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This presentation is based on Chapter 7 of
Ntzoufras (2009): Bayesian Modeling Using WinBUGS, Wiley.

Synopsis

1. Introduction: The exponential family, Link functions, Common GLMs.

2. Prior distributions

3. Posterior inference and GLM specification in WinBUGS

4. Poisson regression models

5. Binomial response models
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7.1 Introduction

• Generalized linear models (GLMs) constitute a wide class of models
encompassing stochastic representations used for the analysis of both
quantitative (continuous or discrete) and qualitative response variables.

• Natural extension of normal linear regression models

• They are based on the exponential family of distributions, which includes the
most common distributions such as the normal, binomial and, Poisson.

• Generalized linear models have become very popular because of their
generality and wide range of application.

• They can be considered as one of the most prominent and important
components of modern statistical theory.

• They have provided not only a family of models that are widely used in
practice but also a unified, general way of thinking concerning the formulation
of statistical models.
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The Components of a GLM

As we have already mentioned, three are the components of a GLM:

1. The random/stochastic component:

Yi ∼ D(θ) ∈ Exponential family of distributions .

2. The systematic component (or linear predictor):

Linear function of the explanatory variables (or covariates) similarly as in
normal regression models called linear predictor.

3. The link function:

Function g(θ) which connects the parameters of the response Y with the linear
predictor and the covariates. In GLM a location parameter (e.g., the mean) is
usually linked with the linear predictor.
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Model Specification

Yi ∼ expf
(
ϑi, φ, a(), b(), c()

)
(stochastic component)

ηi = X(i)β = β0 +
∑p

j=1 xijβj (systematic component)

ϑi = R(θi) (canonical — distribution parameter function)

g(θi) = g(R−1(ϑi)) = gϑ(ϑi) = ηi (link function)

θm = (βT , φ)T (model parameters)
(1)
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7.1.1 The exponential family

expf
(
ϑ, φ, a(), b(), c()

)
denotes the exponential family with density or probability

function

f(y|ϑ, φ) = exp
(

yϑ− b(ϑ)
a(φ)

+ c(y, φ)
)

. (2)

• φ dispersion parameter of the exponential family

• ϑ is the canonical location parameter of the exponential family

• θ is the location parameter of the corresponding distribution

• R(θ) the function that connects the two parameters.

• a(), b(), c() are functions which specify the density or probability function

• g(θ) and gϑ(ϑ) are the link functions that associate the location parameter θ

and the canonical parameter ϑ, respectively, with the linear predictor η

⇒ gϑ(ϑ) = g(R−1(ϑ)).
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The mean and the variance of Y with distribution in the exponential family with
parameters ϑ and φ are equal to

E(Y ) =
db(ϑ)
dϑ

= b′(ϑ) and V (Y ) =
d2b(ϑ)
dϑ2

a(φ) = b′′(ϑ)a(φ) . (3)
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Indicative Bibliography

Additional details concerning generalized linear models can be found in a variety of
well-written books related to the topic such as

• McCullagh and Nelder (1989),

• Lindsey (1997), and

• Fahrmeir and Tutz (2001).

A detailed illustration of Bayesian inference and analysis focusing on GLMs can be
found in

• Dey et al. (2000)

• Chapter 7 of Ntzoufras (2009)
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7.1.2 Common distributions as members of the exponential

family

Members of the exponential family
are popular distributions such as

• the normal

• the binomial

• the Poisson

• the gamma

• the inverse Gaussian

We may further include distributions
that are

• Special cases of these distribu-
tions (e.g., exponential, Pareto)

• Distributions that result as trans-
formations of the above men-
tioned random variables (e.g.
log-normal, inverse gamma)

Details concerning the most popular distributions of the exponential family are
provided in Section 7.1.2 of Ntzoufras (2009); see Table 7.1 for a tabulated
summary.
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Table 7.1: Details of most common members of exponential dispersion family
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7.1.3 Link functions

7.1.3.1 Common link functions.

• The link function must be a monotonic and differentiable function.

• It is used to match the parameters of the response variable with the systematic
component (i.e. the linear predictor) and the associated covariates.

• We focus on the mean of the distribution because the measures of central
location are usually of main interest.

• GLM-based extensions: dispersion or shape parameters are linked with
covariates [e.g., see Rigby and Stasinopoulos (2005)].
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• Desirable property : the link function should map the range of values in which
the parameter of interest lies with the set of real numbers IR in which the
linear predictor takes values.

For example, in the binomial case we wish to identify link functions that map
the success probability π from [0, 1] to IR.

• The simplest link function : sets the linear predictor equal to the mean μ.

– It is used in the normal models.

– Not appropriate for other distributions such as the Poisson distribution
since their mean is positive while η ∈ IR.

• Default choice of link function : is the canonical link = the canonical
parameter is set equal to the linear predictor.

• The canonical link function for common distributions are summarized in Table
7.2.
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Table 7.2: Canonical link functions of most common members of exponential disper-
sion family

Link Link function

Distribution name g(μ) g(θ)

Normal Identity μ

Binomial Logit log
[
(μ/N)/(1− μ/N)

]
log

[
π/(1− π)

]
Negative binomial Complementary log log

[
μ/(k + μ)

]
log(1− π)

Poisson Logarithmic log λ

Gamma Reciprocal 1/μ

Inverse Gaussian Squared reciprocal 1/μ2
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Link Functions for Binomial Models

1. The canonical link is the so-called logit link defined as g(π) = log
(

π
1−π

)
.

The corresponding model is the well known logistic regression models.

2. The probit link (frequently used in econometrics): g(π) = Φ−1(π) ;

where Φ−1(π) is the inverse function of the cdf of N(0, 1).

3. The complementary log–log link function : g(π) = log
{− log(1− π)

}
.

4. General links: given by the inverse cdf g(π) = F−1(π; θ) of a random
variable Z ∼ D(θ).

• Logit cdf of logistic distribution

• Complementary log–log cdf of extreme value distribution.
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7.1.3.2 More complicated link functions for binomial data.

• A wide variety of link distributions have been proposed for binomial models.

• Details can be found in Section 7.1.3.2 of Ntzoufras (2009).
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7.1.4 Common generalized linear models

• Different models of the exponential family are appropriate for different types of
response variables.

• In this section, we summarize which are the most common models for each
type of response variable.

Response variables defined in IR

• The normal regression model is the most popular choice.

• When the normality of error assumption is not appropriate, the normal model
can be extended using errors that follow the Student’s t distribution.

• Although this model cannot be considered as a member of the exponential
family, it can be easily fitted using WinBUGS .
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Positive continuous response variables

Initial approach

Transform the response variable using the Box–Cox transformation or the
logarithm and use a common (normal) regression model for the transformed
response variable.

• Can be treated as usual regression models — parameter interpretation might
be difficult.

• First consider the logarithm of the original response since it usually eliminates
problems related to the assumptions of the model (normality or errors,
linearity of the mean, or homoscedasticity).

• Using the logarithm in a normal model is equivalent to assuming the
log-normal distribution for the original response variable.
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Common distributional choices

• Gamma

• Exponential

• Inverse Gaussian

• Weibull

Survival Analysis Models

A positive response variable is the survival time (or more generally the time until
an event of interest occurs).

• It is of central interest in medical studies, especially in clinical trials.

• Censoring is an additional characteristic that must be considered in the model.

• A survival time is considered as censored when part of its information is not
available (e.g. we may know that a patient was alive for the 50 first days of the
study, but we might be ignorant of the exact time of failure).

• The Weibull distribution is commonly used for modeling such response data.
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Binary (success/failure) responses

• Binary (zero–one) data (i.e., y ∈ {0, 1}) ⇒ Bernoulli distribution.

• Y = number of successes after the repetition of N Bernoulli experiments ⇒
binomial distribution with success probability π and N replications.

• y ∈ {0, 1, . . . , n}.
• Bernoulli is a special case of binomial distribution with N = 1.

• The canonical link is the logit function log
(
π/(1− π)

)
, which models the

log-odds of success as linear combination of the covariates (Berkson, 1944,
1951).

• Logit models are the most popular stochastic formulations for such data and
are cited as logistic regression models.

• We may also use Probit model (similar to logit) or model with complementary
log–log link or other link function.
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Counts and responses defined in NN

• Response variables defined in NN = {0, 1, 2, . . . , } frequently represent number
of events occurred within a prespecified time interval (i.e. counts or
frequencies).

• The Poisson distribution is naturally adopted ⇒ Poisson regression models

• Also called Poisson log-linear or simply log-linear) models due to the canonical
log-link.

• Poisson log-linear models are used for the analysis of high-dimensional
contingency data ( cross-classification tables of categorical variables).

• Restrictive assumption of Poisson: mean equal to variance.

• Alternative models that allow for overdispersion (larger variance than mean) or
underdispersion

• An overdispersed popular distribution is the negative binomial.
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Continuous Responses with a Specific Range

For variables that are defined in a range y ∈ (a, b)

• we may rescale them in the zero–one interval by setting y∗ = (y − a)/(b− a)
and use the beta distribution for the stochastic component.

• Use a logit-like transformation by setting y∗∗ = log
{
(y − a)/(b− y)

}
and use

normal regression models.
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Integer Valued Responses

For response variables y ∈ ZZZZ = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . . }:
• Poisson difference model based on the Skellam distribution (Karlis and

Ntzoufras, 2006, 2008).

• The model is based on the differences of Poisson latent variables.

• The Skellam distribution cannot be considered as a member of the exponential
family but the conditional likelihood (given the latent Poisson variables) is a
simple Poisson likelihood.
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Categorical Responses with k > 2 Levels

• The multinomial distribution may be used as a natural extension of the
binomial models.

• The same distribution can be used for grouped categorical variables where the
frequencies of k different outcomes will be recorded as responses.

• Finally, such responses can be modeled indirectly using the Poisson log-linear
models for contingency tables when all covariates are categorical [see, e.g.,
Fienberg (1981, chaps. 6, 7)].
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Ordinal Responses

• Can be modeled using a variety of alternative approaches that have been
introduced in the literature.

• A natural extension of the usual log-linear model used for contingency models
can be adopted by Goodman’s (1979) association models, which were originally
used for two-way contingency models. Such models cannot be considered as
GLMs because of the multiplicative expression between the model parameters
and Poisson’s expected values.

• Also a variety of logistic regression models; details can be found in Agresti
(2010).
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7.1.5 Interpretation of GLM coefficients

7.2 Prior distributions

Independent Priors

• Usually, a normal prior distributions is used for β: βj |φ ∼ N(μβj , σ
2
βj

φ) .

• The variance of β depends on the dispersion parameter φ in order to achieve
an appropriate scaling of the prior distribution.

• In the normal model: φ = σ2 ∼ IG(a, b) ⇒ conjugate prior distribution.

• When no prior information is available

⇒ Prior mean = zero

⇒ variance = large (to express prior ignorance).

– A prior independent to the dispersion parameter can be also considered.
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Independent Priors - Some Comments

• A priori independence between all model parameters is plausible when the
design or data matrix is orthogonal:

⇒ Model parameters have similar interpretation over all models.

– We can easily incorporate such priors in ANOVA-type models with
sum-to-zero constraints.

– When we are interested in prediction we may orthogonalize the design
matrix and proceed with model selection in the new orthogonal model space
(Clyde et al., 1996).

– Independent priors ⇒ prior of Knuiman and Speed (1988) for Poisson
log-linear models in contingency tables for STZ parametrization.

• In nonorthogonal cases: an independent prior ⇒ undesirable influence on the
posterior distribution and hence must be avoided.

Sessions 10–11 (A): Normal Linear Models by Ioannis Ntzoufras

Workshop on Bayesian Modeling Using WinBUGS 7–27

Multivariate normal prior

β|φ ∼ N(μβ ,Σβ) .

Extension of the Zellner’s g-prior

Σβ = c2
(
−H(β̂)

)−1

, (4)

• β̂: maximum-likelihood estimate of β

• H(β) is the second derivative matrix of log f(y|β, φ), given by

−H(β) = XT HX

where H is a n× n diagonal matrix with elements

hi =
(

∂μi

∂ηi

)2 1
ai(φ)b′′(ϑ)

. (5)

Details concerning hi for some popular distributions are provided in Table 7.3.
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Table 7.3: Generalized linear model weights hi

Model Link GLM weights hi

Normal Identity σ−2

Poisson Log λi

Binomial Logit Niπi(1− πi)

Probita Ni

[
πi(1− πi) {ϕ(πi)}2

]−1

clog–log −Ni(1− πi) {log(1− πi)}2 π−1
i

aϕ(z) is the density function of standardized normal distribution

evaluated at z.

• Unit information prior for c2 = n.

• This prior has precision ≈ the precision provided by one data point.

• More detailed discussion of this prior can be found in Spiegelhalter and Smith
(1988) and Kass and Wasserman (1995).
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For the normal model :

– hi = σ−2 ⇒ Zellner’s g-prior.

For the remaining GLMS :

– hi depends on estimated parameter values for each case; e.g.
∗ In Poisson model: hi = λ̂i = exp

(
X(i)β̂

)
∗ In the binomial model: hi = Niπ̂i(1− π̂i) with π̂i = [1 + exp(−X(i)β̂)]−1

– Results in a data-dependent prior.

– When c2 is large, the effect of this data dependence will be minimal since
the prior will be essentially noninformative.

– To avoid this data dependence, Ntzoufras et al. (2003) proposed using the
prior mean to obtain rough prior estimates of hi.
In binomial logistic regression models:
⇒ hi = Ni exp

(
X(i)μβ

)[
1 + exp

(
X(i)μβ

)]−2

⇒ hi = Ni/4 if the prior means are zero
⇒ Σβ = 4N−1c2

(
XT X

)−1 if Ni = N for all i = 1, 2, . . . , n
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7.3 Posterior inference

7.3.1 The posterior distribution of a generalized linear

model

Using the multivariate normal prior described in Section 7.2, we end up with the
posterior

f(β, φ|y) ∝ exp

⎛
⎝ n∑

i=1

yig
−1
ϑ

(
X(i)β

)− b
(
g−1

ϑ

(
X(i)β

))
a(φ)

+
n∑

i=1

c(yi, φ)

−1
2

log |Σβ | − 1
2
(β − μβ)T Σ−1

β (β − μβ)
)

f(φ),

where f(φ) in the full posterior is the prior of the dispersion parameter φ.
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• This posterior cannot be evaluated analytically except for the normal model
when using the conjugate prior.

• MCMC methods are now available and widely used for the computation of the
posterior distribution.

• The Gibbs sampler can be easily applied because of the result obtained by
Dellaportas and Smith (1993), which allowed for implementation of the
adaptive rejection method of Gilks and Wild (1992) since the posterior
distributions of the parameters in specific GLMs is log-concave.

• Alternatively, Metropolis–Hastings algorithms or the slice sampler can be used.

• This method is also used in WinBUGS for the generation of random values
from the posterior distribution of GLMs.
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7.3.2 GLM specification in WinBUGS

• WinBUGS code for GLM: Similar to the corresponding code for normal
regression models.

• Change the stochastic component (distribution of Y ) and the link function.

• Details concerning the distributions of the most popular GLMs are
summarized in Table 7.4.

• The inverse Gaussian distribution is not included in the standard distributions
of WinBUGS ; however, it can be modeled using an alternative approach (we
will discuss it later in this course).
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Table 7.4: WinBUGS commands for distributions within the exponential familya

Distribution WinBUGS Probability or

name syntax density function f(x) Mean Variance

1. Normal y ~ dnorm(mu,tau)
√

τ/(2π) exp
[ − 1

2 τ(y − μ)2
]

μ 1/τ

(Log-normal)b y ~ dlnorm(mu,tau)
√

τ/(2π)y−1 exp [ − 1
2 τ(log y − μ)2

]
eμ+1/(2τ) (e1/τ − 1)e2μ+1/τ

2. Binomial y ~ dbin(p,N) N!py(1− p)N−y/[y!(N − y)!] Np Np(1− p)

(Bernoulli)c y ~ dbern(p) py(1− p)1−y p p(1− p)

3. Negative binomial y ~ dnegbin(p,r) (y + r − 1)!pr(1− p)y/[y!(r − 1)!] r(1− p)p−1 r(1 − p)p−2
4. Poisson y ~ dpois(lambda) e−λλy/y! λ λ

5. Gamma y ~ dgamma(a,b) baya−1e−by/Γ(a) a/b a/b2

(Chi-squared)d y ~ dchisqr(k) see gamma(k/2, 12 ) k 2k

(Exponential)e y ~ dexp(lambda) λe−λy 1/λ 1/λ2

aTerms in parentheses can be considered as special cases of the distributions shown above.
b log(y) follows the normal distribution.
cBinomial with N = 1.
dGamma with a = k/2 and b = 1

2
.

eGamma with a = 1 and b = λ.
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Link Functions in WinBUGS

• Four link functions are available in WinBUGS: log, logit, probit, and the
cloglog.

• Can be used only in the left part of the definition of the linear predictor .

• The remaining link functions can be defined by setting the parameter of
interest θi equal to g−1(ηi).
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7.4 Poisson regression models

• Here we focus on Poisson regression models for response variables defined in
NN .

• Such variables usually express the number of successes (visits, telephone calls,
number of scored goals in football) within a fixed time interval.

• They are frequently called Poisson log-linear models because of the canonical
log-link, which is widely used.

• The Poisson log-linear model is summarized by the following expression:

Yi ∼ Poisson(λi) with log λi = β0 +
p∑

j=1

βjxij = X(i)β .
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7.4.1 Interpretation of Poisson log-linear parameters

• Bj = eβj : is the proportional change when Xj increases by one unit.

• Details can be found in Section 7.4.1 of Ntzoufras (2009).
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7.4.2 A simple Poisson regression example

Example 7.1. Aircraft damage dataset. Here we consider the aircraft
damage dataset of Montgomery et al. (2006). The dataset refers to the
number of aircraft damages in 30 strike missions during the Vietnam war.
Hence it consists of 30 observations and the following four variables:

• damage: the number of damaged locations of the aircraft

• type: binary variable which indicates the type of plane (0 for A4; 1 for
A6)

• bombload: the aircraft bomb load in tons

• airexp: the total months of aircrew experience

In this example we can use the Poisson distribution to monitor the number
of damages after each mission.
Data of this example are available in the book’s Website and are reproduced
with permission of John Wiley and Sons, Inc.
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7.4.2.1 Model specification in WinBUGS .

The initial model will have the following structure

damagei ∼ Poisson(λi)

log λi = β1 + β2 typei + β3 bombloadi + β4 airexpi

for i = 1, 2, . . . , 30 .

Here, the index of βj takes values from 1 to 4 (instead from 0 to 3 as in the
previous section) to be in concordance with the WinBUGS the code that follows.

We follow the same structure as in the linear regression model with the difference
that the likelihood is now defined using the following syntax:

for (i in 1:30){

damage[i] ~ dpois ( lambda[i] )

log(lambda[i]) <- beta [1] + beta [2] * type[i]

+ beta [3] * bombload[i] + beta [4] * airexp[i]

}
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Moreover, the exponentiated parameters Bj can be easily defined using the syntax

for (j in 1:4) { B[j] <- exp( beta[j] ) }

The usual independent normal prior with large variance (τβj = σ−2
βj

= 10−4) is
considered as prior distribution for βj .

The full code is available in this book’s Webpage.
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7.4.2.2 Results.

Posterior summaries of model parameters are given in Table 7.5, while 95%
posterior intervals are depicted in Figure 7.1.

Table 7.5: Posterior summaries of Poisson model parameters for Example 7.1a

node mean sd MC error 2.5% median 97.5% start sample harmonic

beta[1] -0.766 1.089 0.1762 -3.168 -0.835 1.619 1001 1000

beta[2] 0.580 0.466 0.0513 -0.302 0.584 1.537 1001 1000

beta[3] 0.177 0.068 0.0099 0.040 0.177 0.308 1001 1000

beta[4] -0.011 0.010 0.0015 -0.033 -0.010 0.007 1001 1000

B[1] 0.862 1.221 0.1829 0.042 0.434 5.050 1001 1000 0.465

B[2] 1.993 0.996 0.1050 0.739 1.793 4.652 1001 1000 1.786

B[3] 1.197 0.081 0.0118 1.041 1.193 1.360 1001 1000 1.194

B[4] 0.989 0.010 0.0015 0.968 0.990 1.007 1001 1000 0.989

aThe harmonic means of Bj are calculated outside WinBUGSusing the posterior means of βj .
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Figure 7.1: 95% posterior intervals of Poisson model parameters for Example 7.1.
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A point estimate of the model can be based on the posterior means. Hence the a
posteriori estimated model can be summarized by

log λi = −0.77 + 0.58 typei + 0.18 bombloadi − 0.011 airexpi .

From the 95% posterior intervals of βj , we observe that only the posterior
distribution of the bombload coefficient is away from zero, indicating a significant
effect of this variable on the amount of aircraft damage.

Sessions 10–11 (A): Normal Linear Models by Ioannis Ntzoufras

Workshop on Bayesian Modeling Using WinBUGS 7–43

7.4.2.3 Interpretation of the model parameters.

Interpretation can be directly based on Bj values (B[] in WinBUGS ).

node mean sd MC error 2.5% median 97.5% start sample harmonic

B[1] 0.862 1.221 0.1829 0.042 0.434 5.050 1001 1000 0.465

B[2] 1.993 0.996 0.1050 0.739 1.793 4.652 1001 1000 1.786

B[3] 1.197 0.081 0.0118 1.041 1.193 1.360 1001 1000 1.194

B[4] 0.989 0.010 0.0015 0.968 0.990 1.007 1001 1000 0.989

From Table 7.5, we may conclude the following

• The expected amount of damage for A6 (type=1) aircraft is twice as much as the

corresponding damage for A4 (type=0) aircraft when the two aircraft return from

missions with aircrew of the same experience and both carry the same bombload.

• Every tone of bombload increases the expected number of damaged aircraft locations

by 20%.

• Every additional month of aircrew experience reduces the number of damaged

aircraft locations by 1%.
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7.4.2.4 Estimating specific profiles.

• The expected amount of damage for the two types of aircraft for the minimum,
maximum, mean and median profiles have also been calculated.

• Minimum profile ⇒ maximum values of crew experience were considered, since
these variables are negatively associated with the number of damaged locations
[and maximum profile ⇒ minimum values]

• Calculation of the expected value for a profile can be easily accommodated in
WinBUGS .
e.g. a profile of an A6 aircraft is calculated by

a6.profile <- exp( beta [1] + beta [2] + beta [3] * bombload.profile

+ beta [4] * airexp.profile

where bombload.profile and airexp.profile are the values of the two
explanatory variables for the profile that we wish to consider.

• Substitution of these nodes by appropriate values provides the desired profiles;
see Table 7.6 for the corresponding code.
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• The profiles for A4 are obtained similarly by removing parameter β2.

• Note that the minimum and maximum values of a vector v can be obtained
using the commands ranked(v[],1) and ranked(v[],n), respectively.

• Similarly, the median profile can be calculated using the command

ranked(v[],(n+1)/2)

if n is odd and by

0.5*( ranked(v[],n/2)+ranked(v[],n/2+1))

if n is even.
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Table 7.6: WinBUGS syntax for calculation of expected number of damaged loca-
tions for each profile for Example 7.1

# profiles

# values for bombload

profiles [1,1]<- ranked ( bombload [] , 1 ) # minimum of bombload

profiles [2,1]<- mean(bombload []) # mean of bombload

profiles [3 ,1] < - 0.5*( ranked ( bombload [] ,15)+ranked(bombload [] ,16)) # median

profiles [4,1]<- ranked ( bombload [] , 30 ) # max

# values for airexp

profiles [1,2]<- ranked ( airexp [] , 1 ) # max experience

profiles [2,2]<- mean(airexp []) # mean

profiles [3 ,2] < - 0.5*( ranked ( airexp [] , 15)+ranked(airexp [] , 16)) # median

profiles [4,2]<- ranked ( airexp [] , 30 ) # min experience

for (k in 1:4){

a4.profile[k]<-exp(beta [1] + beta [3]* profiles [k,1] + beta [4]* profiles [k ,2])

a6.profile[k]<-a4.profile[k]*exp( beta [2] )

}
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Results

• Posterior means and the corresponding standard deviations of these profiles are
provided in Table 7.7.

• For a typical mission with A4 aircraft we expect 0.8 damaged locations, while
for A6 the corresponding number of damaged locations is about 1.3.

• Note that the worst-case scenario (maximum profile) where missions with 14
tons of bombload and crew with the minimum flying experience (50 months)
corresponds to an expected number of 3.7 and 5.9 damaged locations for A4
and A6 aircrafts, respectively.
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Table 7.7: Posterior means (standard deviations) of expected number of damaged
locations for minimum, mean, median, and maximum profiles for Example 7.1

Expected damage

A4 A6

Profile Bombload Experience mean (SD) mean (SD)

Minimum 4.0 120.00 0.27 (0.13) 0.50 (0.27)

Median 7.5 80.25 0.75 (0.24) 1.22 (0.94)

Mean 8.1 80.77 0.83 (0.27) 1.33 (0.40)

Maximum 14.0 50.00 3.68 (2.11) 5.90 (1.75)
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7.4.2.5 Selection of variables using DIC.

• Here only three covariates are considered, resulting in eight possible models.

• We can fit each model separately to calculate DIC

• Alternatively, all models can be simultaneously fitted in WinBUGS

• Select the best model as the one with the lowest DIC value

• Code for fitting all models in a single run is provided in this book’s Website (a
simplified version follows)

• Results are summarized in Table 7.8 after 10,000 burnin and 10,000 additional
iterations.

• Be careful to consider a sufficiently long burnin period because DIC is sensitive
to initial values.
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model{

# vectors used for the calculation of DIC

for (i in 1:n){

y1[i] <- damage[i]

..................

y8[i] <- damage[i]

y1[i]~dpois( lambda[i,1] )

..................

y8[i]~dpois( lambda[i,8] )

log(lambda[i ,1]) <-beta[1,k]

log(lambda[i ,2]) <-beta[1,k] + beta[2,k]*type[i]

log(lambda[i ,3]) <-beta[1,k] + beta[3,k]*bombload [i]

log(lambda[i ,4]) <-beta[1,k] + beta[2,k]*type[i] + beta[3,k]* bombload [i]

log(lambda[i ,5]) <-beta[1,k] + beta[4,k]*airexp[i]

log(lambda[i ,6]) <-beta[1,k] + beta[2,k]*type[i] + beta[4,k]* airexp[i]

log(lambda[i ,7]) <-beta[1,k] + beta[3,k]*bombload [i] + beta[4,k]*airexp[i]

log(lambda[i ,8]) <-beta[1,k] + beta[2,k]*type[i] + beta[3,k]* bombload [i] +

beta[4,k]*airexp[i]

}

# prior

for (k in 1:8){ for (j in 1:4){ beta[j,k]~dnorm ( 0.0 , 0.001 ) } }

}
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Table 7.8: DIC values for all eight models under consideration for Example 7.1a

Dbar Dhat pD DIC Model

y1 108.6 107.6 1.01 109.6 Constant

y2 94.0 92.0 1.99 96.0 Type

y3 84.8 82.9 1.91 86.7 Bombload

y4 85.3 82.4 2.95 88.3 Type + Bombload

y5 106.2 104.3 1.97 108.2 Airexp

y6 88.9 85.9 3.01 92.0 Type + Airexp

y7 83.9 81.0 2.92 86.9 Bombload + Airexp

y8 83.7 79.7 3.98 87.7 Type + Bombload + Airexp

total 735.6 715.9 19.76 755.4

aBurnin=10,000; iterations kept=10,000.

• Lowest DIC (86.7) ⇒ only the bombload on the linear predictor.

• DIC value (86.9) of the model bombload + Crew experience is very close to the

lowest DIC value.

• The two models have similar predictive performance.
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7.4.3 A Poisson regression model for modeling football data

Example 7.2. Modeling the English premiership football data.
Modeling of football scores is becoming increasingly popular nowadays. In
the present example we use the English premiership data for the sea-
son 2006–2007 to fit a simplified Poisson log-linear model for the pre-
diction of model outcomes. Data were downloaded from the Webpage
http: // soccernet-akamai. espn. go. com .
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7.5 Binomial response models

Binomial data are frequently encountered in modern science, especially in
medical research, where the response is usually binary, indicating whether a
person has a specific disease.

Most popular model: logistic regression model (binomial with logit link).

– Canonical link (i.e. default choice)

– It has a smooth interpretation based on the odds of Y = 1 versus Y = 0
π

1− π
(π is the probability of success for Y ).
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The logistic regression model model can be summarized by

Yi ∼ binomial( πi, Ni), log
πi

1− πi
= β0 +

p∑
j=1

βjxij = X(i)β

for i = 1, 2, . . . , n .

• For Ni = 1 ⇒ Yi is Bernoulli.

• Other link functions ⇒ probit and clog–log.
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7.5.1 Interpretation of model parameters in binomial

response models

7.5.1.1 Odds and odds ratios.

• Interpretation of the parameters in logistic regression models is based in the
notion of odds and odds ratios.

• We define as odds the relative probability of two events.

• In binomial data odds is the relative probability of success (Y = 1) compared
to the probability of failure (Y = 0).

odds =
π

1− π

• The logistic model can be rewritten as

Yi ∼ binomial
(

oddsi

1 + oddsi
, Ni

)
, log(oddsi) = β0 +

p∑
j=1

βjxij = X(i)β

using the odds representation.
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Interpretation of odds

• The number we multiply the probability of failure to obtain the probability of
success: π = odds× (1− π)

• For example,

– odds = 2 ⇒ the success probability is twice as high as the failure probability

– odds = 0.6 ⇒ the success probability is equal to 60% of the failure
probability.

• The value of 1 is of central interest ⇒ probabilities of both outcomes are equal
(to 0.5).

• Odds > 1 ⇒ an increased probability of success in contrast to the failure
probability (π > 0.5),

• Odds < 1 ⇒ a probability of success lower than the probability of failure
(π < 0.5).
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Interpretation of odds - Percentage change of probabilities

Quantity (odds− 1)× 100 ⇒ the percentage increase or decrease (depending on
the sign) of the success probability in comparison to the failure probability.

For example

• odds = 1.6 ⇒ the success probability is 60% higher than the corresponding
failure probability

• odds = 0.6 ⇒ the success probability is 40% lower than the corresponding
failure probability
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Odds Ratios

• The ratio of two odds of two different outcomes are called odds ratios (OR)

• They provide the relative change of the odds under two different conditions
(denoted by X = 1, 2 and subscripts 1 and 2):

OR12 =
odds(X = 1)
odds(X = 2)

,

where odds(X = x) denotes the conditional success odds given that
X = xodds(X = x) = P (Y =1|X=x)

P (Y =0|X=x) .

• OR12 = 1 ⇒ conditional odds under comparison are equal ⇒ no difference in
the relative probabilities of Y under X = 1 and X = 2.

• Same interpretation as in odds but replace probability ⇒ odds.

• (OR12 − 1)× 100 provides the percentage change of the odds for X = 1
compared with the corresponding odds when X = 2.
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Table 7.9: Summary interpretation table for odds ratios

INTERPRETATION OF ODDS RATIOS

OR12 =
odds(X = 1)

odds(X = 2)
= a .

• If a = 1 ⇒ odds(X = 1) = odds(X = 2).

• If a < 1 ⇒ odds(X = 1) < odds(X = 2).

• If a > 1 ⇒ odds(X = 1) > odds(X = 2).

• The success odds when X = 1 is a times as high as the corresponding odds for

X = 2

• If a > 1, then the success odds when X = 1 are (a − 1) × 100% times higher

than the corresponding odds for X = 2.

• If a < 1, then the success odds when X = 1 are (1− a)× 100% times lower than

the corresponding odds for X = 2.

Sessions 10–11 (A): Normal Linear Models by Ioannis Ntzoufras



Workshop on Bayesian Modeling Using WinBUGS 7–60

7.5.1.2 Logistic regression parameters and odds ratios.

• Interpretation is based on Bj = eβj as in the Poisson log-linear models.

• Bj are associated with odds ratios since

log
(
odds(x)

)
= β0 + β1x⇒

odds(x) = B0B
x
1 ⇒

ORx+1,x =
odds(x + 1)

odds(x)
=

B0B
x+1
1

B0Bx
1

= B1 = eβ1

in the simple logistic regression case with one numerical covariate.

• B1 = eβ1 denotes the relative odds magnitude when X increases by one unit.

• For Xi = −β0/β1 ⇒ odds = 1⇒ probabilities equal to 0.5.

Threshold for prediction or for diagnosing future patients using the X variable
directly.
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Parameter Interpretation for categorical covariates

• When X is categorical variable with K levels (CR parametrization with the 1st
level as baseline/reference category) then

log
(
odds(x)

)
= β0 +

K∑
j=2

βjI(x = j) = β0 +
K∑

j=2

βjDj ⇒

odds(x) = B0

K∏
j=2

B
Dj

j ⇒

ORj1 =
odds(j)
odds(1)

=
eβ0+βj

eβ0
=

B0Bj

B0
= Bj = eβj .

• Bj is the success odds ratio for the jth category of X versus the reference
category of the same variable.
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Parameter Interpretation in multiple logistic regression

• Extension of the interpretation above to multiple logistic regression models is
straightforward.

• We only need to interpret each Bj as the change of Y when a single covariate
Xj increases by one unit while the other covariates remain constant.

• Odds ratios estimated via multiple logistic regression models (i.e. Bj) are often
reported

– “Odds ratios after controlling for the effect” of the effect of the remaining
covariates

– “Odds ratios adjusted for” of the effect of the remaining covariates

– Adjusted odds ratios

• Adjusted odds ratios estimate the joint effect of all covariates Xj

(j = 1, 2, . . . , p) on Y , and in this way we essentially calculate the effect of each
covariate after the elimination of the effect of the other covariates.
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Parameter interpretation in models with other link functions

• Use latent variable interpretation

• Use approximate linear effects (called marginal effects) via derivatives of the
location parameters

• Use profiles.

• Logit and Probit links provide similar models; see Agresti (2002) for details.

• Clog-log provides different models since the link is not symmetric

• See Sections 7.5.1.3–5 of Ntzoufras (2009) for a detailed description and a
concise summary Table (7.17)
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7.5.2 A simple example

Example 7.3. Analysis of senility symptoms data using Win-
BUGS .

• We consider the data of Agresti (1990, pp. 122–123)

• 54 elderly people completed a subtest of the Wechsler Adult Intelligence
Scale (WAIS) resulting in a discrete score with range from 0 to 20.

• Aim: identify people with senility symptoms (binary variable) using the
WAIS score.

• Interest also lies in calculating WAIS scores that correspond to increased
probability of senility symptoms (i.e., with π > 0.5).

• The data of this example can be found in the book’s Website and are
reproduced with the permission of John Wiley and Sons, Inc.
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7.5.2.1 Model specification in WinBUGS .

• Response: senility symptoms – binary ⇒ Bernoulli or the binomial with
N = 1 distributions can be used

• Explanatory variable x: WAIS score (discrete quantitative).

• Specification of the likelihood in WinBUGS :

for (i in 1:n){

senility[i] ~ dbin( pi[i], 1 )

logit ( pi[i] ) <- beta0 + beta1 * wais[i]

}

where n = 54.

• Alternatively, the Bernoulli distribution (dbern(pi[i])) can be used instead.
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Other parameters of interest in WinBUGS

• Bj = eβj can be defined directly in WinBUGS

odds0 <- exp( beta0 )

or <- exp( beta1 )

• The threshold value X = x(π = 0.5) can be defined in WinBUGS

wais.half.prob <- - beta0/beta1

• wais.half.prob refers individuals with disease probability equal to 0.5 (i.e.
odds=0) since 0 = β0 + β1X ⇔ X = −β0/β1.

• Using the same approach, we may define X values for other probabilities (e.g.,
0.25 or 0.01).
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Models with other link functions in WinBUGS

• To define the probit and clog–log models, we only need to substitute the
WinBUGS function logit(pi[i]) by the corresponding link commands

probit( pi[i] ) <- beta0 + beta1 * wais[i]

and

cloglog ( pi[i] ) <- beta0 + beta1 * wais[i]

respectively.

• Other, more complicated, link functions can be defined by expressing πi as a
function of the linear predictor ηi.

• Note that, for this example, arithmetic overflows occurred when using the
probit or the clog-log link of WinBUGS .

• Arithmetic overflows can be avoided by truncating the tails of each link at
(−ξ, ξ), ξ > 0; see computational notes and related code in Ntzoufras (2009).
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Other parameters of interest for the Probit Link

To facilitate parameter interpretation in probit models, we calculate the following
quantities:

• Approximate OR interpretation: ξ2 × βj is given by the syntax

xi2 <- 1.6

approx.or <- xi2 * beta1

This is based on Taylor expansion; see Agresti (2002) and Ntzoufras (2009) for
details.

• The threshold value xc = −β0/β1 for the probit link is the same as in the logit
one and, therefore, can be obtained using the same syntax.
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Other parameters of interest for the Clog-log Link

To facilitate parameter interpretation in probit models, we calculate the following
quantities:

• Approximate OR interpretation: ξ2 × βj is given by the syntax

approx.or < - 1.39 * beta1

This is based on Taylor expansion; see Agresti (2002) and Ntzoufras (2009) for
details.

• Finally, the threshold value xc is now given by xc =
(
log(log 2)− β0

)
/β1 and is

specified in WinBUGSusing the syntax

wais.half.prob <- ( log(log(2))-beta0 )/beta1
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7.5.2.2 Results and parameter interpretation.

The usual low information priors βj ∼ N(0, 1000) are used in this example.

Posterior summaries of the parameters for each link are provided in Table 7.10.

Table 7.10: Posterior summaries for model parameters for each link function

Logit Probit clog–log

Node Mean SD Mean SD Mean SD

β0 2.507 1.229 1.402 0.661 1.447 0.721

β1 -0.339 0.119 -0.191 0.061 -0.260 0.076

ORa 0.718 0.083 0.748 0.074 0.700 0.073

WAIS(π = 0.5) 6.975 2.104 6.677 3.195 6.752 1.575

DIC 55.105 54.997 54.998

aExact odds ratio in logit (= eβ1); approximate for probit and clog–log.
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Results - parameter interpretation

• All models ⇒ significant negative association between WAIS and senility
symptoms.

• From the logit model:

– The odds of senility symptoms for an individual with WAIS=0 are a
posteriori expected to be equal to 12.27.

– For each additional WAIS point, a decrease in disease probability by 38% is
a posteriori expected.

• Posterior odds ≈ decrease of 25% (probit) and 30% (clog–log).

• These approximations are satisfactory summaries of the overall picture since

– range from 0.61 to 0.74 for the probit link

– range from 0.61 to 0.77 for wais > 4

• Generally, this approximation is more successful for π close to 0.5.
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Figure 7.2: Estimated binomial models for Example 7.3. Lines represent model
based on posterior means; points represent 2.5% and 97.5% posterior percentiles for
disease probabilities.
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• Plot was obtained in a software (R) outside WinBUGSusing results from
WinBUGS .

• The following syntax (for the probit link)

for (k in 1:21) {

probit( pi.model[k] ) <- beta0 + beta1 * (k-1)

}

calculates the probabilities for x = 0, 1, 2, . . . , 20 used in the graph.

• For the logit and the clog–log link we only need to replace probit by logit or
cloglog respectively in the above syntax.

• pi.model[k] probability of senility symptoms when wais = k − 1 i.e. node
pi.model provides all possible individual “profiles” for this example.

• The central lines were obtained by the posterior means of pi.model[k] for
k = 1, 2, . . . , 21 (x = k − 1) (using the monitor tool).

• Credible intervals were obtained by the 2.5% and 97.5% posterior percentalies
of pi.model[k] for k = 1, 2, . . . , 21 (x = k − 1) (using the monitor tool).
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Table 7.11: Posterior summaries for threshold value WAIS(π = 0.5) and correspond-
ing discrimination rules for each link

Decision rule

WAIS(π = 0.5) Logit Probit clog–log

Node Logit Probit clog–log Case Healthy Case Healthy Case Healthy

Mean 6.975 6.677 6.752 X ≤ 6 X ≥ 7 X ≤ 6 X ≥ 7 X ≤ 6 X ≥ 7

Median 7.353 7.291 6.998 X ≤ 7 X ≥ 8 X ≤ 7 X ≥ 8 X ≤ 6 X ≥ 7

95% posterior interval 2.149 0.028 3.262 X ≤ 2 X ≥ 10 X = 0 X ≥ 10 X ≤ 3 X ≥ 9

9.457 9.469 8.968
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Results - threshold value

• Posterior means: All models ⇒ cases are implied for values X ≤ 6.

• Posterior medians:

Logit and Probit ⇒ cases when X ≤ 7 (medians = 7.35 and 7.29).

–log link ⇒ cases when X ≤ 6 (median = 6.998).

• Construct a more complicated decision rule based on the 95% posterior
intervals:

Logit Probit Clog–log

Case when WAIS ≤ 2 = 0 ≤ 3

Healthy when WAIS ≥ 10 ≥ 10 ≥ 9

Cannot decide for WAIS within 3–9 1–9 4–8

• For the clog–log link, the neutral zone is narrower.
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Results - DIC

• DIC for probit is the lowest with minor differences from clog–log and probit

• All differences lower than 2 ⇒ minor differences in the fit of the three models.
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