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ABSTRACT 
 

 

Aggeliki Karatza 
 

 

BAYESIAN FACTOR ANALYSIS: IMPLEMENTATION ON 

SCHIZOTYPAL PERSONALITY DISORDER DATA 
     

May 2006 

 

 

 The aim of this thesis is to reveal the latent factorial structure of 

schizotypal personality disorder under a set of observed schizotypal traits. 

We facilitate the Bayesian approach, while the classical-frequentist 

methodology is also implemented in an effort to compare the two approaches. 

         In the Bayesian approach, we combine prior information of the 

unknown parameters of the factor model and the data likelihood to construct 

the posterior distribution of the parameters. The inference is based on this 

posterior distribution and the corresponding descriptive measures (means or 

other moments). When the posterior distribution is not analytically tractable 

then Markov chain Monte Carlo (MCMC) methods are used to get samples 

from the corresponding posterior distributions. 

          The problem of identification is examined thoroughly as well as the 

general model of classical factor analysis.  

         Several exploratory and confirmatory factor models were used in order 

to examine the latent structure of the data. The aim of the analysis is to reveal 

the hidden dimensions of Schizotypal Personality Disorder (a disorder 

directly related to schizophrenia). A five-factor model was revealed through 

classical (non-Bayesian) exploratory factor analysis while the Bayesian 

analysis revealed a four factor model. Moreover, confirmatory analysis of the 



 VI

schizotypic data ended in the paranoid 4-factor model (Stefanis et al., 2004) 

through classical analysis, while Bayesian analysis selected the Fogelson et 

al. (1999) 5-factor model through several information criteria. 
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ΠΕΡΙΛΗΨΗ 
 

Αγγελική Καρατζά 
 

ΠΑΡΑΓΟΝΤΙΚΗ ΑΝΑΛΥΣΗ ΚΑΤΑ ΜΠΕΫΕΣ ΣΕ 

∆Ε∆ΟΜΕΝΑ ΣΧΙΖΟΤΥΠΙΑΣ 
 Μάιος 2006 

 

     Ο στόχος αυτή της διατριβής είναι να αποκαλυφθεί η λανθάνουσα 

παραγοντική δοµή της σχιζοτυπικής διαταραχής της προσωπικότητας που 

υπάρχει κάτω από το σύνολο των µετρήσιµων γνωρισµάτων της σχιζοτυπίας. 

Η Μπεϋζιανή παραγοντική ανάλυση χρησιµοποιήθηκε για αυτό το λόγο, ενώ 

η κλασική µεθοδολογία εφαρµόστηκε επίσης σε µια προσπάθεια  να 

συγκριθούν οι δύο προσεγγίσεις. 

     Η Μπεϋζιανή προσέγγιση θέτει εκ των προτέρων πληροφορία στις 

άγνωστες παραµέτρους του παραγοντικού υποδείγµατος (οι συντελεστές, ο 

πίνακας διακύµανσης – συνδιακύµανσης των σφαλµάτων, ο πίνακας 

συσχετίσεων των παραγόντων) και µέσω των µεθόδων  MCMC και 

ειδικότερα της δειγµατοληψίας Gibbs µας παρέχει τις εκ των υστέρων 

κατανοµές των παραµέτρων. Τα συµπεράσµατα βασίζονται στους µέσους (ή 

σε άλλες παραµέτρους) των εκ των υστέρων κατανοµών. 

     Το πρόβληµα της ταυτοποίησης µελετάται όπως επίσης το γενικό 

υπόδειγµα της κλασικής παραγοντικής ανάλυσης. 

     Στην εργασία αυτή o σκοπός της ανάλυσης είναι να αποκαλύψει τις 

λανθάνουσες διαστάσεις της σχιζοτυπικής διαταραχής της προσωπικότητας 

που είναι µια διαταραχή άµεσα συνδεδεµένη µε τη σχιζοφρένεια. Ένα 

υπόδειγµα πέντε παραγόντων αποκαλύφθηκε µέσω της κλασικής (µη-

Μπεϋζιανής) διερευνητικής παραγοντικής ανάλυσης ενώ η Μπεϋζιανή 

ανάλυση αποκάλυψε ένα υπόδειγµα τεσσάρων παραγόντων. Επιπρόσθετα, η 

επιβεβαιωτική ανάλυση των δεδοµένων σχιζοτυπίας κατάληξε στο υπόδειγµα 

παράνοιας τεσσάρων παραγόντων (Stefanis et al., 2004) µέσω της κλασικής 
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ανάλυσης ενώ η Μπεϋζιανή ανάλυση επέλεξε το υπόδειγµα 5 παραγόντων 

των Fogelson et  al.(1999) µέσω κάποιων κριτηρίων πληροφορίας.   
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CHAPTER 1 

 
INTRODUCTION 

 
1.1 Introduction 
 

     The aim of this dissertation is to explore the structure of schizotypy 

through Bayesian factor analysis (BFA). According to DSM-III-R (American 

Psychiatric Association, 1987) nine symptoms reflecting cognitive, 

perceptual, social, interpersonal and behavioral dysfunction define the 

Schizotypal Personality Disorder (SPD). This disorder is considered to be 

genetically related to schizophrenia (Kendler et al., 1981; Kety, 1983; 

Bergman et al., 1996). Moreover, SPD can be examined in non-clinical 

populations, as well as clinical. These two facts have revealed the study of 

the factorial structure of SPD as an important area of research for many 

scientists. Among others, Raine (see Raine 1991, Raine et al., 1994) has 

demonstrated a significant contribution to the research in this area by 

constructing a 74- item self administered questionnaire, named Schizotypal 

Personality Questionnaire (SPQ). At the present thesis, we used the Greek 

version of SPQ constructed by the team of ASPIS (see Stefanis et al., 2004). 

The subjects participated in this study are students of Greek Technological 

Education Institutes and Universities. More details for SPD, the SPQ and the 

collection of data can be found at section 4.1 (p.47). 

      BFA was the subject of study for several scientists since 1972 when Press 

(1972) firstly introduced a basic model of BFA. For many years, the work of 

Press and Shigemasu (1989) was the basis of BFA until Markov chain Monte 

Carlo (MCMC) methodology was introduced in the statistical literature 

(Geman and Geman, 1984) and were finally applied in factor analysis models 

(see for example Rowe, 2003). This thesis is mainly based on the important 

work of Rowe (1998, 2000a, 2000b, 2000c, 2001, 2003) who facilitated 

MCMC methodology and gave an alternative version of the BFA model (see 

Chapter 3, p.38-44).  
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    The main contribution of this thesis is the implementation of Bayesian 

methodology on schizotypic data. The Bayesian approach was not used before 

for the analysis of the schizotypic data according to the author’s knowledge. 

Chapters 4 and 5 deal with the application of Bayesian and non-Bayesian 

schizotypic data, in an effort to compare and contrast the two approaches. 

 

1.2 Different aspects of factor analysis 

 

       Factor analysis can be divided in two different approaches: exploratory 

factor analysis (EFA) and confirmatory factor analysis (CFA). EFA is used in 

order to explore the data concerning the number of hidden dimensions 

(factors) and the way they relate to the observed variables. On the contrary, 

CFA deals with models that have specific assumptions concerning the number 

of the latent factors or/and the observed variables they are related. Therefore, 

CFA is implemented when we wish to confirm (using a set of data) a specific 

scientific hypothesis, which is expressed via a corresponding model.  

       Since 1904, when Spearman introduced the initial form of factor 

analysis, a lot of research has been done concerning different methods of 

factor analysis. The most frequently used method of estimation is maximum 

likelihood where convergence of the estimated parameters is achieved 

through an iterative algorithm. It is the basic method of classical analysis and 

is easily implemented by computer programs like LISREL (see Jöreskog and 

Sörbom, 1996) and SPSS (SPSS User’s Guide). 

     The problem of identification is crucial in factor analysis models. If 

different estimates of the parameters of the model lead to the same value of 

the covariance matrices, the model is not identified (Bollen, 1989a, p. 239) 

Different methods have been proposed in literature, either in EFA or in CFA 

(Bollen, 1989a, p. 238-254 and Everitt, 1984, p.16-18) The most important 

approaches are presented in section 2.6 (p.17).   
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1.3   Bayesian approach in factor analysis 

 

     According to the Bayesian theory, the parameters of the model are 

assumed to be random variables having a specific prior distribution. Inference 

is made through the posterior distributions of the parameters, which is 

proportional to the likelihood of the data and the prior distribution of the 

parameters. The Bayesian methodology has several advantages.  

        The most important are: 

• the posterior distribution can be sequentially updated by incorporating the new 

available data to the model as prior information (Carlin and Louis, 2000) 

• the full distributional profile (posterior distribution) of a parameter can be 

easily provided using MCMC methods. In this way the whole posterior 

information regarding the parameter of interest is available (Congdon, 2001). 

Recently methods have been introduced also in the frequentistic analysis but 

still obtaining the whole distribution of the estimator is not a standard practice 

and it can be estimated under specific assumptions (for example normality). 

• the improvement of the precision of the parameters of interest (in comparison 

to the estimates through classical analysis), since extra available information 

can be introduced through prior information (Congdon, 2001). 

• common sense interpretation of confidence intervals. Confidence intervals 

computed using the classical approach either contain the true unknown 

quantity of interest or not. On the other hand, in the Bayesian approach, the 

statement that the probability (conditional on the observed data) that the 

unknown parameter is within the 95% confidence intervals is equal to 95% is 

valid (for details see also Carlin and Louis, 2000, p.36) 

 

    Many scientists have contributed to the development of BFA. An important change 

to the implementation of BFA has begun when MCMC methods and in particular 

Gibbs sampling and Metropolis-Hastings algorithms were developed. Nowadays, 

iterative MCMC methods can be easily implemented. In this dissertation, WinBUGS 
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1.4 (see Spiegelhalter et al., 2003) is used in order to implement the Gibbs sampling 

method and estimate parameters of EFA and CFA models. 

 

1.4  Structure of the thesis 

 

  The chapter that follows deals with classical factor analysis. A review of alternative 

methods of frequentistic factor analysis is presented in detail. The Bayesian theory 

and its implementation to factor analysis is presented at the third chapter. The two 

approaches of FA are also compared and their advantages and disadvantages are 

recorded. 

      In the fourth chapter we present the schizotypic data and the analysis 

through (classical and Bayesian) factor analysis. EFA was applicated with the 

use of LISREL 8.52 (see Jöreskog and Sörbom, 1996) and WinBUGS 1.4. 

(see Spiegelhalter  et al., 2003). Five models at each category were used in 

order to examine the fit and determine the number of factors needed in order 

to have an acceptable model. 

       The fifth chapter deals with the application of CFA to the same data set 

of nine schizotypal traits.  Five factor models were fitted using the Bayesian 

and non-Bayesian approach. A comparison of the results of the two 

approaches is also provided.  

       Finally, at chapter six, concluding remarks, as well as points of possible 

further research are outlined. 
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CHAPTER 2 
 

FACTOR ANALYSIS: A THEORETICAL FRAMEWORK 
 

 
2.1   Introduction  

 

       Factor analysis (FA) deals with the problem of revealing hidden 

dimensions under a set of observables. The variables that are observed are 

termed as manifest or indicators (Bollen, 1989a, p.16) while the unobserved 

are called latent variables or (latent) factors. The procedure of factor analysis 

takes place through the decomposition of the covariance matrix of the 

observed variables in terms of unknown parameters and variables. 

Occasionally, standardized data and hence the correlation matrix are used 

instead of the original data and their corresponding covariance matrix. 

Moreover, two different types of factor analysis models can be distinguished 

in literature: the EFA and CFA. 

   Factor analysis is mainly used in two different situations:  

• as a data reduction method and 

• as a method of revealing the underlying structure of the data.  

 

     Scientists are frequently asked to handle large data sets (Bartholomew et 

al., 2002, p.145). Therefore, they use factor analysis to “reduce” the 

dimension of variables of data matrix, in terms of the number of variables. 

Alternatively, factor analysis is used to identify one or more latent variables 

that are responsible for correlations among the observed variables.  

 

   The theory of FA was firstly developed by Spearman (1904). His effort was 

to reveal an indicator or variable which measures the mental ability of a 

person. This factor could be used to explain the intercorrelations between the 

tests of mental ability. Factor analysis is a useful tool for sciences like 
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psychology and marketing but it is also used in scientific fields like 

econometrics, sociology and biometrics (Kaplan, 2000). 

      EFA is used when no information is available concerning the latent 

variables. It is used as a tool to explore the underlying structure of the data. 

According to Tucker and MacCallum (1997, p.132-135), EFA is used by 

researchers at initial stages of analysis in order to explore the data and get a 

picture of the number of underlying latent factors, as well as, their correlation 

structure and their relation with manifest variables. 

   On the other hand, CFA is used when either preceding information, from 

previous analysis, is available or subjective hypothesis is made concerning 

the relations among factors or between factors and manifest variables. With 

CFA the analyst tests his prior hypothesis that should be based on initial 

conclusions of EFA. 

     A lot of research papers as well as reading textbooks have been written 

concerning factor analysis. This thesis considers as a basis books of: Harman 

(1976), Kim and Mueller (1978), Chatfield and Collins (1980), Everitt 

(1984), Bollen (1989a), Basilevsky (1994), Tucker and MacCallum (1997), 

Bartholomew and Knott (1999), Kaplan (2000) and Bartholomew et al. 

(2002). 

 

2.2 The factor analysis model  

 

2.2.1   Introducing the model 

 

    Let us assume p  observed variables denoted by 1( ,..., )T
i i ipy y=y  for 

individual 1,...,i n= , where n  is the number of available observations. The 

observed variables are assumed to be centered around their means. Moreover, 

we assume q ( )p≤  latent factors and their respective factor scores that are 

denoted by 1( ,..., )T
i i iqf f=f , for individual i . These factors can either be called 

common factors, in case they influence more than one manifest variable or 
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unique, in case they influence only one manifest variable (Tucker and 

MacCallum, 1997). 

    In the original formulation of factor analysis, the assumed relation between 

factors and manifest variables is linear. It is possible to use other types of 

association if information of non-linearity is available (Tucker and 

MacCallum, 1997). The linear model, for individual i  takes the following 

form: 

                          i i i= +y Λf e  ,                   for 1,...,i n=                            (2.1) 

where Λ =( ijλ ) is a matrix of ( p q× ) dimension called the “loading matrix”  

and 1( ,..., )T
i i ip=e e e  is the ( 1)p×  vector of errors for the i -th individual. 

Constraints must be imposed in order to obtain an appropriate scaling for the 

latent variables since they are not directly measurable and their notion is 

often obscure. So, either the variance of the latent variable or alternatively 

one loading of each column of the loading matrix are constrained to be equal 

to one. Using the latter approach (i.e. 1ijλ = , where ijλ  are the elements of Λ ) 

the scale of the latent variables is assumed to be the same as the scale of the 

observable ones (for details and an example see Bollen, 1989a, p.239). 

     Additionally, we assume that if  and ie  follow multivariate normal distributions 

with zero mean and variance-covariance matrices Φ  and Ψ , respectively. Hence 

                                  ~ ( , )i qNf 0 Φ  

                                  ~ ( , )i pNe 0 Ψ ,           for 1,...,i n=                           (2.2) 

In the consequence, iy  follows a multivariate normal distribution with zero 

mean and variance-covariance matrix Σ  given by: 

 
TΣ = ΛΦΛ +Ψ .                                                  (2.3) 

 

    Equations (2.1) - (2.3) compose the basic model of factor analysis. A 

further assumption is that Ψ  is diagonal, since the errors are assumed to be 
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uncorrelated. Furthermore, the vectors of ie  are assumed to be uncorrelated 

with each factor.  

 

2.2.2    The orthogonal model 

 

     Generally, the covariance matrix of the factors,Φ , is considered to be the 

identity matrix so that the factors themselves are not correlated. In that case, 

equation (2.3) takes the form: 

                                        TΣ = ΛΛ +Ψ                                                   (2.4) 

The factors then share an orthogonal structure and this model is called 

orthogonal. However, the hypothesis of uncorrelated factors is not a realistic 

assumption since, in practice, latent characteristics are often correlated. 

Therefore, in many situations, it is more realistic to drop this assumption and 

use a model with correlated factors.  

 

2.2.3   Exploratory factor analysis (EFA) 

 

     In this section EFA`s main characteristics are summarized. In EFA, there 

is no available information concerning the relations between the latent 

variables or the latent and the indicators. In addition, the number of factors is 

not prespecified. A third constraint is set by assuming that the errors are 

uncorrelated among themselves. As a consequence, the analysis starts by 

assuming a minimum number of factors, usually one. Then a measure of 

goodness of fit is calculated and if the fit is not satisfactory the analysis is 

made on a two-factor basis, etc.        

 

2.3   Further notions 

 

     The model formulation of equations (2.1) - (2.3) is given in matrix 

notation. Alternatively, (2.1) can be written as: 
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          1 1 2 2 ...ij j i j i jq iq ijy f f f eλ λ λ= + + + + ,    for 1,...,j p= and 1,...,i n=         (2.5) 

 Equation (2.5) aids to import further useful notions in the factor analysis 

content such as communality, complexity, model fit. In more detail: 

• Communality.  

The communality 2
jh  of a variable jy , for the orthogonal factor models, is 

given by the sum of the squares of the common factor coefficients: 

                                    2 2

1

q

j jk
k

h λ
=

=∑ ,        for 1,...,j p=                              (2.6) 

It is a measure of the variance of thj  variable accounted for by the common 

factors. 

• Complexity.  

    As complexity we define the number of common factors influencing an 

observed variable. Hence, complexity in (2.6) stands for q .  

• Unique variance.  

The term unique refers to the variance of the unique factors, which usually 

are the error terms. 

• Factor pattern- factor structure matrices. 

 The factor pattern matrix contains the coefficients of the common factors 

 that are obtained after a factor analysis, that is the loading matrix Λ , while 

the factor structure matrix, contains the correlations between factors and 

variables, that is ovC (f,y) . The two matrices coincide in case of orthogonal 

factors. (Kim and Mueller, 1978a, p.77 and Kim and Mueller, 1978b, p. 84).  

• Reliability.  

     The notion of reliability is used in specific parts of the following section 

(see section 2.7.2, p.20). 

 Reliability, according to Bollen (1989a, p.206), can be defined as the 

consistency of one measurement. It can be measured using the squared 

correlation coefficient between an indicator and a latent variable. 
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• Model fit.  

   An important aspect for each model adopted is the evaluation of its fit to 

the data; see for details in Tucker and Mac Callum (1997, p.142). According 

to them, two types of error exist in each model, the model error and the 

sampling error. Although in practice these two types cannot be distinguished, 

they must be carefully controlled. Careful choice of indicators can reduce 

model error. All necessary variables must be measured and considered while 

unnecessary variables must be excluded from the model. Furthermore, Tucker 

and MacCallum (1997, p.132-143) suggest the following solutions for the 

reduction of sampling errors are the following: 

1.  increase of the sample size 

2.  elimination of variables with high unique variances  and  

3. analysis of covariance rather than correlation matrices. 

 

2.4   Confirmatory factor analysis (CFA)  

 

     Confirmatory factor analysis needs more explicit and detailed information 

than exploratory analysis. Concrete assumptions are made concerning the 

number of factors and their correlation structure. For example, we may have 

information from previous studies or from scientific theories or scenarios 

concerning which variable loads on which factor. In this case we can restrict 

specific loadings to be equal to zero. In addition, we can insert available 

information related to the relationship between factors. In CFA, the analyst 

has usually information available from previous studies, so he can also make 

specific assumptions concerning the value of factor loadings. In some cases 

CFA follows EFA by eliminating loadings with low values. 

     The orientation is quite different in CFA than in EFA, since CFA is a 

model validation method. As a consequence the fit of the model will be 

poorer since some parameters will be fixed or eliminated. What we lose in the 

fit of the model, we gain it as an increase in the degrees of freedom and 

therefore in favor of the parsimony principle (Kim and Mueller, 1978b, p.58). 
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2.5    Estimation of model parameters 

 
     The unknown parameters in the model of factor analysis are the elements 

of the loading matrix Λ  as well as the variance-covariance matrices Φ  and 

Ψ .  Various methods have been proposed for factor analysis parameters 

estimation. According to Harman (1976) they can be divided in two general 

categories. The first one includes methods that require estimating the 

communalities while the second includes methods that require estimating the 

number of factors. 

 
2.5.1 Preceding of maximum likelihood methods 

 
     At the first category of methods Harman (1976) includes the principal 

factor method, the centroid method and the triangular decomposition. 

Although the principal factor method provides a unique mathematical 

solution, it is not totally accepted by psychologists. It was firstly proposed 

by Pearson (1901) and it was further investigated by Hotelling (1933). It 

resembles to the principal component analysis with the difference that, in 

principal factor method, the analyzed correlation matrix contains estimated 

communalities (reduced correlation matrix).  

     The centroid method takes its name by the geometric representation of 

the solution produced by this approach. It was developed by Thurstone 

(1935, 1947). It consists of a series of residual correlation matrices with a 

centroid factor, extracted from each residual matrix. According to Tucker 

and MacCallum (1997, p.201) the centroid vector is the mean vector through 

which a centroid axis is passed. The factor weights are the orthogonal 

projections of observed vectors on the centroid factor. The procedure stops 

when the residual correlations and the factor weights of the resulting factors 

take low values.  
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      The triangular decomposition takes advantage of a method known as 

“square root method” that reduces any symmetric matrix, R  here, to a 

triangular matrix Λ , such that R =Λ TΛ . 

 
         The second category includes the maximum likelihood method, the 

MINRES method, the psychometric methods, the multiple group methods and 

some factor methods that were used in the early stages of factor analysis. 

The last methods are going to be referred firstly, starting with the method 

that the pioneer of factor analysis, Spearman, introduced in 1904 (Spearman, 

1904). He used a two-factor model in order to explain the intercorrelations 

between p  observed measures of mental ability in terms of a general factor 

g  and a specific factor s . He proved that a set of p  variables can be 

described in terms of one general factor and p  unique factors if and only if 

all the following tetrads vanish, that is: 

            0jk lm lk jmr r r r− =             for , , , 1, 2,..., ;j k l m p j k l m= ≠ ≠ ≠                       

(2.7) 

 where ijr  denotes the correlation between the variables iΥ  and jY . Holzinger (1930) 

provided a generalization of Spearman’s theory in case of more than one factor, by 

introducing the concept of grouping of variables (Newman et al., 1937). In this 

model, all indicators are linearly determined by a general factor, a group factor and a 

unique factor. The estimation method used in this case is called the Bi-Factor 

method, which is described by Harman (1976, p.120). 

 

    The psychometric methods involve image factor analysis and alpha factor 

analysis. They are based on the idea that the observed variables are a sample 

from an assumed “universe of content”, that is an infinite universe of such 

measures. The image theory was firstly developed by Guttman (1953). In this 

approach variables under consideration are split in two parts, the image that 

is the part of the variable that can be written as a linear combination of all 

the other variables and the anti-image that cannot be predicted by a linear 
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combination of the other variables. The procedure of this method is based on 

finding the eigenvalues of a matrix that combines the observed correlation 

and the anti-image variance. 

      Concerning the method of estimation called alpha factor (Kaiser and 

Caffrey, 1965) , the following correlation matrix is used: 

                                             * -1 -1R = Η (R -Ψ)Η                                       (2.8) 
where Ψ  is diagonal matrix of unique components, -1Η  is a diagonal matrix that 

contains the reciprocals of the square roots of the communalities and R  is the 

observed correlation matrix. The procedure starts with initial communalities and 

iterates by finding the eigen solution of matrix *R . Then the elements of the matrix  
-1Η  are replaced with the estimated communalities and the algorithm starts again. 

The final solution is obtained when communalities at subsequent steps do not differ 

significantly.  

       By the multiple group methods we obtain dependent factors. Such 

solutions are going to be discussed in a subsequent subsection that deals with 

the notion of “rotation”.  

        MINRES method stands for “minimum residuals” method. It tries to find 

a solution to the factor problem by minimizing the sum of squares of 

residuals between observed and reproduced correlations (the ones implied by 

the model). Eckart and Young (1936, p.211) firstly approached theoretically 

the method (see also Harman 1976, p.175) followed by Young and 

Householder (1938) and Horst (1937). The first practical implementation was 

provided by Harman and Jones (1966). 

      MINRES method is a special case of a more general approach of least 

squares method. In this method, as Kim and Mueller (1978b, p.21) note, 

firstly the number of factors is determined. Then, after calculating some 

initial estimates of communalities, an eigenvalue solution of the observed 

correlation matrix is given. The following step is to calculate communalities 

based on the factor pattern of previous stage. The procedure keeps on 

iteratively of subsequent stages/iterations until no important difference is 

made between communalities. 



 14

 
2.5.2 The method of Maximum Likelihood 

 

       In this section we present in detail the approach of maximum likelihood 

(ML) method. This is the most frequently used method for estimation in 

factor analysis. Tucker and MacCallum (1997) support the method by noting 

that it “has many desirable statistical properties, such us consistency, 

normality, efficiency”. Another advantage of this method is that it permits 

statistical testing of parameters.   

       The method of ML presents also several drawbacks. The normality 

assumption is an important constraint of the method, even though ML can be 

used even in cases when the data does not follow multivariate normal 

distribution (Bartholomew et al., 2002,p.151). ML is also an iterative method 

and as a consequence is more compute intensive (Chatfield and Collins, 

1980). Finally, a Heywood case is a problem that frequently appears when 

ML is implemented. (Bartholomew et al., 2002, p.172, for details see section 

2.5.2.1). 

       The ML method will be used at the present thesis in order to compare 

results between the frequentist’s and the Bayesian approach. According to 

Basilevsky (1994, p.367) the ML approach is distinguished between the 

unrestricted and the restricted one. The unrestricted ML can only be used in 

case of random factors, that is in EFA. On the other hand, when the factors 

are fixed, in case of CFA, restricted ML solutions should be given.  

   Because of the fact that the n  observations from the sample follow a 

multivariate normal distribution, the elements of the observed covariance 

matrix S  follow a Wishart distribution with ( 1n − ) degrees of freedom. 

Consequently, the log likelihood function L  is given by the next equation. 

    1 1 1ln( ) ( 1) ln ( 2)[ln ] ( 1) ( )
2 2 2

L K n n p n tr⎛ ⎞= − − + − − − −⎜ ⎟
⎝ ⎠

-1Σ S Σ S                (2.9) 

where K  is a constant involving only n  and p , and Σ  is the covariance of 

the indicators given by the model. 
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    In case of orthogonal factors the covariance matrix is given by (2.4). In 

that case L  is a function of the factor loadings and the variances of the 

errors. So, estimates of these parameters are given through maximization of 

L . Jöreskog (1967) proposed an alternative function that its minimization is 

equivalent to maximization of L . This function is the following: 

                                   ln ( ) lnF tr p= + − −-1Σ Σ S S                                 (2.10) 

      After differentiating the function F  with respect to Λ  and Σ  and setting 

the results equal to a zero matrix, we end up with the following expressions: 

                                                   ˆˆ -1(Ι - SΣ )Λ = 0                                      (2.11) 

and                                              1 ˆ ˆˆ ( )diag− = − ΤΣ S ΛΛ                             (2.12) 

where Λ̂  and Σ̂  are the estimates of the loading matrix and the covariance 

matrix of the model respectively. 

      Then, the algorithm starts by imposing initial values for the unknown 

parameters. New estimates are generated at each iteration, which substitute 

the old ones. This algorithm iterates until low differences appear in 

subsequent iterations.  The above maximization procedure is performed 

subject to the constraint that T -1Λ Ψ Λ  is diagonal, for identifiability reasons  

(for details see section 2.7.1). 

      It is proved (Basilevsky, 1994) that, under the assumption of normality, 

the factor scores are estimated, conditional on the parameters of the model, 

by the following equation: 

                                 1 1 1ˆ ( )T T
i q i

− − −= +f I Λ Ψ Λ Λ Ψ x ,   for 1, 2,...,i n= .         (2.13) 

       

      An alternative way of obtaining ML estimates is EM algorithm (Rubin 

and Thayer, 1982). It consists of an Expectation (E-) step where the expected 

value of the log likelihood for the factor scores given the observed data (and 

initial estimates of Λ  and Ψ ) are obtained and a Maximization (M-) step 

where the expected log likelihood found in E- step is maximized. The 

algorithm iterates until stable values of loadings and factor scores are 

obtained; more details can be found in Basilevsky (1994) and Rowe (1998). 
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        According to Liu and Rubin (1998) at the E-step of the EM algorithm 

we compute the expected value of the statistics 

 
1 1 1

1 1 1( ) ( ), ( )
n n n

T T T
i i in n n

= Σ = Σ =∑ ∑ ∑i i yf i ffΣ Y - Y Y - Y Y - Y f , f f                (2.14) 

At the M-step, after replacing the above statistics with their expected values 

we compute the maximum likelihood estimates of the unknown parameters 

(the factor loadings Λ and Ψ ) 

 

     Problems in the estimation procedure often are observed when negative 

entries of Ψ  appear in one iteration of the above algorithm or when one or 

more communalities exceed the value of one. The problem is known as 

Heywood case (for more details see section 2.5.2.1, p.17).The consequence 

of Heywood cases is that the algorithm stops, as variances are not permitted 

to take negative values.  

    ML approach also provides a goodness of fit test: 

                                              ( 1) minc n F= −                                        (2.15) 

where F  is the function given by equation 2.10. The test is performed to test 

the null hypothesis  

0H : the covariance structure is restricted to TΣ = ΛΛ +Ψ   

       against the alternative 

aH : Σ  is an arbitrary positive definite matrix 

Under 0H  the statistic (2.14) follows a chi-square distribution with   

                                        21 [( ) ( )]
2

p q p qν = − − +                                  (2.16)                           

degrees of freedom, where p and q  are the number of observed and latent 

variables respectively. In the above equation the number of common factors 

is assumed to be known. This is not possible in practice. Therefore, we start 

from a minimum assumed value of q  (usually 1) and we increase the number 

of factors by one until the fit of the model is not rejected by the 

corresponding significance test. 



 17

       The chi-square test is based on the assumption that the null hypothesis is 

true which means that the model holds for the population. This is restrictive 

in the sense that in reality, such a mechanism may not exist. Hence, chi-

square tests frequently may lead to the rejection of the assumed model. 

Another important point is that the chi-square statistic is heavily influenced 

by the sample size. Consequently, for large samples, it takes large values, 

leading again to the rejection of the assumed model even if it is a good 

approximation of reality. In addition, the values of the chi-square test 

decrease as the number of the parameters are added. This fact makes the chi-

square test an unreliable statistic. 

      For this reason, in CFA a number of other measures of fit have been 

developed and used in literature. These measures take into account both the 

parsimony principle and fitness of the model and they are briefly presented in 

section 2.5. 

 

2.5.2.1 Heywood cases 

 

     A problem that frequently occurs when the iterative method of ML is 

implemented is called Heywood cases. It appears when one or more 

communalities exceed the value of one (Bartholomew et al., 2002, p.172). 

The Heywood case corresponds to zero or negative values of the variance of 

some errors (Chatfield and Collins, 1980, p.87).  

      According to SAS/STAT/User’s Guide (FACTOR procedure), the 

Heywood cases are possibly due to: 

 

• the inappropriateness of the model, 

• the small size of the sample and  

• the large or small number of the factors.  

 

       Constraining the values of the variances of errors to exceed a positive 

“small” value ε , that is jψ ε≥ , solves the problem. According to 
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‘Information Technology Estimates’ (FAQ LISREL), different methods of 

solutions except for ML are proposed as well as the use of appropriate 

starting values of the algorithm. In addition, two other approaches are 

available in order to avoid such cases: the gradient method and a Newton-

Raphson method. Further details can be found in Tucker and MacCallum 

(1997, p.266-282). 

 

2.6 Goodness of fit statistics-Model selection measures 

 

       In this section we present various statistics and measures used for the 

selection of the number of factors in a model. Most of them are functions of 

chi-square statistic and the degrees of freedom of the model. They take into 

account the parsimony of the model (the number of the parameters) as well as 

its goodness of fit. 

      AIC (Akaike, 1974, 1987), CAIC (consistent AIC by Bozdogan, 1987) and 

the single sample cross-validation index ECVI (Browne and Cudeck, 1989) 

are provided by LISREL and are given by: 

                                2 log 2 mAIC L d= − +                                     (2.17) 

                                (1 ln ) mCAIC c n d= + +                                  (2.18) 

                               { }/( 1)) 2( /( 1)ECVI c n t n= − + −                       (2.19) 

where log L  is the log likelihood (see section, 2.5.2), c  is given by 

( 1)c n F= −  the chi-square measure of overall fit of the model, n  the sample 

size, md  the number of free parameters. Small values of these measures show 

a better fit of the underlying models. 

      In addition, two alternative goodness of fit indices, which are used as a measure 

of fit between different models, are the goodness of fit index (GFI) and the adjusted 

GFI (AGFI) given by: 

                                     
( )
( )

21

21

ˆ
1

ˆ

tr
GFI

tr

−

−

⎡ ⎤−⎢ ⎥⎣ ⎦= −
⎡ ⎤
⎢ ⎥⎣ ⎦

Σ S I

Σ S
                                    (2.20) 
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and                             [ ]( 1)1 1
2

q qAGFI GFI
df

⎡ ⎤+
= − −⎢ ⎥

⎣ ⎦
                               (2.21) 

where Σ̂  and S  are the estimated by the model and observed covariance matrix 

respectively, I  is the identity matrix and df  are the degrees of freedom of the model. 

They do not depend on the sample size while AGFI is a variation of GFI adjusted for 

degrees of freedom. They take values between zero and one, with values close to one 

indicating perfect fit.  

     Another class of indices compares the fit of the model with respect to the 

independence model, which is the model that assumes that no underlying structure 

exists concerning the manifest variables. Some of them are the Normed Fit Index 

(NFI): 

                                       0 min

0

ˆ ˆ
ˆ

F FNFI
F
−

=                                                               (2.22) 

 Non-normed Fit Index (NNFI) (Tucker and Lewis, 1973, Bentler and Bonett, 1980): 

                                   
0 min

0 min

0

0

ˆ ˆ

ˆ 1
1

F F
df dfNNFI

F
df n

−
=

− −

                                     (2.23) 

Relative Fit Index (RFI) and Incremental Fit Index (IFI, Bollen, 1986, 1989a, 1989b) 

and Comparative Fit Index (CFI, Bentler, 1990) given by:  

                              
min min

0 0

ˆmax ( 1) ,0
1 ˆmax ( 1) ,0

n F df
CFI

n F df

⎡ ⎤− × −⎣ ⎦= −
⎡ ⎤− × −⎣ ⎦

                                    (2.24) 

where minF̂  and 0̂F  are the function values of the fitted and the independence models 

respectively and mindf and 0df  are the degrees of freedom for the fitted and the 

independence model respectively. 

They take values between zero (0) and one (1). James, Mulaik and Brett (1982) 

suggest the Parsimony Normed Fit Index (PNFI) , Mulaik et al. (1989) suggest the 

Parsimony Goodness of Fit Index (PGFI) given by:  

                                            0 minmin

0 0

ˆ ˆ( )
ˆ

F FdfPNFI
df F

−
=                                            (2.25) 
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                                             min

0

dfPGFI GFI
df

=                                                     (2.26) 

with mindf and 0df  as above. The latter indices take into account the parsimony of the 

models. 

      Browne and Cudeck (1993) proposed a number of fit measures, which take into 

account the error of approximation of the assumed model in the population. They 

define the population discrepancy function (PDF) as  

                                 0̂
ˆmax ,0

1
dfF F

n
⎛ ⎞= −⎜ ⎟−⎝ ⎠

                                 (2.27) 

where F̂  is the minimum value of the fit function, df  is the degrees of freedom. 

 Steiger (1990) defines the Root Mean Square Error of Approximation (RMSEA)  

                                                  0̂ /F dε =                                                            (2.28) 

as a measure of discrepancy per degree of freedom. Values of ε  below 0.05 indicate 

a close fit while significant errors of approximation in the population are represented 

by values of ε  up to 0.08 (Driscoll et al., 2005, Browne and Cudeck, 1993) 

 

2.7    The problem of identification in factor analysis 

 

    The problem of identification is due to the fact that f , Λ  and e  are unobserved. 

Let us assume that θ = ( , , )f Λ e  is the vector of unknown parameters of the model, 

that is the vector containing the unknown factor loadings, the correlations between 

common factors and the variances of the errors of measurement. 

    Let us denote by Σ(θ)  the covariance produced by a set of parametersθ . Τhen, the 

model parameters θ  are identified if no vectors 1θ ≠ 2θ  exist such that 

1 2Σ(θ ) = Σ(θ )  (Bollen, 1989a, p.239). Alternatively, if two different vectors of the 

unknown parameters lead to the same value for the covariance matrices, the model is 

not identified. When a model is not uniquely identified then different models can be 

constructed with the same fit and predictive ability but with different parameter 

values leading to different interpretation of the relations between variables. However, 
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in order to develop a reliable and robust scientific theory, we need to conclude in a 

single model.  This can be solved only if we efficiently deal the problem of 

identification. 

 

2.7.1     Identification in EFA 

     

      In exploratory analysis, some constraints must be imposed on the 

parameters in order to produce a set of identifiable parameters. As it is 

mentioned by Everitt (1984), if we assume orthogonal structure for the latent 

factors (Φ = I ), then a well-known identifiability condition arises when we 

restrict T -1Λ Ψ Λ  to be diagonal (where Ψ  is the variance covariance matrix of 

unique factors). The constraint of diagonal T -1Λ Ψ Λ  is equivalent to 

restricting the first factor to have the maximum contribution to the variance 

in the manifest variables, the second makes a maximum contribution, subject 

to being uncorrelated to the first and so on (Everitt, 1984, p.17). Therefore, 

the ordering of the factors also corresponds to the order of contribution to the 

observed variables. 

      Using this set of constraints we impose 1 ( 1)
2

q q − restrictions on the loadings 

(Kaplan, 2000, p.44-45). Therefore, the number of the free parameters in the factor 

analysis model (assumingΦ = I ) is  equal to 

                                     1 ( 1)
2

p pq q q+ − −                                               (2.29)  

     Lopes and West (2004) use the assumption of full rank of the loading 

matrix. Moreover, Geweke and Singleton (1980) showed that if the loading 

matrix has a rank lower than p , then the model is not identifiable. Lopes 

(2003) also, apart from other constraints, refers to orthogonal Λ  matrix in 

order to have an identified model. 
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2.7.2 Identification in CFA 

            

     In CFA we can use available information concerning the structure of the 

loading matrix. Therefore, we may constraint some loadings to be equal to 

fixed values, usually zero, or set specific parameters equal; see Bollen 

(1989a, p.239). This helps the identification problem as the number of 

unknown free parameters is reduced.  

     Bollen (1989a, p.242-246) provides some necessary but not sufficient 

conditions required when an identified CFA model is estimated.  In the 1-

factor model with two indicators, Bollen uses the value of reliability of an 

observed variable (see section 2.3) to solve the problem of identification. He 

also, concludes that the only constraint that must be imposed in order to have 

a one-factor model with three indicators identified is to set one of the ijλ  

equal to 1 (or its variance 11 1φ = ). If we impose more constraints on the 

loadings then the model becomes overidentified. 

      For more complicated models, even for the three-factor ones, the 

algebraic computations are too tedious, so other rules are established in order 

to produce identifiable models. As already mentioned, these rules are 

necessary but not sufficient to solve the identification problem and should be 

applied after setting the scale of the latent variables. The rules that follow are 

presented at Bollen (1989a, p.242):    

 

1.  The first rule, which is called the t -rule, requires the number of free 

parameters of the unknown parameters θ  to be lower or equal to the known 

elements in the covariance matrix of y :           

                                                  1 ( 1)
2md q q≤ +                                      (2.30)                           

2. The three-indicator rule requires:  

• for a multifactor model three or more indicators per latent variable,  

• every observed variable loads on one and only one latent variable and 
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• uncorrelated errors.  

In this approach, factors can be correlated. It is proved that the elements of 

Φ  are identified after scaling the latent variables. 

 

3. The two-indicator rule, requires: 

• uncorrelated errors 

• the scaled latent variables  

• every indicator loads only on one latent variable (factor complexity of 

one) 

• two indicators per latent variable and  

• no zero elements in Φ . 

    Bollen (1989a, p.245-246) has generalized this rule by loosening the 

requirements forΦ . Using this generalized rule we may constraint some 

elements of Φ  to be equal to zero, without impact concerning identification. 

The proof is based on ‘blocking’ the structure and applying the not-

generalized rule only in the part of the model that has correlated factors. The 

same approach can be implemented for all the subsets of indicators. 

    An alternative set of constraints that provide identifiable parameters is 

given by Basilevsky (1994, p.361-363).  According to Basilevsky, the only 

assumption that is made in order to have an identifiable model is the 

homoscedasticity of errors between factors, which does not seem realistic for 

real datasets. 

 

2.7.3    Local identification 

 

    Bollen (1989a, p.246-254) provides a set of empirical tests for model 

identification. He distinguishes two types of identification: global and local. 

His empirical tests focus on the case of local identification.  

     Local identification concerns a specific point of the parameter vector, say 

1θ , and determines whether the implied covariance matrix changes with small 
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changes in 1θ . It is necessary but not sufficient condition for global 

identification. One test for local identification (called Wald’s rank rule; 

Wald, 1950), facilitates a vector ( )σ θ containing the non-redundant elements 

of ( )Σ θ . The 1t×  vector of unknown, unconstrained parameters θ  is locally 

identified at a point θ = 1θ  if and only if the rank of ( ) /∂ ∂σ θ θ  evaluated at 1θ  

is equal to t . 

     Another local identification test facilitates the information matrix of θ . 

According to this test, the vector θ  is locally identified at some point 1θ  if 

and only if the inverse of the information matrix exists. This test has been 

also recommended by Keesling (1972), Wiley (1973), Jöreskog and Sörbom, 

(1986), and it can be easily implemented, since the inverse of the information 

matrix is given by statistical programs like LISREL and EQS; for details also 

see Bollen (1989a, p.246-254). Of course, local identification does not imply 

or ensures global identification. Moreover, the issue of local identification is 

more complicated, since the theoretical background of local identification 

deals with the parameters of the population, while the tests can be 

implemented on the available samples. So, an unidentified point 1θ  may 

incorrectly pass the test or the opposite. In this case, large standard errors of 

specific parameters estimates indicate possible unidentified parameters. 

   Another empirical approach proposed by Bollen (1989a, p.251), is based on 

using various starting values. If the model is identified then the model 

parameters should always converge at the same value. Alternatively, after 

running once the algorithm with the sample covariance matrix, we could 

repeat the analysis using the predicted covariance matrix Σ̂  given by: 

                                        ˆ ˆ ˆˆ TΣ = ΛΛ +Ψ  

where Λ̂  and Ψ̂  are the estimates produced by the first analysis. Identical 

estimates provide an indication that the model is identified. 
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2.8 Rotation 

 

    Another important issue in factor analysis is rotation. The methods 

analyzed in section 2.4 produce mainly orthogonal factor solutions. This 

solution, with the exception of one-factor model, is not unique, as a 

consequence of the constraints’ implementation (for details see section 2.7). 

So, an infinite number of sets of factor loadings corresponds to the same 

model, with the number of factors as well as the communalities 

unchanged. It is important that the obtained factor loadings can be easily 

interpreted. Therefore, if the produced loadings imply a complex structure of 

relations between factors and indicators, an alternative simpler and easier to 

interpret solution can be considered.        

       The process of moving from one solution to another is called rotation 

(Bartholomew et al., 2002, p.156). There are two categories of rotation, 

orthogonal and oblique rotations. In case of orthogonal, the new factors share 

an orthogonal structure, while in case of oblique, the factors are correlated 

and their structure is not orthogonal.  

     As it was mentioned above, the main purpose of rotation is to obtain a 

simpler structure describing the associations between indicator variables and 

factors. According to Kim and Mueller (1978b, p.31) the simplest structure 

matrix is obtained when the factorial complexity of each indicator is one. 

This does not often appear in practice.  

      Orthogonal rotations can be obtained mainly using three methods: 

Quartimax, Varimax and Equimax; for details see Kim and Mueller (1978b, 

p.34). In Varimax rotation the variance of the squared loadings for each 

factor is maximized while in Quartimax the variance of squared loadings for 

each variable is maximized.  Equimax is a combination of these two methods. 

It uses a criterion that maximizes a linear combination of the quantities that 

are used in the two others methods. According to Tucker and MacCallum 

(1997, p.366) a variation of Varimax called “Raw Varimax” solution, 



 26

implements the original Varimax method on the normalized factor matrix. 

Another combination of Quartimax and Varimax methods leads to the 

Orthomax method of rotation (Tucker and MacCallum, 1997, p.369). 

Furthermore, there is a cycling procedure of rotation that is applied on all 

possible pairs of factors. With the aid of a minimum quantity, the process 

stops when no significant transformations exist for all pairs.  

     When we apply the method of Quartimax rotation without the 

orthogonality restriction, then we produce an Oblimin rotation solution.  

Moreover, the oblique variation of Varimax method was termed Covarimin 

criterion and was proposed by Kaiser (1956). Covarimin solution did not 

provide satisfactorily oblique solutions in contrast to Quartimin, which gave 

overly oblique solutions. Due to this fact, Carroll (1957) combined these two 

criteria and produced the general Oblimin criterion. The Biquartimin method 

of rotation is a special case of this new method.  Furthermore, the Oblimin 

procedures mentioned above, led many times to singular factor matrices, 

which is not desirable. The problem was dealt by Jennrich and Sampson 

(1966) by introducing the Direct Oblimin method, which also have important 

disadvantages; see Tucker and MacCallum (1997, p.377). Other oblique 

rotations of factors are the Promax and the Orthoblique one proposed by 

Harris and Kaiser (1964) that lead to orthogonal or oblique solutions, through 

orthogonal transformations. Finally, the Oblimax criterion maximizes the 

number of small and large loadings and can be used to produce either 

orthogonal  (Quartimax) or oblique solutions. 

 

2.9 Conclusion 

 

      Factor analysis is a multivariate methodology that is mainly used in 

social sciences, psychology and marketing when we assume that non 

observable variables exist under a set of observable ones. To reveal them we 

measure a set of observable symptoms or characteristics and apply factor 
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analysis to estimate the hidden factors. Alternatively, factor analysis can be 

also used as a data reduction method (see section 2.1, p.5).  

      When fitting the factor analysis model some constraints must be 

implemented in order to produce a single identifiable model (see section 2.7, 

p.19). We can produce alternative solutions by transforming the parameters of 

our model using different rotation methods (see section 2.8, p.23).  

      The latter is the main reason why factor analysis was harshly criticized by 

several researchers (see for example Chatfield and Collins, 1980, p.87). BFA 

presented in the following chapter deals with the above problems and offers 

several remedies for many of them.  
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                                           CHAPTER 3 
 

BAYESIAN FACTOR ANALYSIS 
                                         

                                                                                                                  

    3.1  Introduction 

     

     Bayesian theory was founded by Rev. Thomas Bayes (1763), an English minister 

and mathematician. However, his work was not really widely implemented by the 

scientific community until the beginning of 1950. This was due to the fact that the 

classical (or frequentistic) approach was easier implemented in practice and hence 

dominated the statistical science. Bayesian statistics started to become popular after 

the first development of technology and in particular the recent widespread 

availability of high-speed computers, which allowed the wide availablility of 

Bayesian methods using MCMC algorithms (Carlin and Louis, 2000, p.6 and 

Congdon, 2001, p.1).   

     Nowadays, the methods of both approaches (frequentistic and Bayesian) are 

equally used in practice, at least for research reasons (Carlin and Louis, 2000). The 

differences between Bayesian and frequentistic approach are not only methodological 

but also philosophical. Frequentistic inference involves uncertainty under the 

repetition of samples from an assumed model, which implies the probability 

distribution of the observed data conditional on unknown parameters to be estimated. 

All unknown parameters of the model are considered as fixed values. This is the gash 

point in the two approaches, as the same unknown parameters are considered as 

random variables in the Bayesian approach. 

 

3.2 Bayesian theory 

 

     A Bayesian model consists of two main components: the sampling model 

(likelihood) and the prior distribution of the model parameters. The prior distribution 

reflects our knowledge about the unknown parameters θ  before observing the data. 

This knowledge can be based either on previous research or on a subjective belief of a 
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practitioner or researcher. The information included in the prior and the likelihood is 

combined together to produce the posterior distribution ( | )f θ y . 

    The mathematic equation that combined the prior and data information is based on 

the Bayes theorem:  

                                                  ( | ) ( )( | )
( )

ff
m

π
=

y θ θθ y
y

                                          (3.1) 

where θ  is a ( 1)p×  vector of model parameters, y  is a ( 1)n×  vector of data, 

( | )f y θ  is the conditional distribution of the observed data vector 1( ,..., )T
ny y=y  

given the vector of the unknown parameters θ  (model likelihood), ( )π θ  is the prior 

distribution of θ  , ( )m y  is the marginal density of the data y  given by: 

                                 ( ) ( ) ( )m f dπ= ∫y y |θ θ θ   .                                         (3.2)    

From (3.1) the posterior distribution is proportional to the likelihood and prior, hence 

                                  ( ) ( ) ( )f f π∝θ | y y |θ θ                                             (3.3) 

This relationship is of major importance since it simplifies the calculation of the 

posterior. 

 

 3.3 Prior distributions 

 

     The specification of the prior distributions directly affects the posterior 

distribution, which is used for the inference of the parameters.  

      An important category of prior distributions is the conjugate priors. A prior 

distribution is called conjugate to the likelihood ( )f y |θ  when the produced posterior 

distribution belongs to the same family as the prior does. Using this approach, 

computation is considerably simplified. Morris (1983) has shown that such conjugate 

priors exist for exponential family models. In case of multidimensional parameter 

vector θ , independent conjugate priors for each conditional posterior distribution can 

be produced; for details see Carlin and Louis (2000, p.25-28) and Bernando and 

Smith (1994, p.265). 

       Conjugate priors can also be used in the form of a mixture. This approach is 

convenient when we are uncertain about the prior distribution or when we wish to 
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handle dissimilarly the parametric space. Therefore, in the case of a one dimensional 

problem with θ =(θ ) we may use a two-component mixture prior 

                               1 2( ) ( ) (1 ) ( )π θ απ θ α π θ= + −      , 0 1α≤ ≤                     (3.4) 

where 1π  and 2π  are prior distributions conjugate to ( | )f θy (see Carlin and Louis, 

2000, p.27).   

     

    However, Bayesian theory can be also applied when no prior information is 

available, with the help of non-informative or vague priors. These priors allow the 

data to reveal themselves to the posterior distribution through the likelihood. When 

the parameter space is discrete and finite, that is 1( ,..., )T
nθ θ θ∈ =Θ , then a prior 

distribution of the form 

                                1( )ip
n

θ =   ,      for 1,...,i n=                                      (3.5) 

will represent prior ignorance since all events will be equally probable.    

   When, on the other hand, we have a continuous and bounded parameter space, like 

[ , ]θ α β∈ =Θ  then a sensible non-informative prior is the uniform 

                                 1( )p θ
β α

=
−

  .                                                       (3.6) 

 When α = −∞ and β = ∞  we can apply a constant distribution, that is 

     

                                 ( )p θ ∝ 1.                                                               (3.7) 

    However, this is an improper distribution, since ( )p dθ θ =∞∫ . Hence, this kind of 

non-informative prior should be used only in case that the marginal distribution of the 

data ( )m y integrated to a constant real number K. Hence only when the resulted 

posterior is proper. 

     

     Generally, non-informative priors prevent the researcher from making 

inappropriate assumptions concerning the nature of the distribution of the unknown 

parameters. The posterior distribution is determined only by the likelihood. In the 

case of a flat prior, the posterior distribution is proportional to the likelihood: 
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                                      ( | ) ( | )f f∝θ y y θ .                                             (3.8) 

    

 According to Carlin and Louis (2000, p.22) the choice of a prior distribution of the 

parameters of a model is a tedious task. If we wish to incorporate past information in 

our model then it can be summarised using a distributional family. Alternatively, the 

subjective opinion of the experts involved in the problem may be the base of selecting 

an appropriate prior distribution. If no or low information exists then we should 

choose a low or non informative prior distribution as already discussed above. 

 

 3.4 MCMC methods 

 

      When a posterior distribution cannot be calculated analytically in a closed form 

expression, alternative methods can be used in order to estimate it. In this section we 

will describe the simulation-based methods that according to Carlin and Louis (2000), 

can be separated in iterative and non-iterative methods. Some of the non-iterative 

Monte Carlo methods are direct sampling, importance sampling, rejection sampling 

and weighted bootstrap. Implementing these methods, one sample is produced in each 

iteration. However, they have limited applications. The alternative methods are 

MCMC iterative methods. The two basic methods are Metropolis-Hastings (M-H) 

and Gibbs sampling algorithm. 

      In the M-H algorithm a candidate- generating density or proposal density ( , )q θ θ ′  

needs to be specified. This proposal is used to generate candidateθ ′  values when the 

process is at state θ . The probability of moving from the state θ  to the state θ ′  is 

denoted by ( , )a θ θ ′  and equals to 

                         
( ) ( , )min ,1 , ( ) ( , ) 0

( , ) ( ) ( , )
1, ,

q q
a q

otherwise

θ θ θ π θ θ θ
θ θ θ θ θ

⎧ ′ ′⎛ ⎞ ′ >⎪ ⎜ ⎟′ ′= ⎨ ⎝ ⎠
⎪
⎩

π
π       (3.9) 

where in Bayesian theory, ( )π θ  can be substituted by ( )f θ | y  which is the true joint 

posterior distribution of the parameters θ . The distribution ( )π θ  needs to be 
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available only up to a constant. This is very convenient in Bayesian statistics since the 

posterior distributions are expressed proportional to the prior and the likelihood. 

Therefore, (3.9) becomes ( | ) ( ) ( , )( , ) min ,1
( | ) ( ) ( , )

f y qa
f y q

θ π θ θ θθ θ
θ π θ θ θ
′ ′ ′⎛ ⎞′ = ⎜ ⎟′⎝ ⎠

 according to 

equation (3.3). The algorithm is implemented through the following j iterations: 

Step 1.   Give an initial value (0)θ  

Step 2.   Generate θ ′  from a proposal distribution ( )( , )jq θ ⋅   

         and u  from (0,1)U  

Step 3.   If   ( )( , )ju a θ θ ′≤  

                   - set ( 1)jθ θ+ ′=  

       Else  

              -set ( 1) ( )j jθ θ+ =  

Step 4.   Set 1j j= +  

     Step 5.   If j N<  go to Step 2,  

                   otherwise return the generated values { (1) (2) ( ), ,..., }Nθ θ θ   

where (0,1)U  is the uniform distribution at (0,1). 

      The above algorithm describes the generalized form of M-H algorithm suggested 

by Hastings (1970). In their original paper, Metropolis et al. (1953) have limited the 

algorithm to symmetric proposal densities with ( , ) ( , )q qθ θ θ θ′ ′= . A family of such 

densities (proposed by Metropolis et al., 1953) is 1( , ) ( )q qθ θ θ θ′ ′= −  with 1( )q ⋅  a 

multivariate density; usually the multivariate normal or t-density. This case is called a 

random walk chain or random walk Metropolis algorithm. Another family is 

2( , ) ( )q qθ θ θ′ ′=  that produces independence chains (Hastings, 1970) that do not 

depend on the current value of the parameter.  

      The specification of the scale of the proposal distribution is essential since it can 

lead to either large proposed jumps around the parameter space (from θ  to θ ′ ) with 

large rejection probability or to high acceptance rate when very small jumps around 

the parameter space are proposed. Both situations lead to high autocorrelated chains 
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and increase of time of convergence. For a comprehensive presentation of the M-H 

algorithm see Chib and Greenberg (1995). 

 

       Gibbs sampling is a special case of Metropolis-Hastings algorithm. It was firstly 

proposed for discrete distributions by Geman and Geman (1984). Let us assume that 

we are interested in drawing a sample from the unknown joint probability of K -

random variables, that is ( )p Θ  with 1( ,..., )Kθ θ=Θ . Instead, we can generate 

samples from the full or conditional distributions ( | ), 1,...,i i ip for i Kθ − =θ , where 

1 1 1( ... ... )i i i Kθ θ θ θ− − +=θ . 

       Then after providing initial values { (0) (0)
1 ,..., Kθ θ } steps 3-4 of M-H algorithm are 

substituted by the following actions: 

 

      Draw  (1) (0) (0)
1 1 2~ ( | ,..., )Kfθ θ θ θ  

      Draw (1) (1) (0) (0)
2 2 1 3~ ( | , ..., )Kfθ θ θ θ θ  

            

       … 

      Draw   (1) (1) (1)
1 1~ ( | ,..., )K K Kfθ θ θ θ −  

 

 After t  iterations we obtain ( ) ( )
1( ,..., )t t

Kθ θ . It is proved (see Carlin and Louis, 2000) 

that  

(a) ( ) ( )
1 1 1( ,..., ) ( ,..., ) ~ ( ,..., ),dt t

K K Kpθ θ θ θ θ θ⎯⎯→  as t →∞  

(b) The above convergence is exponential in t  using the 1L  norm (for details see also 

Casella and George, 1992). 

     Variations of the above algorithms have been provided in literature. An 

example is the reversible jump MCMC (RJMCMC) that is appropriate for 

comparison of different models defined on a different parameter space with 

varying dimension. For more information on RJMCMC and other 

combinations of MCMC methods see Green (1995) and Carlin and Louis 

(2000, p.159-170). 
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3.5 Overrelaxation 

 

     Autocorrelation is frequently observed in the MCMC generated samples. 

As a result much larger samples are needed in order to attain convergence. A 

remedy for reducing autocorrelation was suggested by Adler (1981). The 

proposed method is called overrelaxation. According to this method, the new 

value in Gibbs sampling iteration is selected so as to be negatively correlated 

with the previous one. Let us assume that K  components compose the 

parameter state 1( ,..., )Kθ θ=Θ  and also, all full conditional densities ( | )i iπ θ −θ  

are Gaussian. In addition, the iθ  component has conditional mean iµ  and 

variance 2
iσ , which are functions of other components { i−θ }. Then the new 

value iθ ′ is: 

                       2 1/ 2( ) (1 )i i i i i Zθ µ α θ µ σ α′ = + − + −                                     (3.10) 

with 1 1α− ≤ ≤  and Z  follows standard normal distribution. When α  is zero, 

the method is equivalent to Gibbs sampling. Negative values of α  are 

preferred because they produce values of thi parameter from the other side of 

the mean from iθ . Note that for 1α = −  the chain does not reach convergence. 

      Other methods of overrelaxation are also provided in literature. A review 

of these methods is presented by Neal (1998). At the same paper, Neal also 

introduces the method of ordered overrelaxation. According to this method, 

the new value iθ ′  is chosen according to the following procedure: 

1. K  values are generated from the conditional distribution ( | )i j iπ θ θ ≠   

2. These K  values plus the old value iθ  are arranged in non-decreasing 

order (0) (1) ( ) ( )... ...r K
i i i i iθ θ θ θ θ≤ ≤ ≤ = ≤ ≤ , with r the index of the 

ordering of the old value. 

3. The new value iθ ′ equals ( )K r
i iθ θ −′ =  
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With 1K =  we get Gibbs sampling and K →∞ is equivalent to 1α = −  for 

Adler’s method. 

        Neal (1998) also presents the method of ordered relaxation with respect 

to a uniform distribution. The values ( )i iu F θ=  follow a uniform (0,1)U  

distribution, where ( )F ⋅  is the cumulative distribution function for the 

conditional ( | )i iπ θ θ− . Then the method of ordered overrelaxation is done in 

iu , and the new value iu ′  is transformed to 1( )i iF uθ −′ ′= , with 1F −  the inverse 

distribution of F . 

       Although overrelaxation in general accelerates the convergence, it has 

drawbacks and should be implemented with caution; for details see Neal 

(1998). WinBUGS provides the possibility to produce ordered overrelaxed 

chains according to Neal’s method (Spiegelhalter et al., 2003). 

         

3.6   Diagnosing convergence 

 

    In general, it is difficult to detect whether a chain has reached convergence. But 

convergence is essential for the estimation of the posterior distribution, because 

inference is based on the generated sample which is assumed to be a good 

approximation of the target posterior distribution. 

      There are several convergence diagnostic tests of MCMC chains. CODA 

(Convergence Diagnosis and Output Analysis Software for Gibbs sampling analysis; 

see Best et al., 1996) is an S-plus library that provides four diagnostic tests suggested 

respectively by Geweke (1992), Gelman and Rubin (1992), Raftery and Lewis (1992) 

and Heidelberger and Welch (1983). Other tests or convergence diagnostic tools are 

available like Yu and Midland’s CUSUM method, Liu, Lu and Rubin’s 2L  

convergence diagnostic, the Johnson diagnostic, Garren and Smith’s convergence rate 

estimator; for details see Brooks and Roberts (1998). In the present thesis, 

convergence of chains has been tested using CODA software.  For this reason the 

four tests available by CODA will be briefly described. 
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      Geweke (1992) suggests that the values of a function g ( )⋅  of the simulated 

parameters can be treated as a time series. As a consequence, a spectral density 

( )gS ω  for this time series can be calculated, which is continuous at zero, with its 

value (0)gS . He focuses on the mean of the function g  that can be estimated by 

                                       

( )

1
( )

N
t

t
N

g
g

N

θ
==
∑

     ,                                         (3.11)  

with ( )( )tg θ the values of the function g  at each Gibbs sampling iteration, with N  

the size of the Gibbs sampling chain. He also provides an estimate of the standard 

error of the mean: 

                                        
(0)gS

N
   .                                                     (3.12) 

The above concept is used for two different portions of Gibbs chain: AN  and BN , 

with A BN N N+ < . Geweke’s convergence diagnostic uses the following statistic: 

                   (0,1)
1 1(0) (0)

A BN N d
N

A B
g g

A B

g g
Z N

S S
N N

−
= ⎯⎯→

+
, as    N →∞           (3.13) 

where (0)A
gS and (0)B

gS  are spectral estimates for the two portions of the sample AN  

and BN  respectively, evaluated at 0. 

     Geweke (1992) suggests taking 
10A
NN =  and 

2B
NN = , that is the first 10 % and 

the last 50 % of the Gibbs sample, respectively. So, NZ  is used to test the null 

hypothesis that the two subsamples have equal means. Values of NZ  which lie in the 

tails of a standard normal distribution provide an indication of non convergence (Best 

et al., 1996). 

 

       The second diagnostic of CODA, introduced by Gelman and Rubin (1992), can 

be applied on two or more parallel chains. Let us assume m  generated chains with 

different starting points. Then the last, say n, iterations are used to reestimate the 
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distribution of the parameters of interest as a Student t-distribution, the scale 

parameter of which involves both the between and within-chain variance. 

      Convergence is monitored by estimating the factor by which the estimated   scale 

will shrink as n →∞ , that is 

                        1 1
2

N m B dfR
N mN W df
− +

= +
−

                                       (3.14) 

  where B  is the variance between the means from the m  chains, W  is the average of 

the m  within-chain variances and df is the degrees of freedom of t-density. “Shrink 

factor” for a chain that has converged is near 1. 

 

     The third diagnostic test was proposed by Raftery and Lewis (1992). It is a single 

chain test which focuses on the estimating a quantile (usually the 2.5th) of the 

posterior distribution of the parameters of interest, at a given degree of precision and 

a required probability of attaining this degree of accuracy. Then, the program reports 

minN - the minimum number of iterations that should be run, N  the total number of 

iterations, B  the number of burn-in iterations and k  the thinning interval to be used 

in order to estimate the specified quantile of interest at the given precision. The above 

procedure is related to a binary process, subsequences of which approximate Markov 

chains; for details see Raftery and Lewis (1992). 

 

      Finally, Heidelberger and Welch’s convergence diagnostic (1983) is used for 

single chains from univariate observations. It can be generalized for multi-

dimensional and multi-sample statistics. The test consists of two parts and is based on 

ideas from Brownian bridge theory. Using this diagnostic we test for the null 

hypothesis that stationarity is attained using the sampled values. This is achieved 

using the Cramer-Von Mises statistic (von Mises, 1931). If the null hypothesis is 

rejected the first 10 % of iterations is discarded and the test is repeated on the 

remaining sample. This procedure is repeated until 50 % at least observations or more 

of the chain passes the stationarity test. Half of the chain is used. If the null 

hypothesis is rejected for all repetitions until then we have an indication that the chain 

has not reached convergence. If the test is passed, the number of iterations that have 
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been used to pass the test, the discarded iterations and the Cramer-von-Mises statistic 

are provided. 

     In the second part of the test the halfwidth test is implemented. The portion of the 

chain that passed the stationarity test is treated as a time series from which we 

estimate the spectral density at zero, (0)S . Then, the asymptotic standard error of the 

mean is equal to: 

                                                (0)

p

S
N

                                                 (3.15)                               

where pN  is the length of the retained chain. If the halfwidth of the 95 % confidence 

interval of the mean, evaluated with the asymptotic standard error, is less than ε  

times the sample mean, the halfwidth test is passed;ε  is a small fraction with CODA 

default 0.1. In the opposite case, the halfwidth test reports failure and a longer chain 

should be run to achieve increased precision of the estimated parameter. 

 

3.7   Model selection 

 

   The comparison between the models, at this thesis, is conducted through 

three Information Criteria: Deviance Information Criterion (DIC, 

Spiegelhalter et al., 2002), the Bayesian variation of Akaike Information 

Criterion (AIC, Akaike, 1987) and Bayesian Information Criterion (BIC, 

Schwarz, 1978). An alternative quantity used for model selection is Bayes 

factor; for details see Kass and Raftery (1995).  

   DIC is directly provided by WinBUGS.  It is equal to: 

                                 ( ) 2D DDIC D p D p= + = +θ                                     (3.16) 

where D  is the posterior mean of the deviance, Dp  is the effective number of 

parameters and ( )D θ  is the point estimate of the deviance at the mean of the  

estimated parameters θ .  The deviance is defined as  

                              ( ) 2 log ( | )D f y= −θ θ                                                 (3.17) 
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while                ( )

1

2 log ( | )
N

t

t B
D f y

N
θ

= +

= − ∑ .                                              (3.18) 

    The model with the smallest DIC is estimated to be the model that would 

best predict a replicate dataset of the same structure as that currently 

observed. 

   Akaike (1987) defines the Bayesian version of the AIC as:                                             

                                              AIC= ˆ( )D θ +2 md                                       (3.19) 

where ˆ( )D θ  is the minimum value of the deviance, θ̂  is the mean of the 

posterior distribution of the estimated parameters and md  the number of 

estimated  parameters. 

     BIC (Schwarz, 1978) is estimated by:  

                                      BIC = ˆ( )D θ  + md log( )n′                                   (3.20) 

where n′  is the number of observations. In case of factor analysis n′ =number 

of individuals*number of observed variables. 

  Both AIC and BIC penalize for the number of parameters and in general, 

they tend to choose the less complex models. 

 

3.8    Bayesian approaches to factor analysis 

 
    The unknown parameters in the model of factor analysis presented in 

equation (2.1) can be evaluated, using the Bayesian approach. Using this 

approach, we specify prior distributions on the parameters and we produce 

posterior distributions. Inference is based on the mean or other moments of 

posterior distributions. 

    The first attempt of BFA was made by Press (1972). After his work, many 

researchers have contributed with their published work, like Kaufman and Press 

(1973), Martin and Mac Donald (1975), Lee (1981), Press and Shigemasu (1989, 

revised in 1997), Rowe (1998, 2000a, 2000b, 2000c, 2001, 2003), Raftery (1993), 

Rowe and Press (1998), Scheines et al (1999), Hayashi and Sen (2002), D’Souza 

(2002), West (2003), Lopes (2003), Lopes and West (2004) and Fokoue (2004). 
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   At this section the basic form of the model used in BFA proposed by Press and 

Shigemasu (1989) will be presented, as well as the alternative forms proposed by 

Rowe (2000a, 2000b, 2001) and Rowe and Press (1998). Moreover, a review of other 

models proposed in literature will be presented and the parameterization of the lower 

triangular matrix (proposed by Lopes and West, 2003) that will be used at the 

Bayesian analysis of schizotypic data in section   5.2.2. 

   Press and Shigemasu (1989), in the following will be denoted as PS89, present a 

basic form of the model used in BFA. The model is given by (2.1) (see p.7). It can 

also be written in matrix form as:  

                                   
( ) ( ) ( ) ( )n p n q q p n p× × × ×

= +Y F Λ E  .                                   (3.21) 

In BFA, the errors ie s (the elements of E ) are assumed to be normally distributed 

that is ~ ( , )i Ne 0 Ψ . But Ψ  in that case is a positive definite matrix, not diagonal 

itself but diagonal on average, that is ( ) 0E >Ψ  and diagonal. 

   The unknown quantities are (Λ,F,Ψ ) with 1( ,..., )T
nf f=F . The likelihood of                                         

(Λ,F,Ψ ) by assuming independent iy `s is expressed by: 

          / 2 11( | ) exp ( ) ( )
2

n T T Tf tr− −⎛ ⎞∝ −⎜ ⎟
⎝ ⎠

Y Λ,F,Ψ Ψ Ψ Y - FΛ Y - FΛ  .             (3.22) 

The prior distributions used by PS89 belong to the natural conjugate family. The joint 

distribution of (Λ,F,Ψ ) has the following structure  

                       ( ) ( ) ( ) ( )f f f f∝Λ,F,Ψ Λ |Ψ Ψ F                                        (3.23) 

with Λ  conditional on Ψ  has elements that are jointly normally distributed, with 

hyperparametrs ( 0Λ ,Η ), 0n=Η I  for some scalar 0n .Hence ( | ) ~ ( , )p of N n0Λ Ψ Λ I . 

The matrix Ψ  follows an inverse Wishart distribution with hyperparameters ( , )v B , 

with B  diagonal, that is ~ ( , )W ν-1Ψ Β . The prior distribution of F  may be specified 

either by historical data or alternatively may be proportional to a constant. The factor 

scores of subjects are also taken to be a priori independent so as to have  

                                       1( ) ( )... ( )nf f f f f=F                                         (3.24) 

   Hence, the joint posterior density of the unknown parameters becomes with the help 

of Bayesian theory: 
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                                   ( ) ( ) ( )f f f∝Λ,F,Ψ | Y Y |Λ,F,Ψ Λ,F,Ψ  

                                               2
1( ) exp
2

n q v

f tr
+ +

− ⎛ ⎞∝ −⎜ ⎟
⎝ ⎠

-1F Ψ Ψ G                (3.25) 

with T T T T
0 0G = (Y - FΛ ) (Y - FΛ ) + (Λ -Λ )Η(Λ -Λ ) + B . 

The marginal posteriors for (Λ,F | Y ) and ( )F | Y  by integrating with respect to Ψ  

and ( )Λ,Ψ  can be also found in PS89. For large samples and for a wide variety of 

priors of F , including that proportional to a constant, it is proved that, ( | )if Y  is 

distributed as a multivariate t distribution. 

     Due to the fact that the marginal joint posterior (Λ,Ψ ) is complicated, Λ  is 

estimated for given ˆF = F . So, the authors show that any scalar element of Λ  

conditional on ˆ( )F,Y  follows a general Student t-distribution. In addition, the mean 

of the distribution at Λ , given the data vectors and F̂ , is used as a point estimator Λ̂ . 

This estimator helps to estimate the marginal distribution of Ψ  conditional on 

( ˆˆ) ( )F,Λ = F,Λ . After algebraic manipulations, ˆˆ( | , , )f Ψ F Λ Y is an inverse Wishart 

distribution. As a point estimator of Ψ  we can consider the mean ˆˆ( )E=Ψ Ψ | F,Λ,Y . 

       Several researchers have suggested some alternative forms of priors. For 

example, Martin and Mac Donald (1975) use the following prior distribution 

                                 2

1

( ) exp ( / )
n

i i
i

f k β ψ
=

⎛ ⎞= −⎜ ⎟
⎝ ⎠
∑F,Ψ                                 (3.26)   

where k  is a normalizing constant and iβ s are parameters to be assessed. The 

method they propose is the minimization of: 

                                 ( , | ) ( | , ) ( , )f f f∝F Ψ S S F Ψ F Ψ                               (3.27)  

where ( , | )f F Ψ S  is the posterior density of unknown parameters given the 

sample covariance matrix, ( | , )f S F Ψ the conditional density function of the 

sample covariance matrix and ( , )f F Ψ the prior density function of ( , )F Ψ . 

The problem is equivalent to minimizing  

                          log( ( | , )) log( ( ))f fψ = − −S F Ψ Ψ                                    (3.28) 
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and it resembles to the ML method described in section 2.5.2. The same paper 

also deals with the problem of Heywood cases (see section 2.5.2.1). 

    Kaufman and Press (1973) refer to a non-informative prior distribution of (Λ,Ψ ) 

given by: 

                                                 
1

2( )
paf
+

−∝Λ,Ψ Ψ  

or                                                  
1

2( )
pa

f
+

−
∝ TΣ ΛΛ +Ψ .                                    (3.29) 

But they lead on the unsatisfactory result that there are no underlying factors on the 

average that account for the variance of Y . 

      Lee (1981), used different priors for four different cases. After constraining some 

elements of Λ  to fixed values, in order to obtain identification and easy 

interpretation, he assumed that the free parameters in Λ  are exchangeable. They all 

follow the same normal distribution 2( , )N η σ  with η  following a “locally uniform” 

and relatively non-informative prior and 2σ  following an inverse - 2χ family. In the 

second case, the exchangeability hypothesis is dropped and ijλ  follows normal 

distributions * 2( , )ij ijN λ σ  with mean *
ijλ  and variance 2

ijσ  as above. The prior of ijλ  for 

the third case is vague, proportional to a constant and in the fourth case it is similar to 

the one proposed by Martin and Mac Donald (1975). 

 

         Rowe has a major contribution in the development of BFA. In his models, the 

overall population mean vector µ  is also considered, that is the iy `s are not 

subtracted by their means. So, the model takes the form: 

                             
( )( 1)( 1) ( 1) ( 1)

i i ip qpp q p××× × ×
= + +y µ Λ f ε  ,           for 1,2,...,i n= .          (3.30) 

Rowe has used several priors. In the paper of Rowe and Press (1998) the prior 

distribution of ( , )µ Λ,F,Ψ  is given by  

                     ( , ) ( ) ( ) ( ) ( )f f f f f=µ Λ,F,Ψ µ Λ |Ψ F Ψ                                 (3.31) 

with ( )f µ  vague, ( )f Λ |Ψ  and ( )f F are normally distributed and ( )f Ψ  is inverse 

Wishart distributed.  
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      In an older work (Rowe 2000a) he used a normal prior distribution for µ  

conditional on Ψ . The prior structure for the unknown quantities is given in equation 

(3.33). 

                         ( , , , ) ( | ) ( | ) ( ) ( )f f f f f=µ Λ F Ψ µ Ψ Λ Ψ F Ψ                        (3.32) 

where ( | )f µ Ψ  is set to be vague, ( )f Λ |Ψ  and ( )f F are normally distributed and 

( )f Ψ  is inverse Wishart distributed.  

     Rowe (2001) has also considered a normal prior for the joint distribution of 

( )=C µ,Λ  conditional onΨ . The relative prior for the unknown quantities is: 

                               ( , , ) ( | ) ( ) ( )f f f f=C F Ψ C Ψ F Ψ .                               (3.33) 

Rowe (2000b) uses normal priors forµ , ( ),Tvec=λ Λ F  and inverse Wishart for Ψ . 

The corresponding prior structure is given by equation (3.35). 

                           ( , , , ) ( ) ( ) ( ) ( )f f f f f=µ λ F Ψ µ λ F Ψ                                 (3.34) 

The conditional posterior distributions can be easily obtained. For example, Rowe 

(2000b) provides the conditional posterior ( | ),f µ Λ,F,Ψ,Y  

( | , ), ( | , )f fF µ Λ,Ψ,Y Λ µ F,Ψ,Y  as normal distributions and ( | , )f Ψ µ F,Λ,Y  as 

inverse Wishart.             

   Lopes and West (2004) have used different constraints on the loading matrix which 

forms a lower triangular matrix given by (3.35). 
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To the loadings ijλ  with i j>  they use normal priors, that is 0~ (0, )ij N Cλ . On the 

diagonal elements of 0Λ  they use truncated normal distributions, that is 
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0~ (0, ) ( 0)ii iiN C Iλ λ >  while they restrict ijλ  with i j<  to be equal to zero. In the 

same work, the elements of the matrix F  a priori follow a normal distribution as 

usually in BFA. Moreover, they use two different approaches for specifying the 

number of factors. At the first approach, they use MCMC methods with prespecified 

number of factors q , while, on the second approach, q  is considered to be an 

unknown parameter that has to be estimated. In the latter case, reversible jump 

MCMC (RJMCMC) method was used. 

         

   The main difference between the approach of PS89 and other subsequent 

approaches of BFA is they used closed form expressions for the posterior 

distributions, something that is not prerequisite when using MCMC methods. Gibbs 

sampling uses only the unnormalized conditional posterior distributions that are 

easily obtained when data and priors are available. Inference is made on the final 

MCMC sample from the joint posterior distribution of the parameters. Firstly, initial 

values for F  and Ψ  should be given. Then the algorithm cycles through: 

( 1)i+ ≡Λ a random sample from ( ) ( )( | , , )i if Λ F Ψ Y  

( 1)i+ ≡Ψ a random sample from ( ) ( 1)( | , , )i if +Ψ F Λ Y  

( 1)i+ ≡F a random sample from ( 1) ( 1)( | , , )i if + +F Λ Ψ Y  

When this procedure converges, we have obtained B N+  triplets 

( (1) (1) (1), ,Λ Ψ F ),…, ( ) ( ) ( )( , , )B N B N B N+ + +Λ Ψ F . Observations generated in the first B   

iterations are discarded to avoid dependence on the initial choice of parameter. The 

next N  observations are kept in order to evaluate the posterior distribution of the 

parameters. Generally, the means or, less frequently, the modes are used as estimates 

of the unknown parameters.  

 

3.9 Singular Value Decomposition 

 

      At the present thesis, the constraint of the lower triangular matrix (see 3.34) was 

used at the exploratory analysis for reasons of parameterisation. The resulting loading 



 46

matrix Λ , though, can not be compared directly with the corresponding loading 

matrix of the classical analysis since the constraint of the diagonal product T -1Λ Ψ Λ  

(see Lawley and Maxwell, 1971, chapter 4) is not satisfied. 

       In order to obtain comparable estimates for the two approaches we follow the 

approach described bellow. 

       Let us denote by b the product  

                                                 T -1Λ Ψ Λ = b                                          (3.36) 

Then it can be decomposed in an orthogonal matrix U  and a diagonal matrix V  with 

the method of singular value decomposition that is 

                                            Tb = U VU .                                           (3.37) 

Consequently equation (3.37) is written as: 

                                               T -1Λ Ψ Λ = TU VU                                     (3.38) 

By multiplying the above equation with -1 T(U ) from the left and -1(U )  from the right 

we get: 

                                            -1 T(ΛU ) 1(Ψ Λ )-1U = V                                (3.39) 

Equation (3.37) has been transformed into a new form that satisfies the constraint of 

the classical model. The transformed corresponding loading matrix svdΛ is equivalent 

to: 

                                           svdΛ = -1ΛU                                                  (3.40) 

Following the approach of Viele and Srinivasan (2000) we implement these 

transformations on the posterior means of the loading matrix in order to 

obtain estimates comparable to the ML estimates of the standard orthogonal 

model. The singular value decomposition is commonly used in multivariate 

statistics (see for example Venables and Ripley, 1999, Kateri et.al, 2005, 

Viele and Srinivasan, 2000). 

 

3.10 Comparison of Bayesian and non-Bayesian factor analysis 

 

      The advantages of BFA are important. Firstly, prior information can be 

incorporated in BFA, something that the frequentistic factor analysis can not take 
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advantage of. It is known that a sequence of analyses should be made in factor 

analysis in order to take safe results. This   information, resulting from previous 

stages of analysis, can be used in BFA as prior information. This information may 

refer to the number of factors or the relationships of factors and manifest variables. 

Another, advantage of BFA is that correlated errors can be easily incorporated into 

the model without considerable theoretical or computational difficulty. 

     Scheines et al. (1999) make a list of the advantages of Gibbs sampling versus ML 

approximation. They refer to the lack of need of asymptotic normality hypothesis. 

They also give emphasis to the usefulness of posterior distributions. The latter give us 

the chance to detect multimodality and they help us to inspect the fit of the model 

using posterior predictive p-values. According to them, another benefit is the fact that 

underidentified models can give results using informative priors. Kaufman and Press 

(1973) have also stressed the superiority of Bayesian application in factor analysis. 

They support that the restrictions in classical factor analysis are very “dogmatic” and 

the resulting loading matrices are not unique since they can be changed by a proper 

rotation. This does not happen in BFA, that only needs careful specification of prior 

distributions. 
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CHAPTER 4 

 
APPLICATION OF EXPLORATORY FACTOR ANALYSIS IN 

 
SCHIZOTYPIC DATA 

 
4.1    Introduction 

       

     In this chapter we implement Bayesian and non Bayesian EFA 

methodology on schizotypic data. According to Meehl (1990), schizotypy is 

the fundamental construct at the level of psychism. In psychiatrical 

terminology, a schizotype suffers “pseudoneurotic” decompensation, with 

microsychotic episodes. In general, the prevalence rate of schizotypy in the 

general population is about 10%. Another notion that is related to schizotypy 

is schizotaxia. According to Meehl (1964), schizotaxia is a neural integrative 

defect, which is supposed to be inherited. But the imposition of social 

learning history upon schizotaxic individuals, results in schizotypic 

personalities. When a schizotype, is physically vigorous and resistant to 

stress, does not present symptoms of mental disease. On the other hand, there 

is also a subset of schizotypes that decompensate in clinical schizophrenia. 

The prevalence rate of shizophrenia is found increased in schizotypals in 

comparison to normal population. 

          In addition, Meehl (1964) provides four schizotypal characteristics: 

cognitive slippage, anhedonia, ambivalence and interpersonal aversiveness. In 

summary, cognitive slippage is a kind of mental thinking disorder, anhedonia 

is denoted as a marked, widespread and refractory defect in the pleasure 

capacity (person cannot find pleasure in anything), and symptoms of 

interpersonal aversiveness are social fear, distrust, expectation of rejection 

and conviction of the person’s unlovability.  Information for ambivalence can 

be found at Bleuler (1950). 
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          In 1987, American Psychiatric Association edited the DSM-III-R 

Diagnostic and statistical manual of mental disorders. At this handbook, nine 

features defined the schizotypal personality:  

 

1. Ideas of reference, which are related to the feeling that things on TV or 

advertisements have a special meaning for the individual or that people talk 

about him when talking each other. 

2. Excessive social anxiety, which does not disappear with familiarity and is 

related to paranoid fears. 

3. Unusual perceptual experiences, like the feeling of presence of shadows and 

in general illusions of the five senses. 

4. Odd or eccentric behaviour, which is related to unusual mannerisms and 

eccentric appearance or habits. 

5. No close friends, when the individual finds it hard or does not have interest in 

getting emotionally close to other people except for his family. 

6. Odd speech, that is vague, confusing or not cohesive speech.  

7. Constricted affect, which is a sentimental accent not in harmony with speech, 

idea or thoughts. 

8. Suspiciousness, with friends or co-workers. 

9. Odd beliefs or magical thinking, for example, experiences with 

supernatural, telepathy and clairvoyancy. 

 

          Since then, several scales have been constructed in order to measure 

the schizotypic features seperately. However, Raine (1991) constructed a 74-

item self-administered questionnaire in an effort to provide an overall 

concept of schizotypal personality. The items of the questionnaire are binary 

(yes/no) and each takes the value of one (1) if the answer is positive and 

zero(0) if the answer is negative. The total score takes the values from 0 to 

74.  SPQ can be assessed in non-clinical populations, as well as clinical and 

provides brief subscales for the nine schizotypal features (each subscale was 

calculated as the sum of the questionnaire items that refer to each schizotypal 
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subscale, see Appendix A), as well as an overall scale for schizotypy. 

Furthermore, nine subscales may be summarized by three groups-factors of 

schizotypal personality (see figure 5.3, p.65; Raine et al., 1994). SPQ is 

available at Raine’s site.  

           The SPQ items were based on existing interview schedules for 

schizotypal personality (at a percentage of 34 %), were modeled on examples 

of schizotypal traits outlined in DSM-III-R (8 %), were taken from relative 

published questionnaires (18 %) and were also generated by the author (40 

%). This version of questionnaire of Raine (1991) exhibited satisfactory 

internal reliability (alpha coefficient 0.90) with high correlation equal to 0.81 

with STA, which is also a schizotypal personality scale based on DSM-III 

(American psychiatric Assocciation, 1980). The questionnaire is provided in 

appendix A (p.81) with its items grouped in the nine schizotypal traits.  

         Raine (1991) provides arguments in favor of usefulness of SPQ for the 

screening of schizotypes: 

 

1. In the first assessment of the SPQ it was found that 55% of the high 

10% SPQ scorers total had a DSM-III-R clinical diagnosis of SPD as 

assessed by the SCID. (Raine, 1991) 

2. SPQ, followed by a confirmatory clinical interview, can be implemented in 

non-clinical populations and help the recruitment of subjects with SPD.      

3. It can reduce bias created by traditional research implemented in clinical 

populations. The samples used in traditional studies are taken from 

conventional treatment centers while schizotypy is a psychological disorder 

that also appears in non-clinical populations. 

4. Although schizotypic individuals are genetically predisposed to 

schizophrenia, they have protective factors against this illness. Individuals that 

do not feel the need of seeking out psychiatric help and belong to non-clinical 

populations may consist the appropriate sample of research on such protective 

factors. 
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5. SPQ may help the studies for schizophrenia. Since the control group used in 

schizophrenia studies or surveys may contain schizotypic individuals resulting 

to failure of discrimination between schizophrenic patients and control 

subjects. In such case, SPQ can provide a tool for screening out the 

schizotypic subjects from the study and reduce type II errors. 

  

        In Greece, SPQ was firstly translated by the team of Stefanis et al.  (2004). An 

independent official translator translated it back in English, and was sent to the author 

for approval, which was granted. The final Greek version was produced by the 

comparison of the first and second draft in English. Some small changes were also 

necessary after administered to a test sample of 15 young employees of the University 

Mental Health Research Institute (UMHRI). This questionnaire was used in order to 

examine the covariance structure of schizotypy firstly by Stefanis et al. (2004). Since 

then, Βιτωράτου (2004) has analysed the reliability of the Greek SPQ, Ηλιοπούλου 

(2004) examined the relationship between schizotypy and the ideas of impulsive and 

compulsive buying used in Marketing Psychology. Finally Στάθη (2005) examined 

the relationship between SPD and records of knowledge. 

         The sample (collected by Ηλιοπούλου, 2004) is used in the present thesis to 

examine the latent dimensions of schizotypy using both classical and BFA. The 

sample consists of 167 Greek students from universities and Technological Education 

Institutes (TEI). In particular, the data were collected in the School of Management 

Sciences of the University of Aegean, in the two Universities and the TEI of Crete 

and in the TEI of Piraeus. It was collected during the period of exams in June 2003. 

After rejection of some questionnaires for reasons of validity the final sample 

consisted of 167 individuals, 56 % being females and 44 % males. 

        The mean age of the sample is 22 years old with a right-skewed age distibution, 

since postgraduate students also participated to the study. The participants completed 

a series of dichotomous items-queries. The responses in the SPQ items, which 

represent the nine schizotypal traits, were summed together and transformed to 

proportions of positive responses over the total numbers of items-questions. 



 52

         LISREL 8.52 student version (see Jöreskog and Sörbom, 1996) was used in 

order to analyse the data with EFA as well as CFA methods. The Bayesian analysis 

was conducted with WinBUGS 1.4 (see Spiegelhalter, et al., 2003). 

 

4.2   Exploratory analysis – Application to schizotypic data 

 

4.2.1 Classical Analysis 

 

        According to Tucker and MacCallum (1997) the parameterization that is used in 

frequentistic factor analysis imposes a constraint concerning the number of factors. 

The number of correlations of observed variables should be greater or equal to the 

number of free parameters of the model, that is 

                                         ( 1) / 2 ( 1) / 2pq q q p p− − ≤ −                                    (4.1) 

where p  is the number of observed variables and q  the number of factors. In the 

present case, constraint (4.1) limits the number of factors below or equal to five. 

LISREL discards the missing values, so the total effective size was equal to 163. 

When trying to fit three, four and five factor models Heywood cases were reported 

(see section 2.5.2.1, p.17). Hence, resulting loadings and the unique variances should 

be interpreted with caution. 

 

 

 

 

 

 

 

 

 

 

Table 4.1. Chi-square values of EFA 

 

Model Degrees of 
freedom 

Chi-
square p-value RMSEA 

1F  27 122.13 0.000 0.147 

2F  19 44.14 0.001 0.090 

3F  12 24.09 0.020 0.079 

4F  6 11.18 0.083 0.073 

5F  1 0.23 0.631 0.000 
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Table 4.1 presents the values of the chi-square test (see section 2.5.2), the p-

values and RMSEA (see section 2.7) for the five models that were examined: 

1F  (one-factor model), 2F  (two-factor model), 3F  (three-factor model), 4F  

(four-factor model) and 5F  (five-factor model). According to the values of p-

value we can not reject the null hypothesis that the four-factor model holds 

for the population in a 5% significance level. The value of RMSEA of 4F  is 

acceptable according to section 2.6 (p.17) and shows significant 

approximation to the population.  

 

 

Table 4.2. Unrotated loadings of the four-factor model (classical EFA) 

              (loadings with absolute values ≤ 0.2 are eliminated from the table) 

         

     Table 4.2 presents the factor loadings of the four-factor model with 

absolute values larger than the value of 0.2. Values lower than 0.2 show 

negligible correlation between the variable and the factor and hence were 

removed to have a better picture about factor decomposition.  Factor 1 can be 

interpreted as a general schizotypic factor as it is correlated with all 

schizotypal scales except “excessive social anxiety”. It is strongly correlated 

with suspiciousness and odd or eccentric behaviour, moderately correlated 

with ideas of reference, unusual perceptual experience, no close friends and 

odd beliefs or magical thinking. Lower correlations are observed between the 

first factor and constricted affect and odd speech. The second factor reflects a 

Schizotypal traits Factor 1 Factor 2 Factor 3 Factor 4 
Ideas of reference 0.572   0.355 

Odd beliefs or magical thinking 0.359   0.592 
Unusual perceptual experience 0.493   0.433 

Odd speech 0.348  0.434 0.374 
Suspiciousness 0.828 0.556   

Constricted affect 0.289  0.748  
Odd behaviour 0.828 -0.555   
No close friends 0.379  0.590  
Social anxiety   0.385  
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contrast between suspiciousness and odd or eccentric behaviour. The third 

factor loads on odd speech, constricted affect, no close friends and excessive 

social anxiety. The 4th factor is correlated with ideas of reference, odd beliefs 

or magical thinking, unusual perceptual experience, odd speech. 

       The results of the other models can be found in appendix B (p.87) 

 

4.2.2 Bayesian analysis   

 

    Bayesian EFA was conducted by imposing a lower triangular loading 

matrix as a constraint, for reasons of parameterization. The prior of the free 

loadings was chosen to be standard normal distribution, while the diagonal 

elements of the lower triangular loading matrix were assumed to follow a 

priori truncated at zero normal distribution as described in section 3.8. The 

error terms as well as the latent factors were assumed to be uncorrelated. For 

the first model ( 1F ), 100000 iterations were implemented after a 50000 burn-

in sample. The second model ( 2F ) converged after 70000 iterations and a 

200000 sample was used in order to have secure results. A 50000 burn-in 

sample was discarded for the third model ( 3F ). Due to high autocorrelation of 

the Gibbs sampling output, we kept one every 80th iteration to the final 

sample used for posterior inference. Furthermore, the method of 

overrelaxation was implemented (Neal, 1998); a total of 25000 iterations 

were generated. The same procedure was used for the four-factor model ( 4F ), 

with thin interval equal to 100 and the total number of 30000 iterations 

discarding the initial 50000 burn-in. The fifth model ( 5F ) converged after 

100000 burn-in iterations and 30600 iterations after imposing a 100 thin 

interval and the method of over-relaxation (see section 3.5, p.33). The 

generated chains passed the four tests of CODA (see section 3.6, p.34). The 

resulting loading matrix was transformed according to the singular value 

decomposition (see section 3.9, p.45). 
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        Table 4.3 presents the Deviance Information Criterion (DIC, 

Spiegelhalter et al., 2002), Akaike Information criterion (AIC, Akaike, 1987) 

and Bayesian Information Criterion (BIC, Schwarz, 1978) for the four models 

as well as, t, the number of estimated parameters (see section 3.7). The 

number of estimated parameters is equal to the number of the free loadings of 

the loading matrix and the number of unique variances at each model. 

 

 

 

 

 

 

 

                          
Table 4.3. Information Criteria for Bayesian EFA, (t: number of parameters); 

AIC and BIC have been calculated from θ  corresponding to the min Deviance 

from the MCMC run 

        

The four-factor model is chosen as the best fitted model with respect to AIC 

and BIC while DIC supports the second model to have a better fit.  

       An alternative way of comparing different models is the deviance. The 

Bayesian analysis provides the posterior density of the deviance; so different 

point estimates can be evaluated. Table 4.4 gives the estimates of the mean, 

median, 2.5%, 97.5% quantiles and minimum of the deviance for the five 

models as well as ( )D θ , that is the estimate of the deviance at the posterior 

mean of the stochastic nodes.  

 Information Criteria 
Models DIC AIC BIC t 

1F  3848 3667 3762 18 
2F  3050 3233 3371 26 
3F  3334 3085 3260 33 
4F  3105 2894 3101 39 
5F  3118 2924 3158 44 
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Table 4.4. Posterior descriptive measure for Bayesian EFA models 

 

      At the parenthesis below the mean value of the deviance, the standard 

deviation of the estimate is given. The estimates are accurate since the MC 

errors are less than 5% of the standard deviation of the values. All measures 

at table 4.4 support the fourth model as the model with the smallest deviance. 

      Because of the small samples of Gibbs-sampling chains (25000 at 3F  and 

30000 at 4F ), the minimum value of deviance can not be estimated 

accurately. For this reason, we can calculate AIC and BIC by replacing the 

minimum value of deviance with ( )D θ  and D  (that is the posterior mean of 

the deviance). Table 4.5 contains the estimates of the versions of AIC and 

BIC with ( )D θ and D .  

 

 Models  D  2.50% median 97.50% minimum D(θ)  
 
1F  
 

3700 
(20.81) 3662 

 
3700 

 
3743 

 
3631 

 
3552 

 
 
2F  
 

3414 
(37.54) 

 
3338 

 
3414 

 
3486 

 
3181 

 
3777 

 

     3F  
3284 

(56.77) 
 

3165 
 

3286 
 

3390 
 

3019 
 

3234 
 

4F  
3162 

(74.54) 
 

3009 
 

3165 
 

3301 
 

2816 
 

3221 
 

     5F  
3192 

(74.91) 
 

3038 3194 3333 2836 3266 
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Table 4.5. Version of AIC and BIC with D(θ) and D  for EFA 

 

    We should choose the 3rd model according to the values of ( )DBIC θ . On the 

other hand, the values of both DAIC and DBIC  lead to the conclusion that 4F  

shows the best fit of the five models.    

 

 

 

Table 4.6 Posterior means of factor loadings of 4F in Bayesian EFA (loadings 

with absolute values ≤ 0.2 are eliminated from the table) 

   

 

models 
 

D(θ)BIC  
DAIC  DBIC  

1F  3588 3683 3736 3831 

2F  3829 3967 3466 3604 

3F  3300 3475 3350 3525 

4F  3299 3506 3240 3447 

5F  3354 3588 3280 3513 

Schizotypal traits Factor 1 Factor 2 Factor 3 Factor 4
Ideas of reference 0.744    

Odd beliefs or magical thinking 0.546 0.366   
Unusual perceptual experience 0.608 0.227   

Odd speech 0.490 0.237  0.313 
Suspiciousness 0.617  0.211  

Constricted affect   0.435 0.340 
Odd behaviour 0.563    
No close friends   0.475 0.228 
Social anxiety   0.226  

D(θ)AIC
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 The posterior means of the factor loadings of the 4-factor model with the 

method of lower triangular matrix as well as their standard deviations are 

given in table 4.6.  

 

Table 4.7 Transformed posterior means of factor loadings of 4F  in 

Bayesian EFA (loadings with absolute values ≤ 0.2 are eliminated from 

the table) 

      

      Table 4.7 presents the posterior means of the factor loadings after the 

transformation of the factor loadings of 4F  with the method of singular value 

decomposition. 

      The means of the posterior distributions of the factor loadings of the rest 

of the models are provided in appendix B (p.87). 

      The first factor receives loadings from six variables: ideas of reference, 

odd beliefs or magical thinking, unusual perceptual experience, odd speech, 

suspiciousness and eccentric behaviour. The second factor is related only to 

constricted affect and no close friends. The third factor receives loadings 

Schizotypal traits Factor 1 Factor 2 Factor 3 Factor 4

Ideas of reference -0.679 
(0.093)      -0.241 

  

Odd beliefs or magical thinking -0.369 
(0.102)  -0.452 -0.295 

Unusual perceptual experience -0.502 
(0.099)  -0.400 

(0.164)  

Odd speech -0.352 
(0.1)  -0.538 

(0.160)  

Suspiciousness -0.656 
(0.099)    

Constricted affect  0.244 
(0.266) 

-0.292 
(0.353) 

0.388 
(0.33) 

Odd behaviour -0.494 
(0.096)  -0.305 

(0.135)  

No close friends  0.331 
(0.282) 

-0.291 
(0.361) 

0.277 
(0.402) 

Social anxiety   0.300 
(0.223)  
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from all schizotypal traits except for suspiciousness but the strongest 

loadings are those of odd speech, odd beliefs or magical thinking and unusual 

perceptual experience. It can be considered as a general factor of schizotypy. 

The fourth factor is weakly related to odd beliefs or magical thinking, 

constricted affect and no close friends. 

 

4.3 Comparison between frequentistic and Bayesian analysis 

 

   The results of the classical analysis of the third, fourth and fifth models 

(see appendix B, p.87) should be interpreted with caution since Heywood 

cases were observed during estimation (see section 2.5.2.1, p.17). However, 

according to both frequentistic and Bayesian analyses the four-factor model 

presents the best fit. The posterior means of the Bayesian analysis with the 

parameterisation of the lower triangular matrix were transformed using 

singular value decomposition in order to satisfy the parameterisation of 

classical analysis (see section 3.9, p.45). The transformed loadings of the 

second model resemble the loadings of the corresponding classical loadings 

of the second model (see appendix B, p.87).  

    A major advantage of Bayesian computation is the avoidance of Heywood 

cases. This helps us obtain stable estimates of model parameters. In the 

Bayesian approach we propose to use the parameterization of lower triangular 

matrix proposed by Lopes and West (2004) and then use Singular Value 

Decomposition transformation to get estimates comparable to the classical 

orthogonal factor model which is available in standard software packages 

such as SPSS and LISREL. 
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CHAPTER 5 
 

APPLICATION OF CONFIRMATORY FACTOR ANALYSIS  
 

IN SCHIZOTYPIC DATA 
 

 
5.1 Introduction 
 
      

        In this chapter we examine five factor models using CFA based on 

psychiatric theory proposed in the related literature. The first is the standard 

one-factor model ( 1m ) that coincides with the first model of the EFA fitted in 

section 4.2 (p.51). The second is a 2-factor model ( 2m ) introduced by Kendler 

et al. (1991), the third one is called disorganized 3-factor model introduced 

by Raine et al. (1994) (denoted by 3m ), the fourth is a 4-factor model ( 4m ) 

proposed by Stefanis et al. (2004) and the last model ( 5m ) is a 5-factor model 

and was introduced by Fogelson et al. (1999).  

        Different number of factors and underlying factor structure is 

prespecified in the above models by psychiatric arguments and scenarios. The 

four fitted models and their corresponding structure are illustrated in table 

5.1.  
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  Schizotypal traits 
MODEL FACTOR IR MT UPE S SA NCF CA OB OS 

1-factor Factor 1 # # # # # # # # # 
Kendler’s 
2-factor Positive # # # # #    # 

 Negative    # # # # #   
Disorganized 

3-factor 
Cognitive/ 
Perceptual # # # #       

 Interpersonal    # # # #    
 Disorganized        # # 

Paranoid 
4-factor 

Cognitive/ 
Perceptual  # #        

 Negative    # # # #    
 Disorganized        # # 
 Paranoid #   # #      

Fogelson et 
al.5-factor Paranoid #   #       

 Positive # # #        
 Schizoid      # #  # 
 Avoidant #    #      
 Disorganized       #     # #   

 

Table 5.1.  Table of fitted factor models 

(IR: ideas of reference, MT: odd beliefs or magical thinking, UPE: unusual 

perceptual experiences, S: suspiciousness, SA: social anxiety, NCF: no close 

friends, CA: constricted affect, OB: odd behaviour, OS: odd speech) 

        # the factor is related to the corresponding schizotypal trait  

 
5.2 One factor confirmatory model 

 

Figure 5.1 presents the path diagram of the first model. All schizotypal traits 

are connected with the first factor. This factor can be interpreted as the 

general factor of schizotypy. The factor scores are a measure of schizotypy of 

the patient.                                                                                 
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Figure 5.1.  Path diagram for 1m  confirmatory factor model 

 

 

5.3 Kendler’s two-factor model 

 

      Kendler’s 2-factor model (1991) assumes a positive factor related to ideas 

of reference, odd beliefs or magical thinking, unusual perceptual experiences, 

suspiciousness, social anxiety and odd speech and a negative factor that 

relates to suspiciousness, social anxiety, no close friends, constricted affect 

and odd behaviour. The path diagram of Kendler’s model is displayed in 

figure 5.2. 
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Figure 5.2. Path diagram of Kendler’s 2-factor model 

 
 

 This model depicts the typical concept of negative-positive factors of 

schizotypy. The positive factor reflects aspects of cognitive-perceptual 

dysfunction while the negative factor is thought to reflect deficits in 

interpersonal functioning. However, Kendler’s model differentiates with 

respect to the traditional 2-factor model in two points:  

 

1.   Suspiciousness and social anxiety load on both factors, while in the 

traditional 2-factor models they have been viewed as belonging to 

positive and negative factors respectively, and 

2. Odd behavior belongs to the negative rather than the positive factor. 
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5.4 Disorganized three-factor model 

 
    The model of Raine (1994) is the most popular of all and consists of 3 

factors: the cognitive-perceptual factor (ideas of reference, odd beliefs or 

magical thinking, unusual perceptual experiences and suspiciousness), the 

interpersonal factor (social anxiety, no close friends, constricted affect and 

suspiciousness) and the disorganized factor (odd behavior, odd speech). The 

path diagram of Raine’s model is displayed in figure 5.3.  

 

 
 

Figure 5.3. Path diagram of disorganized 3-factor confirmatory model 

  

  In Raine’s model, odd behavior and odd speech form a third disorganization 

factor that reveals a cognitive and behavioral disorganization, while the other 
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two factors suggest a latent trait of positive (cognitive-perceptual) deficits 

and negative  (interpersonal) deficits respectively. 

 
5.5 Paranoid four-factor model 

 
    The 4-factor model of Stefanis et al. (2004) assumes that four factors are 

related to the nine schizotypal traits: cognitive-perceptual, negative, 

disorganized and paranoid. The path diagram of the paranoid 4- factor model 

is presented in figure 5.4. 

 

 

 
 

Figure 5.4. Path diagram of paranoid 4-factor model 
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     This model was created by splitting the positive schizotypal traits (1st 

factor in 2m ) into a paranoid and a cognitive-perceptual factor that was found 

to have a better fit to the data of the ASPIS study; see Stefanis et al. (2004). 

The cognitive-perceptual factor relates to odd beliefs or magical thinking, 

and on unusual perceptual experiences. The negative factor is allowed to 

receive loadings from suspiciousness, social anxiety, no close friends, 

constricted affect and it is a measure of symptoms of negative schizotypal 

traits. The disorganized factor of this model receives loadings from odd 

speech and odd behavior while ideas of reference, suspiciousness and social 

anxiety were allowed to load on the paranoid factor.  

       The existence of a separate paranoid factor is based on several studies 

(Stuart et al., 1995; Kay and Sevy, 1990; Bassett et al. 1994; Peralta and 

Cuesta 1998, 1999) that have suggested discrimination of positive traits into 

cognitive/perceptual and paranoid. According to Stefanis et al. (2004), 

because of the relative independence between cognitive-perceptual and 

paranoid factor, delusions and paranoia seems to have a psychological 

motivation rather than be created by abnormal perceptual experiences. 

 
   
5.6  Fogelson et al. five-factor model 

 
      The last model ( 5m ) assumes that 5 factors are needed to explain the 

covariance between the schizotypal traits, that is paranoid, positive, schizoid, 

avoidant and disorganized latent factors. Figure 4.5 presents the path diagram 

of the Fogelson et al. (1999) 5- factor model. This model is the most 

complicated of all. It represents the idea of multidimensional concept in 

schizotypy, which is supported by many researchers.  
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Figure 5.5.  Path diagram of Fogelson et al.  5-factor model 

 

 
 
 
 

5.7 Classical analysis and interpretation of best fitted model 
 

The five models are compared with respect to the goodness of fit statistics (see 

section 2.5) provided by LISREL that are presented at table 5.2. 
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Table 5.2. Goodness of fit statistics for the fitted models 

 
(AIC: Akaike Information Criterion, CAIC: Consistent AIC, ECVI: single 

sample Cross Validation Index, NFI: Normed Fit Index, NNFI: Not-Normed Fit 

Index, CFI: Comparative Fit Index, GFI: Goodness of Fit Index, AGFI: 

Adjusted GFI, PGFI: Parsimony Goodness of Fit Index, 0F : population 

discrepancy function, RMSEA: Root Mean Square Error of Approximation) 

 

       The indices that are based on chi-square value can be used to compare the fitted 

models. The fourth model ( 4m ) gives the lowest values of ECVI and AIC, while 

CAIC indicates that 3m  seems to present a better fit compared to 4m . On the other 

hand, most of the fit indices (NFI, NNFI, CFI, PGFI)  show that the best fit is 

accomplished when  4m  is fitted. The values of the other goodness of fit indices (GFI, 

AGFI) of  4m  take values up to 0.9 with the exception of AGFI that takes the value of 

0.891. The value of RMSEA for 4m  is below 0.08 and indicates a moderate fit. In 

 FITTED MODELS 
STATISTICS OF  

FIT 1m  2m  3m  4m  5m  

p-value 0.000 0.000 0.0346 0.140 0.001 
AIC 163.35 135.37 94.98 87.93 111.29 

CAIC 237.47 221.85 185.58 194.99 243.07 
ECVI 0.984 0.815 0.572 0.530 0.670 
NFI 0.788 0.832 0.910 0.938 0.920 

NNFI 0.764 0.797 0.915 0.940 0.829 
CFI 0.823 0.865 0.946 0.967 0.938 
GFI 0.854 0.884 0.936 0.954 0.940 

AGFI 0.757 0.792 0.875 0.891 0.794 
PGFI 0.513 0.474 0.478 0.403 0.272 

0F  0.609 0.418 0.169 0.102 0.207 
RMSEA 0.150 0.132 0.086 0.0733 0.126 
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addition 0F  , decreases significantly from 0.169 of 3m  to 0.102 of 4m  indicating a 

decrease in the error of approximation in the population when 4m  is fitted. 

     

        After the comparison of the goodness of fit statistics of the five fitted models, we 

conclude that 4m  describes better the structure of the schizotypal traits and the 

underlying factors. The path diagram of 4m  is presented at figure 5.6.  

 

 

                        Figure 5.6.  Path diagram for fitted 4m  

 
 

The loadings of the fourth model are presented at table 5.3. the loadings of the other 

four models as well as the correlations of the factors are presented in appendix B 

(p.87). 
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Table 5.3.  Factor loadings of paranoid 4-factor model  

 
 The schizotypal traits share from moderate to high factor loadings with the factors 

except for the loading of social anxiety with the paranoid factor that is low: 0.109. 

       Table 5.4 presents the correlation matrix of the four factors, as well as their 

standard errors in parenthesis. 

 

      

 
Cognitive/ 
perceptual Negative     Disorganized   Paranoid

Cognitive/ 
perceptual 

1 
    

Negative 0.304 
(0.105) 

1 
   

Disorganized 0.910 
(0.105) 

0.650 
(0.105) 

1 
  

Paranoid 0.663 
(0.093) 

0.132 
(0.102) 

0.771 
(0.110) 

1 
 

      

Table 5.4. Correlation matrix of paranoid 4-factor model 

 

 

5.8 Bayesian analysis 

 

 Factors 

Schizotypal traits Paranoid Cognitive/
perceptual Disorganized Negative 

Ideas of reference 0.874    
Odd beliefs or 

magical thinking  0.655   

Unusual perceptual 
experiences  0.722   

Odd speech   0.577  
Suspiciousness 0.523   0.29 

Constricted affect    0.709 
Odd behaviour   0.596  
No close friends    0.815 
Social anxiety 0.109   0.349 
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5.8.1 Priors 

 

       Five models were fitted through Bayesian CFA: 1m , 2m , 3m , 4m , 5m . Their 

structure is presented at table 5.1. In the models under consideration we assume 

correlated factors. The prior for the precision matrix of the factors was selected to be 

the Wishart distribution with 100 degrees of freedom for 2 3 4, ,m m m  and 110 for 5m . 

The degrees of freedom of the Wishart distribution were chosen so as to have the 

posterior variances of the factors approximate one, for identifiability reasons (see 

section 2.2.1, p.6). The priors of the loadings were chosen to be univariate standard 

normal distribution while, the priors of some loadings were chosen to be normal 

distributions truncated at zero (without this constraint, different chains converged at 

the same loadings with opposite signs. In addition, the errors were assumed to be 

uncorrelated. 

 

5.8.2 Gibbs sampling 

     

    Since the first model of confirmatory analysis ( 1m ) is the same with the 1-factor 

model of exploratory analysis, results for 1m  can be obtained from the analysis of 

section 3.2. For the second model of Bayesian CFA a sample of 100000 values was 

enough after a 50000 sample of burn-in iterations in order to obtain convergence. 

Two chains were created for every model and the convergence was tested through 

CODA of S-plus. The third model 3m , needed 50000 burn-in sample and 150000 

subsequent iterations in order to converge. In addition, the fourth model 4m  

converged after a 70000 burn-in sample and 150000 iterations and the convergence of 

the fifth model was obtained after 70000 burn-in sample and a sample of 200000 

iterations from the posterior distribution of the estimated parameters. 
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5.8.3 Results 

 

        Model comparison was based on AIC, BIC and DIC that were presented in 

section 3.7. The number of free parameters is assumed to be the number of estimated 

factor loadings, plus the number of the variances of the errors, plus the number of the 

correlations of the latent factors. 

         The minimum value of the deviance was used in order to calculate the AIC and 

BIC. The results of the calculation of AIC and BIC as well as the DIC that are 

provided by WinBUGS are presented at table 5.5.  

 

 

 

 

 

 

                  

Table 5.5.  Information Criteria for the five fitted models 

(DIC: Deviance Information Criterion, AIC: Akaike Information Criterion, 

BIC: Bayesian Information Criterion, t: number of parameters) 

 

 

 

Table 5.6. Versions of AIC and BIC with D(θ) and D  for CFA 

 

 t DIC AIC BIC 
1m  18 3847 3667 3762 

2m  23 3775 3325 3447 

3m  25 3708 3117 3250 

4m  30 3629 2822 2981 

5m  37 3576 2616 2812 

 

models 
 

D(θ)BIC  
DAIC  DBIC  

1m  3588 3683 3736 3831 

2m  3295 3417 3558 3680 

3m  3113 3246 3435 3568 

4m  2837 3996 3563 3422 

5m  2678 2874 3169 3365 

D(θ)AIC
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Table 5.6 presents the values of Akaike information Criterion and Bayesian 

Information criterion calculated with the values of the mean of deviance ( D ) 

and the values of deviance estimated at the mean of the parameters ( ( )D θ ). 

 

 

Table 5.7. Point estimates of deviance for Bayesian CFA 

 
       Table 5.7. presents point estimates of deviance. The first parenthesis 

below the mean of the deviance contains the standard deviation of the 

estimate and the second parenthesis contains the MC error of the estimate. 

The minimum values of the deviance at the five models do not differ 

significantly from the values of ( )D θ . This is an indication of a satisfactory 

approximation of the deviance.  

        According to the values of all the calculated Information criteria 

presented at tables 5.5 and 5.6 5m  provides the best fit among the fitted 

models. As a consequence, 5m  is selected to be the most appropriate model to 

explain the covariance structure of the nine schizotypal traits.  

Models mean 2,50% median 97,50% minimum D(θ)  
3700 

(20.81) 1m  
 (0.118) 

3662 3700 3743 3631 3552 

3512 
(39.65) 2m  

 (0.367) 
3431 3513 3588 3279 3249 

3385 
(52.52) 3m  

 (0.53) 
3270 3389 3479 3067 3063 

3203 
(72.38) 4m  

 (0.749) 
3050 3207 3334 2762 2777 

3094 
(109.4) 5m  

 (1.39) 
2868 3098 3297 2542 2604 
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Table 5.8.  Factor loadings of Fogelson et al. 5-factor model with  

correlated factors 

 

     The loadings of the fifth model as well as their standard deviations are 

presented at table 5.8. The loadings of the other four models as well as the 

correlations of the corresponding latent factors are provided in appendix B 

(p.87). Ideas of reference loads weekly on the avoidant factor as well as the 

schizotypal trait of constricted affect that loads weekly on the disorganized 

factor. In this way, the avoidant factor receives loadings only from social 

anxiety and odd behaviour is the only schizotypal trait that loads on the 

disorganized factor. The remaining factor loadings appear from moderate 

(0.255) to high (0.808) values. 

 

 FACTORS 
Schizotypal 

traits Paranoid Positive Schizoid Avoidant Disorganized 

Ideas of 
reference 

 

0.456 
(0.144) 

0.3816 
(0.111)  -0.08 

(0.125)  

Odd beliefs or 
magical 
thinking 

 0.604 
(0.098)    

Unusual 
perceptual 
experiences 

 0.675 
(0.098)    

Odd speech   0.466 
(0.085)   

Suspiciousness 
0.602 

(0.152)    0.255 
(0.121) 

Constricted 
affect   0.808 

(0.107)  -0.14 
(0.091) 

Odd behaviour     0.738 
(0.110) 

No close friends   0.662 
(0.091)   

Social anxiety    0.699 
(0.18)  
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Table 5.9. Covariance matrix of Fogelson et al. 5- factor model 

     

     The above table presents the estimates of covariance between the factors 

of the fitted 5- factor model with their standard errors in parenthesis. The 

disorganized factor shares the highest value of covariance with the positive 

factor, that is 0.365.  In addition, the values of covariance of all the other 

combinations of factor remain in low to moderate values. 

        

   5.9 Comparison between frequentistic and Bayesian confirmatory 

analyses of data 

 

        The classical analysis is based on the iterative method of ML. In 

Stefanis et al. (2004) the 4-factor was the best fitted model according to the 

results of classical analysis while we conclude that Fogelson et al 5- factor 

model presented the lowest values of fit indices among the five models that 

were fitted through Bayesian analysis.  

 

 

 

 

 
 

  Paranoid Positive Schizoid Avoidant Disorganized 

Paranoid 1.029 
(0.155)     

Positive 0.223 
(0.109) 

1.102 
(0.166)    

Schizoid 0.197 
(0.098) 

0.23 
(0.093) 

1.079 
(0.161)   

Avoidant 0.129 
(0.095) 

0.178 
(0.095) 

0.223 
(0.096) 

1.008 
(0.146)  

Disorganized 0.211 
(0.112) 

0.365 
(0.105) 

0.306 
(0.102) 

0.105 
(0.094) 

1.118 
(0.171) 
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CHAPTER 6 
 

DISCUSSION AND FURTHER RESEARCH 
 
 
6.1   Discussion 
 
In this thesis we have examined the dimensionality of schizotypy and SPD 

using Bayesian theory. At the early stages of research schizotypic disorder 

was assumed to be one or two-dimensional. But further and recent research 

revealed a multidimensional structure of SPD. The three factors of Raine et 

al. (1994) were not confirmed by subsequent studies (see Bergman, 1996; 

Stefanis et al., 2004).  

    Stefanis et al. (2004) introduced the paranoid 4-factor model which was 

also validated by the data of the present thesis using classical factor analytic 

methods. However, it was not confirmed by Bayesian factor analytic methods 

used in this thesis. Instead, the 5-factor model of Fogelson et al. (1999) 

seems to provide a better fit among the five fitted, according to specific 

information criteria (see section 5.7, p.66). The estimated factor loadings of 

models 1m - 5m , though, were approximately, identical with the two 

approaches (see appendix B, p. 92-98).  

      In the Bayesian approach of exploratory analysis, the factor loadings 

were assumed to form a lower triangular matrix with positive diagonal 

elements. (see section 3.8, p.39). The estimated parameters presented high 

autocorrelation. Therefore, the method of overrelaxation and selection of a 

subsample of the output was used, a fact that retarded the convergence a lot. 

   The use of singular value decompositition allowed comparing the two 

different parameterizations of classical and Bayesian analyses since the 

loadings have been transformed according to the classical constraint (see 

section 3.9, p.45). However, the classical analysis presented Heywood cases 

(see section 2.5.2.1, p.17), consequently the values of the loadings and the 

unique variances should be interpreted with caution. In fact, the classical 

analysis of the second model (that did not presented Heywood cases) gave 
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almost identical loadings with the Bayesian analysis. This is an indication 

that the Bayesian analysis of the 3rd, 4th and 5th model provide stable 

estimates of factor loadings without being distorted by Heywood cases.  

Nevertheless, Bayesian and non-Bayesian analysis revealed a 

multidimensional factorial structure, a four and a 5-factor model respectively. 

The two models should be further examined in a confirmatory way on 

different data. 

 

6.2 Further research 

 
6.2.1 Two-stage factor analysis 

 

   The nature of the schizotypic data used at the present dissertation is such 

that a two-stage factor analysis may be easily implemented. The 

questionnaire consists of 74 items with dichotomous yes/no responses.  

Therefore, a reasonable assumption is that each variable follows Bernoulli 

distribution. 

    In a two-stage analysis CFA model, is implemented in two levels. At the 

first stage, for schizotypic data and SPQ (see section 4.1), each item is 

associated to one of the nine schizotypal traits they belong to. At the second 

stage, these schizotypic traits load on specific factors under a specific model. 

      In figure (6.1) the model of two-stage factor analysis is presented, where 

with iy  , 1,...,15i =  the observed variables, with jk , 1, 2,3j =  the first stage 

factors and with 1f  the second stage one factor representing an overall 

schizotypy score.  
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Figure 6.1. A path diagram for a two-stage factor analysis model 

 

Such models can be constructed using higher-order factor analysis in its 

general set up; for details see Bollen (1989a, p.313). Ansari and Jedidi (2000) 

describe the use of MCMC procedures for performing factor analysis of 

multilevel binary data. 

           

6.2.2 Logit factor model 

 

      At the present thesis, the responses used in the factor analysis model that 

is presented in equation (2.1) consist of the values of nine schizotypal 

variables. These values were created by summing the binary responses of 

specific answers of SPQ (see section 4.1, p.47) and they were transformed 

into proportions percent. 
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    The factor analysis model used is based on the assumption that the errors 

and as a consequence the dependent variables follow the Normal distribution. 

Generally, the nine schizotypal subscales are skewed and often do not meet 

this assumption. However, the analysis was made under the assumption of 

normality, since this is the standard approach in psychiatric research. 

     A more realistic model, called the logit factor model, can be constructed 

assuming that all variables follow the binomial distribution. The nine 

schizotypal traits, though, are in reality, binomial variables since they are the 

sums of specific binary responses. 

      Let us assume n  observations of p manifest variables iY  each following 

binomial distribution, that is 

                                             ~ ( , )i i iY B N π , for 1,...,i p=                         (6.1) 

where iN  is the number of independent Bernoulli coordinates of each 

binomial and iπ  the probability of “success” of the Bernoulli distributions. 

      In our case, iN  is the number of the items-questions of each of 

schizotypic scale and iπ  is the probability of a positive response to each of 

question or item. In addition, the responses of each item are supposed to be 

independent.  

     The logit model is defined as: 

 

                        0
1

( )log ( ) log
1 ( )i

q
i

i ij j
ji

fit f a a f
fπ

π
π =

= = +
− ∑      , for 1,...,i p=     (6.2) 

 

where 0ia is the overall mean, ija  are unknown coefficients and jf   are the q  

assumed latent factors. The factors are also assumed to be continuous and 

follow the standard normal distribution, that is: 

                                                 ~ (0,1)jf N  ,  for 1,...,j q= .                    (6.3) 

 In addition, the p  observed variables are assumed to be independent 

conditional on the latent variables. 
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        The interpretation of equation (6.2) is quite complicated since it is not 

the familiar linear model. The effect of a unit change in 1f  , for instance, is to 

increase the log odds log
1

i

i

π
π

⎛ ⎞
⎜ ⎟−⎝ ⎠

 by an amount of 1ia . 

      Alternatively, the probability of a positive response is: 

 

                                 ( )
0 1 1 2 2

0 1 1 2 2

exp( )
1 exp

i i i iq q
i

i i i iq q

a a f a f a f
a a f a f a f

π
+ + + +

=
+ + + + +

…
…

 .                 (6.4) 

 

     McCullagh and Nelder (1983) refer to the generalized linear models with 

logit link while Bartholomew et al. (2002) present the logit factor model with 

binary observations. 

      The implementation of the model (6.2) can be done with programs like 

LISREL (see Jöreskog and Sörbom, 1996) and in Bayesian approach using 

WinBUGS (see Spiegelhalter et al., 2003). 
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APPENDIX A 
 

Items for the nine subscales in the final 74-item version of the Schizotypal 

Personality Questionnaire 

Ideas of reference 

1. Do you sometimes feel that things you see on the TV or read in the newspaper 

have a special meaning for you?  

10. I am aware that people notice me when I go out for a meal or to see a film. 

19. Do some people drop hints about you or say things with a double meaning? 

28. Have you ever noticed a common event or object that seemed to be a special sign 

for you? 

37. Do you sometimes see special meanings in advertisements, shop windows, or in 

the way things are arranged around you? 

45. When shopping do you get the feeling that other people are taking notice of you? 

53. When you see people talking to each other, do you often wonder if they are 

talking about you? 

60. Do you sometimes feel that other people are watching you? 

63. Do you sometimes feel that people are talking about you? 

Excessive Social Anxiety 

2. I sometimes avoid going to places where there will be many people because I will 

get anxious 

11. I get very nervous when I have to make polite conversation. 
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20. Do you ever get nervous when someone is walking behind you? 

29. I get anxious when meeting people for the first time. 

38. Do you often feel nervous when you are in a group of unfamiliar people? 

46. I feel very uncomfortable in social situations involving unfamiliar people. 

54. I would feel very anxious if I had to give a speech in front of a large group of 

people. 

71. I feel very uneasy talking to people I do not know well. 

Odd beliefs or Magical Thinking 

4.Have you had experiences with the supernatural?  

12. Do you believe in telepathy (mind-reading)? 

21. Are you sometimes sure that other people can tell what you are thinking? 

30. Do you believe in clairvoyance (psychic forces, fortune telling)? 

39. Can other people feel your feelings when they are not there? 

47. Have you had experiences with astrology, seeing the future, UFOs, ESP or a sixth 

sense? 

55. Have you ever felt that you are communicating with another person telepathically 

(by mind-reading)? 

Unusual Perceptual Experiences 

4. Have you often mistaken objects or shadows for people, or noises for voices?  
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13. Have you ever had the sense that some person or force is around you, even 

though you cannot see anyone? 

22. When you look at a person or yourself in a mirror, have you ever seen the face 

change right before your eyes? 

31. I often hear a voice speaking my thoughts aloud. 

40. Have you ever seen things invisible to other people? 

48. Do everyday things seem unusually large or small? 

56. Does your sense of smell sometimes become unusually strong? 

61. Do you ever suddenly feel distracted by distant sounds that you are not normally 

aware of? 

64. Are your thoughts sometimes so strong that you can almost hear them? 

Odd or Eccentric Behavior 

5. Other people see me as slightly eccentric (odd). 

14. People sometimes comment on my unusual mannerisms and habits. 

23. Sometimes other people think that I am a little strange. 

32. Some people think that I am a very bizarre person. 

67. I am an odd, unusual person. 

70. I have some eccentric (odd) habits. 

74. People sometimes stare at me because of my odd appearance. 
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No Close Friends 

6. I have little interest in getting to know other people. 

15. I prefer to keep to myself.  

24. I am mostly quiet when with other people 

33. I find it hard to be emotionally close to other people. 

41. Do you feel that there is no one you are really close to outside of your immediate 

family or people you can confide in or talk to about personal problems? 

49. Writing letters to friends is more trouble than it is worth. 

57. I tend to keep in the background on social occasions. 

62. I attach little importance to having close friends. 

66. Do you feel that you are unable to get "close" to people? 

Odd Speech 

7. People sometimes find it hard to understand what I am saying. 

16. I sometimes jump quickly from one topic to another when speaking. 

25. I sometimes forget what I am trying to say. 

34. I often ramble on too much when speaking. 

42. Some people find me a bit vague and elusive during a conversation. 

50. I sometimes use words in unusual ways. 

58. Do you tend to wander off the topic when having a conversation? 
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69. I find it hard to communicate clearly what I want to say to people. 

72. People occasionally comment that my conversation is confusing. 

Constricted Affect 

8. People sometimes find me aloof and distant. 

17. I am poor at expressing my true feelings by the way I talk and look. 

26. I rarely laugh and smile. 

35. My "non-verbal" communication (smiling and nodding during a Y N 

conversation) is poor. 

43. I am poor at returning social courtesies and gestures. 

51. I tend to avoid eye contact when conversing with others. 

68. I do not have an expressive and lively way of speaking. 

73. I tend to keep my feelings to myself. 

Suspiciousness 

9. I am sure I am being talked about behind my back. 

18. Do you often feel that other people have got it in for you? 

27. Do you sometimes get concerned that friends or co-workers are not really loyal or 

trustworthy? 

36. I feel I have to be on my guard even with friends. 

44. Do you often pick up hidden threats or put-downs from what people say or do? 
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52. Have you found that it is best not to let other people know too much about you? 

59. I often feel that others have it in for me. 

65. Do you often have to keep an eye out to stop people from taking advantage of 

you? 
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APPENDIX B 

 
1. Loadings of exploratory factor analysis models. 

 

 

 

Model 1 

 
Table B.1. Factor loadings and unique variance of 1F  exploratory model with 

classical and Bayesian analysis 

 
 
 
 
 
 

1F  Factor 1 
(classical)

Unique 
variance 
(classical)

Factor 1 
(Bayesian) 

Unique 
variance 

(Bayesian) 

Ideas of reference 0.631 0.602 0.622 0.083 

Odd beliefs or magical 
thinking 0.542 0.706 0.548 0.084 

Unusual perceptual 
experience 0.663 0.561 0.668 0.080 

Odd speech 0.594 0.647 0.601 0.082 
Suspiciousness 0.600 0.640 0.605 0.082 

Constricted affect 0.410 0.832 0.417 0.089 
Odd behaviour 0.615 0.621 0.620 0.081 
No close friends 0.433 0.812 0.436 0.088 
Social anxiety 0.334 0.888 0.347 0.087 
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Model 2 

 
Table B.2. Factor loadings and unique variance of 2F  exploratory model with 

classical and Bayesian analysis  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2F  Factor 1 
(classical) 

Factor 2 
(classical) 

Unique 
Variance 
(classical) 

Factor 1 
(Bayesian) 

Factor 2 
(Bayesian)

Unique 
Variance 

(Bayesian) 

Ideas of reference 0.553 -0.436 0.504 -0.544 -0.464 0.521 

Odd beliefs or magical 
thinking 0.456 -0.424 0.612 -0.509 -0.337 0.654 

Unusual perceptual 
experience 0.6 -0.303 0.549 -0.617 -0.277 0.568 

Odd speech 0.602  0.634 -0.603  0.657 
Suspiciousness 0.575  0.642 -0.587  0.652 

Constricted affect 0.613 0.532 0.34 -0.569 0.501 0.451 
Odd behaviour 0.574 -0.227 0.619 -0.595  0.638 
No close friends 0.589 0.421 0.475 -0.591 0.504 0.431 
Social anxiety 0.377  0.842 -0.381  0.854 
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Model 3 

 

Table B.3. Factor loadings and unique variance of 3F  exploratory model with  

classical and Bayesian analysis  

 
 
 
 
 
 
 
 
 
 
 
 

3F  Factor 1 
classical 

Factor 2 
 classical 

Factor 3
classical

Unique 
Variance 
classical

Factor 1
Bayesian

Factor 2 
Bayesian 

Factor 3  
Bayesian 

Unique 
Variance
Bayesian 

Ideas of 
reference 

0.5  0.419 0.54 -0.66  -0.291 0.500 

Odd beliefs 
or magical 
thinking 

0.244 0.286 0.589 0.511 -0.639   0.580 

Unusual 
perceptual 
experience 

0.426 0.342 0.401 0.541 -0.657   0.557 

Odd speech 0.237 0.57 0.26 0.551 -0.568   0.563 
Suspiciousnes

s 0.997   0 -0.519  -0.380 0.530 

Constricted 
affect 0.271 0.693 -0.375 0.305 -0.213 0.548  0.431 

Odd 
behaviour 0.384 0.337 0.299 0.65 -0.560   0.615 

No close 
friends 0.306 0.574 -0.266 0.506 -0.225 0.536  0.429 

Social anxiety 0.195 0.352  0.838 -0.271 0.219  0.815 
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Model 4 

 
Table B.4. Unrotated factor loadings and unique variance of 4F  exploratory 

model with classical analysis 

 

 
Table B.5. Factor loadings and unique variance of 4F  in Bayesian EFA and 

MCMC details 

4F  Factor 1 Factor 2 Factor 3 Factor 4 Unique 
Variance 

Ideas of reference 0.572   0.355 0.545 

Odd beliefs or magical 
thinking 0.359   0.592 0.506 

Unusual perceptual 
experience 0.493   0.433 0.539 

Odd speech 0.348  0.434 0.374 0.541 
Suspiciousness 0.828 0.556   0 

Constricted affect 0.289  0.748  0.328 
Odd behaviour 0.828 -0.555   0 
No close friends 0.379  0.59  0.474 
Social anxiety   0.385  0.785 

Schizotypal traits Factor 1 Factor 2 Factor 3 Factor 4 Unique 
Variance 

Ideas of reference -0.679 
(0.093)      -0.241 

  0.472 

Odd beliefs or magical thinking -0.369 
(0.102)  -0.452 -0.295 0.559 

Unusual perceptual experience -0.502 
(0.099)  -0.400 

(0.164)  0.542 

Odd speech -0.352 
(0.1)  -0.538 

(0.160)  0.494 

Suspiciousness -0.656 
(0.099)    0.462 

Constricted affect  0.244 
(0.266) 

-0.292 
(0.353) 

0.388 
(0.33) 0.417 

Odd behaviour -0.494 
(0.096)  -0.305 

(0.135)  0.559 

No close friends  0.331 
(0.282) 

-0.291 
(0.361) 

0.277 
(0.402) 0.386 

Social anxiety   0.300 
(0.223)  0.779 
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Model 5 
 

 
Table B.6. Unrotated factor loadings and unique variance of 5F  exploratory 

model with classical analysis 

 
Table B.7. Factor loadings and unique variance of 5F  in Bayesian EFA 

 
 
 
 
 
 
2. Factor loadings and factor correlation matrices of CFA models in classical 
and Bayesian analysis 

Schizotypal traits Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Unique 
Variance 

Ideas of reference 0.572   0.340  0.523 
Odd beliefs or magical 

thinking 0.361   0.681 -0.273 0.287 

Unusual perceptual 
experience 0.494  0.224 0.365  0.569 

Odd speech 0.350  0.503 0.343 0.383 0.351 
Suspiciousness 0.828 0.556    0 

Constricted affect 0.289  0.630 -0.223  0.452 
Odd behaviour 0.829 -0.555    0 
No close friends 0.381  0.670 -0.323 -0.205 0.259 
Social anxiety   0.405   0.789 

Schizotypal traits Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Unique 
Variance 

Ideas of reference -0.682  -0.221   0.478 
Odd beliefs or magical 

thinking -0.378  0.415 -0.320  0.572 

Unusual perceptual 
experience -0.490  -0.372 -0.217  0.549 

Odd speech -0.437 0.220 -0.228 -0.343  0.490 
Suspiciousness -0.636  -0.299 0.23  0.473 

Constricted affect -0.259 0.492    0.417 
Odd behaviour -0.492  -0.257   0.552 
No close friends  0.462    0.385 
Social anxiety  0.239    0.782 
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Table B.8. Factor loadings of 1m  confirmatory model with classical and  

Bayesian analysis 

Model 2 

 
Table B.9. Factor loadings of 2m  confirmatory model with classical and 

Bayesian analysis 

 
 
 

 

1m  Factor 1 
(classical) 

Factor 1 
(Bayesian) 

Ideas of reference 0.617 0.622 

Odd beliefs or magical 
thinking 0.541 0.548 

Unusual perceptual experience 0.656 0.668 
Odd speech 0.592 0.601 

Suspiciousness 0.605 0.605 
Constricted affect 0.409 0.417 

Odd behaviour 0.616 0.620 
No close friends 0.430 0.436 
Social anxiety 0.339 0.347 

2m  Positive 
(classical) 

Negative
(classical)

Positive 
(Bayesian) 

Negative 
(Bayesian)

Ideas of reference 0.639  0.646  

Odd beliefs or magical 
thinking 0.594  0.600  

Unusual perceptual experience 0.699  0.691  
Odd speech 0.569  0.542  

Suspiciousness 0.479 0.204 0.477 0.232 
Constricted affect  0.696  0.690 

Odd behaviour  0.422  0.377 
No close friends  0.792  0.800 
Social anxiety 0.197 0.267 0.212 0.274 

 Positive Negative
Positive 1.000  
Negative 0.440 1.000 
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Table B. 10. Correlation matrix of latent factors of 2m confirmatory model with 

classical analysis 

 

 

 
 
Table B. 11. Covariance matrix of latent factors of 2m confirmatory model with 

Bayesian analysis 

 
Model 3 

 

               
Table B.12. Factor loadings of 3m  confirmatory model with classical analysis 

 
 
 
 
 
 
 

 

 Cognitive/ 
perceptual Interpersonal Disorganized 

Cognitive/ perceptual 1.000   

 Positive Negative
Positive 1.021  
Negative 0.198 1.029 

3m  Cognitive/ 
perceptual Interpersonal Disorganized 

Ideas of reference 0.692   

Odd beliefs or magical 
thinking 0.602   

Unusual perceptual 
experience 0.669   

Odd speech   0.575 
Suspiciousness 0.501 0.221  

Constricted affect  0.733  
Odd behaviour   0.599 
No close friends  0.788  
Social anxiety  0.372  
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Interpersonal 0.285 1.000  
Disorganized 0.957 0.665 1.000 

 
Table B. 13. Correlation matrix of latent factors of 3m confirmatory model with 

classical analysis 

 

 
Table B.14. Factor loadings of 3m  confirmatory model with Bayesian analysis 

 

 

 
 
 
 
 

 
 

Table B. 15. Covariance matrix of latent factors of 3m confirmatory model with 

Bayesian analysis 

 
 
 
 
 
Model 4 
 

3m  Cognitive/ 
perceptual Interpersonal Disorganized 

Ideas of reference 0.614   

Odd beliefs or magical 
thinking 0.524   

Unusual perceptual 
experience 0.615   

Odd speech   0.529 
Suspiciousness 0.483 0.223  

Constricted affect  0.701  
Odd behaviour   0.567 
No close friends  0.738  
Social anxiety  0.352  

 Cognitive/ 
perceptual Interpersonal Disorganized 

Cognitive/ perceptual 1.168   
Interpersonal 0.181 1.088  
Disorganized 0.442 0.313 1.245 
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Table B.16.  Factor loadings of paranoid 4-factor model with classical analysis 

 

      

 
Cognitive/ 
perceptual Negative     Disorganized   Paranoid 

Cognitive/ 
perceptual 

1 
    

Negative 0.304 
(0.105) 

1 
   

Disorganized 0.910 
(0.105) 

0.650 
(0.105) 

1 
  

Paranoid 0.663 
(0.093) 

0.132 
(0.102) 

0.771 
(0.110) 

1 
 

      

Table B.17. Correlation matrix of paranoid 4-factor model with classical 

analysis 

 
 
 
           

4m  Cognitive/ 
perceptual Negative Disorganized Paranoid 

Ideas of reference    0.716 

Odd beliefs or magical 0.536    

 Factors 

Schizotypal traits Cognitive/
perceptual Negative Disorganized Paranoid 

Ideas of reference    0.874 
Odd beliefs or magical 

thinking 0.655    

Unusual perceptual 
experiences 0.722    

Odd speech   0.577  
Suspiciousness  0.29  0.523 

Constricted affect  0.709   
Odd behaviour   0.596  
No close friends  0.815   
Social anxiety  0.349  0.109 
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thinking 
Unusual perceptual 

experience 0.661    

Odd speech   0.501  
Suspiciousness  -0.262  0.490 

Constricted affect  -0.686   
Odd behaviour   0.555  
No close friends  -0.275   
Social anxiety  -0.331  0.097 

 

Table B.18. Factor loadings of 4m confirmatory model with Bayesian analysis 

 

 

 Cognitive/ 
perceptual Negative Disorganized Paranoid

Cognitive/ perceptual 1.281    
Negative -0.207 1.097   

Disorganized 0.483 -0.325 1.334  
Paranoid 0.437 -0.122 0.444 1.236 

 

Table B. 19. Covariance matrix of latent factors of 4m  confirmatory model with 

Bayesian analysis 

 
 
 
 
 
 
 
 
 
 
 
 
 
Model 5 
 

5m  Paranoid Positive Schizoid Avoidant Disorganized 
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Ideas of reference 0.570 0.322  0.250  

Odd beliefs or magical 
thinking  0.626    

Unusual perceptual 
experience  0.755    

Odd speech   0.524   
Suspiciousness 0.769    -0.027 

Constricted affect   0.986  -0.346 
Odd behaviour     0.896 
No close friends   0.692   
Social anxiety    -0.497  

 

Table B.20. Factor loadings of 5m confirmatory model with classical analysis 

 

 
Table B.21. Correlation matrix of latent factors of 5m confirmatory model with 

classical analysis 

 

 Paranoid Positive Schizoid Avoidant Disorganized 

Paranoid 1.000     

Positive 0.671 1.000    
Schizoid 0.572 0.44 1.000   
Avoidant -0.515 -0.614 -0.705 1.000  

Disorganised 0.588 0.605 0.581 -0.193 1.000 
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Table B.22.  Factor loadings of Fogelson et al. 5-factor model with  

Bayesian analysis 

 

Table B.23. Covariance matrix of Fogelson et al. 5- factor model with  

Bayesian analysis 

 

 FACTORS 
Schizotypal 

traits Paranoid Positive Schizoid Avoidant Disorganized 

Ideas of 
reference 

0.456 
(0.144) 

0.3816 
(0.111)  -0.08 

(0.125)  

Odd beliefs or 
magical 
thinking 

 0.604 
(0.098)    

Unusual 
perceptual 
experiences 

 0.675 
(0.098)    

Odd speech   0.466 
(0.085)   

Suspiciousness 0.602 
(0.152)    0.255 

(0.121) 
Constricted 

affect   0.808 
(0.107)  -0.14 

(0.091) 

Odd behaviour     0.738 
(0.110) 

No close friends   0.662 
(0.091)   

Social anxiety    0.699 
(0.18)  

  Paranoid Positive Schizoid Avoidant Disorganized 

Paranoid 1.029 
(0.155)     

Positive 0.223 
(0.109) 

1.102 
(0.166)    

Schizoid 0.197 
(0.098) 

0.23 
(0.093) 

1.079 
(0.161)   

Avoidant 0.129 
(0.095) 

0.178 
(0.095) 

0.223 
(0.096) 

1.008 
(0.146)  

Disorganized 0.211 
(0.112) 

0.365 
(0.105) 

0.306 
(0.102) 

0.105 
(0.094) 

1.118 
(0.171) 
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3. The code of the 4-factor model in Bayesian exploratory factor analysis. 
 
 

model; 
{ 
   for (i in 1:n){ 
  for(j in 1:p){ 
    y[i,j]~dnorm(mu[i,j],tau[j]) 
mu[i,j]<-l1[j]*f1[i]+l2[j]*f2[i]+l3[j]*f3[i]+l4[j]*f4[i] 
      } 
            } 
l2[1]<-0.0 
l3[1]<-0.0 
l3[2]<-0.0 
l4[1]<-0.0 
l4[2]<-0.0 
l4[3]<-0.0 
l1[1]~dnorm(0,1)I(0,) 
l2[2]~dnorm(0,1)I(0,) 
l3[3]~dnorm(0,1)I(0,) 
l4[4]~dnorm(0,1)I(0,) 
for(j in 2:p){ 
l1[j]~dnorm(0,1) 
                    } 
for(j in 3:p){ 
l2[j]~dnorm(0,1) 
                    } 
for(j in 4:p){ 
l3[j]~dnorm(0,1) 
                    } 
 for(j in 5:p){ 
 l4[j]~dnorm(0,1) 
                     } 
for(j in 1:p){        
        tau[j]~dgamma(1,1) 
         s[j]<-1/tau[j] 
                            } 
       for(i in 1:n){ 
           f1[i]~dnorm(0,1) 
          f2[i]~dnorm(0,1) 
          f3[i]~dnorm(0,1) 
          f4[i]~dnorm(0,1) 
                         } 

                }                
                



 102

 
4.  The code of the 4-factor model in Bayesian confirmatory factor analysis. 
 
model; 
{ 
   for (i in 1:n){ 
  for(j in 1:p){ 
    y[i,j]~dnorm(mu[i,j],tau[j]) 
mu[i,j]<-l[1,j]*f[i,1]+l[2,j]*f[i,2]+l[3,j]*f[i,3]+l[4,j]*f[i,4] 
      } 
            } 
l[1,1]<-0 
l[1,2]~dnorm(0,1)I(0,) 
l[1,3]~dnorm(0,1) 
l[1,4]<-0 
l[1,5]<-0 
l[1,6]<-0 
l[1,7]<-0 
l[1,8]<-0 
l[1,9]<-0 
l[2,1]<-0          
l[2,2]<-0   
l[2,3]<-0 
l[2,4]<-0 
l[2,5]~dnorm(0,1) 
l[2,6]~dnorm(0,1) 
l[2,7]<-0 
l[2,8]~dnorm(0,1) 
l[2,9]~dnorm(0,1) 
l[3,1]<-0 
l[3,2]<-0 
l[3,3]<-0 
l[3,4]~dnorm(0,1)I(0,) 
l[3,5]<-0 
l[3,6]<-0 
l[3,7]~dnorm(0,1)  
l[3,8]<-0  
l[3,9]<-0 
l[4,1]~dnorm(0,1)I(0,)   
l[4,2]<-0   
l[4,3]<-0 
l[4,4]<-0 
l[4,5]~dnorm(0,1) 
l[4,6]<-0 
l[4,7]<-0 
l[4,8]<-0 
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l[4,9]~dnorm(0,1)         
for(j in 1:p){        
        tau[j]~dgamma(1,1) 
         s[j]<-1/tau[j] 
                            } 
for (i in 1:n){ 
      f[i,1:4]~dmnorm(miden[1:4],prec[1:4,1:4]) 
                       } 
 prec[1:4,1:4]~dwish(R[1:4,1:4],100) 
sigma[1:4,1:4]<-inverse( prec[1:4,1:4]) 
                } 
  }           
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