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ABSTRACT

Aggeliki Karatza

BAYESIAN FACTOR ANALYSIS: IMPLEMENTATION ON
SCHIZOTYPAL PERSONALITY DISORDER DATA

May 2006

The aim of this thesis is to reveal the latent factorial structure of
schizotypal personality disorder under a set of observed schizotypal traits.
We facilitate the Bayesian approach, while the classical-frequentist
methodology is also implemented in an effort to compare the two approaches.

In the Bayesian approach, we combine prior information of the
unknown parameters of the factor model and the data likelihood to construct
the posterior distribution of the parameters. The inference is based on this
posterior distribution and the corresponding descriptive measures (means or
other moments). When the posterior distribution is not analytically tractable
then Markov chain Monte Carlo (MCMC) methods are used to get samples
from the corresponding posterior distributions.

The problem of identification is examined thoroughly as well as the
general model of classical factor analysis.

Several exploratory and confirmatory factor models were used in order
to examine the latent structure of the data. The aim of the analysis is to reveal
the hidden dimensions of Schizotypal Personality Disorder (a disorder
directly related to schizophrenia). A five-factor model was revealed through
classical (non-Bayesian) exploratory factor analysis while the Bayesian

analysis revealed a four factor model. Moreover, confirmatory analysis of the



schizotypic data ended in the paranoid 4-factor model (Stefanis et al., 2004)
through classical analysis, while Bayesian analysis selected the Fogelson et

al. (1999) 5-factor model through several information criteria.
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HEPIAHYH

Avyyehucn Kapatla

IMAPATONTIKH ANAAYXH KATA MIIEYEX XE

AEAOMENA XXIZOTYIIIAX
Méiog 2006

O ot6yog ovtn g dwtpipPng eivar va amokaivebel n AavBdvovoa
TOPAYOVTIKY doun NG o) OTLMIKNG daTOPUYNG TNG MPOCOTIKOTNTUG TOV
VIapPYEL KAT® amd TO GOVOAO TOV UETPNGIULOV YVOPIGUATOV TG oylloTumiog.
H Mnebliavh mapayovtikn avdivon ypnotpomomndnke yio avtd 1o A6yo, eV
N kAoowkn pebBodoroyio epapuodctnke emiong oe po mpoomdbeln  va
ovyKplBovVv o1 Vo TpoceyyicELC.

H Mnebvliovn mpocéyyion 0€tel ek TOV TPOTEP®V TANPOQOPiX OTIC
AyvV®OOTEC TAPAUETPOVS TOL TOPOYOVTIKOD VTOJEIYHOTOG (01 CLVTEAEGTEG, O
nivakag OlaKOUAVONG — OCLVOLLKVUOVONG TOV GEUALATOV, O TivaKOg
ovoyeticemv TOV mopayoviov) kot pécw Tov pefddov MCMC kot
ewwdtepa ¢ detypatoinyiag Gibbs pog mapéyelt TIC €K TOV VOTEPOV
Katavouég tov mapapétpov. Ta counepdopata Bacilovtalr 6Ttovg pécovg (1
o€ GALEG TAPOAUETPOVCS) TOV EK TOV VOTEPOV KATAVOUDV.

To mpéPinuo ¢ TOvTOTOINONG HEAETATOL ONMMC EMIONG TO YEVIKO
VIOJELYUO TNG KAAGIKNG TOPAYOVTIKNG AVAAVLGTC.

Ytnv gpyacioa avty o okKomOC TG availvong eivol vo amoKAAVWEL TIG
AavBavovoeg dtaoctdoelg TG oxlLOTLVTIKNG dlaTapayNG TG TPOCHOMTIKOTNTAG
mov eivar puo dwatapoyn Gpeco ocvvoedepévn pe m oyloeppévela. 'Eva
vrddetypo mEVTE Tmopayovtov anokaldvednke péocw g KAAGIKNG  (un-
Mmnedllavic) OlepeuVNTIKNG TOPAYOVTIKNG ovaAvong eved 1n Mmrebliovn
avdivon amokdivye €va vroderypa tecodpov mapaydéviov. Emnpocheta, n
emPefarotiKny avdivon tov dedopévov oyxtlotuniog KatdAn&e 610 VIOOELY LA

mopdvolag teccdpov mtapayoviov (Stefanis et al., 2004) péocw ™¢ KAaGIKNG

VI



avdAvong evd n Mnedliavn avdivon enéiele 10 LIOSEYUA S TAPAYOVIOV

tov Fogelson et al.(1999) péow «amowwv Kprmpiov mANpoeopiag.

VIII



TABLE OF CONTENTS

1. Introduction 1
1.1 INErOAUCHION .ottt et 1

1.2 Different aspects of factor analysis .........ccccceeeveeeiieniieiienieeieceeeeeee, 2

1.3 Bayesian approach in factor analysis ..........ccceeeeeevienieeiiienieenieeneeeees .3

1.4 Structure of the thesis ........cocieieriiiiiiereeeeee e e 4

2. Factor analysis: a theoretical framework 5
2.1 INIrOAUCHION «..eontiiiiiieiieie sttt 5

2.2 The factor analysis MOdel ...........cecueevieriieiieeiieieee e 6
2.2.1 Introducing the model ..........cccoeeevieeviiiieniieeee e, 6

2.2.2  The orthogonal model ...........cocueeiiiniiiiiiiiiieeeeee 8

2.2.3 Exploratory factor analysis (EFA) .....cccoceviniiniininiiiiiicnne 8

2.3 FUrther NOtIONS ......cocueiiiiiieiiiieiceeeeee et . 8
2.4 Confirmatory factor analysis (CFA) .....cccceoiieeiiieiiieeieeeieeeeee e .10
2.5 Estimation of model parameters ............ccoceeveeriienieniiienie e 11
2.5.1 Preceding of maximum likelihood methods .........c...cccceennee. 11

2.5.2 The method of factor analysis ..........ccceeueerierciienienieeniieeins 14

2.5.2.1 HeyWoO0d CASES ....ccvvveeerieeeiieeiieeeiieeeiee e 17

2.6 Goodness of fit statistics -Model selection measures .............c........... 18
2.7 The problem of identification in factor analysis ..................... 20
2.7.1  Identification in EFA .......ccoccoiiiiiniiiiieceeeeeeee 21

2.7.2  Identification in CFA ......cccciiiiiiiiiiee e 22

2.7.3  Local identification .........cccceeieeriieniieniieniieeie e 23

2.8 ROTATION .eeiiiiieiieiiesiteeeteeee ettt sttt sttt 25
2.9 CONCIUSION ...ttt 26

3. Bayesian factor analysis 29
3.1 INtrOAUCHION ..t 29

3.2 Bayesian theory ........cccveiiiiiieiieeiieieee e 29

IX



33 Prior distributions ..........coooeeiiiieiiiiiieceeeeeee e 30
3.4 MOCMC MEthOAS....ccueiiiiieiieeiieie et 32
3.5 OVEITElAXAtION ...eviiiieiiiieeiieseee ettt 35
3.6 Diagnosing CONVETZENCE .....c.eerveerreerieeereerieenreesseesreeseessseesseesseeenne 36
3.7 Model SEIECION ....coueiiiiiiiiiiiee e 40
3.8 Bayesian approaches to factor analysis ........ccccceeeeriieiieniiinienneee. 41
3.9 Singular value decompoSItioN ........cccceeeveeriieriienienieeiie e 46
3.10  Comparison of Bayesian and non-Bayesian factor analysis .......... 47
4. Application of exploratory factor analysis in schizotypic data 49
4.1 INIrOAUCHION ...ttt e 49
4.2 Exploratory analysis — Application to schizotypic data ................... 53
4.2.1 Classical ANalySis ......ccccceerviiieriiieeriie e 53

4.2.2  Bayesian analysis ........coceevieriiieiiienie e 55

4.3 Comparison between frequentistic and Bayesian analyses... 60
5. Application of confirmatory factor analysis in schizotypic data 61
5.1 INtrodUCHION .oueeiiiieiiieiiee ettt e 61
5.2 One factor confirmatory model ...........ccceeviienieniiieniieiieie e 62
5.3  Kendler’s two-factor model ...........coccevviiriininiinieieee 63
5.4 Disorganised three-factor model ............ccccceveiiieeiiieeiieeeeeiees 65
5.5 Paranoid four-factor model ............ccocoiiiiiiiiniii, 66
5.6  Fogelson et al. five-factor model ...........cccocoeeviiiiiiiiiiiieiiee 67
5.7  Classical analysis and interpretation of best fitted model ............... 68
5.8  Bayesian analysis .......cccccierieriiienieeiieie e 72
5.8.1  PIIOTS it 72

5.8.2  Gibbs SAMPIING ...covvirviiiiiiiriiiiieeeeee e 72

583 RESUILS ettt .73

5.9  Comparison between frequentistic and Bayesian confirmatory analyses



6. Discussion and further research 77

6.1 DISCUSSION .uetniiiiiiiiieiitesteet ettt sttt s 77

6.2  Further reSearch .........ccccoooieiiiiiiiinieieeee e 78

6.2.1 Two stage factor analysis ........cccceecveeeeveeeiieencieeeiie e 78

6.2.2 Logit factor model ..........cccoeviiiiiiiiinie e 79

Appendix A 83
Items for the nine subscales in the final 74-item version of the Schizotypal

Personality QUESHIONNAITE ........iuuitiiiii e, 83

Appendix B 89

1. Loadings of exploratory factor analysis models.........c.ccceeeeenee.... 87
2. Factor loadings and factor correlation matrices of confirmatory factor

analysis models in classical and Bayesian analysis ...........cccceceeveenenennene 94
3. The code of the 4-factor model in Bayesian exploratory factor analysis ..101
4. The code of the 4-factor model in Bayesian confirmatory factor

AMNALY SIS ettt e ettt e et e e e e seeeeteens 102

XI



XII



LIST OF TABLES

4.1 Chi-square values Of EFA ......cccooiiiiiiiiiieeceeeee e 54
4.2 Unrotated loadings of the four-factor model (Classical EFA)..........ccccccooueneee. 54
4.3 Information Criteria for Bayesian EFA ...........ccocoeiiiiiiiiiiieeeeee e, 56
4.4 Posterior descriptive measure for Bayesian EFA models...........ccccceeevieennennnne. 57
4.5 Version of AIC and BIC with D(@)and D for EFA .......cocovovvivveeeeeeeeennn, 58
4.6 Posterior means of factor loadings of F, in Bayesian EFA ............................ 58
4.7 Transformed posterior means of factor loadings of F, in Bayesian EFA ........ 59
5.1 Table of fitted factor MOAELS .......cc.eevierieiiiiinieeee e 62
5.2 Goodness of fit statistics for the fitted models ..........ccccoeiiiiiiiiiiiiiiiiinn, 69
5.3 Factor loadings of paranoid 4-factor model ...........cccceevieniiiiiiniiiiieieeeeee, 71
5.4 Correlation matrix of paranoid 4-factor model ...........ccccoevieriiiiieniiieieeee, 71
5.5 Information Criteria for the five fitted models ..........ccccoveeriniiiiiniiiiieeeee 73
5.6 Versions of AIC and BIC with D(@)and D for CFA ......c.ccccoeeveveeereeeeenne. 73
5.7 Point estimates of deviance for Bayesian CFA ...........cccooviiieniiiiienieeieee, 74
5.8 Factor loadings of Fogelson et al. 5-factor model with correlated factors ....... 75
5.9 Covariance matrix of Fogelson et al. 5- factor model .........c..cccccevveniininninnen. 74

B.1 Factor loadings and unique variance of F| exploratory model with classical and

Bayesian analysis ........c.cccuieiiieiiieiieeieenee ettt saae e 89

B.2 Factor loadings and unique variance of F, exploratory model with classical

and Bayesian analysis .......ccccoooieiieiiiiiienie e 90

B.3 Factor loadings and unique variance of F; exploratory model with classical

and Bayesian analysis .........ccccoceeciieiiieiiiienieeie ettt 91

XIII



B.4 Unrotated factor loadings and unique variance of F, exploratory model with

Classical ANALYSIS ...cceicciieriieiieiieetiee e 92

B.5 Factor loadings and unique variance of F, in Bayesian EFA and MCMC

B.6 Unrotated factor loadings and unique variance of F; exploratory model with

Classical ANALYSIS ....ccvieriiieiiiiie et 93

B.7 Factor loadings and unique variance of F; in Bayesian EFA ........................... 93
B.8 Factor loadings of m, confirmatory model with classical and Bayesian

ANALYSIS 1nevieiiiiieeiiie et ee ettt e et e e et e e et e et e e et e e e ta e e e ta e e e baeenabeeennbaeenbeeenaae e . 94

B.9 Factor loadings of m, confirmatory model with classical and Bayesian

ANALYSIS 1eiuvviiiiiieeiee ettt et e et e et e et e e et e e e te e e s be e e b e e erbaeebaeeeteeeenree e . 94

B.10 Correlation matrix of latent factors of m, confirmatory model with classical

ANALYSIS 1eeuiviieiiieeiieeetee ettt ee et e e e et e e e e e e b e e et e e etae e e taeeaaeaeasbaeennaaeennnen e e 95

B.11 Covariance matrix of latent factors of m, confirmatory model with Bayesian

ANALYSIS 1eiutiiiiiieeiiee ettt e ettt e et e e e et e e st e e e ttee e taee e taeeataeeareeeabeeeanaeeennnen e e 95

B.12 Factor loadings of m, confirmatory model with classical analysis .................. 95
B.13 Correlation matrix of latent factors of m,confirmatory model with classical

ANALYSIS ©oivviiiiiiie ettt ettt et et ettt e b e e tb e et e e taeenbe e teeenbeetaeenbeetaae e aas 96

B.14 Factor loadings of m, confirmatory model with Bayesian analysis ............... 96
B.15 Covariance matrix of latent factors of m, confirmatory model with Bayesian

ANALYSIS ©.vvieiiiieiie ettt ettt et ettt e bt e taeebeenaaeebeennae s e s 96
B.16 Factor loadings of paranoid 4-factor model with classical analysis ................ 97
B.17 Correlation matrix of paranoid 4-factor model with classical analysis ........... 97

B.18 Factor loadings of m, confirmatory model with Bayesian analysis ................ 98
B.19 Covariance matrix of latent factors of m, confirmatory model with Bayesian

ANALYSIS Looiiieiieiie ettt ettt ettt e et esta e et e e taeerbe e taeebeetaeenbeetaeee s an 98

X1V



B.20 Factor loadings of m, confirmatory model with classical analysis ................. 99
B.21 Correlation matrix of latent factors of m; confirmatory model with classical

ANALYSIS .etieiiieiiieitie ettt ettt et et e ettt e et e et e et e e tae e beeeneeebeenabeenbeeenbeebae et e 99
B.22 Factor loadings of Fogelson et al. 5-factor model with Bayesian analysis .... 100

B.23 Covariance matrix of Fogelson et al. 5- factor model with Bayesian analysis.100

XV



XVI



LIST OF FIGURES

5.1 Path diagram for m, confirmatory factor model ...........c.cceceeiriieiiiinininnnne. 63
5.2 Path diagram of Kendler’s 2-factor model .............ccooeviieiieniiieniiniieieieeee 64
5.3 Path diagram of disorganized 3-factor confirmatory model ..............c..ccuvenenne. 65
5.4 Path diagram of paranoid 4-factor model ...........ccceevviiieiiiiniiieeee e, 66
5.5 Path diagram of Fogelson et al. 5-factor model ............ccoooiiiiiiiiiiiniie, 68
5.6 Path diagram for fitted 772 .......ccccooviiiiiiiieiiee e 70
6.1 A path diagram for a two-stage factor analysis model .........c..ccoceveiiiniinenene. 79

XVII



XVII



CHAPTER 1

INTRODUCTION

1.1 Introduction

The aim of this dissertation is to explore the structure of schizotypy
through Bayesian factor analysis (BFA). According to DSM-III-R (American
Psychiatric Association, 1987) nine symptoms reflecting cognitive,
perceptual, social, interpersonal and behavioral dysfunction define the
Schizotypal Personality Disorder (SPD). This disorder is considered to be
genetically related to schizophrenia (Kendler et al., 1981; Kety, 1983;
Bergman et al., 1996). Moreover, SPD can be examined in non-clinical
populations, as well as clinical. These two facts have revealed the study of
the factorial structure of SPD as an important area of research for many
scientists. Among others, Raine (see Raine 1991, Raine et al., 1994) has
demonstrated a significant contribution to the research in this area by
constructing a 74- item self administered questionnaire, named Schizotypal
Personality Questionnaire (SPQ). At the present thesis, we used the Greek
version of SPQ constructed by the team of ASPIS (see Stefanis et al., 2004).
The subjects participated in this study are students of Greek Technological
Education Institutes and Universities. More details for SPD, the SPQ and the
collection of data can be found at section 4.1 (p.47).

BFA was the subject of study for several scientists since 1972 when Press
(1972) firstly introduced a basic model of BFA. For many years, the work of
Press and Shigemasu (1989) was the basis of BFA until Markov chain Monte
Carlo (MCMC) methodology was introduced in the statistical literature
(Geman and Geman, 1984) and were finally applied in factor analysis models
(see for example Rowe, 2003). This thesis is mainly based on the important
work of Rowe (1998, 2000a, 2000b, 2000c, 2001, 2003) who facilitated
MCMC methodology and gave an alternative version of the BFA model (see
Chapter 3, p.38-44).



The main contribution of this thesis is the implementation of Bayesian
methodology on schizotypic data. The Bayesian approach was not used before
for the analysis of the schizotypic data according to the author’s knowledge.
Chapters 4 and 5 deal with the application of Bayesian and non-Bayesian

schizotypic data, in an effort to compare and contrast the two approaches.

1.2 Different aspects of factor analysis

Factor analysis can be divided in two different approaches: exploratory
factor analysis (EFA) and confirmatory factor analysis (CFA). EFA is used in
order to explore the data concerning the number of hidden dimensions
(factors) and the way they relate to the observed variables. On the contrary,
CFA deals with models that have specific assumptions concerning the number
of the latent factors or/and the observed variables they are related. Therefore,
CFA is implemented when we wish to confirm (using a set of data) a specific
scientific hypothesis, which is expressed via a corresponding model.

Since 1904, when Spearman introduced the initial form of factor
analysis, a lot of research has been done concerning different methods of
factor analysis. The most frequently used method of estimation is maximum
likelihood where convergence of the estimated parameters is achieved
through an iterative algorithm. It is the basic method of classical analysis and
is easily implemented by computer programs like LISREL (see Joreskog and
Sorbom, 1996) and SPSS (SPSS User’s Guide).

The problem of identification is crucial in factor analysis models. If
different estimates of the parameters of the model lead to the same value of
the covariance matrices, the model is not identified (Bollen, 1989a, p. 239)
Different methods have been proposed in literature, either in EFA or in CFA
(Bollen, 1989a, p. 238-254 and Everitt, 1984, p.16-18) The most important

approaches are presented in section 2.6 (p.17).



1.3 Bayesian approach in factor analysis

According to the Bayesian theory, the parameters of the model are
assumed to be random variables having a specific prior distribution. Inference
is made through the posterior distributions of the parameters, which is
proportional to the likelihood of the data and the prior distribution of the
parameters. The Bayesian methodology has several advantages.

The most important are:

e the posterior distribution can be sequentially updated by incorporating the new
available data to the model as prior information (Carlin and Louis, 2000)

e the full distributional profile (posterior distribution) of a parameter can be
easily provided using MCMC methods. In this way the whole posterior
information regarding the parameter of interest is available (Congdon, 2001).
Recently methods have been introduced also in the frequentistic analysis but
still obtaining the whole distribution of the estimator is not a standard practice
and it can be estimated under specific assumptions (for example normality).

e the improvement of the precision of the parameters of interest (in comparison
to the estimates through classical analysis), since extra available information
can be introduced through prior information (Congdon, 2001).

e common sense interpretation of confidence intervals. Confidence intervals
computed using the classical approach either contain the true unknown
quantity of interest or not. On the other hand, in the Bayesian approach, the
statement that the probability (conditional on the observed data) that the
unknown parameter is within the 95% confidence intervals is equal to 95% is

valid (for details see also Carlin and Louis, 2000, p.36)

Many scientists have contributed to the development of BFA. An important change
to the implementation of BFA has begun when MCMC methods and in particular
Gibbs sampling and Metropolis-Hastings algorithms were developed. Nowadays,

iterative MCMC methods can be easily implemented. In this dissertation, WinBUGS



1.4 (see Spiegelhalter et al., 2003) is used in order to implement the Gibbs sampling
method and estimate parameters of EFA and CFA models.

1.4 Structure of the thesis

The chapter that follows deals with classical factor analysis. A review of alternative
methods of frequentistic factor analysis is presented in detail. The Bayesian theory
and its implementation to factor analysis is presented at the third chapter. The two
approaches of FA are also compared and their advantages and disadvantages are
recorded.

In the fourth chapter we present the schizotypic data and the analysis
through (classical and Bayesian) factor analysis. EFA was applicated with the
use of LISREL 8.52 (see Joreskog and So6rbom, 1996) and WinBUGS 1.4.
(see Spiegelhalter et al., 2003). Five models at each category were used in
order to examine the fit and determine the number of factors needed in order
to have an acceptable model.

The fifth chapter deals with the application of CFA to the same data set
of nine schizotypal traits. Five factor models were fitted using the Bayesian
and non-Bayesian approach. A comparison of the results of the two
approaches is also provided.

Finally, at chapter six, concluding remarks, as well as points of possible

further research are outlined.



CHAPTER 2

FACTOR ANALYSIS: A THEORETICAL FRAMEWORK

2.1 Introduction

Factor analysis (FA) deals with the problem of revealing hidden
dimensions under a set of observables. The variables that are observed are
termed as manifest or indicators (Bollen, 1989a, p.16) while the unobserved
are called latent variables or (latent) factors. The procedure of factor analysis
takes place through the decomposition of the covariance matrix of the
observed variables in terms of unknown parameters and variables.
Occasionally, standardized data and hence the correlation matrix are used
instead of the original data and their corresponding covariance matrix.
Moreover, two different types of factor analysis models can be distinguished
in literature: the EFA and CFA.

Factor analysis is mainly used in two different situations:
e as a data reduction method and

e as a method of revealing the underlying structure of the data.

Scientists are frequently asked to handle large data sets (Bartholomew et
al., 2002, p.145). Therefore, they use factor analysis to “reduce” the
dimension of variables of data matrix, in terms of the number of variables.
Alternatively, factor analysis is used to identify one or more latent variables

that are responsible for correlations among the observed variables.

The theory of FA was firstly developed by Spearman (1904). His effort was
to reveal an indicator or variable which measures the mental ability of a
person. This factor could be used to explain the intercorrelations between the

tests of mental ability. Factor analysis is a useful tool for sciences like



psychology and marketing but it is also used in scientific fields like
econometrics, sociology and biometrics (Kaplan, 2000).

EFA is used when no information is available concerning the latent
variables. It is used as a tool to explore the underlying structure of the data.
According to Tucker and MacCallum (1997, p.132-135), EFA is used by
researchers at initial stages of analysis in order to explore the data and get a
picture of the number of underlying latent factors, as well as, their correlation
structure and their relation with manifest variables.

On the other hand, CFA is used when either preceding information, from
previous analysis, is available or subjective hypothesis is made concerning
the relations among factors or between factors and manifest variables. With
CFA the analyst tests his prior hypothesis that should be based on initial
conclusions of EFA.

A lot of research papers as well as reading textbooks have been written
concerning factor analysis. This thesis considers as a basis books of: Harman
(1976), Kim and Mueller (1978), Chatfield and Collins (1980), Everitt
(1984), Bollen (1989a), Basilevsky (1994), Tucker and MacCallum (1997),
Bartholomew and Knott (1999), Kaplan (2000) and Bartholomew et al.
(2002).

2.2 The factor analysis model

2.2.1 Introducing the model

Let us assume p observed variables denoted by y," =(y,,...,»,) for

individual i=1,...,n, where n is the number of available observations. The

observed variables are assumed to be centered around their means. Moreover,

we assume ¢ (< p) latent factors and their respective factor scores that are
denoted by f." = (fits+ fiy)» for individual i. These factors can either be called

common factors, in case they influence more than one manifest variable or



unique, in case they influence only one manifest variable (Tucker and
MacCallum, 1997).

In the original formulation of factor analysis, the assumed relation between
factors and manifest variables is linear. It is possible to use other types of
association if information of non-linearity is available (Tucker and
MacCallum, 1997). The linear model, for individual i takes the following
form:

y, =Af +e, , for i=1,...,n (2.1)
where A=(4,) is a matrix of (pxgq) dimension called the “loading matrix”

and eiT:(eil,...,eip) is the (px1) vector of errors for the i-th individual.
Constraints must be imposed in order to obtain an appropriate scaling for the
latent variables since they are not directly measurable and their notion is
often obscure. So, either the variance of the latent variable or alternatively
one loading of each column of the loading matrix are constrained to be equal

to one. Using the latter approach (i.e. 4, =1, where 4, are the elements of A)

the scale of the latent variables 1s assumed to be the same as the scale of the
observable ones (for details and an example see Bollen, 1989a, p.239).

Additionally, we assume that f and e, follow multivariate normal distributions

with zero mean and variance-covariance matrices ® and W, respectively. Hence

f.~N,(0,®)
e,~N,0,%), for i=1,...,n (2.2)
In the consequence, y, follows a multivariate normal distribution with zero

mean and variance-covariance matrix X given by:

T=ADPAT+V. (2.3)

Equations (2.1) - (2.3) compose the basic model of factor analysis. A

further assumption is that ¥ is diagonal, since the errors are assumed to be



uncorrelated. Furthermore, the vectors of e, are assumed to be uncorrelated

with each factor.

2.2.2 The orthogonal model

Generally, the covariance matrix of the factors, ®@, is considered to be the
identity matrix so that the factors themselves are not correlated. In that case,
equation (2.3) takes the form:

L=AA"+¥ (2.4)
The factors then share an orthogonal structure and this model is called
orthogonal. However, the hypothesis of uncorrelated factors is not a realistic
assumption since, in practice, latent characteristics are often correlated.
Therefore, in many situations, it is more realistic to drop this assumption and

use a model with correlated factors.

2.2.3 Exploratory factor analysis (EFA)

In this section EFA's main characteristics are summarized. In EFA, there
is no available information concerning the relations between the latent
variables or the latent and the indicators. In addition, the number of factors is
not prespecified. A third constraint is set by assuming that the errors are
uncorrelated among themselves. As a consequence, the analysis starts by
assuming a minimum number of factors, usually one. Then a measure of
goodness of fit is calculated and if the fit is not satisfactory the analysis is

made on a two-factor basis, etc.

2.3 Further notions

The model formulation of equations (2.1) - (2.3) is given in matrix

notation. Alternatively, (2.1) can be written as:



Vy = Apfot Ao bt Ay Sy te,, for j=l..pand i=l..n  (2.5)

Equation (2.5) aids to import further useful notions in the factor analysis
content such as communality, complexity, model fit. In more detail:
e Communality.

The communality hf of a variable y, for the orthogonal factor models, is

given by the sum of the squares of the common factor coefficients:
q
h=> 2%, for j=1,.,p (2.6)
k=1

It is a measure of the variance of j” variable accounted for by the common
factors.

e Complexity.

As complexity we define the number of common factors influencing an

observed variable. Hence, complexity in (2.6) stands for ¢.

e Unique variance.

The term unique refers to the variance of the unique factors, which usually
are the error terms.

e Factor pattern- factor structure matrices.

The factor pattern matrix contains the coefficients of the common factors
that are obtained after a factor analysis, that is the loading matrix A, while
the factor structure matrix, contains the correlations between factors and
variables, that is Cov(f,y). The two matrices coincide in case of orthogonal
factors. (Kim and Mueller, 1978a, p.77 and Kim and Mueller, 1978b, p. 84).

e Reliability.

The notion of reliability is used in specific parts of the following section
(see section 2.7.2, p.20).

Reliability, according to Bollen (1989a, p.206), can be defined as the

consistency of one measurement. It can be measured using the squared

correlation coefficient between an indicator and a latent variable.



e Model fit.

An important aspect for each model adopted is the evaluation of its fit to
the data; see for details in Tucker and Mac Callum (1997, p.142). According
to them, two types of error exist in each model, the model error and the
sampling error. Although in practice these two types cannot be distinguished,
they must be carefully controlled. Careful choice of indicators can reduce
model error. All necessary variables must be measured and considered while
unnecessary variables must be excluded from the model. Furthermore, Tucker
and MacCallum (1997, p.132-143) suggest the following solutions for the
reduction of sampling errors are the following:

1. increase of the sample size
2. elimination of variables with high unique variances and

3. analysis of covariance rather than correlation matrices.

2.4 Confirmatory factor analysis (CFA)

Confirmatory factor analysis needs more explicit and detailed information
than exploratory analysis. Concrete assumptions are made concerning the
number of factors and their correlation structure. For example, we may have
information from previous studies or from scientific theories or scenarios
concerning which variable loads on which factor. In this case we can restrict
specific loadings to be equal to zero. In addition, we can insert available
information related to the relationship between factors. In CFA, the analyst
has usually information available from previous studies, so he can also make
specific assumptions concerning the value of factor loadings. In some cases
CFA follows EFA by eliminating loadings with low values.

The orientation is quite different in CFA than in EFA, since CFA is a
model validation method. As a consequence the fit of the model will be
poorer since some parameters will be fixed or eliminated. What we lose in the
fit of the model, we gain it as an increase in the degrees of freedom and

therefore in favor of the parsimony principle (Kim and Mueller, 1978b, p.58).
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2.5 Estimation of model parameters

The unknown parameters in the model of factor analysis are the elements
of the loading matrix A as well as the variance-covariance matrices ® and
Y. Various methods have been proposed for factor analysis parameters
estimation. According to Harman (1976) they can be divided in two general
categories. The first one includes methods that require estimating the
communalities while the second includes methods that require estimating the

number of factors.

2.5.1 Preceding of maximum likelihood methods

At the first category of methods Harman (1976) includes the principal
factor method, the centroid method and the triangular decomposition.
Although the principal factor method provides a unique mathematical
solution, it is not totally accepted by psychologists. It was firstly proposed
by Pearson (1901) and it was further investigated by Hotelling (1933). It
resembles to the principal component analysis with the difference that, in
principal factor method, the analyzed correlation matrix contains estimated
communalities (reduced correlation matrix).

The centroid method takes its name by the geometric representation of
the solution produced by this approach. It was developed by Thurstone
(1935, 1947). It consists of a series of residual correlation matrices with a
centroid factor, extracted from each residual matrix. According to Tucker
and MacCallum (1997, p.201) the centroid vector is the mean vector through
which a centroid axis is passed. The factor weights are the orthogonal
projections of observed vectors on the centroid factor. The procedure stops
when the residual correlations and the factor weights of the resulting factors

take low values.
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The triangular decomposition takes advantage of a method known as

“square root method” that reduces any symmetric matrix, R here, to a

triangular matrix A, such that R=A A”.

The second category includes the maximum likelihood method, the
MINRES method, the psychometric methods, the multiple group methods and
some factor methods that were used in the early stages of factor analysis.
The last methods are going to be referred firstly, starting with the method
that the pioneer of factor analysis, Spearman, introduced in 1904 (Spearman,
1904). He used a two-factor model in order to explain the intercorrelations

between p observed measures of mental ability in terms of a general factor
g and a specific factor s. He proved that a set of p variables can be
described in terms of one general factor and p unique factors if and only if

all the following tetrads vanish, that is:

Fithm = TaTim =0 for j,k,l,m=12,..,p;j#k#l#m

(2.7)

where 7, denotes the correlation between the variables Y, and Y, . Holzinger (1930)

provided a generalization of Spearman’s theory in case of more than one factor, by
introducing the concept of grouping of variables (Newman et al., 1937). In this
model, all indicators are linearly determined by a general factor, a group factor and a
unique factor. The estimation method used in this case is called the Bi-Factor

method, which is described by Harman (1976, p.120).

The psychometric methods involve image factor analysis and alpha factor
analysis. They are based on the idea that the observed variables are a sample
from an assumed ‘“universe of content”, that is an infinite universe of such
measures. The image theory was firstly developed by Guttman (1953). In this
approach variables under consideration are split in two parts, the image that
is the part of the variable that can be written as a linear combination of all

the other variables and the anti-image that cannot be predicted by a linear
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combination of the other variables. The procedure of this method is based on
finding the eigenvalues of a matrix that combines the observed correlation
and the anti-image variance.
Concerning the method of estimation called alpha factor (Kaiser and
Caffrey, 1965) , the following correlation matrix is used:
R'=H'(R-P)H" (2.8)
where ¥ is diagonal matrix of unique components, H™" is a diagonal matrix that
contains the reciprocals of the square roots of the communalities and R 1is the

observed correlation matrix. The procedure starts with initial communalities and
iterates by finding the eigen solution of matrix R*. Then the elements of the matrix

H™ are replaced with the estimated communalities and the algorithm starts again.
The final solution is obtained when communalities at subsequent steps do not differ
significantly.

By the multiple group methods we obtain dependent factors. Such
solutions are going to be discussed in a subsequent subsection that deals with
the notion of “rotation”.

MINRES method stands for “minimum residuals” method. It tries to find

a solution to the factor problem by minimizing the sum of squares of
residuals between observed and reproduced correlations (the ones implied by
the model). Eckart and Young (1936, p.211) firstly approached theoretically
the method (see also Harman 1976, p.175) followed by Young and
Householder (1938) and Horst (1937). The first practical implementation was
provided by Harman and Jones (1966).

MINRES method is a special case of a more general approach of least
squares method. In this method, as Kim and Mueller (1978b, p.21) note,
firstly the number of factors is determined. Then, after calculating some
initial estimates of communalities, an eigenvalue solution of the observed
correlation matrix is given. The following step is to calculate communalities
based on the factor pattern of previous stage. The procedure keeps on
iteratively of subsequent stages/iterations until no important difference is

made between communalities.
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2.5.2 The method of Maximum Likelihood

In this section we present in detail the approach of maximum likelihood
(ML) method. This is the most frequently used method for estimation in
factor analysis. Tucker and MacCallum (1997) support the method by noting
that it “has many desirable statistical properties, such us consistency,
normality, efficiency”. Another advantage of this method is that it permits
statistical testing of parameters.

The method of ML presents also several drawbacks. The normality
assumption is an important constraint of the method, even though ML can be
used even in cases when the data does not follow multivariate normal
distribution (Bartholomew et al., 2002,p.151). ML is also an iterative method
and as a consequence is more compute intensive (Chatfield and Collins,
1980). Finally, a Heywood case is a problem that frequently appears when
ML is implemented. (Bartholomew et al., 2002, p.172, for details see section
2.5.2.1).

The ML method will be used at the present thesis in order to compare
results between the frequentist’s and the Bayesian approach. According to
Basilevsky (1994, p.367) the ML approach is distinguished between the
unrestricted and the restricted one. The unrestricted ML can only be used in
case of random factors, that is in EFA. On the other hand, when the factors
are fixed, in case of CFA, restricted ML solutions should be given.

Because of the fact that the n observations from the sample follow a
multivariate normal distribution, the elements of the observed covariance
matrix S follow a Wishart distribution with (n—1) degrees of freedom.

Consequently, the log likelihood function L is given by the next equation.
L=In(K) —%(n -~ 1)(1n|2| +%(n - p-2)[In|s[] —%(n -~ l)tr(Z'IS)j (2.9)

where K is a constant involving only n and p, and X is the covariance of

the indicators given by the model.
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In case of orthogonal factors the covariance matrix is given by (2.4). In
that case L is a function of the factor loadings and the variances of the
errors. So, estimates of these parameters are given through maximization of
L. Joreskog (1967) proposed an alternative function that its minimization is

equivalent to maximization of L. This function is the following:
F =In|Z|+7(Z'S)~In|S|- p (2.10)

After differentiating the function F with respect to A and X and setting

the results equal to a zero matrix, we end up with the following expressions:
(I-SEHA =0 (2.11)
and 7 = diag(S— AA") (2.12)

where A and ¥ are the estimates of the loading matrix and the covariance
matrix of the model respectively.

Then, the algorithm starts by imposing initial values for the unknown
parameters. New estimates are generated at each iteration, which substitute
the old ones. This algorithm iterates until low differences appear in

subsequent iterations. The above maximization procedure is performed

subject to the constraint that A"™W'A is diagonal, for identifiability reasons
(for details see section 2.7.1).

It is proved (Basilevsky, 1994) that, under the assumption of normality,
the factor scores are estimated, conditional on the parameters of the model,

by the following equation:
f=1,+A"P'A) AW x,, fori=12,.,n. (2.13)

An alternative way of obtaining ML estimates is EM algorithm (Rubin
and Thayer, 1982). It consists of an Expectation (E-) step where the expected
value of the log likelihood for the factor scores given the observed data (and
initial estimates of A and W) are obtained and a Maximization (M-) step
where the expected log likelihood found in E- step is maximized. The
algorithm iterates until stable values of loadings and factor scores are

obtained; more details can be found in Basilevsky (1994) and Rowe (1998).
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According to Liu and Rubin (1998) at the E-step of the EM algorithm
we compute the expected value of the statistics
2= Y V-V (YY) D= 2%V, T =R (2.14)
n= TooonT n-
At the M-step, after replacing the above statistics with their expected values

we compute the maximum likelihood estimates of the unknown parameters

(the factor loadings Aand V)

Problems in the estimation procedure often are observed when negative
entries of ¥ appear in one iteration of the above algorithm or when one or
more communalities exceed the value of one. The problem is known as
Heywood case (for more details see section 2.5.2.1, p.17).The consequence
of Heywood cases is that the algorithm stops, as variances are not permitted
to take negative values.

ML approach also provides a goodness of fit test:

c=(nm-1)minF (2.15)
where F is the function given by equation 2.10. The test is performed to test

the null hypothesis
H,: the covariance structure is restricted to X=AA" +W¥
against the alternative

H, :X is an arbitrary positive definite matrix

Under H, the statistic (2.14) follows a chi-square distribution with

v=%up—@%wp+m] (2.16)

degrees of freedom, where pand ¢ are the number of observed and latent

variables respectively. In the above equation the number of common factors
is assumed to be known. This is not possible in practice. Therefore, we start
from a minimum assumed value of ¢ (usually 1) and we increase the number
of factors by one until the fit of the model is not rejected by the

corresponding significance test.
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The chi-square test is based on the assumption that the null hypothesis is
true which means that the model holds for the population. This is restrictive
in the sense that in reality, such a mechanism may not exist. Hence, chi-
square tests frequently may lead to the rejection of the assumed model.
Another important point is that the chi-square statistic is heavily influenced
by the sample size. Consequently, for large samples, it takes large values,
leading again to the rejection of the assumed model even if it is a good
approximation of reality. In addition, the values of the chi-square test
decrease as the number of the parameters are added. This fact makes the chi-
square test an unreliable statistic.

For this reason, in CFA a number of other measures of fit have been
developed and used in literature. These measures take into account both the
parsimony principle and fitness of the model and they are briefly presented in

section 2.5.

2.5.2.1 Heywood cases

A problem that frequently occurs when the iterative method of ML is
implemented is called Heywood cases. It appears when one or more
communalities exceed the value of one (Bartholomew et al., 2002, p.172).
The Heywood case corresponds to zero or negative values of the variance of
some errors (Chatfield and Collins, 1980, p.87).

According to SAS/STAT/User’s Guide (FACTOR procedure), the

Heywood cases are possibly due to:

e the inappropriateness of the model,
e the small size of the sample and

e the large or small number of the factors.

Constraining the values of the variances of errors to exceed a positive

“small” value &, that is w,>&, solves the problem. According to
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‘Information Technology Estimates’ (FAQ LISREL), different methods of
solutions except for ML are proposed as well as the use of appropriate
starting values of the algorithm. In addition, two other approaches are
available in order to avoid such cases: the gradient method and a Newton-

Raphson method. Further details can be found in Tucker and MacCallum

(1997, p.266-282).

2.6 Goodness of fit statistics-Model selection measures

In this section we present various statistics and measures used for the
selection of the number of factors in a model. Most of them are functions of
chi-square statistic and the degrees of freedom of the model. They take into
account the parsimony of the model (the number of the parameters) as well as
its goodness of fit.

AIC (Akaike, 1974, 1987), CAIC (consistent AIC by Bozdogan, 1987) and
the single sample cross-validation index ECVI (Browne and Cudeck, 1989)
are provided by LISREL and are given by:

AIC ==2log L+2d,, (2.17)
CAIC =c+(1+Inn)d, (2.18)
ECVI ={c/(n—1))+2(t (n—1)) (2.19)

where logL is the log likelihood (see section, 2.5.2), ¢ is given by
c=(n—-1)F the chi-square measure of overall fit of the model, n the sample
size, d, the number of free parameters. Small values of these measures show

a better fit of the underlying models.

In addition, two alternative goodness of fit indices, which are used as a measure
of fit between different models, are the goodness of fit index (GFI) and the adjusted
GFI (AGF]) given by:

GFI =1- (2.20)
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and AGFI = 1—{(](57;1)}[1—GFI] (2.21)

where £ and S are the estimated by the model and observed covariance matrix

respectively, I is the identity matrix and df are the degrees of freedom of the model.

They do not depend on the sample size while AGFI is a variation of GFI adjusted for
degrees of freedom. They take values between zero and one, with values close to one
indicating perfect fit.

Another class of indices compares the fit of the model with respect to the
independence model, which is the model that assumes that no underlying structure

exists concerning the manifest variables. Some of them are the Normed Fit Index

(NFI):
NFI — E) _Ame

2.22
B (2.22)

Non-normed Fit Index (NNFI) (Tucker and Lewis, 1973, Bentler and Bonett, 1980):

Yo"

NNFI = LYo Ui (2.23)
S/
df, /n-1

Relative Fit Index (RFT) and Incremental Fit Index (IFI, Bollen, 1986, 1989a, 1989b)

and Comparative Fit Index (CFI, Bentler, 1990) given by:

max [(n ~DxE_ —df.. . 0}
max[(n—l)xl:"0 —dfO,O}

CFI =1- (2.24)

where ﬁmin and ]:}) are the function values of the fitted and the independence models

respectively anddf,

mand df, are the degrees of freedom for the fitted and the

independence model respectively.

They take values between zero (0) and one (1). James, Mulaik and Brett (1982)

suggest the Parsimony Normed Fit Index (PNFI) , Mulaik et al. (1989) suggest the

Parsimony Goodness of Fit Index (PGFI) given by:

PNFI = Yo Fo = P (2.25)
dy K
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pGr1 =Y Gy (2.26)
df,

0

with df, . and df, as above. The latter indices take into account the parsimony of the

models.
Browne and Cudeck (1993) proposed a number of fit measures, which take into
account the error of approximation of the assumed model in the population. They

define the population discrepancy function (PDF) as

F, = max(l:" —i,oj (2.27)
n—1
where F' is the minimum value of the fit function, df is the degrees of freedom.

Steiger (1990) defines the Root Mean Square Error of Approximation (RMSEA)

e=\F /d (2.28)

as a measure of discrepancy per degree of freedom. Values of ¢ below 0.05 indicate

a close fit while significant errors of approximation in the population are represented

by values of ¢ up to 0.08 (Driscoll et al., 2005, Browne and Cudeck, 1993)
2.7 The problem of identification in factor analysis

The problem of identification is due to the fact that f , A and e are unobserved.
Let us assume that 0 =(f, A,e) is the vector of unknown parameters of the model,
that is the vector containing the unknown factor loadings, the correlations between
common factors and the variances of the errors of measurement.

Let us denote by X(0) the covariance produced by a set of parameters0 . Then, the
model parameters 0 are identified if no vectors 0,# 0, exist such that
X(0,)=X(0,) (Bollen, 1989a, p.239). Alternatively, if two different vectors of the

unknown parameters lead to the same value for the covariance matrices, the model is
not identified. When a model is not uniquely identified then different models can be
constructed with the same fit and predictive ability but with different parameter

values leading to different interpretation of the relations between variables. However,
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in order to develop a reliable and robust scientific theory, we need to conclude in a
single model. This can be solved only if we efficiently deal the problem of

identification.
2.7.1 Identification in EFA

In exploratory analysis, some constraints must be imposed on the
parameters in order to produce a set of identifiable parameters. As it is
mentioned by Everitt (1984), if we assume orthogonal structure for the latent
factors (@ =1), then a well-known identifiability condition arises when we
restrict A"W'A to be diagonal (where ¥ is the variance covariance matrix of
unique factors). The constraint of diagonal A"™W'A is equivalent to
restricting the first factor to have the maximum contribution to the variance
in the manifest variables, the second makes a maximum contribution, subject
to being uncorrelated to the first and so on (Everitt, 1984, p.17). Therefore,
the ordering of the factors also corresponds to the order of contribution to the

observed variables.

Using this set of constraints we impose Eq(q—l) restrictions on the loadings

(Kaplan, 2000, p.44-45). Therefore, the number of the free parameters in the factor

analysis model (assuming® =1) is equal to
1
p+pg=54(a=1) (2.29)

Lopes and West (2004) use the assumption of full rank of the loading
matrix. Moreover, Geweke and Singleton (1980) showed that if the loading
matrix has a rank lower than p, then the model is not identifiable. Lopes
(2003) also, apart from other constraints, refers to orthogonal A matrix in

order to have an identified model.
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2.7.2 Identification in CFA

In CFA we can use available information concerning the structure of the
loading matrix. Therefore, we may constraint some loadings to be equal to
fixed values, usually zero, or set specific parameters equal; see Bollen
(1989a, p.239). This helps the identification problem as the number of
unknown free parameters is reduced.

Bollen (1989a, p.242-246) provides some necessary but not sufficient
conditions required when an identified CFA model is estimated. In the 1-
factor model with two indicators, Bollen uses the value of reliability of an
observed variable (see section 2.3) to solve the problem of identification. He
also, concludes that the only constraint that must be imposed in order to have

a one-factor model with three indicators identified is to set one of the /111

equal to 1 (or its variance ¢,=1). If we impose more constraints on the
loadings then the model becomes overidentified.

For more complicated models, even for the three-factor ones, the
algebraic computations are too tedious, so other rules are established in order
to produce identifiable models. As already mentioned, these rules are
necessary but not sufficient to solve the identification problem and should be
applied after setting the scale of the latent variables. The rules that follow are

presented at Bollen (1989a, p.242):

1. The first rule, which is called the t-rule, requires the number of free
parameters of the unknown parameters 0 to be lower or equal to the known

elements in the covariance matrix of y:
1
d, S;q(qﬂ) (2.30)

2. The three-indicator rule requires:
e for a multifactor model three or more indicators per latent variable,

e cvery observed variable loads on one and only one latent variable and

22



e uncorrelated errors.
In this approach, factors can be correlated. It is proved that the elements of

® are identified after scaling the latent variables.

3. The two-indicator rule, requires:

e uncorrelated errors

e the scaled latent variables

e cevery indicator loads only on one latent variable (factor complexity of

one)

e two indicators per latent variable and

e 1o zero elements in @.

Bollen (1989a, p.245-246) has generalized this rule by loosening the
requirements for®. Using this generalized rule we may constraint some
elements of @ to be equal to zero, without impact concerning identification.
The proof is based on ‘blocking’ the structure and applying the not-
generalized rule only in the part of the model that has correlated factors. The
same approach can be implemented for all the subsets of indicators.

An alternative set of constraints that provide identifiable parameters is
given by Basilevsky (1994, p.361-363). According to Basilevsky, the only
assumption that is made in order to have an identifiable model is the
homoscedasticity of errors between factors, which does not seem realistic for

real datasets.

2.7.3 Local identification

Bollen (1989a, p.246-254) provides a set of empirical tests for model
identification. He distinguishes two types of identification: global and local.
His empirical tests focus on the case of local identification.

Local identification concerns a specific point of the parameter vector, say

0,, and determines whether the implied covariance matrix changes with small
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changes in 0,. It is necessary but not sufficient condition for global

identification. One test for local identification (called Wald’s rank rule;

Wald, 1950), facilitates a vector o(0)containing the non-redundant elements
of X(0). The tx1 vector of unknown, unconstrained parameters 0 is locally
identified at a point 0=0, if and only if the rank of 0c(0)/00 evaluated at 0,

is equal to ¢.
Another local identification test facilitates the information matrix of 0.

According to this test, the vector 0 is locally identified at some point 0, if

and only if the inverse of the information matrix exists. This test has been
also recommended by Keesling (1972), Wiley (1973), Joreskog and S6rbom,
(1986), and it can be easily implemented, since the inverse of the information
matrix is given by statistical programs like LISREL and EQS; for details also
see Bollen (1989a, p.246-254). Of course, local identification does not imply
or ensures global identification. Moreover, the issue of local identification is
more complicated, since the theoretical background of local identification
deals with the parameters of the population, while the tests can be

implemented on the available samples. So, an unidentified point 6, may

incorrectly pass the test or the opposite. In this case, large standard errors of
specific parameters estimates indicate possible unidentified parameters.
Another empirical approach proposed by Bollen (1989a, p.251), is based on
using various starting values. If the model is identified then the model
parameters should always converge at the same value. Alternatively, after

running once the algorithm with the sample covariance matrix, we could

repeat the analysis using the predicted covariance matrix )3 given by:
T=AAT+Y

where A and ¥ are the estimates produced by the first analysis. Identical

estimates provide an indication that the model is identified.
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2.8 Rotation

Another important issue in factor analysis is rotation. The methods
analyzed in section 2.4 produce mainly orthogonal factor solutions. This
solution, with the exception of one-factor model, is not unique, as a
consequence of the constraints’ implementation (for details see section 2.7).
So, an infinite number of sets of factor loadings corresponds to the same
model, with the number of factors as well as the communalities
unchanged. It is important that the obtained factor loadings can be easily
interpreted. Therefore, if the produced loadings imply a complex structure of
relations between factors and indicators, an alternative simpler and easier to
interpret solution can be considered.

The process of moving from one solution to another is called rotation
(Bartholomew et al., 2002, p.156). There are two categories of rotation,
orthogonal and oblique rotations. In case of orthogonal, the new factors share
an orthogonal structure, while in case of oblique, the factors are correlated
and their structure is not orthogonal.

As it was mentioned above, the main purpose of rotation is to obtain a
simpler structure describing the associations between indicator variables and
factors. According to Kim and Mueller (1978b, p.31) the simplest structure
matrix is obtained when the factorial complexity of each indicator is one.
This does not often appear in practice.

Orthogonal rotations can be obtained mainly using three methods:
Quartimax, Varimax and Equimax; for details see Kim and Mueller (1978Db,
p.34). In Varimax rotation the variance of the squared loadings for each
factor is maximized while in Quartimax the variance of squared loadings for
each variable is maximized. Equimax is a combination of these two methods.
It uses a criterion that maximizes a linear combination of the quantities that
are used in the two others methods. According to Tucker and MacCallum

(1997, p.366) a variation of Varimax called “Raw Varimax” solution,
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implements the original Varimax method on the normalized factor matrix.
Another combination of Quartimax and Varimax methods leads to the
Orthomax method of rotation (Tucker and MacCallum, 1997, p.369).
Furthermore, there is a cycling procedure of rotation that is applied on all
possible pairs of factors. With the aid of a minimum quantity, the process
stops when no significant transformations exist for all pairs.

When we apply the method of Quartimax rotation without the
orthogonality restriction, then we produce an Oblimin rotation solution.
Moreover, the oblique variation of Varimax method was termed Covarimin
criterion and was proposed by Kaiser (1956). Covarimin solution did not
provide satisfactorily oblique solutions in contrast to Quartimin, which gave
overly oblique solutions. Due to this fact, Carroll (1957) combined these two
criteria and produced the general Oblimin criterion. The Biquartimin method
of rotation is a special case of this new method. Furthermore, the Oblimin
procedures mentioned above, led many times to singular factor matrices,
which is not desirable. The problem was dealt by Jennrich and Sampson
(1966) by introducing the Direct Oblimin method, which also have important
disadvantages; see Tucker and MacCallum (1997, p.377). Other oblique
rotations of factors are the Promax and the Orthoblique one proposed by
Harris and Kaiser (1964) that lead to orthogonal or oblique solutions, through
orthogonal transformations. Finally, the Oblimax criterion maximizes the
number of small and large loadings and can be used to produce either

orthogonal (Quartimax) or oblique solutions.
2.9 Conclusion

Factor analysis is a multivariate methodology that is mainly used in
social sciences, psychology and marketing when we assume that non

observable variables exist under a set of observable ones. To reveal them we

measure a set of observable symptoms or characteristics and apply factor
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analysis to estimate the hidden factors. Alternatively, factor analysis can be
also used as a data reduction method (see section 2.1, p.5).

When fitting the factor analysis model some constraints must be
implemented in order to produce a single identifiable model (see section 2.7,
p.19). We can produce alternative solutions by transforming the parameters of
our model using different rotation methods (see section 2.8, p.23).

The latter is the main reason why factor analysis was harshly criticized by
several researchers (see for example Chatfield and Collins, 1980, p.87). BFA
presented in the following chapter deals with the above problems and offers

several remedies for many of them.
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CHAPTER 3

BAYESIAN FACTOR ANALYSIS

3.1 Introduction

Bayesian theory was founded by Rev. Thomas Bayes (1763), an English minister
and mathematician. However, his work was not really widely implemented by the
scientific community until the beginning of 1950. This was due to the fact that the
classical (or frequentistic) approach was easier implemented in practice and hence
dominated the statistical science. Bayesian statistics started to become popular after
the first development of technology and in particular the recent widespread
availability of high-speed computers, which allowed the wide availablility of
Bayesian methods using MCMC algorithms (Carlin and Louis, 2000, p.6 and
Congdon, 2001, p.1).

Nowadays, the methods of both approaches (frequentistic and Bayesian) are
equally used in practice, at least for research reasons (Carlin and Louis, 2000). The
differences between Bayesian and frequentistic approach are not only methodological
but also philosophical. Frequentistic inference involves uncertainty under the
repetition of samples from an assumed model, which implies the probability
distribution of the observed data conditional on unknown parameters to be estimated.
All unknown parameters of the model are considered as fixed values. This is the gash
point in the two approaches, as the same unknown parameters are considered as

random variables in the Bayesian approach.
3.2 Bayesian theory

A Bayesian model consists of two main components: the sampling model
(likelihood) and the prior distribution of the model parameters. The prior distribution

reflects our knowledge about the unknown parameters 0 before observing the data.

This knowledge can be based either on previous research or on a subjective belief of a
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practitioner or researcher. The information included in the prior and the likelihood is

combined together to produce the posterior distribution f(0]y).

The mathematic equation that combined the prior and data information is based on

the Bayes theorem:

f(y[6)7(8)

0lvy)=
f(Oly) (y)

3.1)

where 0 is a (px1) vector of model parameters, y is a (nx1) vector of data,
f(y|0@) is the conditional distribution of the observed data vector y=(y,,...,»,)"
given the vector of the unknown parameters @ (model likelihood), 7(0) is the prior

distribution of 0 , m(y) is the marginal density of the data y given by:

m(y)=[ f(y10)7(0)d0 . (3.2)
From (3.1) the posterior distribution is proportional to the likelihood and prior, hence
f(@]y)oc f(y|8)7(8) (3.3)

This relationship is of major importance since it simplifies the calculation of the

posterior.

3.3 Prior distributions

The specification of the prior distributions directly affects the posterior
distribution, which is used for the inference of the parameters.
An important category of prior distributions is the conjugate priors. A prior

distribution is called conjugate to the likelihood f(y|0) when the produced posterior

distribution belongs to the same family as the prior does. Using this approach,
computation is considerably simplified. Morris (1983) has shown that such conjugate
priors exist for exponential family models. In case of multidimensional parameter
vector 0, independent conjugate priors for each conditional posterior distribution can
be produced; for details see Carlin and Louis (2000, p.25-28) and Bernando and
Smith (1994, p.265).

Conjugate priors can also be used in the form of a mixture. This approach is

convenient when we are uncertain about the prior distribution or when we wish to
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handle dissimilarly the parametric space. Therefore, in the case of a one dimensional
problem with @ =( ) we may use a two-component mixture prior

@) =arn()+(1-a)r,(0) ,0<a<l (3.4)
where 7, and 7z, are prior distributions conjugate to f(y|&)(see Carlin and Louis,

2000, p.27).

However, Bayesian theory can be also applied when no prior information is
available, with the help of non-informative or vague priors. These priors allow the
data to reveal themselves to the posterior distribution through the likelihood. When

the parameter space is discrete and finite, that is € ®=(6,,...,0,)", then a prior

distribution of the form

(@)=L, fori=1,..n (3.5)

n
will represent prior ignorance since all events will be equally probable.
When, on the other hand, we have a continuous and bounded parameter space, like

0 € ® =[a, ] then a sensible non-informative prior is the uniform

1
pO)= m . (3.6)

When o =—wand f = we can apply a constant distribution, that is

p(@) < 1. (3.7
However, this is an improper distribution, sincej p(0)d@ =o. Hence, this kind of

non-informative prior should be used only in case that the marginal distribution of the

data m(y) integrated to a constant real number K. Hence only when the resulted

posterior is proper.

Generally, non-informative priors prevent the researcher from making
inappropriate assumptions concerning the nature of the distribution of the unknown
parameters. The posterior distribution is determined only by the likelihood. In the

case of a flat prior, the posterior distribution is proportional to the likelihood:
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JOly)c f(y[8). 3.8)

According to Carlin and Louis (2000, p.22) the choice of a prior distribution of the
parameters of a model is a tedious task. If we wish to incorporate past information in
our model then it can be summarised using a distributional family. Alternatively, the
subjective opinion of the experts involved in the problem may be the base of selecting
an appropriate prior distribution. If no or low information exists then we should

choose a low or non informative prior distribution as already discussed above.
3.4 MCMC methods

When a posterior distribution cannot be calculated analytically in a closed form
expression, alternative methods can be used in order to estimate it. In this section we
will describe the simulation-based methods that according to Carlin and Louis (2000),
can be separated in iferative and non-iterative methods. Some of the non-iterative
Monte Carlo methods are direct sampling, importance sampling, rejection sampling
and weighted bootstrap. Implementing these methods, one sample is produced in each
iteration. However, they have limited applications. The alternative methods are
MCMC iterative methods. The two basic methods are Metropolis-Hastings (M-H)
and Gibbs sampling algorithm.

In the M-H algorithm a candidate- generating density or proposal density ¢(6,6")
needs to be specified. This proposal is used to generate candidate &' values when the
process is at state €. The probability of moving from the state & to the state 6’ is
denoted by a(#,68") and equals to

n(6)q(4',6
a(6,0') = mln(%’

1, , otherwise

1}, 7(0)q(6,0') > 0 59)

where in Bayesian theory, m(0) can be substituted by f(0|y) which is the true joint

posterior distribution of the parameters 0. The distribution 7(0) needs to be
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available only up to a constant. This is very convenient in Bayesian statistics since the
posterior distributions are expressed proportional to the prior and the likelihood.
f(0)%(0)q(8',0)
S 0)x(0)q(0,0')

equation (3.3). The algorithm is implemented through the following j iterations:

Therefore, (3.9) becomes a(é’,é?'):min( IJ according to

Step 1. Give an initial value 6”

Step 2. Generate @' from a proposal distribution ¢(6,-)
and u from U(0,1)
Step 3. If u<a(6",0)
-set 9V =@
Else
—set 9V = g
Step 4. Set j=j+1
Step 5. If j <N goto Step 2,
otherwise return the generated values { 6",0%,... 6"
where U(0,1) is the uniform distribution at (0,1).

The above algorithm describes the generalized form of M-H algorithm suggested
by Hastings (1970). In their original paper, Metropolis et al. (1953) have limited the
algorithm to symmetric proposal densities with ¢(6,68")=q(6',0). A family of such
densities (proposed by Metropolis et al., 1953) is ¢(8,0")=¢q,(0'—-6) with ¢,(-) a
multivariate density; usually the multivariate normal or t-density. This case is called a
random walk chain or random walk Metropolis algorithm. Another family is
q(0,0')=q,(0") that produces independence chains (Hastings, 1970) that do not
depend on the current value of the parameter.

The specification of the scale of the proposal distribution is essential since it can
lead to either large proposed jumps around the parameter space (from € to 8') with

large rejection probability or to high acceptance rate when very small jumps around

the parameter space are proposed. Both situations lead to high autocorrelated chains
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and increase of time of convergence. For a comprehensive presentation of the M-H

algorithm see Chib and Greenberg (1995).

Gibbs sampling is a special case of Metropolis-Hastings algorithm. It was firstly
proposed for discrete distributions by Geman and Geman (1984). Let us assume that
we are interested in drawing a sample from the unknown joint probability of K -

random variables, that is p(®) with @=(6,,...,0,). Instead, we can generate
samples from the full or conditional distributions p,(6.10_,), fori=1,..,K, where
0.=(6..0.0,.906,).

Then after providing initial values {0,...,0 } steps 3-4 of M-H algorithm are

substituted by the following actions:

Draw 6"~ f(6,16,...,60°)

Draw 6\"~£(6,16",0\"...,6)

DraW 0121)"’]‘(91( | 91(1)7-"7 01((121)

After ¢ iterations we obtain(8”,...,0\). It is proved (see Carlin and Louis, 2000)
that

(@) (8°,...,0)—2>(,,....0,)~p@, ,....0,), as t —> o

(b) The above convergence is exponential in ¢ using the L, norm (for details see also
Casella and George, 1992).

Variations of the above algorithms have been provided in literature. An
example is the reversible jump MCMC (RJIMCMC) that is appropriate for
comparison of different models defined on a different parameter space with
varying dimension. For more information on RJMCMC and other
combinations of MCMC methods see Green (1995) and Carlin and Louis
(2000, p.159-170).
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3.5 Overrelaxation

Autocorrelation is frequently observed in the MCMC generated samples.
As a result much larger samples are needed in order to attain convergence. A
remedy for reducing autocorrelation was suggested by Adler (1981). The
proposed method is called overrelaxation. According to this method, the new
value in Gibbs sampling iteration is selected so as to be negatively correlated
with the previous one. Let us assume that K components compose the

parameter state @ =(6,,...,0,) and also, all full conditional densities 7(6,]0_,)
are Gaussian. In addition, the 6, component has conditional mean g, and

variance o, which are functions of other components {0_ }. Then the new
value @ is:

0 =y +a(6-u)+ro(1-a’)"’Z (3.10)
with —1<a <1 and Z follows standard normal distribution. When « is zero,

the method is equivalent to Gibbs sampling. Negative values of « are
preferred because they produce values of i” parameter from the other side of

the mean from @,. Note that for o =—1 the chain does not reach convergence.

Other methods of overrelaxation are also provided in literature. A review
of these methods is presented by Neal (1998). At the same paper, Neal also

introduces the method of ordered overrelaxation. According to this method,
the new value Hi' is chosen according to the following procedure:
1. K values are generated from the conditional distribution 7(6,|6,.,)
2. These K values plus the old value 6, are arranged in non-decreasing
order 07 <9"<..<0"=6<..<0", with r the index of the
ordering of the old value.

3. The new value 8 equals 6 =0*"
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With K =1 we get Gibbs sampling and K —»wis equivalent to a=-1 for
Adler’s method.
Neal (1998) also presents the method of ordered relaxation with respect

to a uniform distribution. The values u, =F(6,) follow a uniform U(0,1)
distribution, where F(-) 1s the cumulative distribution function for the

conditional 7(6, |6 ,). Then the method of ordered overrelaxation is done in

u,, and the new value u, is transformed to ' = F'(u), with F™' the inverse

distribution of F.

Although overrelaxation in general accelerates the convergence, it has
drawbacks and should be implemented with caution; for details see Neal
(1998). WinBUGS provides the possibility to produce ordered overrelaxed
chains according to Neal’s method (Spiegelhalter et al., 2003).

3.6 Diagnosing convergence

In general, it is difficult to detect whether a chain has reached convergence. But
convergence is essential for the estimation of the posterior distribution, because
inference is based on the generated sample which is assumed to be a good
approximation of the target posterior distribution.

There are several convergence diagnostic tests of MCMC chains. CODA
(Convergence Diagnosis and Output Analysis Software for Gibbs sampling analysis;
see Best et al., 1996) is an S-plus library that provides four diagnostic tests suggested
respectively by Geweke (1992), Gelman and Rubin (1992), Raftery and Lewis (1992)

and Heidelberger and Welch (1983). Other tests or convergence diagnostic tools are

available like Yu and Midland’s CUSUM method, Liu, Lu and Rubin’s I’
convergence diagnostic, the Johnson diagnostic, Garren and Smith’s convergence rate
estimator; for details see Brooks and Roberts (1998). In the present thesis,
convergence of chains has been tested using CODA software. For this reason the

four tests available by CODA will be briefly described.
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Geweke (1992) suggests that the values of a function g (-) of the simulated

parameters can be treated as a time series. As a consequence, a spectral density

S, (w) for this time series can be calculated, which is continuous at zero, with its

value S, (0). He focuses on the mean of the function g that can be estimated by

B > g(6")

VR (3.11)

with g(6")the values of the function g at each Gibbs sampling iteration, with N
the size of the Gibbs sampling chain. He also provides an estimate of the standard

error of the mean:

S,(0)
= (3.12)

The above concept is used for two different portions of Gibbs chain: N, and N,

with N, + N, < N. Geweke’s convergence diagnostic uses the following statistic:

Z,=— gNA—ng < ,N@O,T),as N—o>w  (3.13)
LS540y +— S*(0
\/NA . (0) N, . (0)

where S ; (0)and § ; (0) are spectral estimates for the two portions of the sample N,

and N, respectively, evaluated at 0.
: N N )
Geweke (1992) suggests taking N, =E and N, =? , that 1s the first 10 % and

the last 50 % of the Gibbs sample, respectively. So, Z, 1is used to test the null
hypothesis that the two subsamples have equal means. Values of Z, which lie in the

tails of a standard normal distribution provide an indication of non convergence (Best

et al., 1996).
The second diagnostic of CODA, introduced by Gelman and Rubin (1992), can

be applied on two or more parallel chains. Let us assume m generated chains with

different starting points. Then the last, say n, iterations are used to reestimate the
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distribution of the parameters of interest as a Student t-distribution, the scale
parameter of which involves both the between and within-chain variance.

Convergence is monitored by estimating the factor by which the estimated scale
will shrink as n — oo, that is

_[N-1 m+1B [ df
\/E_\/ N mN W\/df—z G

where B is the variance between the means from the m chains, W is the average of
the m within-chain variances and df is the degrees of freedom of t-density. “Shrink

factor” for a chain that has converged is near 1.

The third diagnostic test was proposed by Raftery and Lewis (1992). It is a single
chain test which focuses on the estimating a quantile (usually the 2.5") of the
posterior distribution of the parameters of interest, at a given degree of precision and
a required probability of attaining this degree of accuracy. Then, the program reports

N_,. - the minimum number of iterations that should be run, N the total number of

iterations, B the number of burn-in iterations and k& the thinning interval to be used
in order to estimate the specified quantile of interest at the given precision. The above
procedure is related to a binary process, subsequences of which approximate Markov

chains; for details see Raftery and Lewis (1992).

Finally, Heidelberger and Welch’s convergence diagnostic (1983) is used for
single chains from univariate observations. It can be generalized for multi-
dimensional and multi-sample statistics. The test consists of two parts and is based on
ideas from Brownian bridge theory. Using this diagnostic we test for the null
hypothesis that stationarity is attained using the sampled values. This is achieved
using the Cramer-Von Mises statistic (von Mises, 1931). If the null hypothesis is
rejected the first 10 % of iterations is discarded and the test is repeated on the
remaining sample. This procedure is repeated until 50 % at least observations or more
of the chain passes the stationarity test. Half of the chain is used. If the null
hypothesis is rejected for all repetitions until then we have an indication that the chain

has not reached convergence. If the test is passed, the number of iterations that have
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been used to pass the test, the discarded iterations and the Cramer-von-Mises statistic
are provided.

In the second part of the test the halfwidth test is implemented. The portion of the
chain that passed the stationarity test is treated as a time series from which we

estimate the spectral density at zero, S(0). Then, the asymptotic standard error of the
mean is equal to:

SO
~ (3.15)

P

where N, is the length of the retained chain. If the halfwidth of the 95 % confidence

interval of the mean, evaluated with the asymptotic standard error, is less than ¢
times the sample mean, the halfwidth test is passed; £ is a small fraction with CODA
default 0.1. In the opposite case, the halfwidth test reports failure and a longer chain

should be run to achieve increased precision of the estimated parameter.

3.7 Model selection

The comparison between the models, at this thesis, is conducted through
three Information Criteria: Deviance Information Criterion (DIC,
Spiegelhalter et al., 2002), the Bayesian variation of Akaike Information
Criterion (AIC, Akaike, 1987) and Bayesian Information Criterion (BIC,
Schwarz, 1978). An alternative quantity used for model selection is Bayes
factor; for details see Kass and Raftery (1995).

DIC is directly provided by WinBUGS. It is equal to:

DIC=D+p,=D(0)+2p, (3.16)
where D is the posterior mean of the deviance, p, is the effective number of

parameters and D(0) is the point estimate of the deviance at the mean of the

estimated parameters 0. The deviance is defined as

D(8) =-2log f(y6) (3.17)
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N
while p--2 > log f(»16Y). (3.18)

t=B+1
The model with the smallest DIC is estimated to be the model that would
best predict a replicate dataset of the same structure as that currently
observed.

Akaike (1987) defines the Bayesian version of the AIC as:
AIC=D(0)+24d, (3.19)
where D(é) is the minimum value of the deviance, ® is the mean of the
posterior distribution of the estimated parameters and d, the number of

estimated parameters.

BIC (Schwarz, 1978) is estimated by:
BIC =D(8) +d,, log(n') (3.20)
where n' is the number of observations. In case of factor analysis »'=number
of individuals*number of observed variables.

Both AIC and BIC penalize for the number of parameters and in general,

they tend to choose the less complex models.

3.8 Bayesian approaches to factor analysis

The unknown parameters in the model of factor analysis presented in
equation (2.1) can be evaluated, using the Bayesian approach. Using this
approach, we specify prior distributions on the parameters and we produce
posterior distributions. Inference is based on the mean or other moments of
posterior distributions.

The first attempt of BFA was made by Press (1972). After his work, many
researchers have contributed with their published work, like Kaufman and Press
(1973), Martin and Mac Donald (1975), Lee (1981), Press and Shigemasu (1989,
revised in 1997), Rowe (1998, 2000a, 2000b, 2000c, 2001, 2003), Raftery (1993),
Rowe and Press (1998), Scheines et al (1999), Hayashi and Sen (2002), D’Souza
(2002), West (2003), Lopes (2003), Lopes and West (2004) and Fokoue (2004).
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At this section the basic form of the model used in BFA proposed by Press and
Shigemasu (1989) will be presented, as well as the alternative forms proposed by
Rowe (2000a, 2000b, 2001) and Rowe and Press (1998). Moreover, a review of other
models proposed in literature will be presented and the parameterization of the lower
triangular matrix (proposed by Lopes and West, 2003) that will be used at the
Bayesian analysis of schizotypic data in section 5.2.2.

Press and Shigemasu (1989), in the following will be denoted as PS89, present a
basic form of the model used in BFA. The model is given by (2.1) (see p.7). It can
also be written in matrix form as:

Y=F A+E . (3.21)

(nxp)  (nxq) (gxp) (nxp)

In BFA, the errors e;s (the elements of E) are assumed to be normally distributed
that is e,~N(0,%). But ¥ in that case is a positive definite matrix, not diagonal
itself but diagonal on average, that is £(¥) >0 and diagonal.

The unknown quantities are (A, F,¥ ) with F" =(f,,..., ). The likelihood of

(A,F,¥) by assuming independent y, s is expressed by:
-n/2 1 —1 T\T T
F(Y|AF,¥) || exp(—gtr‘l’ (Y-FA") (Y-FA )j . (3.22)

The prior distributions used by PS89 belong to the natural conjugate family. The joint
distribution of ( A, F,¥ ) has the following structure

JAE¥) o f(AY) f(F)f(F) (3.23)
with A conditional on ¥ has elements that are jointly normally distributed, with
hyperparametrs (A, H), H=nl for some scalar n,.Hence f(A[W¥)~N, (Ay,n]I).
The matrix ¥ follows an inverse Wishart distribution with hyperparameters (v,B),
with B diagonal, that is ¥~ W (v,B). The prior distribution of F may be specified

either by historical data or alternatively may be proportional to a constant. The factor

scores of subjects are also taken to be a priori independent so as to have

AOEPAVAIRNAVS (3.24)

Hence, the joint posterior density of the unknown parameters becomes with the help

of Bayesian theory:
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SAFEYY) < f(Y]AFY)f(AF,Y)
© fE exp(—%tr‘P'lGj (3.25)

with G =(Y-FA")"(Y-FA")+(A-A)HA-A,)" +B.

The marginal posteriors for (A,F|Y) and (F|Y) by integrating with respect to ¥
and (A,¥) can be also found in PS89. For large samples and for a wide variety of
priors of F, including that proportional to a constant, it is proved that, (f;]Y) is
distributed as a multivariate t distribution.

Due to the fact that the marginal joint posterior (A,%¥) is complicated, A 1is
estimated for given F=F. So, the authors show that any scalar element of A
conditional on (ﬁ, Y) follows a general Student t-distribution. In addition, the mean
of the distribution at A, given the data vectors and F,is used as a point estimator A.
This estimator helps to estimate the marginal distribution of ¥ conditional on
(F,A)= (1:“,[\). After algebraic manipulations, f (‘I’|ﬁf\,Y) is an inverse Wishart
distribution. As a point estimator of ¥ we can consider the mean ¥ = E(¥ | F,A, Y).

Several researchers have suggested some alternative forms of priors. For

example, Martin and Mac Donald (1975) use the following prior distribution
f(F,¥)= kexp(—Z(/a: /wf)j (3.26)
i=1

where & is a normalizing constant and f s are parameters to be assessed. The
method they propose is the minimization of:

f(E¥[S) o f(S|F,¥)/(F,¥) (3.27)
where f(F,¥|S) is the posterior density of unknown parameters given the
sample covariance matrix, f(S|F,¥)the conditional density function of the
sample covariance matrix and f(F,¥)the prior density function of (F,¥).

The problem is equivalent to minimizing

y =—log(f(S|F,¥))—log(f(¥)) (3.28)
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and it resembles to the ML method described in section 2.5.2. The same paper
also deals with the problem of Heywood cases (see section 2.5.2.1).

Kaufman and Press (1973) refer to a non-informative prior distribution of (A,¥)
given by:

Pt

2

f(AY) < |¥

a Pl
or f(E) o [AAT+[ 2 (3.29)

But they lead on the unsatisfactory result that there are no underlying factors on the
average that account for the variance of Y .

Lee (1981), used different priors for four different cases. After constraining some
elements of A to fixed values, in order to obtain identification and easy

interpretation, he assumed that the free parameters in A are exchangeable. They all
follow the same normal distribution N(77,0>) with 7 following a “locally uniform”
and relatively non-informative prior and o following an inverse - y° family. In the

second case, the exchangeability hypothesis is dropped and 4, follows normal

distributions N (/”t; ,0'5 ) with mean /1; and variance 0'5 as above. The prior of 4, for

the third case is vague, proportional to a constant and in the fourth case it is similar to

the one proposed by Martin and Mac Donald (1975).

Rowe has a major contribution in the development of BFA. In his models, the

overall population mean vector p is also considered, that is the y,’'s are not

subtracted by their means. So, the model takes the form:

y,=n+A f +¢g , fori=12,..,n. (3.30)

() (<) (PDgxty (px1)
Rowe has used several priors. In the paper of Rowe and Press (1998) the prior
distribution of (p, A,F,%¥) is given by
S AEY) = f(n)f (A1) f(F)f(¥) (3.31)
with f(p) vague, f(A|¥) and f(F)are normally distributed and /(W) is inverse

Wishart distributed.
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In an older work (Rowe 2000a) he used a normal prior distribution for p
conditional on ¥. The prior structure for the unknown quantities is given in equation
(3.33).

JLAEY)=f(u|¥) f(AY)f(F)f(F) (3.32)
where f(n|W¥) is set to be vague, f(A|Y) and f(F)are normally distributed and
f (W) is inverse Wishart distributed.

Rowe (2001) has also considered a normal prior for the joint distribution of

C =(n,A) conditional on¥. The relative prior for the unknown quantities is:

S(CE¥)=f(C|¥)f(F)f(¥). (3.33)
Rowe (2000b) uses normal priors forp, A =vec(A"), F and inverse Wishart for W¥.
The corresponding prior structure is given by equation (3.35).

SAFE¥) = f(n) /() f(F)f(¥) (3.34)
The conditional posterior distributions can be easily obtained. For example, Rowe
(2000b) provides the conditional posterior f(n|AFY,Y),
f(F|pn, AYY), f(A|n,F,P,Y) as normal distributions and f(¥|p,F,AY) as
inverse Wishart.
Lopes and West (2004) have used different constraints on the loading matrix which
forms a lower triangular matrix given by (3.35).
A, 0 0 ... 0 O
Ay Ay 0 o 0 0
Ay Ay Ay - 00

A : : . (3.35)

ﬂ'q—u /Iq—l,z ﬂq_1,3"'/1q_1,q_1 0
q.1 /14,2 ﬂqﬁ ) ]“q,qfl lq,q
/117,1 /117,2 ﬂ’pﬁ ﬂp,q—l ﬂp,q

To the loadings 4, with i> j they use normal priors, that is 4,~N(0,C;). On the

diagonal elements of A, they use truncated normal distributions, that is
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A~ N(0,C)I(4; >0) while they restrict 4, with i< to be equal to zero. In the

same work, the elements of the matrix F a priori follow a normal distribution as
usually in BFA. Moreover, they use two different approaches for specifying the
number of factors. At the first approach, they use MCMC methods with prespecified

number of factorsq, while, on the second approach, ¢ is considered to be an

unknown parameter that has to be estimated. In the latter case, reversible jump

MCMC (RIMCMC) method was used.

The main difference between the approach of PS89 and other subsequent
approaches of BFA 1is they used closed form expressions for the posterior
distributions, something that is not prerequisite when using MCMC methods. Gibbs
sampling uses only the unnormalized conditional posterior distributions that are
easily obtained when data and priors are available. Inference is made on the final
MCMC sample from the joint posterior distribution of the parameters. Firstly, initial
values for F and ¥ should be given. Then the algorithm cycles through:

K(HI) =a random sample from f(A | l_?(i), ¥ Y)

(O

‘T’(M) =a random sample from (¥ | F(i),A(M),Y)
F(Hl) =a random sample from f(F | 1_\( Hl),‘f'(m),Y)

When this procedure converges, we have obtained B+ N triplets

(K(l),‘f’(l),l_?‘(l)),...,(K(BW),‘T’(MN),F(BW)). Observations generated in the first B

iterations are discarded to avoid dependence on the initial choice of parameter. The
next N observations are kept in order to evaluate the posterior distribution of the
parameters. Generally, the means or, less frequently, the modes are used as estimates

of the unknown parameters.
3.9 Singular Value Decomposition

At the present thesis, the constraint of the lower triangular matrix (see 3.34) was

used at the exploratory analysis for reasons of parameterisation. The resulting loading
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matrix A, though, can not be compared directly with the corresponding loading
matrix of the classical analysis since the constraint of the diagonal product A"™¥™"'A
(see Lawley and Maxwell, 1971, chapter 4) is not satisfied.
In order to obtain comparable estimates for the two approaches we follow the
approach described bellow.
Let us denote by b the product
A"W'A=b (3.36)
Then it can be decomposed in an orthogonal matrix U and a diagonal matrix V with
the method of singular value decomposition that is
b=U"VU. (3.37)
Consequently equation (3.37) is written as:
A"P'A =U"VU (3.38)
By multiplying the above equation with (U™)" from the left and (U™") from the right
we get:
AUHY YA UHY=V (3.39)
Equation (3.37) has been transformed into a new form that satisfies the constraint of

the classical model. The transformed corresponding loading matrix A ,is equivalent

svd

to:

A, =AU" (3.40)
Following the approach of Viele and Srinivasan (2000) we implement these
transformations on the posterior means of the loading matrix in order to
obtain estimates comparable to the ML estimates of the standard orthogonal
model. The singular value decomposition is commonly used in multivariate
statistics (see for example Venables and Ripley, 1999, Kateri et.al, 2005,
Viele and Srinivasan, 2000).

3.10 Comparison of Bayesian and non-Bayesian factor analysis

The advantages of BFA are important. Firstly, prior information can be

incorporated in BFA, something that the frequentistic factor analysis can not take
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advantage of. It is known that a sequence of analyses should be made in factor
analysis in order to take safe results. This information, resulting from previous
stages of analysis, can be used in BFA as prior information. This information may
refer to the number of factors or the relationships of factors and manifest variables.
Another, advantage of BFA is that correlated errors can be easily incorporated into
the model without considerable theoretical or computational difficulty.

Scheines et al. (1999) make a list of the advantages of Gibbs sampling versus ML
approximation. They refer to the lack of need of asymptotic normality hypothesis.
They also give emphasis to the usefulness of posterior distributions. The latter give us
the chance to detect multimodality and they help us to inspect the fit of the model
using posterior predictive p-values. According to them, another benefit is the fact that
underidentified models can give results using informative priors. Kaufman and Press
(1973) have also stressed the superiority of Bayesian application in factor analysis.
They support that the restrictions in classical factor analysis are very “dogmatic” and
the resulting loading matrices are not unique since they can be changed by a proper
rotation. This does not happen in BFA, that only needs careful specification of prior

distributions.
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CHAPTER 4

APPLICATION OF EXPLORATORY FACTOR ANALYSIS IN

SCHIZOTYPIC DATA

4.1 Introduction

In this chapter we implement Bayesian and non Bayesian EFA
methodology on schizotypic data. According to Meehl (1990), schizotypy is
the fundamental construct at the level of psychism. In psychiatrical
terminology, a schizotype suffers “pseudoneurotic” decompensation, with
microsychotic episodes. In general, the prevalence rate of schizotypy in the
general population is about 10%. Another notion that is related to schizotypy
is schizotaxia. According to Meehl (1964), schizotaxia is a neural integrative
defect, which is supposed to be inherited. But the imposition of social
learning history upon schizotaxic individuals, results in schizotypic
personalities. When a schizotype, is physically vigorous and resistant to
stress, does not present symptoms of mental disease. On the other hand, there
is also a subset of schizotypes that decompensate in clinical schizophrenia.
The prevalence rate of shizophrenia is found increased in schizotypals in
comparison to normal population.

In addition, Meehl (1964) provides four schizotypal characteristics:
cognitive slippage, anhedonia, ambivalence and interpersonal aversiveness. In
summary, cognitive slippage is a kind of mental thinking disorder, anhedonia
is denoted as a marked, widespread and refractory defect in the pleasure
capacity (person cannot find pleasure in anything), and symptoms of
interpersonal aversiveness are social fear, distrust, expectation of rejection
and conviction of the person’s unlovability. Information for ambivalence can

be found at Bleuler (1950).
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In 1987, American Psychiatric Association edited the DSM-III-R
Diagnostic and statistical manual of mental disorders. At this handbook, nine

features defined the schizotypal personality:

1. Ideas of reference, which are related to the feeling that things on TV or
advertisements have a special meaning for the individual or that people talk
about him when talking each other.

2. Excessive social anxiety, which does not disappear with familiarity and is
related to paranoid fears.

3. Unusual perceptual experiences, like the feeling of presence of shadows and
in general illusions of the five senses.

4. Odd or eccentric behaviour, which is related to unusual mannerisms and
eccentric appearance or habits.

5. No close friends, when the individual finds it hard or does not have interest in
getting emotionally close to other people except for his family.

6. Odd speech, that is vague, confusing or not cohesive speech.

7. Constricted affect, which is a sentimental accent not in harmony with speech,
idea or thoughts.

8. Suspiciousness, with friends or co-workers.

9. Odd beliefs or magical thinking, for example, experiences with

supernatural, telepathy and clairvoyancy.

Since then, several scales have been constructed in order to measure
the schizotypic features seperately. However, Raine (1991) constructed a 74-
item self-administered questionnaire in an effort to provide an overall
concept of schizotypal personality. The items of the questionnaire are binary
(yes/no) and each takes the value of one (1) if the answer is positive and
zero(0) if the answer is negative. The total score takes the values from 0 to
74. SPQ can be assessed in non-clinical populations, as well as clinical and
provides brief subscales for the nine schizotypal features (each subscale was

calculated as the sum of the questionnaire items that refer to each schizotypal
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subscale, see Appendix A), as well as an overall scale for schizotypy.
Furthermore, nine subscales may be summarized by three groups-factors of
schizotypal personality (see figure 5.3, p.65; Raine et al., 1994). SPQ is
available at Raine’s site.

The SPQ items were based on existing interview schedules for
schizotypal personality (at a percentage of 34 %), were modeled on examples
of schizotypal traits outlined in DSM-III-R (8 %), were taken from relative
published questionnaires (18 %) and were also generated by the author (40
%). This version of questionnaire of Raine (1991) exhibited satisfactory
internal reliability (alpha coefficient 0.90) with high correlation equal to 0.81
with STA, which is also a schizotypal personality scale based on DSM-III
(American psychiatric Assocciation, 1980). The questionnaire is provided in
appendix A (p.81) with its items grouped in the nine schizotypal traits.

Raine (1991) provides arguments in favor of usefulness of SPQ for the

screening of schizotypes:

1. In the first assessment of the SPQ it was found that 55% of the high
10% SPQ scorers total had a DSM-III-R clinical diagnosis of SPD as
assessed by the SCID. (Raine, 1991)

2. SPQ, followed by a confirmatory clinical interview, can be implemented in
non-clinical populations and help the recruitment of subjects with SPD.

3. It can reduce bias created by traditional research implemented in clinical
populations. The samples used in traditional studies are taken from
conventional treatment centers while schizotypy is a psychological disorder
that also appears in non-clinical populations.

4. Although schizotypic individuals are genetically predisposed to
schizophrenia, they have protective factors against this illness. Individuals that
do not feel the need of seeking out psychiatric help and belong to non-clinical
populations may consist the appropriate sample of research on such protective

factors.
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5. SPQ may help the studies for schizophrenia. Since the control group used in
schizophrenia studies or surveys may contain schizotypic individuals resulting
to failure of discrimination between schizophrenic patients and control
subjects. In such case, SPQ can provide a tool for screening out the

schizotypic subjects from the study and reduce type II errors.

In Greece, SPQ was firstly translated by the team of Stefanis et al. (2004). An
independent official translator translated it back in English, and was sent to the author
for approval, which was granted. The final Greek version was produced by the
comparison of the first and second draft in English. Some small changes were also
necessary after administered to a test sample of 15 young employees of the University
Mental Health Research Institute (UMHRI). This questionnaire was used in order to
examine the covariance structure of schizotypy firstly by Stefanis et al. (2004). Since
then, Bitwpdtov (2004) has analysed the reliability of the Greek SPQ, HhomobAov
(2004) examined the relationship between schizotypy and the ideas of impulsive and
compulsive buying used in Marketing Psychology. Finally Z146n (2005) examined
the relationship between SPD and records of knowledge.

The sample (collected by HAtomoviov, 2004) is used in the present thesis to
examine the latent dimensions of schizotypy using both classical and BFA. The
sample consists of 167 Greek students from universities and Technological Education
Institutes (TEI). In particular, the data were collected in the School of Management
Sciences of the University of Aegean, in the two Universities and the TEI of Crete
and in the TEI of Piraeus. It was collected during the period of exams in June 2003.
After rejection of some questionnaires for reasons of validity the final sample
consisted of 167 individuals, 56 % being females and 44 % males.

The mean age of the sample is 22 years old with a right-skewed age distibution,
since postgraduate students also participated to the study. The participants completed
a series of dichotomous items-queries. The responses in the SPQ items, which
represent the nine schizotypal traits, were summed together and transformed to

proportions of positive responses over the total numbers of items-questions.
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LISREL 8.52 student version (see Joreskog and Sorbom, 1996) was used in
order to analyse the data with EFA as well as CFA methods. The Bayesian analysis
was conducted with WinBUGS 1.4 (see Spiegelhalter, et al., 2003).

4.2 Exploratory analysis — Application to schizotypic data

4.2.1 Classical Analysis

According to Tucker and MacCallum (1997) the parameterization that is used in
frequentistic factor analysis imposes a constraint concerning the number of factors.
The number of correlations of observed variables should be greater or equal to the
number of free parameters of the model, that is

rg—q(g=1/2<p(p-1)/2 (4.1)
where p is the number of observed variables and ¢ the number of factors. In the
present case, constraint (4.1) limits the number of factors below or equal to five.
LISREL discards the missing values, so the total effective size was equal to 163.
When trying to fit three, four and five factor models Heywood cases were reported

(see section 2.5.2.1, p.17). Hence, resulting loadings and the unique variances should

be interpreted with caution.

Model Df‘;igisn‘l’f sqcuh;;e p-value | RMSEA
F, 27 122.13 | 0.000 | 0.147
F, 19 4414 | 0.001 | 0.090
F, 12 2409 | 0020 | 0.079
F, 6 11.18 | 0.083 | 0.073
F, 1 023 | 0.631 | 0.000

Table 4.1. Chi-square values of EFA
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Table 4.1 presents the values of the chi-square test (see section 2.5.2), the p-
values and RMSEA (see section 2.7) for the five models that were examined:
F, (one-factor model), F, (two-factor model), F, (three-factor model), F,
(four-factor model) and F; (five-factor model). According to the values of p-
value we can not reject the null hypothesis that the four-factor model holds
for the population in a 5% significance level. The value of RMSEA of F, is

acceptable according to section 2.6 (p.17) and shows significant

approximation to the population.

Schizotypal traits Factor 1 | Factor 2| Factor 3 | Factor 4
Ideas of reference 0.572 0.355
Odd beliefs or magical thinking| 0.359 0.592
Unusual perceptual experience | 0.493 0.433
Odd speech 0.348 0.434 0.374
Suspiciousness 0.828 0.556
Constricted affect 0.289 0.748
Odd behaviour 0.828 -0.555
No close friends 0.379 0.590
Social anxiety 0.385

Table 4.2. Unrotated loadings of the four-factor model (classical EFA)

(loadings with absolute values <0.2 are eliminated from the table)

Table 4.2 presents the factor loadings of the four-factor model with
absolute values larger than the value of 0.2. Values lower than 0.2 show
negligible correlation between the variable and the factor and hence were
removed to have a better picture about factor decomposition. Factor 1 can be
interpreted as a general schizotypic factor as it is correlated with all
schizotypal scales except “excessive social anxiety”. It is strongly correlated
with suspiciousness and odd or eccentric behaviour, moderately correlated
with ideas of reference, unusual perceptual experience, no close friends and
odd beliefs or magical thinking. Lower correlations are observed between the

first factor and constricted affect and odd speech. The second factor reflects a
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contrast between suspiciousness and odd or eccentric behaviour. The third
factor loads on odd speech, constricted affect, no close friends and excessive
social anxiety. The 4™ factor is correlated with ideas of reference, odd beliefs
or magical thinking, unusual perceptual experience, odd speech.

The results of the other models can be found in appendix B (p.87)

4.2.2 Bayesian analysis

Bayesian EFA was conducted by imposing a lower triangular loading
matrix as a constraint, for reasons of parameterization. The prior of the free
loadings was chosen to be standard normal distribution, while the diagonal
elements of the lower triangular loading matrix were assumed to follow a
priori truncated at zero normal distribution as described in section 3.8. The
error terms as well as the latent factors were assumed to be uncorrelated. For

the first model ( F;), 100000 iterations were implemented after a 50000 burn-
in sample. The second model (F,) converged after 70000 iterations and a

200000 sample was used in order to have secure results. A 50000 burn-in

sample was discarded for the third model ( £}). Due to high autocorrelation of

the Gibbs sampling output, we kept one every 80" iteration to the final
sample used for posterior inference. Furthermore, the method of
overrelaxation was implemented (Neal, 1998); a total of 25000 iterations

were generated. The same procedure was used for the four-factor model ( F,),

with thin interval equal to 100 and the total number of 30000 iterations
discarding the initial 50000 burn-in. The fifth model (F;) converged after

100000 burn-in iterations and 30600 iterations after imposing a 100 thin
interval and the method of over-relaxation (see section 3.5, p.33). The
generated chains passed the four tests of CODA (see section 3.6, p.34). The
resulting loading matrix was transformed according to the singular value

decomposition (see section 3.9, p.45).
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Table 4.3 presents the Deviance Information Criterion (DIC,
Spiegelhalter et al., 2002), Akaike Information criterion (AIC, Akaike, 1987)
and Bayesian Information Criterion (BIC, Schwarz, 1978) for the four models
as well as, t, the number of estimated parameters (see section 3.7). The
number of estimated parameters is equal to the number of the free loadings of

the loading matrix and the number of unique variances at each model.

Information Criteria
Models DIC AIC BIC t
K 3848 3667 3762 18
F, 3050 3233 3371 26
F; 3334 3085 3260 33
F, 3105 2894 3101 39
F; 3118 2924 3158 44

Table 4.3. Information Criteria for Bayesian EFA, (t: number of parameters);
AIC and BIC have been calculated from 0 corresponding to the min Deviance

from the MCMC run

The four-factor model is chosen as the best fitted model with respect to AIC
and BIC while DIC supports the second model to have a better fit.

An alternative way of comparing different models is the deviance. The
Bayesian analysis provides the posterior density of the deviance; so different
point estimates can be evaluated. Table 4.4 gives the estimates of the mean,
median, 2.5%, 97.5% quantiles and minimum of the deviance for the five

models as well as D(@), that is the estimate of the deviance at the posterior

mean of the stochastic nodes.
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Models D 2.50% | median | 97.50% [minimum | D(0)
F 3700

" | Gosn| 3662 | 3700 | 3743 | 3631 | 3552
3414

F,  |37.54)| 3338 | 3414 | 3486 | 3181 | 3777
3284

F, (56.77)| 3165 3286 3390 3019 3234
3162

F, (74.54)| 3009 3165 3301 2816 3221
3192

F, (74.91)] 3038 3194 3333 2836 3266

Table 4.4. Posterior descriptive measure for Bayesian EFA models

At the parenthesis below the mean value of the deviance, the standard
deviation of the estimate is given. The estimates are accurate since the MC
errors are less than 5% of the standard deviation of the values. All measures
at table 4.4 support the fourth model as the model with the smallest deviance.

Because of the small samples of Gibbs-sampling chains (25000 at F, and
30000 at F,), the minimum value of deviance can not be estimated
accurately. For this reason, we can calculate AIC and BIC by replacing the
minimum value of deviance with D(@) and D (that is the posterior mean of

the deviance). Table 4.5 contains the estimates of the versions of AIC and

BIC with D(8)and D.
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models | AIC,g BIC, AIC, BIC,,
F, 3588 3683 3736 3831
F, 3829 3967 3466 3604
F, 3300 3475 3350 3525
F, 3299 3506 3240 3447
F, 3354 3588 3280 3513

Table 4.5. Version of AIC and BIC with D(0) and D for EFA

We should choose the 3™ model according to the values of BIC),;, -

On the

other hand, the values of both 4/C;and BIC; lead to the conclusion that F,

shows the best fit of the five models.

Schizotypal traits Factor 1 | Factor 2 | Factor 3 | Factor 4
Ideas of reference 0.744
Odd beliefs or magical thinking 0.546 0.366
Unusual perceptual experience 0.608 0.227
Odd speech 0.490 0.237 0.313
Suspiciousness 0.617 0.211
Constricted affect 0.435 0.340
Odd behaviour 0.563
No close friends 0.475 0.228
Social anxiety 0.226

Table 4.6 Posterior means of factor loadings of F,in Bayesian EFA (loadings

with absolute values <0.2 are eliminated from the table)
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The posterior means of the factor loadings of the 4-factor model with the

method of lower triangular matrix as well as their standard deviations are

given in table 4.6.

Schizotypal traits Factor 1 | Factor 2 | Factor 3 | Factor 4
Ideas of reference (_8069739) -0.241
. . R -0.369
Odd beliefs or magical thinking (0.102) -0.452 -0.295
. -0.502 -0.400
Unusual perceptual experience (0.099) (0.164)
-0.352 -0.538
Odd speech 0.1) (0.160)
. . -0.656
Suspiciousness (0.099)
Constricted affect ((0)322 ) (_g 32?32) (0(533838)
Odd behaviour (_3399; (_8'133055)
No close friends 0.331 -0.291 0.277
(0.282) (0.361) (0.402)
. . 0.300
Social anxiety (0.223)
Table 4.7 Transformed posterior means of factor loadings of F, in

Bayesian EFA (loadings with absolute values <0.2 are eliminated from

the table)

Table 4.7 presents the posterior means of the factor loadings after the

transformation of the factor loadings of F, with the method of singular value

decomposition.

The means of the posterior distributions of the factor loadings of the rest

of the models are provided in appendix B (p.87).

The first factor receives loadings from six variables: ideas of reference,

odd beliefs or magical thinking, unusual perceptual experience, odd speech,
suspiciousness and eccentric behaviour. The second factor is related only to

constricted affect and no close friends. The third factor receives loadings
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from all schizotypal traits except for suspiciousness but the strongest
loadings are those of odd speech, odd beliefs or magical thinking and unusual
perceptual experience. It can be considered as a general factor of schizotypy.
The fourth factor is weakly related to odd beliefs or magical thinking,

constricted affect and no close friends.

4.3 Comparison between frequentistic and Bayesian analysis

The results of the classical analysis of the third, fourth and fifth models
(see appendix B, p.87) should be interpreted with caution since Heywood
cases were observed during estimation (see section 2.5.2.1, p.17). However,
according to both frequentistic and Bayesian analyses the four-factor model
presents the best fit. The posterior means of the Bayesian analysis with the
parameterisation of the lower triangular matrix were transformed using
singular value decomposition in order to satisfy the parameterisation of
classical analysis (see section 3.9, p.45). The transformed loadings of the
second model resemble the loadings of the corresponding classical loadings
of the second model (see appendix B, p.87).

A major advantage of Bayesian computation is the avoidance of Heywood
cases. This helps us obtain stable estimates of model parameters. In the
Bayesian approach we propose to use the parameterization of lower triangular
matrix proposed by Lopes and West (2004) and then use Singular Value
Decomposition transformation to get estimates comparable to the classical
orthogonal factor model which is available in standard software packages

such as SPSS and LISREL.
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CHAPTER §
APPLICATION OF CONFIRMATORY FACTOR ANALYSIS

IN SCHIZOTYPIC DATA

5.1 Introduction

In this chapter we examine five factor models using CFA based on
psychiatric theory proposed in the related literature. The first is the standard

one-factor model (m,) that coincides with the first model of the EFA fitted in
section 4.2 (p.51). The second is a 2-factor model (m,) introduced by Kendler
et al. (1991), the third one is called disorganized 3-factor model introduced
by Raine et al. (1994) (denoted by m,), the fourth is a 4-factor model (m,)
proposed by Stefanis et al. (2004) and the last model (m;) is a 5-factor model

and was introduced by Fogelson et al. (1999).

Different number of factors and underlying factor structure is
prespecified in the above models by psychiatric arguments and scenarios. The
four fitted models and their corresponding structure are illustrated in table

5.1.
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Schizotypal traits
MODEL FACTOR IR | MT |UPE| S SA INCF| CA | OB | OS
1-factor Factor 1 # # # # # # # # #
Kendler’s Positive
2-factor i # # # i #
Negative # # # # #
Disorganized | Cognitive/
3-factor Perceptual # # # #
Interpersonal # # # #
Disorganized # #
Paranoid Cognitive/
4-factor Perceptual # #
Negative # # # #
Disorganized # #
Paranoid # # #
Fogelson et :
al.gS-factor Paranoid # #
Positive # # #
Schizoid # # #
Avoidant # #
Disorganized # # #

Table 5.1. Table of fitted factor models
(IR: ideas of reference, MT: odd beliefs or magical thinking, UPE: unusual
perceptual experiences, S: suspiciousness, SA: social anxiety, NCF: no close
friends, CA: constricted affect, OB: odd behaviour, OS: odd speech)

# the factor is related to the corresponding schizotypal trait

5.2 One factor confirmatory model

Figure 5.1 presents the path diagram of the first model. All schizotypal traits
are connected with the first factor. This factor can be interpreted as the
general factor of schizotypy. The factor scores are a measure of schizotypy of

the patient.
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Figure 5.1. Path diagram for m, confirmatory factor model

5.3 Kendler’s two-factor model

Kendler’s 2-factor model (1991) assumes a positive factor related to ideas
of reference, odd beliefs or magical thinking, unusual perceptual experiences,
suspiciousness, social anxiety and odd speech and a megative factor that
relates to suspiciousness, social anxiety, no close friends, constricted affect
and odd behaviour. The path diagram of Kendler’s model is displayed in
figure 5.2.
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Figure 5.2. Path diagram of Kendler’s 2-factor model

This model depicts the typical concept of negative-positive factors of
schizotypy. The positive factor reflects aspects of cognitive-perceptual
dysfunction while the negative factor is thought to reflect deficits in
interpersonal functioning. However, Kendler’s model differentiates with

respect to the traditional 2-factor model in two points:

1. Suspiciousness and social anxiety load on both factors, while in the
traditional 2-factor models they have been viewed as belonging to
positive and negative factors respectively, and

2. Odd behavior belongs to the negative rather than the positive factor.
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5.4 Disorganized three-factor model

The model of Raine (1994) is the most popular of all and consists of 3
factors: the cognitive-perceptual factor (ideas of reference, odd beliefs or
magical thinking, unusual perceptual experiences and suspiciousness), the
interpersonal factor (social anxiety, no close friends, constricted affect and
suspiciousness) and the disorganized factor (odd behavior, odd speech). The

path diagram of Raine’s model is displayed in figure 5.3.
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Figure 5.3. Path diagram of disorganized 3-factor confirmatory model

In Raine’s model, odd behavior and odd speech form a third disorganization

factor that reveals a cognitive and behavioral disorganization, while the other
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two factors suggest a latent trait of positive (cognitive-perceptual) deficits

and negative (interpersonal) deficits respectively.
5.5 Paranoid four-factor model

The 4-factor model of Stefanis et al. (2004) assumes that four factors are
related to the nine schizotypal traits: cognitive-perceptual, negative,
disorganized and paranoid. The path diagram of the paranoid 4- factor model

is presented in figure 5.4.
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Figure 5.4. Path diagram of paranoid 4-factor model
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This model was created by splitting the positive schizotypal traits (1

factor in m,) into a paranoid and a cognitive-perceptual factor that was found

to have a better fit to the data of the ASPIS study; see Stefanis et al. (2004).
The cognitive-perceptual factor relates to odd beliefs or magical thinking,
and on unusual perceptual experiences. The negative factor is allowed to
receive loadings from suspiciousness, social anxiety, no close friends,
constricted affect and it is a measure of symptoms of negative schizotypal
traits. The disorganized factor of this model receives loadings from odd
speech and odd behavior while ideas of reference, suspiciousness and social
anxiety were allowed to load on the paranoid factor.

The existence of a separate paranoid factor is based on several studies
(Stuart et al., 1995; Kay and Sevy, 1990; Bassett et al. 1994; Peralta and
Cuesta 1998, 1999) that have suggested discrimination of positive traits into
cognitive/perceptual and paranoid. According to Stefanis et al. (2004),
because of the relative independence between cognitive-perceptual and
paranoid factor, delusions and paranoia seems to have a psychological

motivation rather than be created by abnormal perceptual experiences.

5.6 Fogelson et al. five-factor model

The last model (m,) assumes that 5 factors are needed to explain the

covariance between the schizotypal traits, that is paranoid, positive, schizoid,
avoidant and disorganized latent factors. Figure 4.5 presents the path diagram
of the Fogelson et al. (1999) 5- factor model. This model is the most
complicated of all. It represents the idea of multidimensional concept in

schizotypy, which is supported by many researchers.
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Figure 5.5. Path diagram of Fogelson et al. S5-factor model

5.7 Classical analysis and interpretation of best fitted model

The five models are compared with respect to the goodness of fit statistics (see

section 2.5) provided by LISREL that are presented at table 5.2.
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FITTED MODELS
STATIS;F%CS OF m, m, m, m, m,

p-value 0.000 | 0.000 | 0.0346 | 0.140 | 0.001
AIC 163.35 | 13537 | 9498 | 87.93 | 111.29
CAIC 237.47 | 221.85 | 185.58 | 194.99 | 243.07
ECVI 0984 | 0.815 | 0.572 | 0.530 | 0.670
NFI 0.788 | 0.832 | 0.910 | 0.938 | 0.920
NNFI 0.764 | 0.797 | 0915 | 0.940 | 0.829
CFI 0.823 | 0.865 | 0.946 | 0.967 | 0.938
GFI 0.854 | 0.884 | 0.936 | 0.954 | 0.940
AGFI 0.757 | 0.792 | 0.875 | 0.891 | 0.794
PGFI 0.513 | 0474 | 0.478 | 0.403 | 0.272
K 0.609 | 0.418 | 0.169 | 0.102 | 0.207
RMSEA 0.150 | 0.132 | 0.086 | 0.0733 | 0.126

Table 5.2. Goodness of fit statistics for the fitted models

(AIC: Akaike Information Criterion, CAIC: Consistent AIC, ECVI: single
sample Cross Validation Index, NFI: Normed Fit Index, NNFI: Not-Normed Fit
Index, CFI: Comparative Fit Index, GFI: Goodness of Fit Index, AGFI:
Adjusted GFI, PGFI: Parsimony Goodness of Fit Index, F,: population

discrepancy function, RMSEA: Root Mean Square Error of Approximation)

The indices that are based on chi-square value can be used to compare the fitted

models. The fourth model (72,) gives the lowest values of ECVI and AIC, while

CAIC indicates that 72; seems to present a better fit compared to 7. On the other

hand, most of the fit indices (NFI, NNFI, CFI, PGFI) show that the best fit is

accomplished when 7, is fitted. The values of the other goodness of fit indices (GFI,
AGFI) of ™, take values up to 0.9 with the exception of AGFI that takes the value of

0.891. The value of RMSEA for ™, is below 0.08 and indicates a moderate fit. In
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addition F; , decreases significantly from 0.169 of 7, to 0.102 of ™, indicating a

decrease in the error of approximation in the population when 7, is fitted.

After the comparison of the goodness of fit statistics of the five fitted models, we

conclude that M, describes better the structure of the schizotypal traits and the

underlying factors. The path diagram of 72, is presented at figure 5.6.
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Figure 5.6. Path diagram for fitted m,

The loadings of the fourth model are presented at table 5.3. the loadings of the other

four models as well as the correlations of the factors are presented in appendix B

(p.87).
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Factors

Schizotypal traits

Paranoid

Cognitive/
perceptual

Disorganized

Negative

Ideas of reference

0.874

Odd beliefs or
magical thinking

0.655

Unusual perceptual
experiences

0.722

Odd speech

0.577

Suspiciousness

0.523

0.29

Constricted affect

0.709

Odd behaviour

0.596

No close friends

0.815

Social anxiety

0.109

0.349

Table 5.3. Factor loadings of paranoid 4-factor model

Table 5.4 presents the correlation matrix of the four factors, as well as their

standard errors in parenthesis.

The schizotypal traits share from moderate to high factor loadings with the factors

except for the loading of social anxiety with the paranoid factor that is low: 0.109.

Cognitive/ Negative Disorganized | Paranoid
perceptual
Cognitive/ 1
perceptual
Negative ((0)%)?) 1
Disorganized 0910 0050 1
(0.105) (0.105)
Paranoid 0.607 P 01l 1
(0.093) (0.102) (0.110)

Table 5.4. Correlation matrix of paranoid 4-factor model

5.8 Bayesian analysis
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5.8.1 Priors

Five models were fitted through Bayesian CFA: m,, m,, m,, m,, m,. Their

structure is presented at table 5.1. In the models under consideration we assume
correlated factors. The prior for the precision matrix of the factors was selected to be

the Wishart distribution with 100 degrees of freedom for m,,m,,m, and 110 for m;, .

The degrees of freedom of the Wishart distribution were chosen so as to have the
posterior variances of the factors approximate one, for identifiability reasons (see
section 2.2.1, p.6). The priors of the loadings were chosen to be univariate standard
normal distribution while, the priors of some loadings were chosen to be normal
distributions truncated at zero (without this constraint, different chains converged at
the same loadings with opposite signs. In addition, the errors were assumed to be

uncorrelated.

5.8.2 Gibbs sampling

Since the first model of confirmatory analysis (m, ) is the same with the 1-factor
model of exploratory analysis, results for m, can be obtained from the analysis of

section 3.2. For the second model of Bayesian CFA a sample of 100000 values was
enough after a 50000 sample of burn-in iterations in order to obtain convergence.
Two chains were created for every model and the convergence was tested through

CODA of S-plus. The third model m,, needed 50000 burn-in sample and 150000
subsequent iterations in order to converge. In addition, the fourth model m,

converged after a 70000 burn-in sample and 150000 iterations and the convergence of
the fifth model was obtained after 70000 burn-in sample and a sample of 200000

iterations from the posterior distribution of the estimated parameters.
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5.8.3 Results

Model comparison was based on AIC, BIC and DIC that were presented in
section 3.7. The number of free parameters is assumed to be the number of estimated
factor loadings, plus the number of the variances of the errors, plus the number of the
correlations of the latent factors.

The minimum value of the deviance was used in order to calculate the AIC and
BIC. The results of the calculation of AIC and BIC as well as the DIC that are
provided by WinBUGS are presented at table 5.5.

t DIC AIC BIC
m, 18 3847 3667 3762
m, 23 3775 3325 3447
m, 25 3708 3117 3250
m, 30 3629 2822 2981
mg 37 3576 2616 2812

Table 5.5. Information Criteria for the five fitted models
(DIC: Deviance Information Criterion, AIC: Akaike Information Criterion,

BIC: Bayesian Information Criterion, t: number of parameters)

models AICD(ﬁ) BICD@) AIC; BIC;
m, 3588 3683 3736 3831
m, 3295 3417 3558 3680
m, 3113 3246 3435 3568
m, 2837 3996 3563 3422
m; 2678 2874 3169 3365

Table 5.6. Versions of AIC and BIC with D(0) and D for CFA
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Table 5.6 presents the values of Akaike information Criterion and Bayesian
Information criterion calculated with the values of the mean of deviance (D)

and the values of deviance estimated at the mean of the parameters ( D(0)).

Models mean | 2,50% | median | 97,50% | minimum D(6)
3700
m, (20.81) | 3662 3700 3743 3631 3552
(0.118)
3512
m, (39.65) 3431 3513 3588 3279 3249
(0.367)
3385
m, (52.52) 3270 3389 3479 3067 3063
(0.53)
3203
4 (72.38) 3050 3207 3334 2762 2777
(0.749)
3094
m; (109.4) | 2868 3098 3297 2542 2604
(1.39)

Table 5.7. Point estimates of deviance for Bayesian CFA

Table 5.7. presents point estimates of deviance. The first parenthesis
below the mean of the deviance contains the standard deviation of the
estimate and the second parenthesis contains the MC error of the estimate.

The minimum values of the deviance at the five models do not differ
significantly from the values of D(@). This is an indication of a satisfactory

approximation of the deviance.
According to the values of all the calculated Information criteria

presented at tables 5.5 and 5.6 m, provides the best fit among the fitted
models. As a consequence, m; is selected to be the most appropriate model to

explain the covariance structure of the nine schizotypal traits.
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FACTORS
SCQQZpaI Paranoid | Positive | Schizoid | Avoidant | Disorganized
rle‘;::zlfcfe 0.456 | 03816 -0.08
(0.144) (0.111) (0.125)
Odd beliefs or 0.604
magical '
thinking (0.098)
Unusual 0.675
perceptual ( 0: 098)
experiences
0.466
Odd speech (0.085)
0.602 0.255
Suspiciousness | (0.152) (0.121)
Constricted 0.808 -0.14
affect (0.107) (0.091)
0.738
Odd behaviour (0.110)
0.662
No close friends (0.091)
0.699
Social anxiety (0.18)

Table 5.8. Factor loadings of Fogelson et al. 5-factor model with

correlated factors

The loadings of the fifth model as well as their standard deviations are
presented at table 5.8. The loadings of the other four models as well as the
correlations of the corresponding latent factors are provided in appendix B
(p.87). Ideas of reference loads weekly on the avoidant factor as well as the
schizotypal trait of constricted affect that loads weekly on the disorganized
factor. In this way, the avoidant factor receives loadings only from social
anxiety and odd behaviour is the only schizotypal trait that loads on the
disorganized factor. The remaining factor loadings appear from moderate

(0.255) to high (0.808) values.
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Paranoid | Positive | Schizoid | Avoidant | Disorganized
Paranoid 1.029
(0.155)
Positive 0.223 1.102
(0.109) (0.166)
Schizoid 0.197 0.23 1.079
(0.098) (0.093) | (0.161)
Avoidant 0.129 0.178 0.223 1.008
(0.095) (0.095) | (0.096) (0.146)
Disorganized 0.211 0.365 0.306 0.105 1.118
(0.112) (0.105) | (0.102) (0.094) (0.171)

Table 5.9. Covariance matrix of Fogelson et al. 5- factor model

The above table presents the estimates of covariance between the factors
of the fitted 5- factor model with their standard errors in parenthesis. The
disorganized factor shares the highest value of covariance with the positive
factor, that is 0.365. In addition, the values of covariance of all the other

combinations of factor remain in low to moderate values.

5.9 Comparison between frequentistic and Bayesian confirmatory

analyses of data

The classical analysis is based on the iterative method of ML. In
Stefanis et al. (2004) the 4-factor was the best fitted model according to the
results of classical analysis while we conclude that Fogelson et al 5- factor
model presented the lowest values of fit indices among the five models that

were fitted through Bayesian analysis.
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CHAPTER 6

DISCUSSION AND FURTHER RESEARCH

6.1 Discussion

In this thesis we have examined the dimensionality of schizotypy and SPD
using Bayesian theory. At the early stages of research schizotypic disorder
was assumed to be one or two-dimensional. But further and recent research
revealed a multidimensional structure of SPD. The three factors of Raine et
al. (1994) were not confirmed by subsequent studies (see Bergman, 1996;
Stefanis et al., 2004).

Stefanis et al. (2004) introduced the paranoid 4-factor model which was
also validated by the data of the present thesis using classical factor analytic
methods. However, it was not confirmed by Bayesian factor analytic methods
used in this thesis. Instead, the 5-factor model of Fogelson et al. (1999)
seems to provide a better fit among the five fitted, according to specific
information criteria (see section 5.7, p.66). The estimated factor loadings of

models m, -m,, though, were approximately, identical with the two

approaches (see appendix B, p. 92-98).

In the Bayesian approach of exploratory analysis, the factor loadings
were assumed to form a lower triangular matrix with positive diagonal
elements. (see section 3.8, p.39). The estimated parameters presented high
autocorrelation. Therefore, the method of overrelaxation and selection of a
subsample of the output was used, a fact that retarded the convergence a lot.

The use of singular value decompositition allowed comparing the two
different parameterizations of classical and Bayesian analyses since the
loadings have been transformed according to the classical constraint (see
section 3.9, p.45). However, the classical analysis presented Heywood cases
(see section 2.5.2.1, p.17), consequently the values of the loadings and the
unique variances should be interpreted with caution. In fact, the classical

analysis of the second model (that did not presented Heywood cases) gave
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almost identical loadings with the Bayesian analysis. This is an indication
that the Bayesian analysis of the 3™, 4™ and 5™ model provide stable
estimates of factor loadings without being distorted by Heywood cases.
Nevertheless, Bayesian and non-Bayesian analysis revealed a
multidimensional factorial structure, a four and a 5-factor model respectively.
The two models should be further examined in a confirmatory way on

different data.

6.2 Further research

6.2.1 Two-stage factor analysis

The nature of the schizotypic data used at the present dissertation is such
that a two-stage factor analysis may be easily implemented. The
questionnaire consists of 74 items with dichotomous yes/no responses.
Therefore, a reasonable assumption is that each variable follows Bernoulli
distribution.

In a two-stage analysis CFA model, is implemented in two levels. At the
first stage, for schizotypic data and SPQ (see section 4.1), each item is
associated to one of the nine schizotypal traits they belong to. At the second
stage, these schizotypic traits load on specific factors under a specific model.

In figure (6.1) the model of two-stage factor analysis is presented, where

with y, ,i=1,..,15 the observed variables, with kj, j=12,3 the first stage

factors and with f, the second stage one factor representing an overall

schizotypy score.
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Figure 6.1. A path diagram for a two-stage factor analysis model

Such models can be constructed using higher-order factor analysis in its
general set up; for details see Bollen (1989a, p.313). Ansari and Jedidi (2000)
describe the use of MCMC procedures for performing factor analysis of

multilevel binary data.

6.2.2 Logit factor model

At the present thesis, the responses used in the factor analysis model that
is presented in equation (2.1) consist of the values of nine schizotypal
variables. These values were created by summing the binary responses of
specific answers of SPQ (see section 4.1, p.47) and they were transformed

into proportions percent.
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The factor analysis model used is based on the assumption that the errors
and as a consequence the dependent variables follow the Normal distribution.
Generally, the nine schizotypal subscales are skewed and often do not meet
this assumption. However, the analysis was made under the assumption of
normality, since this is the standard approach in psychiatric research.

A more realistic model, called the logit factor model, can be constructed
assuming that all variables follow the binomial distribution. The nine
schizotypal traits, though, are in reality, binomial variables since they are the
sums of specific binary responses.

Let us assume n observations of p manifest variables Y, each following
binomial distribution, that is
Y ~B(N,,x,), for i=1,.,p (6.1)
where N, is the number of independent Bernoulli coordinates of each
binomial and 7, the probability of “success” of the Bernoulli distributions.
In our case, N, is the number of the items-questions of each of
schizotypic scale and 7, is the probability of a positive response to each of

question or item. In addition, the responses of each item are supposed to be
independent.

The logit model is defined as:

q
7, (f) =ay+y.a,f, fori=l.,p (6.2)

logit, (f)=logy= "7 = a2

where a,is the overall mean, a; are unknown coefficients and f, are the g

assumed latent factors. The factors are also assumed to be continuous and

follow the standard normal distribution, that is:
f;~N(,1), for j=1..gq. (6.3)
In addition, the p observed variables are assumed to be independent

conditional on the latent variables.
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The interpretation of equation (6.2) is quite complicated since it is not

the familiar linear model. The effect of a unit change in f, , for instance, is to

1

increase the log odds (log1 j by an amount of q,,.

i

Alternatively, the probability of a positive response is:

exp(a,, +a,f, +a,f, +...+al.qfq)

) = . (6.4)
1+exp(al.0+ai1f1 +a,f, +...+al.qfq)

McCullagh and Nelder (1983) refer to the generalized linear models with
logit link while Bartholomew et al. (2002) present the logit factor model with
binary observations.

The implementation of the model (6.2) can be done with programs like
LISREL (see Joreskog and Sorbom, 1996) and in Bayesian approach using
WinBUGS (see Spiegelhalter et al., 2003).
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APPENDIX A

Items for the nine subscales in the final 74-item version of the Schizotypal

Personality Questionnaire

Ideas of reference

1. Do you sometimes feel that things you see on the TV or read in the newspaper

have a special meaning for you?

10. I am aware that people notice me when I go out for a meal or to see a film.

19. Do some people drop hints about you or say things with a double meaning?

28. Have you ever noticed a common event or object that seemed to be a special sign

for you?

37. Do you sometimes see special meanings in advertisements, shop windows, or in

the way things are arranged around you?

45. When shopping do you get the feeling that other people are taking notice of you?

53. When you see people talking to each other, do you often wonder if they are
talking about you?

60. Do you sometimes feel that other people are watching you?

63. Do you sometimes feel that people are talking about you?

Excessive Social Anxiety

2. I sometimes avoid going to places where there will be many people because I will

get anxious

11. I get very nervous when I have to make polite conversation.
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20. Do you ever get nervous when someone is walking behind you?

29. I get anxious when meeting people for the first time.

38. Do you often feel nervous when you are in a group of unfamiliar people?

46. I feel very uncomfortable in social situations involving unfamiliar people.

54. 1 would feel very anxious if I had to give a speech in front of a large group of

people.

71. 1 feel very uneasy talking to people I do not know well.

Odd beliefs or Magical Thinking

4.Have you had experiences with the supernatural?

12. Do you believe in telepathy (mind-reading)?

21. Are you sometimes sure that other people can tell what you are thinking?

30. Do you believe in clairvoyance (psychic forces, fortune telling)?

39. Can other people feel your feelings when they are not there?

47. Have you had experiences with astrology, seeing the future, UFOs, ESP or a sixth

sense?

55. Have you ever felt that you are communicating with another person telepathically

(by mind-reading)?

Unusual Perceptual Experiences

4. Have you often mistaken objects or shadows for people, or noises for voices?
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13. Have you ever had the sense that some person or force is around you, even

though you cannot see anyone?

22. When you look at a person or yourself in a mirror, have you ever seen the face

change right before your eyes?

31. I often hear a voice speaking my thoughts aloud.

40. Have you ever seen things invisible to other people?

48. Do everyday things seem unusually large or small?

56. Does your sense of smell sometimes become unusually strong?

61. Do you ever suddenly feel distracted by distant sounds that you are not normally

aware of?

64. Are your thoughts sometimes so strong that you can almost hear them?

Odd or Eccentric Behavior

5. Other people see me as slightly eccentric (odd).

14. People sometimes comment on my unusual mannerisms and habits.

23. Sometimes other people think that I am a little strange.

32. Some people think that I am a very bizarre person.

67. 1 am an odd, unusual person.

70. I have some eccentric (odd) habits.

74. People sometimes stare at me because of my odd appearance.

&5



No Close Friends

6. I have little interest in getting to know other people.

15. I prefer to keep to myself.

24. 1 am mostly quiet when with other people

33. I find it hard to be emotionally close to other people.

41. Do you feel that there is no one you are really close to outside of your immediate

family or people you can confide in or talk to about personal problems?

49. Writing letters to friends is more trouble than it is worth.

57. 1 tend to keep in the background on social occasions.

62. I attach little importance to having close friends.

66. Do you feel that you are unable to get "close" to people?

Odd Speech

7. People sometimes find it hard to understand what I am saying.

16. I sometimes jump quickly from one topic to another when speaking.

25. I sometimes forget what I am trying to say.

34. 1 often ramble on too much when speaking.

42. Some people find me a bit vague and elusive during a conversation.

50. I sometimes use words in unusual ways.

58. Do you tend to wander off the topic when having a conversation?
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69. I find it hard to communicate clearly what I want to say to people.

72. People occasionally comment that my conversation is confusing.

Constricted Affect

8. People sometimes find me aloof and distant.

17. T am poor at expressing my true feelings by the way I talk and look.

26. I rarely laugh and smile.

35. My '"non-verbal" communication (smiling and nodding during a Y N

conversation) is poor.

43. T am poor at returning social courtesies and gestures.

51. I tend to avoid eye contact when conversing with others.

68. I do not have an expressive and lively way of speaking.

73. 1 tend to keep my feelings to myself.

Suspiciousness

9.1 am sure I am being talked about behind my back.

18. Do you often feel that other people have got it in for you?

27. Do you sometimes get concerned that friends or co-workers are not really loyal or

trustworthy?

36. I feel I have to be on my guard even with friends.

44. Do you often pick up hidden threats or put-downs from what people say or do?
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52. Have you found that it is best not to let other people know too much about you?

59. 1 often feel that others have it in for me.

65. Do you often have to keep an eye out to stop people from taking advantage of

you?
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APPENDIX B

1. Loadings of exploratory factor analysis models.

Model 1
Unique Unique
K Factqr 1 variance FACtOr 1| variance
(classical) . _ .
(classical) (Bayesian) | (Bayesian)
Ideas of reference 0.631 0.602 0.622 0.083
Odd beliefs or magical |, 54, 0.706 0.548 0.084
thinking
Unusual perceptual 0.663 0.561 0.668 0.080
experience

Odd speech 0.594 0.647 0.601 0.082
Suspiciousness 0.600 0.640 0.605 0.082
Constricted affect 0.410 0.832 0.417 0.089
Odd behaviour 0.615 0.621 0.620 0.081
No close friends 0.433 0.812 0.436 0.088
Social anxiety 0.334 0.888 0.347 0.087

Table B.1. Factor loadings and unique variance of F, exploratory model with

classical and Bayesian analysis
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Model 2

F Factor 1 Factor 2 Vlj:;;g:se Factor 1 Factor 2 V[;:;g:llse
N X . ; .
(classical) | (classical) (classical) (Bayesian) | (Bayesian) (Bayesian)
Ideas of reference 0.553 -0.436 0.504 -0.544 -0.464 0.521
Odd beliefs or magical | ) ;3¢ -0.424 0.612 -0.509 -0.337 0.654
thinking
Unusual perceptual 0.6 -0.303 0.549 -0.617 0.277 0.568
experience
Odd speech 0.602 0.634 -0.603 0.657
Suspiciousness 0.575 0.642 -0.587 0.652
Constricted affect 0.613 0.532 0.34 -0.569 0.501 0.451
Odd behaviour 0.574 -0.227 0.619 -0.595 0.638
No close friends 0.589 0.421 0.475 -0.591 0.504 0.431
Social anxiety 0.377 0.842 -0.381 0.854

Table B.2. Factor loadings and unique variance of F, exploratory model with

classical and Bayesian analysis
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Model 3

Factor 1 | Factor 2 | Factor 3 Ungque Factor 1 | Factor 2 | Factor 3 Un}que
F, : . : Variance . . .~ | Variance
classical |classical | classical . Bayesian | Bayesian | Bayesian .
classical Bayesian
Ideas of 0.5 0.419 0.54 -0.66 -0.291 0.500
reference
Odd beliefs
or magical 0.244 0.286 0.589 0511 -0.639 0.580
thinking
Unusual
perceptual 0.426 0.342 0.401 0.541 -0.657 0.557
experience
Odd speech | 0.237 0.57 0.26 0.551 -0.568 0.563
S“Sp“:’“snes 0.997 0 -0.519 -0.380 | 0.530
Constricted | 71 | 0693 | -0375 | 0305 | 0213 | 0.548 0.431
affect
Odfl 0.384 0.337 0.299 0.65 -0.560 0.615
behaviour
Noclose | 306 | 0574 | -0266 | 0506 | -0225 | 0.536 0.429
friends
Social anxiety] 0.195 0.352 0.838 -0.271 0.219 0.815

Table B.3. Factor loadings and unique variance of F, exploratory model with

classical and Bayesian analysis
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Model 4

F, Factor 1 | Factor 2 | Factor 3 | Factor 4 Unfque
Variance
Ideas of reference 0.572 0.355 0.545
Odd beliefs or magical |, 35, 0.592 0.506
thinking
Unusual perceptual 0.493 0.433 0.539
experience
Odd speech 0.348 0.434 0.374 0.541
Suspiciousness 0.828 0.556 0
Constricted affect 0.289 0.748 0.328
Odd behaviour 0.828 -0.555 0
No close friends 0.379 0.59 0.474
Social anxiety 0.385 0.785

Table B.4. Unrotated factor loadings and unique variance of F, exploratory

model with classical analysis

Schizotypal traits Factor 1 | Factor 2 | Factor 3 | Factor 4 V[;l:‘;g:se
Ideas of reference (_3069739) -0.241 0.472
. . . 1 -0.369
Odd beliefs or magical thinking (0.102) -0.452 -0.295 0.559
Unusual perceptual experience (_g 05;) 5) (_(? 14 604?) 0.542
-0.352 -0.538
Odd speech 0.1) (0.160) 0.494
Suspiciousness (_g 0695 96) 0.462
Constricted affect (8322 ) (_g 325932) ?0'33838) 0.417
Odd behaviour (_83992) (_8'133(?) 0.559
. 0.331 -0.291 0.277
No close friends (0.282) (0.361) (0.402) 0.386
Social anxiety ((0)32(3)) 0.779

Table B.S. Factor loadings and unique variance of F, in Bayesian EFA and

MCMUC details
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Model 5

Schizotypal traits Factor 1 | Factor 2 | Factor 3 | Factor 4 | Factor 5 Un}que
Variance
Ideas of reference 0.572 0.340 0.523
Odd beliets or magical | 5¢, 0.681 | 0273 | 0287
thinking
Unusual perceptual 0.494 0.224 0.365 0.569
experience
Odd speech 0.350 0.503 0.343 0.383 0.351
Suspiciousness 0.828 0.556 0
Constricted affect 0.289 0.630 -0.223 0.452
Odd behaviour 0.829 -0.555 0
No close friends 0.381 0.670 -0.323 -0.205 0.259
Social anxiety 0.405 0.789
Table B.6. Unrotated factor loadings and unique variance of F, exploratory
model with classical analysis
Schizotypal traits Factor 1 | Factor 2 | Factor 3 | Factor 4 | Factor 5 Un¥que
Variance
Ideas of reference -0.682 -0.221 0.478
Odd beliefs or magical |~ 374 0415 | -0320 0.572
thinking
Unusual perceptual =1, 49 0372 | -0217 0.549
experience
Odd speech -0.437 0.220 -0.228 -0.343 0.490
Suspiciousness -0.636 -0.299 0.23 0.473
Constricted affect -0.259 0.492 0.417
Odd behaviour -0.492 -0.257 0.552
No close friends 0.462 0.385
Social anxiety 0.239 0.782

Table B.7. Factor loadings and unique variance of F; in Bayesian EFA

2. Factor loadings and factor correlation matrices of CFA models in classical

and Bayesian analysis
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m Factor 1 Factor 1

! (classical)  |(Bayesian)
Ideas of reference 0.617 0.622
Odd belle.fs or magical 0.541 0.548

thinking

Unusual perceptual experience 0.656 0.668
Odd speech 0.592 0.601
Suspiciousness 0.605 0.605
Constricted affect 0.409 0.417
Odd behaviour 0.616 0.620
No close friends 0.430 0.436
Social anxiety 0.339 0.347

Table B.8. Factor loadings of m, confirmatory model with classical and

Bayesian analysis

Model 2
m Positive | Negative | Positive | Negative
2 (classical) |(classical) | (Bayesian) | (Bayesian)
Ideas of reference 0.639 0.646
Odd beliefs or magical
thinking 0.594 0.600
Unusual perceptual experience 0.699 0.691
Odd speech 0.569 0.542
Suspiciousness 0.479 0.204 0.477 0.232
Constricted affect 0.696 0.690
Odd behaviour 0.422 0.377
No close friends 0.792 0.800
Social anxiety 0.197 0.267 0.212 0.274

Table B.9. Factor loadings of m, confirmatory model with classical and

Bayesian analysis

Positive [Negative
Positive | 1.000
Negative| 0.440 1.000
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Table B. 10. Correlation matrix of latent factors of m, confirmatory model with

classical analysis

Positive [Negative
Positive 1.021
Negative | 0.198 1.029

Table B. 11. Covariance matrix of latent factors of m, confirmatory model with

Bayesian analysis

Model 3
m, Cognitive/ Interpersonal | Disorganized
perceptual
Ideas of reference 0.692
Odd beh(?fs or magical 0.602
thinking
Unusual p.erceptual 0.669
experience
Odd speech 0.575
Suspiciousness 0.501 0.221
Constricted affect 0.733
Odd behaviour 0.599
No close friends 0.788
Social anxiety 0.372

Table B.12. Factor loadings of m, confirmatory model with classical analysis

Cognitive/
perceptual
Cognitive/ perceptual 1.000

Interpersonal | Disorganized
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Interpersonal

0.285

1.000

Disorganized

0.957

0.665

1.000

Table B. 13. Correlation matrix of latent factors of m, confirmatory model with

classical analysis

m, Cognitive/ Interpersonal | Disorganized
perceptual
Ideas of reference 0.614
Odd belle:fs or magical 0.524
thinking
Unusual p.erceptual 0.615
experience
Odd speech 0.529
Suspiciousness 0.483 0.223
Constricted affect 0.701
Odd behaviour 0.567
No close friends 0.738
Social anxiety 0.352

Table B.14. Factor loadings of m, confirmatory model with Bayesian analysis

Cognitive/ Interpersonal | Disorganized
perceptual
Cognitive/ perceptual 1.168
Interpersonal 0.181 1.088
Disorganized 0.442 0.313 1.245

Table B. 15. Covariance matrix of latent factors of m, confirmatory model with

Model 4

Bayesian analysis
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Factors

Schizotypal traits

Cognitive/
perceptual

Negative

Disorganized

Paranoid

Ideas of reference
Odd beliefs or magical
thinking
Unusual perceptual
experiences
Odd speech
Suspiciousness
Constricted affect
Odd behaviour
No close friends
Social anxiety

0.874

0.655

0.722

0.577

0.29

0.523

0.709

0.596

0.815

0.349

0.109

Table B.16. Factor loadings of paranoid 4-factor model with classical analysis

Cognitive/ Negative | Disorganized | Paranoid
perceptual
Cognitive/ 1
perceptual
Negative (25(0)45‘) !
Disorganized 0910 0.090 1
(0.105) (0.105)
Paranoid 0.663 P 006 1
(0.093) (0.102) (0.110)

Table B.17. Correlation matrix of paranoid 4-factor model with classical

analysis
m, Cognitive/ Negative | Disorganized | Paranoid
perceptual
0.716

Ideas of reference

Odd beliefs or magical

0.536
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thinking

Unusual perceptual
experience

0.661

Odd speech

0.501

Suspiciousness

-0.262

0.490

Constricted affect

-0.686

Odd behaviour

0.555

No close friends

-0.275

Social anxiety

-0.331

0.097

Table B.18. Factor loadings of m, confirmatory model with Bayesian analysis

I?e(;'gczgtizg/l Negative | Disorganized |Paranoid
Cognitive/ perceptual 1.281
Negative -0.207 1.097
Disorganized 0.483 -0.325 1.334
Paranoid 0.437 -0.122 0.444 1.236

Table B. 19. Covariance matrix of latent factors of m, confirmatory model with

Model 5

Bayesian analysis

Paranoid | Positive

Schizoid | Avoidant

Disorganized
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Ideas of reference

0.570

0.322

0.250

Odd beliefs or magical
thinking

0.626

Unusual perceptual
experience

0.755

Odd speech

0.524

Suspiciousness

0.769

-0.027

Constricted affect

0.986

-0.346

Odd behaviour

0.896

No close friends

0.692

Social anxiety

-0.497

Table B.20. Factor loadings of m, confirmatory model with classical analysis

Paranoid | Positive| Schizoid | Avoidant | Disorganized
Paranoid 1.000
Positive 0.671 1.000
Schizoid 0.572 0.44 1.000
Avoidant -0.515 | -0.614 | -0.705 1.000
Disorganised | 0.588 0.605 0.581 -0.193

Table B.21. Correlation matrix of latent factors of m, confirmatory model with

classical analysis
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FACTORS

Schizotypal
traits

Paranoid

Positive

Schizoid

Avoidant

Disorganized

Ideas of
reference

0.456
(0.144)

0.3816
(0.111)

20.08
(0.125)

Odd beliefs or
magical
thinking

0.604
(0.098)

Unusual
perceptual
experiences

0.675
(0.098)

Odd speech

0.466
(0.085)

Suspiciousness

0.602
(0.152)

0.255
0.121)

Constricted
affect

0.808
(0.107)

-0.14
0.091)

Odd behaviour

0.738
(0.110)

No close friends

0.662
(0.091)

Social anxiety

0.699
(0.18)

Table B.22. Factor loadings of Fogelson et al. S-factor model with

Bayesian analysis

Paranoid | Positive | Schizoid | Avoidant | Disorganized

Paranoid 1.029
(0.155)

Positive 0.223 1.102
(0.109) (0.166)

Schizoid 0.197 0.23 1.079
(0.098) (0.093) | (0.161)

Avoidant 0.129 0.178 0.223 1.008
(0.095) (0.095) | (0.096) (0.146)

Disorganized 0.211 0.365 0.306 0.105 1.118

(0.112) (0.105) | (0.102) (0.094) (0.171)

Table B.23. Covariance matrix of Fogelson et al. 5- factor model with

Bayesian analysis
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3. The code of the 4-factor model in Bayesian exploratory factor analysis.

model;
{
for (iin 1:n){
for(j in 1:p){
y[1,j]~dnorm(mu[i,j],tau[j])
mulij [<-I[I*F G202 A3 [GT* B[] +H4 [ ]* f4[1]
}
j
12[1]<-0.0
13[1]<-0.0
13[2]<-0.0
14[1]<-0.0
14[2]<-0.0
14[3]<-0.0
11[1]~dnorm(0,1)I(0,)
12[2]~dnorm(0,1)I(0,)
13[3]~dnorm(0,1)I(0,)
14[4]~dnorm(0,1)I(0,)
for(j in 2:p){
11[j]~dnorm(0,1)
h
for(j in 3:p){
12[j]~dnorm(0,1)
b
for(j in 4:p){
13[j]~dnorm(0,1)
j
for(j in 5:p){
14[j]~dnorm(0,1)
}
for(j in 1:p){
tau[j]~dgamma(1,1)
s[j]<-1/tau[j]
§
for(i in 1:n){
f1[i]~dnorm(0,1)
f2[i]~dnorm(0,1)
f3[i]~dnorm(0,1)
f4[i]~dnorm(0,1)
}
3
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4. The code of the 4-factor model in Bayesian confirmatory factor analysis.

model;
{
for (iin 1:n){
for(j in 1:p){
y[i,j]~dnorm(mu[i,j],tau[j])
mu i, J<-1[ Ly, 12,571,213 5 ]*]1,3 [+1[4,5]*1]1,4]
}

h
1[1,1]<-0
1[1,2]~dnorm(0,1)I(0,)
1[1,3]~dnorm(0,1)
1[1,4]<-0
1[1,5]<-0
1[1,6]<-0
1[1,7]<-0
1[1,8]<-0
1[1,9]<-0
1[2,1]<-0
1[2,2]<-0
1[2,3]<-0
1[2,4]<-0
1[2,5]~dnorm(0,1)
1[2,6]~dnorm(0,1)
1[2,7]<-0
1[2,8]~dnorm(0,1)
1[2,9]~dnorm(0,1)
1[3,1]<-0
1[3,2]<-0
1[3,3]<-0
1[3,4]~dnorm(0,1)I(0,)
1[3,5]<-0
1[3,6]<-0
1[3,7]~dnorm(0,1)
1[3,8]<-0
1[3,9]<-0
1[4,1]~dnorm(0,1)I(0,)
1[4,2]<-0
1[4,3]<-0
1[4,4]<-0
1[4,5]~dnorm(0, 1)
1[4,6]<-0
1[4,7]<-0
1[4,8]<-0

102



1[4,9]~dnorm(0,1)

for(j in L:p){
tau[j]~dgamma(l,1)
s[j]<-1/tau(j]

H
for (iin 1:n){
f[1,1:4]~dmnorm(miden[ 1:4],prec[1:4,1:4])
}
prec[1:4,1:4]~dwish(R[1:4,1:4],100)
sigma[ 1:4,1:4]<-inverse( prec[1:4,1:4])

}
}
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