean equal to 0.95) in the prediction
of delivery times when including in the model covariates cases and distance.
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Table 5.4: WinBUGSposterior summaries for Example 5.1 after 2000 iterations and
additional discarded 1000 burnin iterations

node mean sd MC error 2.5% median 97.5% start sample

R2B 0.9511 0.01743 5.118E-4 0.9064 0.9548 0.9734 1001 2000

beta0 2.356 1.188 0.03076 -0.03996 2.372 4.635 1001 2000

beta1 1.61 0.1806 0.003737 1.272 1.609 1.968 1001 2000

beta2 0.01447 0.003812 8.476E-5 0.006872 0.01446 0.02211 1001 2000

p.beta0 0.974 0.1591 0.004037 0.0 1.0 1.0 1001 2000

p.beta1 1.0 0.0 2.236E-12 1.0 1.0 1.0 1001 2000

p.beta2 1.0 0.0 2.236E-12 1.0 1.0 1.0 1001 2000

s 3.386 0.5695 0.0168 2.531 3.302 4.749 1001 2000

typical.y 22.38 0.683 0.01701 21.09 22.37 23.78 1001 2000
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Figure 5.1: Posterior densities of model parameters for Example 5.1
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Results - Parameter Interpretation

node mean sd MC error 2.5% median 97.5% start sample

s 3.386 0.5695 0.0168 2.531 3.302 4.749 1001 2000

• Posterior distribution of σ: with the current model we can predict the
expected delivery time with an a-posteriori expected error of 3.4 minutes
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node mean sd MC error 2.5% median 97.5% start sample

beta0 2.356 1.188 0.03076 -0.03996 2.372 4.635 1001 2000

beta1 1.61 0.1806 0.003737 1.272 1.609 1.968 1001 2000

beta2 0.01447 0.003812 8.476E-5 0.006872 0.01446 0.02211 1001 2000

p.beta0 0.974 0.1591 0.004037 0.0 1.0 1.0 1001 2000

p.beta1 1.0 0.0 2.236E-12 1.0 1.0 1.0 1001 2000

p.beta2 1.0 0.0 2.236E-12 1.0 1.0 1.0 1001 2000

• Regression line based on posterior means:

Expected time = 2.36 + 1.6× cases + 0.015× distance.

• Regression line based on posterior medians: similar

• The effect of both explanatory variables (cases and distance) have an
important contribution to the prediction of delivery time.

• All summary statistics and the posterior densities indicate that zero is far away
from the posterior distribution with posterior probability of having positive
association between each Xj and Y equal to one.
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node mean sd MC error 2.5% median 97.5% start sample

beta1 1.61 0.1806 0.003737 1.272 1.609 1.968 1001 2000

beta2 0.01447 0.003812 8.476E-5 0.006872 0.01446 0.02211 1001 2000

• Each additional case stocked by the employee ⇒ +1.6 minutes (+96 secs)
expected delivery time

• This increase lies between 1.3 and 2.0 minutes (76 and 118 seconds) with
probability 95%.

• Increase of one foot walking distance ⇒ +0.87 seconds of posterior mean of
expected delivery time

• Additional 100 feet of walking ⇒ +1.5 minute of posterior mean of expected
delivery time (0.7–2.2 minutes with probability 95%)

• Additional 100 meters of walking distance ⇒ +4.7 minutes of posterior mean
of expected delivery time

(one foot is equal to 0.3048 m, resulting in an increase of the expected delivery
time by 100/0.3048 ∗ 0.01447 = 4.747 minutes).
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node mean sd MC error 2.5% median 97.5% start sample

beta0 2.356 1.188 0.03076 -0.03996 2.372 4.635 1001 2000

typical.y 22.38 0.683 0.01701 21.09 22.37 23.78 1001 2000

• Parameter β0 has no sensible interpretation in this example since the zero
value is nonsense for both explanatory variables

(the delivery employee will always have to stock some cases of products in the
machine and walk at least a small distance to reach the delivery location).

• For this reason, no interpretation of this parameter is attempted.

• Zero lies at the left tail of the posterior distribution within the range of the
95% posterior interval.

• The posterior probability of positive β0 is equal to 97.4%.

• Hence we may focus on the predicted value for a typical or delivery route.

• According to the posterior summaries of typical.y, a typical delivery route
will take 22.4 minutes on average and will range from 21.1 to 23.8 minutes
with probability 95%.
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5.3 Using vectors and multivariate priors in

normal regression models

5.3.1 Defining the model using matrices

• The regression model can be defined using vectors and matrices instead of
scalar nodes.

• Substitute the mean code line with the following syntax:

mu[i] <- beta0 + beta [1] * x[i ,1] + ... + beta[p]*x[i,p]

– Matrix x (denoted by x[,] in WinBUGS ) is a n× p matrix.

– Each column xj of x corresponds to each explanatory variable Xj ,

– Each row x(i) corresponds to the explanatory variable values of the ith
subject of the sample.
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• Data definition:

– In rectangular data format - each column of the matrix can be defined using
the with header x[,1] ... x[,p].

– In list format - x is defined as an array with dimensions n and p.

• When the number of variables p is large, we can use the command

inprod( b[], x[i,]) ⇒ ∑p
j=1 βjxij

Hence, the mean can be defined by the syntax

mu[i] <- beta0 + inprod( b[], x[i,])

where b[] is vector β{\0} = (β1, . . .βp).

Sessions 8–9 (A): Normal Linear Models by Ioannis Ntzoufras



Workshop on Bayesian Modeling Using WinBUGS 5–48

• Usually the constant term is included in a matrix X by setting

X = [1n, x]

• X is of dimension n× (p + 1) and is called the data matrix (or design matrix).

• 1n is a vector of length n with all elements equal. Corresponds to the
“constant” term.

• The linear predictor can be now written as μi = X(i)β

where X(i) is the ith row of X.

• This expression can be coded in WinBUGS (within the likelihood for loop) by

x[i,1]<-1

mu[i] <- inprod( X[i,], beta [] )

With this approach we can monitor all regression coefficients simultaneously by
simply considering the vector node beta.
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• This expression can be coded in WinBUGS (within the likelihood for loop) by

x[i,1]<-1

mu[i] <- inprod( X[i,], beta [] )

• X[,] n× (p + 1) matrix with all components of the first column x[,1] equal to
one.

• beta[1] represents the constant coefficient β0,

• X[,j] refers to the vector of values of Xj−1

• beta[j] corresponds to coefficient βj−1 for j = 1, . . . , p + 1

• Rectangular data format: use header names X[,2] ... X[,p+1].

• List data format: data are as matrix defined in the usual manner with the
elements of the 1st column equal to

– NA (specification within the code)

– one (specification within the data)
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5.3.2 Prior distributions for normal regression models

The Conjugate Normal–Inverse Gamma Prior

• Conjugate analysis for the normal regression model has been presented in
Section 1.5.5 of my book; also see in Ntzoufras (2010).

• The conjugate normal–inverse gamma prior is considered if

β|σ2 ∼ NP (μβ , c2V σ2) and σ2 ∼ IG(a, b) , (3)

– P=p + 1

– c2 is a parameter controlling the overall magnitude of the prior variance.
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Conjugate Prior - Zellner’s g-Prior

• Special case: Zellner (1986) g-prior for V = (XT X)−1 .

• Parameter c2 ⇒ g in Zellner’s original publication.

• Default choice: c2 = n

– Usually adopted when no information is available

– It has an interpretation of adding prior information equivalent to one data
point; (Kass and Wasserman, 1995; Fouskakis et al., 2009).

• This prior has been widely used because

– it considerably simplifies posterior computations

– reduces the number of prior variance parameters that remain to be specified
down to one.
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Conjugate Prior - Independence between βjs

• When no prior information is available, we may simplify the prior by
considering independent normal distributions by setting

– V = c2IP

– c2 large to express prior ignorance (e.g., c = 100).

• Hence we can simply rewrite the prior as

βj |σ2 ∼ N(μβj , c
2σ2) for j = 0, 1, . . . , p, (4)

where μβj are the components of the prior mean vector μβ .

• This setup is also related to the ridge regression.
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Conjugate Prior and Variable Selection

• The conjugate prior setup is very convenient for implementing Bayesian
variable selection (Raftery et al., 1997).

• Zellner’s g-priors were widely used within this context since they allow us for a
sensible default choice of prior distributions; see

– Fernandez et al. (2000) for comparison between different values of c2

– Liang et al. (2008) for discussion and extensions concerning the g-priors.

Sessions 8–9 (A): Normal Linear Models by Ioannis Ntzoufras



Workshop on Bayesian Modeling Using WinBUGS 5–54

Conditional Conjugate Priors

• Simpler prior setup

β ∼ NP (μβ , c2V ) and σ2 ∼ IG(a, b)

i.e. β and σ2 are a priori independent

• Even simpler: if we a priori assume that all βj and σ2 are independent. This is
usually adopted when no information is available.

• In this case the prior is not conjugate and hence MCMC methods need to be
implemented in order to estimate the posterior distribution.

• Nevertheless, this is conditionally conjugate, resulting in conditional posterior
distributions for β and τ that can be calculated analytically, allowing us to
construct an efficient Gibbs sampler (it is done internally in WinBUGS )
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Other Priors

Finally, other type of prior distributions for β have been proposed in the related
literature. For example,

• the Student t distribution

• the Cauchy distribution

• the double exponential (Bayesian LASSO)

can be used instead of the normal prior, but obvious differences are seldom
observed when no prior information is available.
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5.3.3 Multivariate normal priors in WinBUGS

Syntax for Independent Normal Priors Using Vectors

• Independence prior (2) can be defined in WinBUGSby specifying the priors for
βj terms within a loop:

for j = 1, . . . , P
βj ∼ N(0, 10000)

for (j in 1:P){

beta[j] ~ dnorm ( 0.0 , 1.0E-4 ) }

• Conjugate prior (4):

ξ = 1/(c2σ2) = τ/c2

for j = 1, . . . , P
βj ∼ N(β0j , 1/ξ)

xi <- tau/c2

for (j in 1:P){

beta[j] ~ dnorm ( beta0[j], xi ) }
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Syntax for Multivariate Conjugate Prior

• Multivariate Normal–Inverse Gamma prior (3).

• Specify (in WinBUGS ) the precision matrix T of dimension P × P

• The elements of T are given by

Tlj =
τ

c2
[V −1]lj (5)

for l, j ∈ {1, 2, . . . , P},
– V −1 is the inverse of V

– [V −1]lj is the lth row and jth column element of V −1
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In WinBUGS

1. Calculate V −1 using the syntax

inverse.V[1:P,1:P] <- inverse(V[,])

2. Calculate the elements of the prior precision matrix using (5) within a double
for loop:
for(l in 1:P){

for (j in 1:P){ prior.T[l,j] <- inverse.V[l,j] * tau /c2 }}

3. Complete the prior specification using the following syntax

β ∼ NP (μβ , T−1)

τ ∼ gamma(1/100, 1/100)

σ2 = 1/τ

beta[1:P] ~ dmnorm( mu.beta[], prior.T[,] )

tau ~ dgamma ( 0.01 , 0.01 )

s2 <- 1/tau

– Prior values for V , μβ , and c2 can be specified either within the data list or
directly within the WinBUGSmodel code.
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Specification of the Prior Variance-Covariance Matrix

Independent priors as a special case

The independence prior (4 ) can be defined within the WinBUGS syntax by
specifying

c2 = 100

μβ = 0P

for l=1, . . . , P and j=1, . . . , P

Vlj = I(l = j)

(i.e. V = IP )

c2 <- 100

for (j in 1:P){ mu.beta[j] < - 0.0 }

for (l in 1:P){ for (j in 1:P){

V[l,j] <- equals(l,j)

}}

Node V[l,j] takes the value one if l = j (hence we have a diagonal element) and
zero otherwise.
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Specification of the Prior Variance-Covariance Matrix

Zellner’s g-prior

Zellner’s g-prior can be specified using the syntax

for l=1, . . . , P and j=1, . . . , P

[Vlj ]
−1 = XT

l Xj =
∑n

i=1 xilxij

(i.e. V = XT X)

for (l in 1:P){ for (j in 1:P){

inverse.V[l,j]<-inprod( X[,l], X[,j] )

}}

[V −1]lj are the elements of matrix (XT X) used in Zellner’s g-prior.
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5.3.4 Continuation of Example 5.1

• Here we rerun the same model using Zellner’s g-prior.

• The basic code of the model is given in Table 5.5, in which matrix
V = (XT X) is defined within the model code.

• The first column X[,1] of matrix X is defined within the model code, and the
remaining columns are defined within the data part.

• In Table 5.5, the first and last rows of the data are also given (in a rectangular
data format) while the remainder have been denoted by dotted lines to save
space.

• Additionally, the sample size n and the number of parameters P involved in the
linear predictor are specified separately in a list format (hence these two types
of data must be loaded separately).
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Table 5.5: WinBUGS code for Example 5.1 using Zellner’s g-prior and parameter
vectors (Data are compressed to conserve space)

model{

# definition of prior parameters

c2 <- 10000

for (j in 1:P){ mu.beta[j] < - 0.0 } # prior mean

# calculation of xtx

for (i in 1:P){ for (j in 1:P){

inverse.V[l,j] <- inprod( X[,l] , X[,j] ) }}

# calculation of the elements of prior precision matrix

for(l in 1:P){ for (j in 1:P){

prior.T[l,j] <- inverse.V[l,j] * tau /c2 }}

# model ’s likelihood

for (i in 1:n){

X[i,1] < - 1.0

# specifying the constant term in the first column

time[i] ~ dnorm ( mu[i], tau ) # stochastic componenent

# link and linear predictor

mu[i] <- inprod( beta[], X[i,] )

}
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# prior distributions

# multivariate prior for the beta vector

beta[1:P] ~ dmnorm( mu.beta[], prior.T[,] )

# gamma prior for the precision

tau ~ dgamma ( 0.01 , 0.01 )

# deterministic calculation of variance

s2 <- 1/tau

s <-sqrt(s2)

}

INITS

list( tau=1, beta=c(1, 0, 0) )

DATA (RECT.)

l(n=25, P=3)

time[] X[,2] X[,3]

16.68 7 560

... ... ...

10.75 4 150

END
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Results

• The model was run for c2 = n = 25 and for c2 = 104

• Results are presented in Tables 5.7 and 5.8, respectively.

• Results (especially those concerning the variance parameter σ2) are sensitive to
the choice of c2, indicating that the unit information choice c2 = n = 25 here is
informative.
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Table 5.7: WinBUGSposterior summaries for Example 5.1 after 2000 iterations and
additional discarded 1000 burnin iterations using Zellner’s g-prior (c2 = n = 25)

node mean sd MC error 2.5% median 97.5% start sample

beta[1] 2.228 2.039 0.04583 -1.974 2.275 6.238 1001 2000

beta[2] 1.565 0.3246 0.007071 0.9216 1.563 2.205 1001 2000

beta[3] 0.01358 0.006783 1.423E-4 4.297E-5 0.01348 0.02702 1001 2000

s 6.247 0.938 0.01813 4.785 6.134 8.393 1001 2000

Table 5.8: WinBUGSposterior summaries for Example 5.1 after 2000 iterations and
additional discarded 1000 burnin iterations using Zellner’s g-prior (c2 = 104)

node mean sd MC error 2.5% median 97.5% start sample

beta[1] 2.329 1.07 0.02317 0.1783 2.341 4.406 1001 2000

beta[2] 1.622 0.1695 0.004654 1.297 1.618 1.945 1001 2000

beta[3] 0.0143 0.003547 7.901E-5 0.007414 0.01427 0.0214 1001 2000

s 3.153 0.4811 0.01238 2.375 3.109 4.253 1001 2000
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5.4 Analysis of variance models

• The normal models discussed in Sections 5.2 and 5.3 assess the association
between continuous variables.

• Analysis of variance (ANOVA) models also assume a normal response variable,
but now the explanatory variables are categorical.

• Here we will discuss one-way ANOVA models (with one categorical covariate).

• Also we will refer to their parametrization.
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5.4.1 The one-way ANOVA model

• Assume a categorical variable A (also called factor) with levels 
 = 1, 2, . . . , LA

and a continuous response variable Y .

• When the categorical variable A is influencing the mean of Y ⇒ different
means of Y for each category of A.

• Thus the model can be summarized by

Y ∼ N(μ′�, σ
2),

– 
 = 1, 2, . . . , LA indicates the group (category) of factor A

– μ′� indicates the mean of Y for the 
 category
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Parametrization of the Mean Values

We can rewrite

μ′� = μ0 + α� (6)

This expression decomposes the original mean of each category level μ′� to

• an overall common parameter μ0 called constant and

• group-specific parameters α�, which are termed effects of 
 level on the response
variable Y

The interpretation of these parameters depends on the parametrization used for α�;
see next subsection for details.
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Full Model Specification

• Consider a random sample of n individuals resulting in n� subjects for each
level 
 (
 = 1, 2, . . . , LA) of variable A.

Then the model can be written as

Y�k ∼ N(μ′�, σ
2) and μ′� = μ0 + α� (7)

for k = 1, 2, . . . , n� and 
 = 1, 2, . . . , LA.

• In practice, we usually observe n pairs (ai, yi) that are realizations of the
random variables (Ai, Yi), where ai ∈ {1, 2, . . . , LA} is the group or level at
which the ith subject belongs.

In this case the model can be rewritten as

Yi ∼ N(μi, σ
2) and μi = μ′ai

= μ0 + αai (8)

for i = 1, 2, . . . , n.
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5.4.2 Parametrization and parameter interpretation

• From (7) it is evident that we are interested in estimating the mean values μ′�
of Y for each level of A.

• Thus, the original formulation μi = μ′ai
can be used to directly estimate the

parameters of interest.

• Nevertheless, parametrization (8) is used for two reasons:

1. It separates the constant overall effect from the effect of the categorical
variable A,

2. It allows for generalization of the ANOVA formulation when additional
categorical explanatory variables are involved in the model.
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• In the direct estimation of the mean values μ′�, we estimate LA parameters
(one for each group/level).

• When the alternative parametrization (7) is used, then we need to estimate
LA + 1 parameters.

• To make the model identifiable (i.e., the estimation feasible) and the two
models equivalent, we impose one constraint on the new set of parameters.

• This constraint also specifies the interpretation and practical meaning of each
parameter.

• Many parametrizations can be imposed by using different constraints, but two
of them are most frequently met in statistical literature: the corner (CR) and
the sum-to-zero (STZ) constraints.

• These two parametrizations are described here in detail.
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5.4.2.1 Corner constraints.

• The effect of a level r ∈ {1, 2, . . . , LA} is set equal to zero: αr = 0 .

• This level r is referred to as the baseline or reference category of factor A.

• Usually the first or the last (in order) level is used as the reference category.

• In medicine, placebo or standard (old) treatment are used as baseline levels.

• In the following, we use the first level as the reference category: α1 = 0. Under
this parametrization the mean of Y will be summarized by

μ′1 = E(Y |A = 1) = μ0

μ′� = E(Y |A = 
) = μ0 + α� for 
 ≥ 2,

– The constant parameter has a straightforward interpretation.

– It is the mean of Y for the reference category.

– Effect α� is the difference μ′� − μ′1 = α�.

– Hence, α� is the expected difference of Y for an individual belonging in 


group in comparison to an individual from the reference group.
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5.4.2.2 Sum-to-zero constraints.

• Under STZ, the following constraint is imposed:

LA∑
�=1

α� = 0. (9)

• In practice, in the likelihood we substitute one parameter (usually the first or
the last one) with the function resulting from the STZ constraint (9) e.g.

α1 = −
LA∑
�=2

α� . (10)
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STZ Parameter Interpretation

• The interpretation is different from the corresponding interpretation of the CR
parameters.

• In STZ, the constant term encapsulates an overall mean effect since

LA∑
�=1

μ′� = LAμ0 +
LA∑
�=1

α� = LAμ0 ⇔ μ0 =
1

LA

LA∑
�=1

μ′�,

• α� describes deviations of each level from this overall mean effect.

– Positive values induce an increased effect in comparison to the overall mean

– Negative values induce effects lower than the overall mean level
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5.4.3 One-way ANOVA model in WinBUGS

• Here we assume the data given in pairs (ai, yi) referring to the characteristics
of the ith individual.

• The stochastic part of the likelihood is the same as the one in normal
regression models.

• The deterministic part of the likelihood is slightly changed since the mean
must be specified as a function of each level of A [see Eq. (8)].
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WinBUGSCode for ANOVA

• Hence, the likelihood is defined in WinBUGS

for (i in 1:n){

y[i] ~ dnorm ( mu[i], tau )

mu[i] <- mu0 + alpha [ a[i] ]

}

• The imposed constraint must be set outside the likelihood loop.

– For CR parametrization, we set

a[1] < - 0.0

– while, for STZ parametrization, we set

a[1] <- -sum( a[2:LA] )
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WinBUGSCode for ANOVA - prior

• As a prior for μ and α� (for 
 = 2, . . . , LA), we consider a simple normal
distribution with mean zero and low precision to express prior ignorance.

• Hence, in the WinBUGS code

mu0 ~ dnorm ( 0.0 , 1.0E-4)

for (l in 2:LA){ alpha[i] ~ dnorm ( 0.0 , 1.0E-04 )}

the prior for the precision τ is defined as in normal regression models.

• No prior is imposed on the constrained parameter α1 since it is set equal to
zero and therefore it does not appear in the likelihood equation.

• In CR parameterization, α1 is a constant node

• In STZ parametrization, it is a logical/deterministic node since it is defined as
a function of the remaining parameters.
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Priors Under Different Parametrizations

• When using the prior setup described above, we must be very careful since,
under different parametrizations, we impose different prior distributions on the
group means μ′�.

• When the prior precision is small, differences due to this incompatibility of
prior specification will be minor

• When prior information is used, these parameters must be specified carefully in
order to lead to compatible prior beliefs.
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5.4.4 A one-way ANOVA example using WinBUGS

Example 5.2. Evaluation of candidate school tutors.

• The director of a private school wishes to employ a new mathematics
tutor.

• The ability of four candidates is examined using a small study.

• A group of 25 students was randomly divided into four classes.

• In all classes, the same mathematical topic was taught for 2 hours per
day for 1 week.

• After completing the short course, all students had to take the same
test.

• Their grades were recorded and compared (see Table 5.9). The admin-
istrator wishes to employ the tutor whose students attained higher per-
formance at the given test.
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Table 5.9: Data for Example 5.2 (school tutors’ evaluation data)

Candidate Students’ grades

1 84 58 100 51 28 89

2 97 50 76 83 45 42 83

3 64 47 83 81 83 34 61

4 77 69 94 80 55 79
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Setting up the data and the model code

• Data are coded in WinBUGSusing two columns/variables

1. Student’s grades

2. Which tutor was teaching

• Within the data we have also defined

1. The number of cases (n = 25) and

2. The number of tutors (TUTORS= 4).

• Table 5.10 provides the list format of the data.
Table 5.10: WinBUGS list format data for Example 5.2

list( n=25, TUTORS=4,

grade=c(84 , 58 , 100 , 51 , 28 , 89 , 97 , 50 , 76, 83, 45, 42, 83,

64, 47, 83 , 81 , 83 , 34 , 61 , 77 , 69 , 94 , 80 , 55 , 79),

class=c(1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2,

3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4) )
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Model code

• The model can be defined according to the previous guidelines.

• Each group (tutor) mean = (constant term) + (tutor effect with index given
by the variable classes).

• Initial values: for mu and alpha except from alpha[1].

• The code and the initial values are provided in Table 5.11.

• STZ parametrization is used, (CR parametrization is provided as comments).
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Table 5.11: WinBUGS code and initial values for Example 5.2 (For CR parametrization,

remove # in line 10 and adding it to line 8 of the code).

model{

# model ’s likelihood

for (i in 1:n){

mu[i] <- m + alpha [ class[i] ]

grade[i] ~ dnorm ( mu[i], tau )

}

#### stz constraints

alpha [1] <- -sum(alpha [2: TUTORS])

#### CR Constraints

# alpha [1] < - 0.0

# priors

m~dnorm ( 0.0 , 1.0E-04)

for (i in 2: TUTORS){ alpha[i]~dnorm (0.0 , 1.0E-04)}

tau ~ dgamma ( 0.01 , 0.01)

s <- sqrt(1/ tau) # precision

}

INITS

list( m=1.0, alpha=c(NA , 0,0,0) , tau =1.0 )
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Results

• 1000 burnin and additional 2000 iterations

• Posterior summaries are given in Table 5.12

• We are interested in evaluating the overall performance of each tutor that is
encapsulated by each parameter αj (alpha[j]) for j = 1, 2, 3, 4 .

• Fourth tutor has a higher performance (close to 6).

• The remaining tutors have negative effects, indicating that their performance is
below the overall mean.

• Nevertheless, from Figure 5.2, the posterior distributions of αj are not clearly
discriminated, indicating that the between-tutor differences are minor.

• Since the school needs to hire only one tutor, we recommend hiring the last
one but keeping in mind that differences in the tutors’ performance in this
small study did not indicate clear differences between tutors’ actual abilities.
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Table 5.12: Posterior summaries for ANOVA parameters of Example 5.2

node mean sd MC error 2.5% median 97.5% start sample

alpha[1] -0.5661 8.016 0.1488 -16.27 -0.661 15.43 1001 2000

alpha[2] -1.218 7.437 0.1442 -15.77 -1.317 13.6 1001 2000

alpha[3] -4.17 7.323 0.1497 -18.04 -4.158 11.04 1001 2000

alpha[4] 5.955 8.345 0.1626 -10.34 6.066 22.56 1001 2000

m 68.96 4.561 0.1109 60.0 68.98 78.11 1001 2000

s 22.21 3.638 0.08999 16.54 21.74 30.55 1001 2000
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(a) Boxplots (b) Error bars
Figure 5.2: Posterior boxplots and error bars for tutors’ effects in Example 5.2
(school tutors’ evaluation).
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Two Way ANOVA

An example can be found in my book (Chapter 5, pages 173–184) with figures and
interpretation for the model with and without interactions.
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