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ABSTRACT 
 

 

Athanasia Oikonomou 
 
 

 

Bayesian Latent Variable Models  
    May, 2008 

 

          The aim of this thesis is to examine whether impulsive and compulsive 

buying are related to the schizotypal personality characteristics. The Bayesian 

approach may be adopted to analyze the association between Schizotypal 

Personality Questionnaire (SPQ) scale and impulsive and compulsive 

responses of university students in Greece. 

          In Bayesian analysis all the available prior information of the data is 

used in combination with the data likelihood in order to calculate posterior 

distribution of the parameters of interest. Here statistical inference and 

interpretation of the parameters is solely based on their posterior distribution. 

However, usually it is difficult to calculate the posterior distribution of 

interest. In such cases modern computational methods such as Markov Chain 

Monte Carlo techniques are used to generate a sample from the corresponding 

posterior distributions of interest in which we can base our inference.                 

          Firstly we present the latent factorial structure of schizotypal 

personality disorder as examined in the related bibliography. Several factor 

models are used to identify the latent structure of the data and represent 

hidden dimensions of Schizotypal Personality Disorder. Five models are 

compared via model selection criteria. 

           After analysing the latent structure of SPQ, we construct models to 

associate schizotypal data with impulsive and compulsive buying data. In our 

analysis we used the Binomial/ Logit model while in the related bibliography 

is used the normal one. Finally, having applied these models we observed that 

that there was no strong connection between comsuming behavior and schizotypy. 
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ΠΕΡΙΛΗΨΗ 
 

Αθανασία Οικονόμου 

 

Μπεϋζιανά Μοντέλα Λανθανουσών Μεταβλητών 
Μάιος 2008  

 

 

          Στόχος αυτής της εργασίας είναι η διερεύνηση της πιθανής σχέσης μεταξύ 

παρορμητικής και καταναγκαστικής καταναλωτικής συμπεριφοράς και του 

σχιζοτυπικού χαρακτηριστικού ενός ατόμου. Η Μπεϋζιανη προσέγγιση υιοθετείται 

για την ανάλυση της κλίμακας σχιζοτυπικής συμπεριφοράς ΕΣΠ (SPQ) και των 

απαντήσεων σχετικά με αυθόρμητες και καταναγκαστικές συμπεριφορές σε ένα 

δείγμα Ελλήνων φοιτητών. 

          Στην Μπεϋζιανή ανάλυση χρησιμοποιείται όλη η διαθέσιμη εκ των προτέρων 

πληροφορία των δεδομένων (δηλαδή μη πληροφοριακών δεδομένων) σε συνδυασμό 

με την πιθανοφάνεια  έτσι ώστε να υπολογιστεί η εκ των υστέρων κατανομή των 

παραμέτρων. Σε αυτή την προσέγγιση, η στατιστική συμπερασματολογία σε σχέση με 

τις υπό εξέταση παραμέτρους  βασίζεται εξ ολοκλήρου στην εκ των υστέρων 

κατανομή. Ωστόσο συχνά είναι δύσκολο να υπολογιστεί η εκ των υστέρων κατανομή. 

Στην περίπτωση αυτή, σύγχρονες υπολογιστικές μέθοδοι όπως οι μέθοδοι 

προσομοίωσης MCMC παρέχουν την απαραίτητη εκ των υστέρων κατανομή και μας 

δίνουν την δυνατότητα να αναπαράγουμε ένα τυχαίο δείγμα  στο οποίο μπορούμε να 

βασίσουμε την συμπερασματολογία μας. 

          Αρχικά, θα αναλύσουμε λανθάνοντα παραγοντικά μοντέλα της σχιζοτυπικής 

διαταραχής της προσωπικότητας σύμφωνα με αυτά που έχουν παρουσιαστεί ήδη στη 

σχετική βιβλιογραφία. Διάφορα παραγοντικά μοντέλα χρησιμοποιούνται έτσι ώστε να 

αποκαλύψουμε  την λανθάνουσα δομή των δεδομένων και να αναπαραστήσουμε 

μέσα από ένα μοντέλο τις κρυμμένες διαστάσεις της σχιζοτυπικής διαταραχής της 
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προσωπικότητας. Πέντε μοντέλα που έχουν χρησιμοποιηθεί στη σχετική 

βιβλιογραφία συγκρίνονται μέσω κριτηρίων επιλογής του καταλληλότερου μοντέλου 

για να καταλήξουμε σε αυτό που περιγράφει καλύτερα τα δεδομένα μας.  

          Κατόπιν, συνδέουμε τα σχιζοτυπικά δεδομένα με τα δεδομένα της αυθόρμητης 

και της καταναγκαστικης καταναλωτικής συμπεριφοράς εφαρμόζοντας τρία μοντέλα 

για κάθε περίπτωση. Με αυτή την ανάλυση εξετάζουμε τη σχέση μεταξύ των 

σχιζοτυπικών χαρακτηριστικών και της καταναλωτικής συμπεριφοράς. Για την 

αναλυσή μας χρησιμοποιήσαμε το Binomial/ Logit μοντέλο ενώ στην βιβλιογραφία 

χρησιμοποιείται το κανονικό. Στο τέλος αυτά τα τρία μοντέλα συγκρίνονται και 

καταλήγουμε σε αυτό που καλύτερα περιγράφει αυτή την σχέση. Επίσης 

συμπεραίνουμε πως δεν υπάρχει ισχυρή σχέση αναμεσα στην καταναλωτική 

συμπεριφορά και την σχιζοτυπία. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Introduction 
 

          The aim of this thesis is to facilitate binomial latent variable model to 

assess the effect of schizotypy on the consuming behavior expressed by 

impulsive and compulsive buying scales. Schizotypy is measured via a 74-

item self administered questionnaire called the Schizotypy Personality 

Questionnaire (SPQ) introduced by Raine (1991).  

          The data of the survey of Iliopoulou (2004) are used in this thesis. The 

Greek version of SPQ (Stefanis et al., 2004) and a collection of items based 

on impulsive and compulsive buying were facilitated to associate schizotypy 

and buying behavior. All data were collected by students in Universities and 

Technological Educational Institutes in Greece. 

          In the first part of this thesis we review latent variable models for 

binomial data and their Bayesian implementation. Then we facilitate these 

models to initially explore the latent structure of schizotypy. The information 

available for schizotypy is aggregated in nine schizotypal traits: ideas of 

reference, odd beliefs or magical thinking, unusual perceptual experience, odd 

speech, suspiciousness, constricted affect, odd behavior, no close friends and 

social anxiety. We implement on schizotypal data five factor models which 

are presented in related bibliography. Then we identify the best one according 

to information criteria such as AIC and BIC. Since in the Bayesian approach 

statistical inference and interpretation of the parameters is based on their 

posterior distribution, computational sampling methods, such as Markov 

Chain Monte Carlo (MCMC) algorithms, are used to generate a sample from 

the corresponding posterior distribution.      

          Then, we examine the association of the schizotypal data with 

impulsive and compulsive buying. We extend the model that best describes 

the factorial structure of schizotypy by constructing a variety of models which 

associate impulsive and compulsive buying with schizotypal characteristics. 
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  1.2 Latent Variables  

 
          In the present thesis, we are dealing with Bayesian Latent Variable Models 

(LVM).  The Latent Variable Model (LVM) is a statistical model strongly related to 

the usual regression model. It relates a set of known (manifest) variables to a set of 

unknown ones (latent).  

          Latent variables are characteristics that underlie the observed measurements. 

They can not directly be observed but they are derived indirectly via other observable 

measurements called manifest variables. We can regard them as unobserved quantities 

which are expressed by manifest variables (Vittadini and Lovaglio, 2001). The main 

idea for developing LVM was that underlying and unobserved causes exist behind 

phenomena which are finally observed . The use of latent variables is common in 

social sciences. Some examples are: intelligence, academic performance, quality of 

life, business confidence, morale, happiness, conservatism and socio-economic status. 

          The main advantage of using LVMs is that we can reduce the dimensionality of 

a problem, aggregating information in a smaller dataset of latent variables often called 

factors (Bartholomew and Knott, 1999). Skrondal and Rabe-Hesketh, (2004, p.17) 

claim that latent variables are essential tools for our analysis because they generate 

distributions with desired variance. In addition, when dealing with problems from 

social sciences, it is convenient to consider some latent variables in order to represent 

quantitatively characteristics such as intelligence. 

          In present thesis, we are firstly exploring the latent structure of SPQ based on 

the Bayesian approach and then we associate schizotypy with consuming behavior 

which is expressed by impulsive and compulsive buying. All response data of this 

survey expressing schizotypy and consuming behavior are modeled using the  

Binomial distribution.  
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1.3 Bayesian approach 
 

          As we have already mentioned, in this thesis we adopt the Bayesian approach. 

Bayesian analysis is based on the principle that we can express our beliefs concerning 

parameters of interest using probabilistic statements. As a result, every unknown or 

unobserved quantity (parameter) can be treated as random variable (Gelman et al, 

1996 p.12). 

          According to Bayesian methods, all decisions and related computations must be 

based on our prior beliefs and on observed information (data). On the contrary, 

statisticians following the classical approach, claim that inference becomes subjective 

by inserting our beliefs via the prior distribution (Carlin and Louis, 1996 p.5). In 

addition, Bayesian approach requires intensive computations. Bayesian computation 

was simplified in the early 1990’s by the implementation of Markov Chain Monte 

Carlo (MCMC) algorithms (Carlin and Louis, 1996 p.5). These sampling based 

methods were implemented in a wide variety of problems and lead to the development 

of WinBugs which is programming oriented software for sampling from the posterior 

distribution of Bayesian models (Spiegelhalter et al, 1996). 

          In this thesis we consider the Latent Variable Models as hierarchical Bayesian 

models. In this case we consider both latent variables and parameters as random 

variables.  

          According to Fox and Glass (2001) Bayesian approach is the most favorable 

one in order to estimate the parameters of such models. It enables us to define a full 

probability model in order to quantify uncertainty in our study. Furthermore, results 

from previous studies and the data collection process can be included in the model. 

Secondly, under this procedure if some parameters are not fully determined, they can 

be specified over again using restrictions on them via their prior distributions. The last 

and most important advantage is that this procedure has been applied in Item 

Response models with multiple rates testlet structures latent classes and 

multidimensional latent abilities. Using MCMC methods for Bayesian inference, the 

multiple integrals that are incorporated in the complex dependency structures of the 

posterior distributions of interest can be efficiently estimated (Fox and Glas, 2001). 
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1.4 Structure of the thesis 

          The remaining of this thesis is organized in five additional chapters. Chapter 2 

briefly reviews and describes concepts related to the Bayesian approach of Latent 

Variable Models. A theoretical framework of the Bayesian approach is also included 

and as well as description and definition of Latent Variable Models. Some estimation 

methods for LVM are briefly presented. Finally we conclude with a short description 

of MCMC algorithms. The next chapter presents impulsive- compulsive buying and 

schizotypy background information as presented in related bibliography. 

          Chapter 4 constitutes an intermediate stage of our final analysis. In this chapter, 

we explore the latent factorial structure of schizotypal personality disorder using the 

Binomial assumption in contrast to the normal assumption used in psychiatric 

research. Five models are implemented using WinBugs. The best one is selected 

according to information criteria such as AIC and BIC.  

          The selected factor structure of chapter 5 is the extended to accommodate the 

association between SPQ and consuming behavior resulting to six additional models 

(three for impulsive buying and three for compulsive buying). Finally we use 

information criteria to identify which describes best this association. 

          We conclude this thesis with a short discussion and a description of some topics 

that can be investigated for further research in chapter 6.  
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CHAPTER 2 

BAYESIAN ANALYSIS OF LATENT VARIABLE MODELS 

 
 
2.1 Latent Variable Model 
 

          A latent variable model relates a set of known observables, the manifest 

variables, to a set of latent ones. According to the type (continuous or categorical) of 

the latent and manifest variables, four types of latent variable models can be 

established namely: 

• If both manifest and latent variables are categorical we have latent class 

analysis, 

• If both manifest and latent variables are quantitative we have factor analysis, 

• If the manifest variable is metrical and the latent is categorical, we have latent 

profile analysis and finally, 

• If the manifest variable is categorical and the latent is metrical, we have latent 

trait analysis.  

           The above models are strongly related to the usual regression analysis model. 

In regression models we infer about the manifest variables given a set of other 

observable covariates and our goal is to explain the variance of the first one using the 

variance of the latter. In contrast, in Latent Variable Models (LVM) this relationship 

is inverted and our aim is to make inferences about the latent covariates given the 

manifest.  

 

2.1.1 General Latent Variable Model  

 
          Suppose we have p manifest variables:  and q latent variables: 

with prior distribution

),...,( 1 pxx

),...,( 1 qyy ( )yϕ . In the general case the model can be 

expressed as: 

                                                                          (2.1)    piyax i

q

j
jijii ,...,1,

1
0 =++= ∑

=

εα

under the assumptions: 
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          Here ijα denote the model parameter called loadings and reflect the correlations 

between latent and manifest variables (Bartholomew, Steele, Moustaki, Galbraith, 

1999, p.150). The variance of  is simply given by the sum of squares of all loadings 

plus the variance . Hence: 

ix

2
iσ

222
2

2
1 ...)( iiqiiixVar σααα ++++=  

where  is the variance of the residuals and  represents the 

proportion of the variance of  explained by the factors of the model and is called 

communality (Bartholomew, Steele, Moustaki, Galbraith, 1999, p.152) 

2
iσ 22

2
2
1 ... iqii ααα +++

ix

          Here the goal is to reduce the dimensions of the problem from p to and 

express the relations between the manifest variables using the latent ones. In the case 

the latent variables are uncorrelated to the manifest variables then these latent are 

sufficient for explaining all the dependencies between the manifest variables. In the 

opposite case, when this is not true then additional latent variables need to be added in 

order to fully explain all dependencies (Huber, 2003). This is called independence 

assumption. 

q

          Skrondal and Rabe-Hesketh (2004, p.3) comment on this property :“A basic 

assumption of measurement models, both for continuous and categorical variables, is 

that the measurements are conditionally independent given the latent variable, i.e. the 

dependence among the measurements is solely due to their common association with 

the latent variable”. 

          Assuming that the latent variables explain sufficiently the observed variables 

then their distribution considering that it is a member of the one parameter 

exponential family is the conditional : )|( iii yxg

                                                                   (2.2) ))(exp()()()|( iiiiiiiiii xuyyGxFyxg =

for  and q<p pi ,...,1=
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2.1.2 General Latent Variable Model for binary data 

 

          “Binary responses are extremely common, especially in the social sciences. 

Individuals can be classified according to whether or not they belong to a trade union 

or take holidays abroad. They can be recorded as agreeing or disagreeing with some 

proposition or as getting some item in an educational test right or wrong”  

(Bartholomew and Knott, 1999, p.77). 

          Binary responses usually are coded using zero-one coding with one usually 

expressing success or having a specific characteristic. In the case we have p items as 

for example in survey questionnaires then we have  different response patterns. Let 

us suppose we have q latent variables 

p2

),...,( 1 qyyy = and the p binary manifest 

variables:   , ),...,( 1 pxxx =
⎩
⎨
⎧

=
0
1

ix pi ,...,2,1= . 

If we assume multivariate standardized normal latent variables, that is: , 

then the binary data described above explain what this is and can be modeled by using 

a logit model: 

),0(~ nINy

                                    logit ,                                           (2.3) ∑
=

+=
q

j
jijiiji yy

1
0),( αααπ

where the probability )(yiπ  is denoted as: 

                                     ),|1(),( ijiiji ayxPay ==π ,                                                (2.4) 

and is called the item response function (Bartholomew and Knott, 1999, p.78) and 

simplest the probability of success. The above model expresses the probability of a 

positive response to an item given the latent variable. Alternatively we can express 

equation (2.3) in terms of success probability. Hence we can write: 

                                  
)exp(1

)exp(
),(

1
0

1
0

∑

∑

=

=

++

+
= q

j
jiji

q

j
jiji

iji

y

y
ay

αα

αα
π                                         (2.5) 

The parameters ijα  are equivalent to the loadings of the general latent variable model 

described in section 2.1.1. The parameter 0iα is usually called “intercept” due to its 

role in the plot of the )(log yit iπ . Parameters ijα  are known as discrimination 
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parameters because the bigger they are, the easier it will become to discriminate 

between a pair of individuals a given distance apart on the latent scale and reflects 

how steep is the curve of )(yiπ , in respect to changes of  (Bartholomew and Knott, 

1999, p.80). Here we have to assume that the p manifest variables are conditionally 

independent to the q latent variables, thus the conditional distribution is: 

ijX

                                                                                           (2.6) ∏
=

=
p

i
iii yxgyxg

1

)|()|(

The above conditional distribution is a Bernoulli distribution since our observables 

are binary, hence: 

                                .                              (2.7) ii x
iji

x
ijiii ayayyxg −−= 1)},(1{)},({)|( ππ

 

2.2 Bayesian Latent Variable Model 
 
 
2.2.1 Introductory notions of Bayesian Inference  

 

          Here we shortly present the theoretical framework of the Bayesian approach 

including its characteristics starting with Bayes’ Theorem. In addition in section 

2.2.1.2 we provide a theoretical framework of predictive distribution.  

 

2.2.1.1 Theoretical framework of Bayesian approach 

          “The Bayes’ theorem provides a vehicle for changing or updating, the degree of 

belief about a parameter in light of more recent information” (Press, 1989, p.16). In its 

basic form is quite simple and refers on conditioning probabilities. Suppose we have 

two events A and B with   , then:  ( ) 0P A >

                                         ( ) ( ) ( )
( )

|
|

P A B P B
P B A

P A
= .                                             (2.8) 

The position of events A and B can be inverted as a result probability of  |A B  and 

|B A  are related. 

          We can have a more general case of Bayes’ theorem if we consider the 

independent events (1,..., kC C i jC C ≠ ∅I , i j∀ ≠ , 1,...,i k= and 1,...,j k= ), 
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which are a partition of the probability space Ω  ( 1 ... kC C = ΩU U ). In this case we 

have 

                                    ki
CP

CP

i ()

()

CAP

CAP
ACP k

j
j

ii
i ,...,1,

)|(

)|(
)|(

1

==

∑
=

.                           (2.9) 

          The above equation in terms of random variables and with f denoting the 

densities distributions can be translated to:    

                                         
θθθ

θθθ
dfyf

fyfyf
∫

=
)()|(
)()|()|(                                         (2.10) 

whereθ  denotes the unobserved vector quantities or population parameters of interest 

and can be either discrete or continuous. The only difference is that in the discrete 

case the dominator would become: 

                                                    ∑ )()|( jj fyf θθ  .                                          (2.11) 

          The observed data are denoted by and can be either a continuous or a discrete 

variable. 

y

)(θf  represents the prior density or probability distribution function (i.e. the 

prior beliefs) in the continuous or discrete case respectively while )|( yf θ  represents 

the posterior distribution of the parameterθ . The denominator is called 

“normalization constant”.  

An equivalent statement for the Bayes’ theorem is: 

                                        ( ) ( ) ( )|f y f f y |θ θ∝ θ .                                              (2.12) 

In words, the posterior distribution is proportional to the prior distribution multiplied 

with the likelihood function, i.e. Posterior ∝ Prior ×  Likelihood.  

          The main characteristics of Bayesian approach are presented below as these 

were mentioned by Dellaportas and Tsiamyrtzis (2006). These are: 
• Prior information: One of the most important components of Bayesian 

theory is the prior beliefs that must be incorporated to the inference of the 

problem. 

• Subjective probability: All the probabilities are subjective and dependent on 

a person’s beliefs or knowledge about the situation under study. In addition all 

the conclusions are based on posterior distribution which depends on how we 

have defined the prior distribution.  
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• Self-consistency: Using parameters as random variables has the result the 

decision theory to be based on probability theory. Consequently, all inferences 

about parameters come from the posterior distribution in the form of 

probability. 

 

The advantages of the Bayesian approach are:          

• The most important advantage of the Bayesian Paradigm is that it leads to a 

straightforward construction of credible intervals and p-values for hypothesis 

testing with natural interpretation (Congdon, 2001). 

• Bayesian methods offer a more effective approach to model estimation 

because of the success to incorporate all the relevant information, in order to 

minimize inefficiency and incoherence (process available information 

systematically). 

• Using this approach we condition on the data and replicate over parameters. In 

contrast in classical statistics we condition on the parameters and replicate 

over the data. 

• Bayesian approach does not violate the Likelihood principle according to 

which if we have two probability models with analogous likelihood function 

for any given sample of data, then we are led to the same inferences for θ  . 

• Using modern computational techniques we have the exact condition to infer 

about a parameter.  

           As we have already mentioned in Bayesian statistics all the inferences are 

based on the posterior distribution. Frequently it is difficult to evaluate it, because of 

the denominator which involves difficult integrations and summations.  

          MCMC methods were developed in order to simplify these evaluations and 

therefore they provide a valuable computational tool. Conditional simulation 

methodology generates samples from a “target” distribution. The basic concept here is 

to draw samples from a Markov chain which comes from a “target” distribution and 

will converge to a stationary distribution. When convergence is achieved this 

stationary distribution is the posterior. An important point here related to convergence 

is to know how many iterations and burn-in iterations we need. Burn-in iterations are 

the iterations which will be excluded from the final sample.     
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          The most known MCMC algorithms are: the Metropolis-Hasting algorithms 

and a special case of this the Gibbs sampling (for more details see Appendix E). 

 

2.2.1.2 Predictive Distribution 

 

           Let us now suppose we have a model, the observations  (in our case the 

observations are the nine schizotypal traits) and the parameters of the model

iX

θ . 

Gelfand et al. (1992) propose five functions which can be calculated for each 

observation and which include a comparison between this observation and its 

predictive distribution (Spiegelhalter et al, 1996): )( iXp

• The residual:  ).( ii XEx −

• The standardized residual: .)(/))(( iii XVXEx −  

• The chance of getting a more extreme observation: 

)).(),(min( iiii xXpxXp ≥<  

• The chance of getting a more “surprising” observation: 

 )).()(:( iii xpXpXp ≤

          Then, two cases were proposed in order to define the predictive distribution 

from whether the data set creates a separate evaluation data or not (Spiegelhalter et 

al., 1996). In the case the data create a separate evaluation dataset, then we have a 

“training set”

iX

y , on which is based the posterior distribution. Moreover, considering 

that our observations  are conditionally independent to the y and to the set of 

unknown parameters θ, the predictive distribution is determined as: 

iX

                                       θθθ dypXpyXp ii )|()|()|( ∫= .                               (2.13) 

          In the case we do not have a separate evaluation set then the predictive 

distribution of  should be remainder of the data and be conditional on the model so 

as to fulfil “cross-validation”. As a result, every observation  should have a 

distribution

iX

ix

)|( \ii xXp , where ix \  is the total data set without . Approximating the 

cross-validatory method we can use the methods of the separate evaluation set having 

replaced

ix

x  by y  . The predictive distribution now is given by: 

                                    θθθ dxpXpxXp ii )|()|()|( ∫=                                      (2.14) 
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Another important issue here is that when we repredict  we should remove the 

effect of . This has to be done in the case we want to sample satisfactory from the 

predictive distribution (Spiegelhalter et al, 1996).  

iX

ix

 

2.2.1.3 Goodness of fit 

 

          In order to evaluate the goodness of fit a model we use the chi-square test:  

which in our case this of schizotypal data, is given by: 

2Χ

                                            ∑
=

−
=Χ

n

i ij

ijij

xVar
xEx

1

2
2

)(
)]([

.                                             (2.15) 

 

We calculate the chi-square statistic test for our data  (as given in 4.1) for which 

we have that and the chi-square statistic test for the replicated 

(predicted) data set for which we have that:  and is given by:   

ijx

),(~ ijjij pnBinx

),(~ ijj
pred
ij pnBinx

∑∑
== −

−
=

−
=Χ

n

i ijijj

ijj
pred

ij
n

i
pred

ij

pred
ij

pred
ij

pred ppn
pnx

xVar
xEx

1

2

1

2
2

)1(
)(

)(
)]([

 

We make inferences based on their difference which forms the variable . 

This is a binary variable taking the value one when > and zero otherwise. 

valuep −

2
predΧ 2

obsΧ

ςhere:  

∑∑
== −

−
=

−
=Χ

n

i ijijj

ijj
pred

ij
n

i ij

ijij
obs ppn

pnx
xVar
xEx

1

2

1

2
2

)1(
)(

)(
)]([

 

 A close to zero indicates a bad model since what is observed is away from 

what is expected from the model.  

valuep −

 

2.2.2 Bayesian Latent Variable Models  

 

          The prior beliefs concerning model parameters, in the form of prior 

distributions are used to improve the accuracy of parameter estimates. Usually we 

define a single prior distribution with fixed parameters but, in some cases, a 

distribution is further imposed on the prior parameters. In this case the prior 
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parameters are called hyperparameters and describe the distributional characteristics 

of the prior beliefs (Kim et al, 1994). 

          In this section we consider the latent variable models as hierarchical Bayesian 

models (Skrondal, and Rabe-Hasketh, 2004, p.205). When we deal with the Bayesian 

analysis of latent variable models, both latent variables and parameters are treated as 

random variables. 

          Fox and Glas (2001) believe that in multilevel models it is more advantageous 

to use latent instead of observed scores. They claim that: “The advantage of using 

latent rather than observed scores as dependent variables of a multilevel model is that 

it offers the possibility of separating the influence of item difficulty and ability level 

and modeling response variation and measurement error. Another advantage is that, 

contrary to observed scores, latent scores are test- independent, which offers the 

possibility of using results from different tests in one analysis where the parameters of 

the IRT model and the multilevel model can be concurrently estimated”. Moreover, 

they support that: “Latent scores are test-independent, which offers the possibility of 

analyzing data from incomplete designs, such as, for instance, matrix- sampled 

educational assessments, where different (groups of) persons respond to different 

(sets of) items”. 

 
 

 

 

2.2.3 Parameter’s estimation 

       

          Let us assume we have p manifest variables which represent our 

observations, q latent variables and the parameters of the model (2.3)

),...,( 1 pxx

),...,( 1 qyy ijα . 

By the logit-model (2.3) the aim is to quantify the probability of answering positively 

to an item of the model considering the latent variables and ijα .  

The relation that expresses the probability of a positive response is: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

===

∑

∑

=

=

q

j
jiji

q

j
jiji

ijiiji

yaa

yaa
ayxPy

1
0

1
0

exp1

exp
),|1(),( απ  
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under the assumptions that the latent variables are normally distributed with mean 

zero and variance , and the parameters 2
yσ ijα  are normally distributed variables. 

),0(~ 2
yi Ny σ     

),0(~ *2σNaij  

for i=1,…,p and j=1,…,q 

          Manifest variables are conditionally independent from latent variables and the 

parameters a-priori so that the conditional distribution is: 

∏
=

=
p

i
ijiiiji ayxayx

1

),|(),|( ππ  

Since the observations are Bernoulli distributed, the conditional likelihood is given 

by: 

∏∏ −−=
i j

x
iji

x
ijiijii

ii ayayayx 1)},(1{)},({),|( πππ  

The goal is to estimate the above parameters. Below we will discuss some methods 

that have been developed for that matter. 

 

2.2.4 Estimation Methods 

 

          Several methods have been developed, based on Bayesian statistics for the 

parameters estimation. Kim et al (1994) proposed a method called “two joint 

Bayesian estimation” for the analysis of simulated data sets. This approach is used 

when we are not marginalizing over discrimination parameters. In the opposite case if 

we do so they propose the “two marginal Bayesian estimation”. Compared with 

maximum likelihood estimates joint Bayesian estimates are more accurate as they are 

less biased. 

 

2.2.4.1 Joint Bayesian estimation  

 

Our model is: 

           logit )},({ ijji ayπ =logit              (2.16)  ∑
=

=+==
q

j
jijioijji yayaaayxP

1

')},|1({

where  and . ),...,,(' 10 ijii aaaa = )',...,,1( 1 qyyy =
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          In the case of maximum likelihood estimation, we maximize the likelihood 

function given by: )|,( xayl

                                         (2.17) ),|()),(1(),()|,(
1

1 ayxpayayxayl n

i
xx ii =−=∏ =

−ππ

          In the approach of the joint Bayesian estimation, the estimates will accrue from 

maximization of the below posterior distribution: 

                        
)(

),()|,()|,(
x

ayxaylxay
π

ππ = ),()|,( ayxayl π∝ ,                        (2.18) 

where )( yπ represents the probability of positive response on the i-th item, ),( ayπ  

denotes the joint distribution of y and α and finally )(xπ represents the marginal 

likelihood function of x which is computed as: 

                                                                         (2.19) ∫ ∫Υ=
A

dadyayxaylx ),()|,()( ππ

where  and  are the parameter spaces for the parameters Α Υ α  and latent variables 

y  respectively. 

          The joint Bayesian approach of estimation is more favorable than the maximum 

likelihood estimation because provide us with parameter estimates which had smaller 

mean square differences from the underlying values, and were less biased (Kim et al, 

1994). 

 

 

2.2.4.2 Marginal Bayesian estimation  

 

          The marginal maximum likelihood of item parameters maximizes the marginal 

likelihood function given by: )|( xam

                                   ∏ ∫= Υ=
n

i iiii dyyxaylxam
1

)()|,()|( π ,                              (2.20) 

where )( iyπ denotes the probability of positive response . iy

 The likelihood function is denoted as: 

                    .                    (2.21)                              ),|())(1()()|,( 1 ayxpyyxayl ii
x

i
x

iii
ii =−= −ππ

In this method, we maximize the marginal posterior distribution which is given by: 

                                  )()|()|( axamxap π∝ .                                               (2.22)                              

It is clear, in these methods that is, quite important to have flexible priors for our 

parameters. This can be ensured using appropriate transformation. These must be 
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chosen such that they lead to a multivariate normal prior distribution. For this 

purpose, Mislevy (1986) proposed to transform the parameters  according to the 

logarithmic transformation, so:

ja

jj alog=α  and then estimate them. 

          So, for the vector of parameters  if we assume that these are independently 

distributed we have, 

a

aaa Σ,| μ ~ ),( aaN Σμ  : 

⎭
⎬
⎫

⎩
⎨
⎧ −Σ−−Σ=Σ −−− )()'(

2
1exp)2(),|( 12/12/

aaaa
n

aa aaa μμπμπ . 

 

 

2.2.4.3 Bayes modal estimation method 

 

          Mislevy (1986) developed a Bayesian theoretical framework for estimation in 

these models with two-stage prior distributions on both discrimination parameters and 

latent variables. Following the same assumptions as in the previous case and 

specifying that:  

• y : follows normal distribution with mean yμ  and variance  and 

~

2
yσ

),( 2
yy σμτ = )(τp . 

• α: has density )|( ηap , where η is the parameter of α with density function 

)(ηp . 

If we assume that α and y are independent then the joint prior for all the unknown 

quantities is given by: 

                           .                                (2.23)                              ∏=
i

pappypayp )()|()()|(),,,( ηηττητ

Applying Bayes theorem the posterior density function is given by: 

                     )()|()()|(),|()|,,,( ηηττητ pyppapyaxlxayp = .                        (2.24)                              

Where denotes the likelihood function.  ),|( yaxl

          The above relation includes all the information available about the parameters 

of the model. According to Mislevy (1986) an important property is that the value of 

the posterior mean for any subset of parameters seems to remain unchanged with 

respect to marginalization of (2.16) over any subset of the remaining variables.  
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          In cases of complex models the posterior means are not easily proceed, as a 

result they are approximated by the posterior modes which are easier in calculation. 

These are: 

              .              (2.25)                            )()|()(),|()|,,,()|,,( ηηττητητ pappaxldyxaypxap ∫ ∝=

          These modal estimates having a continuous and positive prior distribution tend 

to normality under regularity conditions like these of the maximum likelihood 

estimate (Mislevy, 1986). 

 

2.3 MCMC computation 
 

2.3.1 Introduction 

 

          The Bayesian approach is favored in latent variable models since MCMC 

algorithms can be applied in straightforward manner. MCMC methods provide us 

with techniques that we can use in different ways, depending on the inferences we are 

interested in. Albert and Chib (1993) and Patz and Junker (1999) developed a 

comprehensive theoretical framework based on these sampling algorithms and 

especially Gibbs sampler, for estimations on a latent variable model with binary 

responses; see in Appendix E for a short description of MCMC algorithms.  

For the LVM of interest as defined in (2.8): 

The posterior density  is given by: )|( xyp

                    
∫ ∏

∏
=

−

=

−

−

−
= p

i
x

ijji
x

ijji

p

i
x

ijji
x

ijji

dyayayy

ayayy
xyp

ii

ii

1
1

1
1

)},(1{)},({)(

)},(1{)},({)(
)|(

πππ

πππ
.               (2.26) 

where )( yπ is the prior density of y. 

          It is easily regarded that there is a relation between x’s and y’s. The logit binary 

regression model on  is connected with a normal linear regression model on . The 

above connection has the advantage that makes easier to model uncertainty in a logit 

model using the hierarchical normal linear structure on y. 

ix jy
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2.3.2 Gibbs sampling 

 

         The sampling method proposed by Albert and Chib (1993) is slightly modified 

from the classical approach. More specifically, Gibbs sampler (described in the first 

chapter) presumes simulating from the full conditional posteriors. But, in the case that 

these are not of a standard form, it is more difficult to perform the simulation. 

         To overcome this difficulty Albert and Chib’s idea was to divide the posterior 

distribution π  into k mass points.  Then, instead of sampling from this continuous π  

to sample from the individual distributions as these have been emerged after the 

division. In other words, they proposed the parameters to be grouped in smaller 

subsets. These subsets must have the property that the conditional posterior 

distribution of each one parameter given all the others will be easily sampled via 

Gibbs sampling (Fox and Glas 2001). 

          Then, they introduced k independent variables ),...,( 1 iki ZZZ =  for the 

application of the sampler, under the assumptions that:  

⎪⎩

⎪
⎨
⎧

=

>=

otherwisex

Zifx

ik

ikik

,0

0,1
  

The application of Gibbs sampler requires to sample: 

• )1( +tZ  from . ),|( )()( tt ayZp

•  from . )1( +ty ),|( )()1( tt aZyp +

•  from . )1( +ta ),|( )1()1( ++ tt yZap

          Patz and Junker (1999), claim that in order to have accurate estimates of ’s we 

have to generate ’s and then discard them. In fact, when we do not use them it is 

like integrating them in other techniques. They compare their concept to the concept 

of “sufficient” statistics of y. These are not estimators of any quantity, but they are 

used to give “consistent” estimators of ’s by conditioning on y’s. 

a
)(ty

a

Supposing y’s and ’s are independent we have that: a

                       )(),|(
),(),|(
),(),|(),|( ypayxp
dyaypayxp

aypayxpaxyp ∝=
∫

,                    (2.27) 

                      )(),|(
),(),|(
),(),|(),|( apayxp
daaypayxp

aypayxpyxap ∝=
∫

.                     (2.28) 
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Actually, what is done here is, if we have some parameters to make inferences about 

one of them, assuming the others are unknown. If this property is iterated, then we 

manage to “adjust” inferences on a parameter for the uncertainty about the others.   

 

2.4 Model Selection  

 
          In most cases we have to deal with complex hierarchical models we have to 

search which fits best our data by comparing them. For this purpose several methods 

have been developed in order to reassure us the best choice of model with the less 

cost. Here we will see three of them, these are: the Bayesian version of Akaike 

Criterion proposed by Akaike (1987), the Bayesian Information Criterion proposed by 

Schwartz (1978) and finally the Deviance Information Criterion introduced by 

Spiegelhalter et al.(2002). 

The Bayesian version of Akaike Information Criterion (AIC) is defined as: 

                                                                                                 (2.29) *2)ˆ( dDAIC += θ

where is the number of estimated parameters, the  denotes the posterior mean of 

the estimated parameters and finally the  is the estimate of the deviance at the 

posterior mean of the estimated parameters. The deviance generally is given by: 

*d θ̂

)ˆ(θD

                                             )|(log2)( θθ yfD −= .                                             (2.30)  

where )|( θyf represents the likelihood function. 

The Bayesian Information Criterion (BIC) is defined as: 

                                           ,                                           (2.31)        )log()ˆ( * NdDBIC += θ

where N denotes the number of observed variables. 

          In fact, bearing in mind all the above the main comment is that the model with 

the smallest values of AIC or BIC is the model which best fits our data. Furthermore 

this model can best predict a replicate dataset of the same structure as the observed 

and finally will give us more accurate results. 
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CHAPTER 3 

IMPULSIVE- COMPULSIVE BUYING AND SCHIZOTYPY 

 

3.1 Introduction 
 

          In this project the aim is to analyze (within Bayesian framework) the relation 

between two different types of consumption –impulsive buying and compulsive 

buying- with the personality disorder known as schizotypy. Thus, firstly we are going 

to define and develop a theoretical framework for these concepts. 

 

3.2 Impulsive buying 
 

          Impulsive buying denotes the unplanned buying which is any purchase a 

consumer does without having previous planning it (Stern, 1962). It is a “focal point 

of considerable marketing management activity” (Rook, 1987). Researchers find this 

consumer’s behavior of great importance as this unplanned activity many times 

competes with the necessity to decrease the pleasure that buying provides. To sum up 

the above: 

“Impulse buying occurs when a consumer experiences a sudden, often powerful and 

persistent urge to buy something immediately. The impulse to buy is hedonically 

complex and may stimulate emotional conflict. Also, impulse buying is prone to occur 

with diminished regard for its consequences” (Rook, 1987). 

          This topic has additional psychological aspects as makes it very easy to lose 

control. From psychological view impulse is a spontaneous action, more specifically 

is: “a strong sometimes irresitable urge: a sudden inclination to act without 

deliberation” (Goldenson 1984, p.34). It has been found out that it is correlated with 

age, intelligence and society in general. We are referred to society because is 

composed by its member’s impulses and as Freud claim impulse is the combination of 

pleasure principle and reality principle. The pleasure principle is what enables people 

feeling instantly extremely pleased after a purchase, but this sensation dies out after 

thoughts for what they have done. This proceeding is the reality principle.  

          Impulsive buying is divided in four subcategories according to the factors that 

influenced it: 
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• Pure impulse buying: This is the case when the buyer has preplanned the 

place and the time of the purchases. As a result unnecessary actions are 

eliminated as much as possible. 

• Reminder impulse buying: In this case the buyer when seew a product 

remembers that he must buy because does not have it, but he has previous 

experience of it. 

• Suggestion impulse buying: Here, the consumer buys products without 

having seen them before and without any previous knowledge of them in total. 

• Planned impulse buying: In this case, the buyer has some special needs and 

has planned to buy some products when entering a shop. Finally he manages 

to leave with many other purchases depending on prices and many other 

factors of the moment. 

Many researches have shown that women are impulsive consumers since they 

consume in a spontaneous way. This phenomenon has been increased vastly during 

the last years since many people are planning for their purchases not at their homes 

but at the stores. 

          There are studies examining the circumstances under which people consume/ 

buy impulsively, resulting in a separation of products which are bought impulsely or 

not. There are several factors which explain this connection and categorize the 

products in total. Prices have the highest influence; low prices encourage people to 

impulse actions and, therefore, low priced products belong to the first category. In 

addition, the degree of need for a product, the number of available items, the self-

service system of accommodation, advertisements or previous knowledge of the 

products, long or short life, small size or light weight, ease of storage for the products 

are also some factors for this point. 

          Furthermore, if we consider the separation of products in impulsive and non-

impulsive items then we have to say that this tendency is now connected to some 

special categories of products. The above separation is one of the problems in 

impulsive consumption research since impulse is a person’s and not product’s 

characteristic. This tendency is highly associated to the price of products which is 

wrong. The second problem is that there is not a theoretical framework for researchers 

to be based on in order to develop and present their work.           
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3.3 Compulsive buying 

 

3.3.1 Introduction           

          Let us start with a definition for compulsive buying or consumption. 

Compulsive buying was first defined by Emil Kraepelin (1915) when he tried to 

describe the problem of “buying mania” (Swan-Kremeier et al, 2006). Since then, 

many definitions describing this type of consumption have been considered. So, more 

recently compulsive consumption according to Faber, O’Guinn and Krych (1987, 

p.149, p.132) is: “Chronic, repetitive purchasing that occurs as a response to negative 

events or feelings. The alleviation of these negative feelings is the primary motivation 

for engaging in the behavior. Buying should provide the individual with short term 

positive rewards, but result in long-term negative consequences”. In addition, it is an: 

“inappropriate type of consuming behavior, excessive in itself, and obviously 

disturbing for the existence of individuals who seem to be prone to impulsive 

consumption” (Valence, d’Astous, Forter, 1988). 

          Compulsive buying, in contrast with impulse buying is caused from an internal 

anxiety according to which buying shopping and spending is an “escape” (DeSarbo, 

& Edwards, 1996). The behavior of compulsive buyers is the result of extreme stress 

which leads to increased anxiety. People who act in this way want only to reduce their 

anxiety; they do not seek the possession of goods but the automatic reduction of their 

tension. In general, they want only to control their psychological tensions. They are 

characterized from strong emotional activation, high cognitive control and strong 

reactive behavior (Valence, d’Astous, Forter, 1988). 

          As in the previous case such a behavior is highly connected with personality 

aspects and the total environment the buyer is developing his personality.  Edwards 

developed a framework for analyzing this tendency (Valence, d’Astous, Forter, 1988). 

She uses as factors the personality, family environment and credit cards if these exist. 

In addition, factors as low self-esteem, depression, dependency on others are of great 

importance for explaining compulsion. When we are referring to environmental 

factors we mainly mean advertising. Advertising takes advantage of people’s 

emotions and needs and leads them to buying and consumption. Compulsive buyers in 

general are treated as personalities which buy in order to have the control of their 

selves.  
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3.3.2 Psychological aspect 

 

          Many researchers relate this behavior to factors responsible for other 

pathological disorders. These factors are: an extraordinary tendency and desire to 

consume, personal dependence, a total failure to control oneself and finally 

compulsive buying as a behavior is highly connected to psychological disorders. 

          Let us now discuss analytically the psychiatric aspect of this topic. Schlosser et 

al (1994), claim that compulsive buying can be related to other compulsive disorders 

of behaviors such as stress, neurosis phobia etc. They finally conclude that 

compulsive buying is a definable clinical syndrome which can cause its sufferers 

significant distress and is associated with significant psychiatric comordibity. In 

accordance to them Christenson et al (1994), arrive at a similar conclusion so they 

believe that compulsive buying results in psychological impairment and displays 

features of both obsessive disorders and the impulse control disorders (pathological 

gambling, pyromania and kleptomania). 

          Compulsive buying in general is an addiction, but taking into account 

psychiatric researches is one of simple addiction more “homogenous model of 

substance addictions because these conditions may share clinical features and 

underlying brain circuitry and these features and circuitry do not alter by ingestion of 

exogenous substances” (Hollander and Allen, 2006). 

If this behavior is treated as a disorder then the advantages are: 

• It will be included in surveys, so this will assist us estimate the prevalence rate 

of the disorder. 

• We will be able to investigate the factors that lead to this disorder. 

• Improve a characterization of brain-based circuits. 

• The development of psychological and medical treatments. 

          Treating compulsive buying as a disorder has many benefits. Many scientists 

strongly object this approach. They support that this approach only favors 

pharmaceuticals companies (Hollander and Allen, 2006). In this thesis when we refer 

to a personality disorder related to the two types of buying, we mean the schizotypal 

personality disorder. In the following we briefly describe this disorder before we 

proceed to the data analysis in the next chapter. 
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3.4 Schizotypy 

 
          The term “schizotypy” was first used by Rado (1953) as a compaction of the 

terms “schizophrenic phenotype”. He defined this term in order to describe disorders 

supposed to be caused by genetic dispositions. These are:  
• An integrative pleasure deficiency 

• Proprioceptive diathesis, manifested in the form of an aberrant consciousness 

of the body, causing the appearance of distortions in the perception of body 

schema. 

• Motivational deficit. 

• Inability to organize goal-oriented activities. 

For Rado diathesis is something common for schizotypy and schizophrenia so there is 

a clinical connection between them. 

          Schizotypy consists of several reliably identifiable factors, some of them are 

important for analysis because are responsible for disorders of schizophrenia 

(Giraldez et al, 2000). For Meehl (1962) the signs of schizotypy are: 

• Cognitive slippage. 

• Interpersonal aversiveness. 

• Deficit in ability to experience pleasure. 

• Ambivalence. 

          According to Meehl, schizotypy seems to be responsible for schizophrenia but 

the opposite does not hold. When all believed that the problem was caused by factors 

such as psychotic or psychophrenic relatives, he then claimed that there were not only 

the genetic factors, the social influences and clinical symptomatology that led to the 

clinical illness but furthermore there were other hypotheses. For this purpose, he 

introduced a model for researching the above relations. “Schizotypy provides a tool 

for detecting fundamental features of liability to schizophrenia prior to the onset of 

clinical illness”. Figure 3.1 describes the genetic diathesis for schizophrenia, 

schizotaxia and schizotypy and implied levels of analysis. 
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Figure 3.1 Developmental model relating the genetic diathesis for schizophrenia, 

schizotaxia, and schizotypy and implied levels of analysis (Lenzenweger, 2006) 

 

          Lenzenweger (2006) sets three approaches for defining schizotypy. The 

biologic approach relies on the idea that the relatives of a schizotypic person may 

have schizophrenic symptoms. The clinical approach is close to the psychiatric aspect 

of this problem and defines these persons according to the DSM-IV criteria. The third 

one is the laboratory approach which uses various measures that are indicators of 

schizophrenia liability.  

          Roth and Baribeau (2000) in their research relate this personality disorder to 

compulsive behaviors. They note particularly that schizotypal personality disorder 

(PSD) is highly connected with obsessive- compulsive disorder (OCD). In some 

researches has been concluded that the OCD results in some estimates and finally in 

occurrence of PSD and supplement that this relationship between the two types of 

disorder may be stronger for some characteristics.  

          In order to check if someone is schizotypal, we use the Schizotypal Personality 

Questionnaire (SPQ) from Raine (1991). This is a questionnaire composed by 74 

questions designed in such a way in order to examine the nine factors defined by the 

American Psychiatric Association known as DSM- IV diagnostic criteria. 

          In a connection to the disorders described before according to the DSM-IV 

criteria defined by the American Psychiatric Association (1994) we have that: “The 

essential feature of Impulse-Control Disorders is the failure to resist an impulse, 
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drive, or temptation to perform an act that is harmful to the person or to others…the 

individual feels an increasing sense of tension or arousal before committing the act 

and then experiences pleasure, gratification, or relief at the time of committing the 

act. Following the act there may or may not be regret, self-reproach, or guilt.” 

 The DSM-IV diagnostic criteria are: 

• Ideas of reference: A person with this disorder usually displays wrongly 

some events with special meaning for him. 

• Excessive social anxiety: It is an anxiety that is not reduced by familiarity and 

is more connected to paranoid fears. 

• Odd beliefs or magical thinking: These beliefs are superstitions, telepathy, 

obsessions, and fantasies. In general they are concepts from parapsychology. 

• Unusual perceptual experiences: Sometimes they have the feeling that they 

are not alone in an empty place, or may feel unusual body experiences. 

• Odd or eccentric behaviour:  Eccentricity. 

• No close friends: Not having close friends, they don’t want to have friends or 

to be friends of others, they feel uncomfortable with everyone else except 

from members of their family. 

• Odd speech: Absentminded thoughts, abstract speech. 

• Constricted affect: The feeling of being different, and the difficulty in 

adaptability. 

• Suspiciousness: The belief that others are trying to danger them.                                                     

          In sequel the above nine criteria are band together in three subscale factors. The 

first factor is the Cognitive-Perceptual factor and is composed of; ideas of reference, 

odd beliefs, unusual perceptual experiences and suspiciousness. The second one is the 

Interpersonal deficit factor and is composed of; no close friends, constricted affect 

and excessive social anxiety.  Finally, we have the Disorganization factor composed 

of; odd or eccentric behavior and odd speech. Here what we are going to do is to 

examine if the two types of buying are related to the characteristics of schizotypal 

personality and if so, with which characteristics there is a stronger relationship.   
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CHAPTER 4  

ANALYSIS OF THE FACTOR STRUCTURE OF SPQ USING 

BAYESIAN LATENT VARIABLE MODELS 
 
 
4.1 Introduction 
 

          The aim of this thesis is to analyze the latent variable structure of the 

schizotypy and impulsive/ compulsive data using the Bayesian paradigm. Especially, 

in our case we will examine how the consumer behavior is related to schizotypy. In 

the previous chapters of the thesis the theoretical framework required to analyze our 

data was described and discussed in detail. 

          The data of a student survey (Illiopoulou, 2004) will be analyzed in detail. A 

total number of 205 questionnaires were collected. In our analysis we focus on the 

167 questionnaires fully completed (without any missing value) by university 

students. The data were collected in the School of Management Sciences of the 

University of Aegean (AEI) and Technological Education Institutes (TEI) of Crete 

and Piraeus. 

          The questionnaire was divided in five parts including three different scales for 

measuring the variables. The first part of the questionnaire includes seven questions 

(items) which measure impulsive buying under the coding of Likert ordinal scale (1-

5). Furthermore, in this part, five additional items were used to measure compulsive 

buying using the same scaling.  

          The sample consisted of 56% females and 44% males, 57% of them are 

university students and 43% of higher technological educational institutes. Moreover 

the 91% were enrolled in a B.Sc course and 9% in a M.Sc course. Concerning the age 

of the students who participated in the survey, 54% of them are of the age 18-21, 38% 

between 22-25, and 7% between 26-29 and only 1% is over 30 years old. At 

percentage 91% responded that belong to a median economic level. The 80% of the 

students responded that are independent financially, in contrast to 12% responding 

that they are fully dependent financially to their families (see Appendix A for more 

details). 
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4.2 Factor analysis      
          In this section we examine five factor models based on psychiatric theory using 

the factor analysis in order to find out how many factors explain the schizotypal traits. 

The models under examination are the following: 

• The one factor model, 

• Kendler’s two- factor model (Kendler et al, 1991), 

• Raine’s three- factor model known as  the Disorganised 3-factor model (Raine 

et al, 1994), 

• Stefanis four- factor model known as  the Paranoid 4- factor model (Stefanis et 

al, 2004),  

• The five- factor model proposed by Fogelson et al (1999). 

 

 Table 4.1 summarizes the structure of each factor model fitted to the schizotypal 

traits. 
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      Schizotypal traits       
MODEL FACTOR  IR MT UPE S SA NCF CA OB  OS 

 1-factor Factor 1 # # # # # # # # # 
Kendler's                     
2-factor Positive # # # # #       # 
  Negative       # # # # #   
Disorganised Cognitive/                   
3-factor Perceptual # # # #           
  Interpersonal       # # # #     
  Disorganised               # # 
Paranoid Cognitive/                   
4-factor Perceptual   # #             
  Negative       # # # #     
  Disorganised               # # 
  Paranoid #     # #         
Fogelson's                     
5-factor Paranoid #     #           
  Positive # # #             
  Schizoid           # #   # 
  Avoidant #       #         
  Disorganised       #     # #   

 

Table 4.1 Table of factor models 

(#:the factor is related to the schizotypal trait, IR: ideas of reference, MT: 

magical thinking (odd beliefs), UPE: unusual perceptual experiences, S: 

suspiciousness, SA: social anxiety, NCF: no close friends, CA: constricted affect, 

OB: odd behavior, OS: odd speech). 
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4.2.1 1-Factor model 

 

          The one-factor model is the simplest latent model available in the related 

bibliography. All the schizotypal traits are associated to one factor. This can be 

considered as a general measure/ scale of schizotypy. The figure below (Figure 4.1) 

represents the path diagram for the first model. 

 

 
Figure 4.1 Path diagram for the one -factor model 
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4.2.2 Kendler’s two-factor model  

 

          The idea of the two –factor model is based in the typical concept that 

schizotypy is composed by positive and negative characteristics /factors. The positive 

factor expresses the cognitive /perceptual disorder while the negative reflects the 

deficit in interpersonal function.  

           Kendler et al (1991) proposed a slightly modified two- factor model composed 

by a negative and a positive factor. Ideas of reference, odd beliefs or magical 

thinking, unusual perceptual experience and suspiciousness are related to the positive 

factor while no close friends, constricted affect, and odd behavior are related to the 

negative factor. In contrast to the traditional two- factor model where suspiciousness 

was loaded to the positive factor and social anxiety to the negative factor, Kendler and 

his associates claim that suspiciousness and social anxiety contribute to both factors. 

In addition they propose that the odd behavior belongs to the negative factor, in 

contrast to what was traditionally believed i.e. that it belongs to the positive factor; 

see Figure 4.2 for the path diagram of the two- factor model. 

 

 
Figure 4.2 Path diagram for the two -factor model. 
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4.2.3 Disorganized three –factor model  

 

          The disorganized three –factor model was introduced by Raine et al (1994). The 

information available from the nine characteristics of schizotypy is summarized by 

three factors. The ideas of reference, the odd beliefs or magical thinking, the unusual 

perceptual experience and the suspiciousness constitute the cognitive /perceptual 

factor. This factor reveals the positive characteristics of the model. The negative 

characteristics are reflected in the interpersonal factor which is constituted by 

suspiciousness, social anxiety, no close friends and constricted affect. Finally, the last 

factor is the disorganized factor which reveals a behavior and cognitive disorder. 

Figure 4.3 represents the path diagram for the three –factor model. 

 

 
Figure 4.3 Path diagram for the Disorganized three -factor model. 
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4.2.4 Paranoid four-factor model 

 

          Stefanis et al (2004) proposed a four –factor model in order to model the nime 

characteristics of schizotypy. In fact they adopt a result appearing in several studies 

(Stuart et al., 1995; Kay and Sevy, 1990; Bassett et al., 1994; Penalta and Cuesta 

1998, 1999). They propose to divide the positive factor of the two –factor model into 

two separated factors, the cognitive perceptual and the paranoid factor.  

          The odd beliefs or magical thinking and the unusual perceptual experience 

constitute the cognitive /perceptual factor. The paranoid factor is composed by ideas 

of reference, suspiciousness and social anxiety. The negative factor is composed by 

suspiciousness, social anxiety, no close friends and constricted affect. The 

disorganized factor is composed by odd behavior and odd speech; see Figure 4.4 for 

the path diagram of the four –factor model. 

  

 
Figure 4.4 Path diagram for the Paranoid four -factor model. 

 

 

 33



4.2.5 The five –factor model 

  

          Fogelson et al. (1999) proposed the five latent factors in order to model the nine 

characteristics of schizotypy. These are the paranoid factor composed by ideas of 

reference and suspiciousness, the positive composed by ideas of reference, odd beliefs 

and unusual perceptual experience, the schizoid composed by no close friends, 

constricted affect and odd speech, the avoidant composed by ideas of reference and 

social anxiety and finally the disorganized factor composed by suspiciousness, 

constricted affect and odd behavior; see Figure 4.5 for a graphical representation of 

the five- factor model. 

 

 

 
 

Figure 4.5 Path diagram for the five -factor model. 
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4.3 Analysis 
 

4.3.1 Introduction 

 

          Five models were fitted to identify the structure of the schizotypal data. The 

general structure of the models is:  

),,(~ ijjij pnBinomialx  

                                   logit ,                                         (4.1) ijikjk

K

k
jkjij bflap ++= ∑

=1
)( γ

 

ijx  the number of positive responses of i subject for j SPQ subscale (i=1,…,167, 

j=1,…,9 and k=1,…,5). These are assumed to follow Binomial distribution with  

denoting  the number of items of the j-th SPQ subscale. In the above model we used 

the priors: and  where  represent the parameter loadings 

of each model. In addition we have that: 

jn

)100,0(~ Na j )1,0(~ Nl jk jkl

  
1,  if  factor loads on j item
0, otherwise.

k
jk

f
γ

⎧
= ⎨
⎩

The  represent the factor score for i individual and k-th latent variable, for this we 

have assumed that , while represent additional random effects 

components for which we assumed that  . A basic assumption of a 

constant for every schizotypal trait is also adopted in the above models. 

ikf

)1,0(~ Nfik ijb

)1,0(~ Nbij

ja

          Models  for k=1,…, 5 are presented in Table 5.1. The distributions of both 

the factors and the random effects were assumed to be the standard normal 

distribution, while the random effects follow normal distribution. In addition, the 

priors of the factor loadings are assumed to be univariate normal distribution with 

some of them chosen to be truncated at zero. 

km

          For all the five models, we have generated 10000 burn-in iterations, and an 

additional sample of 20000 values using MCMC algorithms until our samples satisfy 

the convergence diagnostics described in chapter 1. For all models, generations of 

MCMC samples were performed using WinBUGS 1.4 (Spiegehalter et al., 2003)       
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4.3.2 Model Comparison  

 

         The five models were compared using the tςο information criteria AIC, BIC and 

deviance presented in Chapter 3 (see section 3.4), considering as the number of free 

parameters to be the number of estimated factor loadings.  

          In all the cases the most appropriate model is the one with the smallest value. 

After generating MCMC samples via Winbugs we come up with the results presented 

in Table 4.2. 

 

  AIC BIC deviance 
model1 4417 4445 4403
model2 4412 4446 4397
model3 4416 4447 4398
model4 4409 4443 4391
model5 4414 4455 4398

 

Table 4.2 Information Criteria for the five models. 

(AIC: Akaike Information Criterion, BIC: Bayesian Information Criterion). 

 

          From Table 4.2 the forth model ( ) is the best model according to AIC and 

BIC. In both cases  presents the smallest values as a result is the model chosen at 

this stage. 

4m

4m

          As the Paranoid four-factor model is chosen, in the next table the factor 

loadings for the are presented: 4m

 

model4   Factors       

Schizotypal Traits Cogn/Perc Negative Disorganized Paranoid jα  

Ideas of reference       0,568 -0,303
Odd beliefs or magical           
 thinking 1,285       -0,485
Unusual perceptual 
experience 0,459       -1,015
Odd speech     0,806   -1,381
Suspiciousness -0,024 0,817   1,456 -1,585
Constricted affect   0,754     -1,605
Odd behaviour     0,659   -0,675
No close friends   0,888     -1,585
Social anxiety   0,799     -0,764

 

Table 4.3 Factor loadings and constants for the Paranoid four- factor model. 
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          The factor loadings are also referred as discrimination parameters. In addition, 

it is also known that the larger the values of , the greater is the effect of factor k on 

the probability of positive response to item j. Furthermore the higher the value of  

for an item the greater the difference in the probabilities of getting a positive response 

between two individuals who are located at same distance apart on latent scale. 

(Bartholomew, et al., 2002, p.183) 

jkl

jkl

          From Table 4.3 the relationships between factors and schizotypal traits are 

provided. In the case of the cognitive/ perceptual factor we can see that the log odds 

ratio of odd beliefs or magical thinking load strongly on this factor, while the effect of 

the log odds ratio of unusual perceptual experience on the first factor and finally 

suspiciousness is lower. Finally this factor has a very low but negative effect on the 

log odds ratio of suspiciousness.  

          In the second case of the negative factor, we can observe that the log odds ratio 

of all related traits are important affected by this factor. The same is also observed for 

the Disorganized factor where both odd speech and odd behaviour load heavily on the 

Disorganized factor. In the last case, we observe a strong effect of the Paranoid factor 

on the log odds ratio of suspiciousness. Smallest is regarded to be the effect of the 

paranoid factor trait on the log odds ratio of ideas of reference.  

          The fact that the loadings of the three last factors (the negative, the 

Disorganized and the Paranoid) are all positive implies that all the items of them have 

similar discriminating power and effect on each response. The last column of the 

Table 4.3 presents the values of the nine constants one for each trait. 
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Figure 4.6 BoxPlot for the first factor of the Paranoid four factor model ([1,2], 

[1,3], [1,5] correspond to odd beliefs, unusual perceptual thinking, and 

suspiciousness respectively). 
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Figure 4.7 BoxPlot for the second factor of the Paranoid four factor model ([2,5], 

[2,6], l[2,8] , l[2,9] correspond to suspiciousness, constricted affect, no close 

friends and social anxiety respectively). 
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Figure 4.8 BoxPlot for the third factor of the Paranoid four factor model ([3,4], 

[3,7] correspond to odd speech and odd behaviour respectively). 
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Figure 4.9 BoxPlot for the forth factor of the Paranoid four factor model ([4,1] , 

[4,5] correspond to ideas of reference and suspiciousness respectively). 
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Figure 4.10 BoxPlot for the constants of the Paranoid four factor model ([1], [2], 

[3], [4], [5], [6], [7], [8], [9] correspond to ideas of reference, odd beliefs or 

magical thinking, unusual perceptual experience, odd speech, suspiciousness, 

constricted affect, odd behaviour, no close friends and social anxiety 

respectively). 

 

         Figures 4.6-4.9 represent the posterior means of each loading of the nine traits. 

Boxes are the inter- quartile ranges and the central line of each box we have chosen to 

be zero. In addition, the two edges of each box represent the 2.5% and the 97.5% 

quantiles. The ends of each box extend to cover the 95% of the posterior distribution. 

These boxes depict the 95% credible intervals of the quantities involved. 

(Spiegelhalter et al., 2003).  

            It is observed from the above five Figures that only in the case of the first 

factor (Figure 4.6) only one loading has posterior distribution dispersed around  zero. 

The same is observed from the Table 4.3, where the effect of Cognitive/ Perceptual 

factor on suspiciousness cannot be considered as important. The corresponding 

posterior mean is very low (-0.024). We repeat our analysis removing this loading.  

All other loadings are high since all boxplots are far away from zero.         
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4.4 Model Fit 
 

          In order to check the model fit we will based on the predictive distribution. We 

use the chi-square test: as this is described in section 2.2.1.3.  2Χ

          In our case for the five factor models after the calculations we found that 

this  for the five models is: valuep −

 

  valuep −  
model1 0,432 
model2 0,440 
model3 0,438 
model4 0,442 
model5 0,489 

 
Table 4.4 Chi-square p-values for the five factor models. 

 

          As it was mentioned before a valuep − close to zero indicates a bad fit. 

However in our case from Table 4.4 it is observed that the five models have an 

acceptable fit, while the highest p-value is observed for the fifth model  

 

4.5 Conclusion 
 

          In this chapter the first part of our analysis was presented in which we focus on 

the best fitted factor model of schizotypy. We provide posterior estimates and 

interpretation of the model. 

          Initially five factor models in the psychiatric research were presented. Then, 

based on information criteria (AIC/ BIC) we conclude to the Paranoid four- factor 

model as the most appropriate one to describe the latent structure of the schizoypy. It 

was concluded that the Negative, the Disorganized and the Paranoid factor have a 

strong effect on the log odds ration of their correspondent schizotypal traits. The 

Cognitive/ Perceptual thinking is observed to have strong effect on the log odds ratio 

of odds beliefs or magical thinking and unusual perceptual experience, while the same 

is not observed for the log odds ratio of suspiciousness where we have the opponent 

relation. The schizotypy model identified in this chapter will be used in the following 

chapter for further analysis.  
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CHAPTER 5 

RELATIONSHIP OF IMPULSIVE- COMPULSIVE BUYING  

AND SCHIZOTYPY 

 

 

5.1 Impulsive Buying 
 

          The questionnaire of the study comprehends five questions measuring 

impulsive buying. Each response was coded with values 1 to 5, with: 

1- strongly agree 

2- agree 

3- neither agree nor disagree 

4- disagree 

5- strongly disagree. 

          To simplify the problem, values 1, 2 (which reflect agreement to the items 

statement) and 3 were recoded to zero (1), while values 4 and 5 (reflecting 

disagreement) were recoded to one (0) respectively. Before proceeding to modelling 

the recoded responses, we provide some initial statistics related to impulsive buying.  

         53% of our sample agrees that the expression “Just Do It” characterizes their 

buying behaviour; in contrast the 47% are not characterized by this expression. On the 

contrary, 58% of the participants disagree that they buy products without thinking of 

it. Even higher (79%) is the disagreement to the expression “Buy now, think of it 

later”. While the 65% agrees that he/ she react carelessly when buying. Finally, 75% 

of our sample is used to buy something that wants it immediately when sees it. 
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Impulsive buying
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Figure 5.1 Diagram of percentages (1: Just do it, 2: Buy without thinking, 3: Buy 

now, think later, 4: React carelessly when buying, 5: Buy something that wants it 

immediately when sees it.) 

 

         Our next concern is to relate impulsive buying and schizotypy. In order to 

examine this relationship we will construct and fit three models using WinBugs vs. 

1.4.  In our analysis, for the models under consideration, we have generated 10000 

burn-in iterations, and an additional sample of 20000 values via Gibbs sampling. 

Below, we describe in detail the theoretical framework for these models, the results of 

the analysis and finally related inference regarding our study data. 

 

5.2 Models 
 

5.2.1 Model 1 

 

          Firstly, we have constructed a model which relates impulsive buying with the 

nine schizotypal traits (5.1) and then is applied the model (5.2) which relates the four 

factors to the nine schizotypal traits. This model directly associates the observable 

variables while impulsive buying is indirectly related with the four latent factors. This 

relation is displayed by the figure below: 
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The first model is given by the following equation (see Appendix D, p.101): 

),5(~ imp
ii pnBinomialimp = , i=1,…, 167. 

                                       logit                                          (5.1) i

p

j
ijj

imp
i bxaap ++= ∑

=1
0)(

with  being the schizotypal observations where  is the 

number of questions that are aggregated in its of the j schizotypal traits, j=1,…,9. In 

addition for the random effects we have that . Finally the priors follow 

and .  

),(~ ijjij pnBinomialx jn

),0(~ 2σNbi

)100,0(~0 Na )100,0(~ Na j

In addition the nine schizotypal traits are modelled as in the previous chapter (4.1). 

),(~ ijjij pnBinomialx  

                              logit                                            (5.2)     ijikjk
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jkjij bflap 2

1
2)( ++= ∑
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γ

          The above model represents the paranoid four-factor model which was selected 

as the most appropriate for fitting our data in the previous chapter. For i=1,…, 167, 

j=1,…,9 and k=1,…,5 here we have that , . For priors we 

used for this model:   and .  

),0(~ 2
2 σNb ij )1,0(~ Nfik

)100,0(~2 Na j )1,0(~ Nl jk

          Posterior summaries of parameters effects  (j= 0,…, 9, eq.6.1) of the nine 

schizotypal traits on the log odds ratio and odds ratio of impulsive buying are 

presented respectively in Tables 5.1 and 5.2 as estimated from the MCMC output. 

ja

Model 1     
Schizotypal Traits means s.d 2.5% 97.5% 
Ideas of reference 0.117 0.059 0.006 0.233 
Odd beliefs or magical         
 thinking -0.039 0.043 -0.122 0.045 
Unusual perceptual 
experience -0.021 0.067 -0.109 0.154 
Odd speech -0.034 0.063 -0.156 0.089 
Suspiciousness -0.072 0.061 -0.191 0.047 
Constricted affect -0.016 0.078 -0.172 0.135 
Odd behaviour 0.008 0.056 -0.099 0.118 
No close friends 0.241 0.077 0.092 0.391 
Social anxiety -0.106 0.059 -0.223 0.009 

0α  -0.239 0.252 -0.729 0.253 
Table 5.1 Posterior summaries of parameter effects of the nine schizotypal traits 

on the log odds of impulsive buying. 
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Model 1     

Schizotypal Traits means 
              
s.d. 

             
2,5% 

           
97,5% 

Ideas of reference 1.126 0.067 0.999 1.262
Odd beliefs or magical        
 thinking 0.962 0.041 0.885 1.046
Unusual perceptual 
experience 1.023 0.069 0.896 1.167
Odd speech 0.969 0.061 0.856 1.094
Suspiciousness 0.932 0.057 0.826 1.048
Constricted affect 0.987 0.077 0.842 1.144
Odd behaviour 1.010 0.057 0.905 1.125
No close friends 1.276 0.098 1.096 1.478
Social anxiety 0.901 0.053 0.800 1.009

0α  0.813 0.208 0.482 1.288
 

Table 5.2 Posterior summaries of the odds ratios of impulsive buying for each 

schizotypal trait. 

 

 

Model 2   Factors       

Schizotypal Traits Cogn/Perc Negative Disorganized Paranoid j2α  

Ideas of reference       0,563 -0,308
Odd beliefs or magical           
 thinking 1,274       -0,485
Unusual perceptual 
experience 0,463       -1,020
Odd speech     0,799   -1,384
Suspiciousness -0,003 0,819   1,452 -1,893
Constricted affect   0,756     -1,607
Odd behaviour     0,652   -0,677
No close friends   0,884     -1,586
Social anxiety   0,792     -0,761

 

Table 5.3 Posterior means of factor loadings and constants for 5.2 model.      
      

• The ideas of reference, odd behaviour and no close friends have a positive 

effect on the odds of impulsive buying as we can observe on Table 5.1. An 

increase of one point on these scales cause an increase of 12%, 1% and 27% 

respectively on the odds of impulsive buying (Table 5.2).  

• In addition, the traits odds beliefs or magical thinking, unusual perceptual 

experience, odd speech, suspiciousness, constricted affect and social anxiety 
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have a negative effect on the odds of impulsive buying. These odds are 

decreased by 4%, 2%, 7%, 1.6% and 10% with an increase of one point in 

each scale respectively.  

• Table 5.3 presents the factor loadings of the model 5.2 (the factor structure is 

the same as in the previous chapter). There are minor changes in the values of 

the factor loadings. From the corresponding values in the previous chapter 

(Table 4.4) we can conclude that these differences are minor. The 

interpretation of the model is the same as in the previous chapter. 
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Figure 5.2 BoxPlot diagram for the nine parameters (schizotypal traits) of the 

model 5.1 ([1], [2], [3], [4], [5], [6], [7], [8], [9] correspond to ideas of reference, 

odd beliefs or magical thinking, unusual perceptual experience, odd speech, 

suspiciousness, constricted affect, odd behaviour, no close friends and social 

anxiety respectively). 

 

         Figure 5.2 depicts the boxplot for the parameters of the model. The plot has the 

same structure as in the previous chapter with the two edges of each box presenting 

the 2.5% and 97.5% quantiles (Spiegehalter et al., 2003). 
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          From Figure 5.2 we observe that six of the parameters have posterior 

distribution dispersed around zero. The effect of them on the odds of impulsive 

buying can not be considered as important. In contrast, only ,  and  are a- 

posteriori away from zero. As a result ideas of reference, no close friends and social 

anxiety have a significant effect on impulsive buying.   

1a 8a 9a

 

5.2.2 Model 2 

 

          The second model we consider in this chapter relates impulsive buying with the 

four latent of schizotypy as these resulted by the Paranoid four-factor model presented 

in the previous chapter.  

          In this model we observe a direct relation between the four factors and the 

impulsive buying (5.3). In addition the four factors are also directly related to the nine 

schizotypal traits (5.4) as we can see below: 

        
These relations are described by the following equation:   

),5(~ imp
ii pnBinomialimp = , i=1,…,167 

                                      logit                                             (5.3) ∑
=

+=
4

1
0)(

k
ikk

imp
i fp ββ

with for k=1,…,4. The priors for this model are: )1,0(~ Nfik )100,0(~0 Nβ , 

)100,0(~ Nkβ . In addition for the random effects we have that . ),0(~ 2σNbi

The second model is expressed by the Paranoid four-factor model we have seen 

previously: 

),(~ ijjij pnBinomialx  

                                       logit                                  (5.4) ijikjk
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jkijij bflp 2

4

1
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For the nine schizotypal traits we have that:  where  is the 

number of questions that are aggregated in its of the j schizotypal traits, j=1,…,9. 

Model (5.3) is the first model we apply here and model (5.4) the second. For the 

),(~ ijjij pnBinomialx jn
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second model we have for the random effects that . In addition we have 

assumed for the priors that 

),0(~ 2
2 σNb ij

)100,0(~2 Njβ  and . In table 5.4 are 

presented the posterior means of the factor loadings for the second model 

)1,0(~ Nl jk

kβ  and the 

constant 0β , as these are appeared after having run the model: 

 

Model 1     
Schizotypal Traits means s.d. 2.5% 97.5% 
Factor 1 -0.251 0.285 -0.755 0.341 
Factor 2 -0.204 0.249 -0.733 0.253 
Factor 3 0.230 1.011 -1.357 1.356 
Factor 4 -0.340 0.356 -1.054 0.335 

0β  0.069 0.126 -0.181 0.316 
 

Table 5.4 Posterior summaries of factor loadings for impulsive buying. 

 

Model 1     
Schizotypal Traits means s.d 2,5% 97,5% 
Factor 1 0.811 0.246 0.470 1.405
Factor 2 0.841 0.207 0.481 1.288
Factor 3 1.859 1.247 0.257 3.881
Factor 4 0.758 0.273 0.348 1.397

0β  1.080 0.137 0.835 1.372
 

Table 5.5 Posterior summaries of factor loadings for the odds ratio of impulsive 

buying. 

 

Model 2   Factors       

Schizotypal Traits Cogn/Perc Negative Disorganized Paranoid j2β  

Ideas of reference       0.500 -0.306
Odd beliefs or magical          
 thinking 1.187      -0.481
Unusual perceptual 
experience 0.505       -1.047
Odd speech     0.406   -1.329
Suspiciousness 0.051 -0.881   1.339 -1.870
Constricted affect   -0.734     -1.617
Odd behaviour     0.358   -0.668
No close friends   -0.881     -1.606
Social anxiety   -0.763     -0.768

 

Table 5.6 Factor loadings and constants for 5.4 model.           
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• The factor loadings here represent association parameter between the observed 

variable (impulsive buying) and the latent factors. For only the third factor a 

positive loading is observed. Hence, the third factor is associated with 

increased tendency to impulsive buying. Consequently, the log odds ratio of 

impulsive buying load strongly on the third factor. While the same is not 

resulted from the first, the second and the last factor. These present a negative 

effect on the log odds ratio of impulsive buying. They have negative values 

and especially the forth factor presents the largest in terms of absolute values  

-0.340. The posterior means loadings of factor 1 and factor 2 are equal to-

0.251 and -0.204 respectively.  

• Table 5.5 presents how the four latent factors affect the odds ratio of impulsive 

buying. We arrive at the same conclusion as in the case of Table 5.4. The 

effect of the odds ratio of impulsive buying is strongest in the case of the third 

factor since it displays the largest loading (1.859) indicating an increase of 

86% at the odds of impulsive buying when factor 3 increases by one unit. For 

the rest of the factors the odds of impulsive buying decreases with a range 

between 16 and 24% for each unit increase of the remaining factors.    

• Table 5.6 presents the factor loadings of the Paranoid four- factor model. 

There are changes in the values of the factor loadings from the corresponding 

values of the previous chapter. Therefore, the interpretation will be altered. It 

is observed that the log odds ratio of odds beliefs or magical thinking load 

strongly on the cognitive/ perceptual factor. Lowest seems to be the effect of 

the log odds ratio of unusual perceptual thinking and suspiciousness on this 

factor. For the negative factor, we observe that the log odds ratio of all its 

correspondent traits present a negative effect on it. In addition, for the last two 

factors we observe that the log odds ratio of their correspondent traits have a 

positive effect on them. Especially in the case of the last factor the log odds 

ratio of suspiciousness loads strongly on it. 
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Figure 5.3 BoxPlot diagram for the parameters of the model 5.3 ([1], [2], [3], [4] 

correspond to factor 1, factor 2, factor 3 and factor 4 respectively). 

 

          Figure 5.3 displays the boxplot diagram for the four factors of the model. Here, 

we can conclude that none of the four factors is a- posteriori distributed away from 

zero. As a result, the effect of the four factors factor on impulsive buying seems to be 

minor and cannot be considered as important 

 

5.2.3 Model 3 

 

          Finally, a third model based on the predictive posterior distribution is 

constructed (see section 2.2.2).  

          Here we have constructed a model relating impulsive buying and the predictive 

values of the nine schizotypal. By this way we add increased variability to the first 

model concerning the association between the two set of variables. In this model, 

impulsive buying and the predicted nine schizotypal traits are connected on a direct 

way (5.6). This implies an indirectly relation between impulsive buying and the 

initially observed schizotypal traits (5.7) (see Appendix D, 2.3). 
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The model is summarized by the following: 

),5(~ imp
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ijx  are the predicted schizotypal traits coming from the predictive posterior 

distribution and they have the same distribution with : , 

 j=1,…,9. In addition for the random effects we have that 

. Finally the prior distributions of the model are: and 

.  
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The equation (5.6) relates the predicted schizotypal traits with impulsive buying. The 

second model applied here relates the schizotypal traits with the four factors and is 

given by: 
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          The above model represents the paranoid four-factor model which was selected 

as the most appropriate for fitting our data in the previous chapter. For i=1,…, 167, 

j=1,…,9 and k=1,…,5 here we have that , . For priors we 

used for this model:   and .  

),0(~ 2
2 σNb ij )1,0(~ Nfik

)100,0(~2 Na j )1,0(~ Nl jk

          In the next table the posterior means of the estimated factor loadings for the 

model (5.6) and the constant can be seen, as these can be seen after our analysis: 0a

 

Model 1     
Schizotypal Traits-predictive loadings s.d. 2.50% 9.75% 
Ideas of reference 0.182 0.114 -0.051 0.403 
Odd beliefs or magical         
 Thinking -0.050 0.079 -0.206 0.109 
Unusual perceptual 
experience 0.021 0.146 -0.280 0.301 
Odd speech -0.067 0.129 -0.321 0.192 
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Suspiciousness -0.134 0.129 -0.389 0.128 
Constricted affect -0.008 0.168 -0.341 0.319 
Odd behaviour 0.054 0.107 -0.153 0.266 
No close friends 0.455 0.152 0.142 0.748 
Social anxiety -0.171 0.119 -0.404 0.065 

0α  -0.621 0.467 -1.522 0.306 
 

Table 5.7 Posterior summaries of parameter effects of the predicted traits on the 

log odds of impulsive buying. 

 

Model 1     
Schizotypal Traits means s.d 2,5% 97,5% 
Ideas of reference 1.207 0.137 0.949 1.496
Odd beliefs or magical        
 Thinking 0.954 0.076 0.814 1.116
Unusual perceptual 
experience 1.032 0.149 0.756 1.352
Odd speech 0.943 0.124 0.725 1.211
Suspiciousness 0.882 0.115 0.678 1.136
Constricted affect 1.006 0.169 0.711 1.377
Odd behaviour 1.061 0.114 0.858 1.305
No close friends 1.595 0.242 1.153 2.113
Social anxiety 0.849 0.102 0.668 1.067

0α  0.599 0.293 0.218 1.358
 

Table 5.8 Posterior summaries of odds ratio of impulsive buying for each 

predicted schizotypal trait. 

 

Model  2   Factors       

Schizotypal Traits Cogn/Perc Negative Disorganized Paranoid jα  

Ideas of reference       0.801 -0.295
Odd beliefs or magical          
 Thinking 1.164      -0.487
Unusual perceptual 
experience 0.499       -1.052
Odd speech     0.747   -1.392
Suspiciousness 0.058 1.449   0.003 -1.778
Constricted affect   0.641     -1.599
Odd behaviour     0.616   -0.681
No close friends   0.661     -1.548
Social anxiety   0.824     -0.777

 

Table 5.9 Factor loadings and constants for 5.7 model. 
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• The predicted traits ideas of reference, unusual perceptual thinking, odd 

behaviour and no close friends have positive effect on the odds of impulsive 

buying. An increase of one point on these scales cause an increase of 18%, 

2%, 5% and 46% respectively on the odds of impulsive buying. 

• Moreover, the predicted odd beliefs or magical thinking, odd speech, 

suspiciousness, constricted affect and social anxiety have a negative effect on 

the odds of impulsive buying. This odd decrease by 5%, 7%, 13%, 1% and 

17% with an increase of one point in each scale respectively. 

• Table 5.9 presents the factor loadings of the model 5.7. There are changes in 

the values of the factor loadings from the corresponding values of the previous 

chapter, however these are not significant. In all factors we observe that the 

log odds ratio of the correspondent predicted traits have an important effect on 

them. In some cases this effect seems to be stronger for instance first factor 

and odd beliefs or magical thinking (1.164), second factor and suspiciousness 

(1.449), fourth    factor and ideas of reference (0.801).  While, in other cases 

this effect is lower for instance in the case of the log odds ratio of 

suspiciousness and its effect on the first factor (0.058) and the fourth factor 

(0.003). 
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Figure 5.4 BoxPlot diagram for the nine parameters of the model 5.6 ([1], [2], [3], 

[4], [5], [6], [7], [8], [9] correspond to ideas of reference, odd beliefs or magical 

thinking, unusual perceptual experience, odd speech, suspiciousness, constricted 

affect, odd behaviour, no close friends and social anxiety respectively). 

    

       From Figure 5.4 we observe that six of the parameters have posterior distribution 

dispersed around zero. The effect of them on the odds of impulsive buying can not be 

considered as important. In contrast, only ,  and  are a- posteriori away from 

zero. As a result ideas of reference, no close friends and social anxiety have a 

significant effect on impulsive buying.   

1a 8a 9a

 

 

5.3 Models Comparison of the impulsive buying- schizotypy 

 

          In the previous section 5.2 three models were presented to describe the relation 

between impulsive buying and schizotypy. 

          The three models analyzed above are compared here using the information 

criteria AIC, BIC. In all the cases the most appropriate model is this one which seems 

to have the smallest value of the information criteria. After the calculations via 

WinBUGS we come up with the results presented in the Table 5.10. 
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  AIC BIC deviance
model1 4389 4417 4851
model2 4029 4057 4855
model3 3981 4009 4848

 

Table 5.10 Information Criteria for the three models assessing the association 

between impulsive buying and schizotypy. 

 

          It is easily observable from Table 5.10 that in the case of impulsive buying the 

best model, is the third model (model 5.6, see section 5.2.3.2). This is based for the 

calculations on the predictive posterior distribution of the latent factor model. It 

displays the smallest value of AIC and BIC information criteria. So, we can say that 

the replicate schizotypal traits have the greater influence to the probability of positive 

response in impulsive buying.  

          Although the third model is chosen as the best model to fit our data according 

to AIC/ BIC it is remarkable that according to chi-square statistic test (Table 5.11) the 

best fit is provided by the first model. However, the three models provide an 

acceptable fit. 

 

  p-value 
model1 0,559 
model2 0,487 
model3 0,430 

 

Table 5.11 Chi-square p-values for the three models assessing the association 

between impulsive buying and schizotypy. 
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5.4 Compulsive buying 
           

          We will follow the same schedule as in the impulsive buying. Equally to the 

impulsive buying the questionnaire of the study comprehends five questions 

measuring compulsive buying. Each response was coded with values 1 to 5, with: 

1- strongly agree 

2- agree 

3- neither agree nor disagree 

4- disagree 

5- strongly disagree 

          To simplify the problem values 1, 2 (which reflect agreement to the items 

statement) and 3 were recoded to zero (1), while values 4 and 5 (reflecting 

disagreement) were recoded to one (0) respectively. Before proceeding to modelling 

the recoded responses, we provide some initial statistics related to compulsive buying.  

          19% of our sample does not feel comfortable the days when do not buy 

products or does not go out for shopping; in contrast the 81% is not expressed by this 

reaction. On the contrary 28% respond that they buy because they just want 

something to buy no matter what this will be. Equally the 48% respond that they are 

buying things even if they will regret it later. An equal relation is getting down in the 

statement that: “I buy now but returning home I don’t know why I bought it”, where 

the 45% reacts positively while 55% disagrees that react on this way.  Finally 75% 

agrees that when they are not in a very good mood they buy in order to feel better, 

while the 25% does not seem to display such behaviour. 
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Figure 5.5 Diagram of percentages (1: Feel comfortable, 2: Buy because I want it, 

3: Buy now regret it later, 4: Buy without knowing why, 5: Buy because of bad 

mood.) 

 

          Our next concern now is to relate compulsive buying and schizotypy. In order 

to examine this relationship we will construct and fit three models using WinBugs 

vs.1.4. In our analysis, for the models under consideration, we have generated 10000 

burn-in iterations, and an additional sample of 20000 values through Gibbs sampling. 

Below, we describe develop in detail the theoretical framework for these models, the 

results of the analysis and finally related inference regarding our study data. 

 

5.5 Models 

 

5.5.1 Model 1 

         Firstly, we have constructed a model which relates compulsive buying with the 

nine schizotypal traits (5.8) and then is applied the model (5.9) which relates the four 

factors to the nine schizotypal traits. This model directly associates the observable 

variables while compulsive buying is indirectly related with the four latent factors. 

This relation is displayed by the figure below: 

 
 

The model is given by the following equation: 
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with  be the items of the schizotypal traits where  is the 

number of questions that are aggregated in its of the j schizotypal traits, j=1,…,9. In 

addition for the random effects we have that . Finally the priors follow 

and .  
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In addition the nine schizotypal traits are modelled as in the previous chapter 

(equation 4.1). 
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          The above model represents the paranoid four-factor model which was selected 

as the most appropriate for fitting our data in the previous chapter. For i=1,…, 167, 

j=1,…,9 and k=1,…,5 here we have that , . For priors we 

used for this model:   and . This model (5.9) represents 

the paranoid four-factor model which was selected as the most appropriate for fitting 

our data in the previous chapter. 

),0(~ 2
2 σNb ij )1,0(~ Nfik

)100,0(~2 Na j )1,0(~ Nl jk

          Posterior summaries of parameters effects  (j= 0,…, 9, eq. 6.8) of the nine 

schizotypal traits on the log odds ratio and odds ratio of compulsive buying are 

presented respectively in Table 5.11 and 5.12 as estimated from the MCMC output. 

ja

Model 1     
Schizotypal Traits means s.d 2.50% 97.50% 
Ideas of reference 0.136 0.061 0.0153 0.253 
Odd beliefs or magical         
 Thinking 0.061 0.043 -0.023 0.144 
Unusual perceptual experience 0.052 0.066 -0.075 0.179 
Odd speech -0.039 0.063 -0.162 0.085 
Suspiciousness -0.094 0.061 -0.215 0.029 
Constricted affect -0.194 0.081 -0.354 -0.041 
Odd behaviour 0.098 0.056 -0.012 0.209 
No close friends 0.157 0.074 0.015 0.302 
Social anxiety 0.019 0.058 -0.096 0.132 

0α  -1.230 0.253 -1.722 -0.724 
Table 5.12 Posterior summaries of parameter effects of the nine schizotypal 

traits on the log odds of compulsive buying. 
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Model 1     

Schizotypal Traits exp(means)
              
s.d. 

             
2,5% 

           
97,5% 

Ideas of reference 1.148 0.069 1.015 1.288
Odd beliefs or magical        
 Thinking 1.063 0.046 0.977 1.155
Unusual perceptual 
experience 1.056 0.069 0.928 1.197
Odd speech 0.963 0.061 0.851 1.088
Suspiciousness 0.912 0.057 0.807 1.030
Constricted affect 0.826 0.066 0.702 0.961
Odd behaviour 1.104 0.062 0.989 1.233
No close friends 1.173 0.086 1.015 1.352
Social anxiety 1.021 0.059 0.908 1.141

0α  0.302 0.078 0.179 0.485
 

Table 5.13 Posterior summaries of the odds ratio of compulsive buying for each 

schizotypal trait. 

 

Model 2   Factors       
Schizotypal Traits Cogn/Perc Negative Disorganized Paranoid alpha2[j] 
Ideas of reference       0.563 -0.303
Odd beliefs or magical          
 Thinking 1.268      -0.481
Unusual perceptual 
experience 0.468       -1.020
Odd speech     0.799   -1.384
Suspiciousness -0.003 0.815   1.469 -1.899
Constricted affect   0.753     -1.608
Odd behaviour     0.654   -0.678
No close friends   0.884     -1.586
Social anxiety   0.796     -0.762

 

Table 5.14 Factor loadings and constants for 5.9 model.      
 

• The traits ideas of reference, odd beliefs or magical thinking, unusual 

perceptual thinking, odd behaviour, no close friends and finally social anxiety 

have positive effect on the odds of compulsive buying as we can observe from 

Table 5.12. An increase of one point in these scales cause an increase of 14%, 

6%, 5%, 9%, 16% and 2% respectively on the odds of compulsive buying 

(Table 5.13). 
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• In addition the traits odd speech, suspiciousness and constricted affect have a 

negative effect on the odds of compulsive buying. These odds are decreased 

by 4%, 9% and 19% with an increase of one point in each scale respectively. 

• Table 5.14 presents the factor loadings of the model 5.9 (the factor structure is 

the same as in the previous chapter). There are minor changes in the values of 

the factor loadings from the corresponding values of the previous chapter 

(Table 3.4). We can conclude that these differences are not important since the 

interpretation is the same as in the previous chapter.  

 

[1]

[2]
[3]

[4]

[5]

[6]

[7]

[8]

[9]

box plot: alpha

   -0.4

   -0.2

    0.0

    0.2

    0.4

 
Figure 5.6 BoxPlot diagram for the parameters (schizotypal traits) of the model 

5.8 ([1], [2], [3], [4], [5], [6], [7], [8], [9] correspond to ideas of reference, odd 

beliefs or magical thinking, unusual perceptual experience, odd speech, 

suspiciousness, constricted affect, odd behaviour, no close friends and social 

anxiety respectively). 

 

         The above figure depicts the boxplot for the parameters of the model. The plot 

has the same structure as in the previous chapter with the two edges presenting the 

2.5% and 97.5% quantiles. (Spiegehalter et al., 2003). 
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          From Figure 5.6 we observe that only four of the parameters have posterior 

distribution dispersed around zero. The effect of them on the odds of compulsive 

buying can not be considered as important. In contrast ,  , ,  and   are a- 

posteriori away from zero. As a result the traits that correspond to these parameters 

have a significant effect on compulsive buying.   

1a 5a 6a 7a 8a

 

5.5.2 Model 2 

 

          The second model we consider in this part relates compulsive buying with the 

four latent of schizotypy as these resulted by the Paranoid four-factor model presented 

in the previous chapter (5.10). In addition the four factors are also directly related to 

the nine schizotypal traits (5.11) as we can see below: 

        
These relations are described by the following equation:   

),5(~ comp
ii pnBinomialcomp = , i=1,…,167 

                                             logit                                      (5.10) ∑
=

+=
4

1
0)(

k
ikk

comp
i fp ββ

with for k=1,…,4. The priors for this model are: )1,0(~ Nfik )100,0(~0 Nβ , 

)100,0(~ Nkβ .  

The second model is expressed by the Paranoid four-factor model we have seen 

previously: 

),(~ ijjij pnBinomialx  

                                          logit                              (5.11)  ijikjk
k

jkjij bflp 2

4

1
2)( ++= ∑

=

γβ

For the nine schizotypal traits we have that: , j=1,…,9. For the 

second model we have for the random effects that . In addition we 

have assumed for the priors that 

),(~ ijjij pnBinomialx

),0(~ 2
2 σNb ij

)100,0(~2 Njβ  and . Model (5.10) is 

the first model we apply here and model (5.11) the second.  

)1,0(~ Nl jk
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          In the table (5.15) the posterior means of the factor loadings for the second 

model kβ  and the constant 0β  are presented, as these are appeared after having run 

the model: 

 

Model 1     
Schizotypal Traits means s.d. 2.50% 97.50% 
Factor 1 0.218 0.177 -0.129 0.565 
Factor 2 0.173 0.167 -0.153 0.506 
Factor 3 0.519 0.241 0.057 1.006 
Factor 4 0.433 0.737 -1.053 1.164 

0β  -0.352 0.116 -0.581 -0.127 
 

Table 5.15 Posterior summaries of factor loadings for compulsive buying. 

 

Model 1     
Schizotypal Traits means s.d 2,5% 97,5% 
Factor 1 1.263 0.225 0.879 1.759
Factor 2 1.206 0.204 0.858 1.658
Factor 3 1.730 0.428 1.058 2.736
Factor 4 1.888 0.907 0.349 3.201

0β  0.708 0.082 0.559 0.881
 

Table 5.16 Posterior summaries of factor loadings for the odds ratio of 

compulsive buying. 

 

Model 2   Factors       

Schizotypal Traits Cogn/Perc Negative Disorganized Paranoid j2β  

Ideas of reference       0.797 -0.296
Odd beliefs or magical          
 Thinking 1.174      -0.479
Unusual perceptual 
experience 0.479       -1.049
Odd speech     0.702   -1.387
Suspiciousness -0.014 -1.490   0.004 -1.783
Constricted affect   -0.649     -1.602
Odd behaviour     0.651   -0.688
No close friends   -0.654     -1.547
Social anxiety   -0.817     -0.774

 
Table 5.17 Factor loadings and constants for 5.11 model.       
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• The factor loadings here represent association between the observed variable 

(compulsive buying) and the latent factors. For the third and the forth factors 

the highest values of loadings are observed. Hence, these two factors factor are 

associated with increased tendency to compulsive buying. Consequently, the 

log odds ratio of compulsive buying loads strongly on the third and forth 

factor. While the same is not concluded for the first and the second. These 

present a lower effect on the odds ratio of compulsive buying.  

• Table 5.16 presents how the four latent factors affect the odds ratio of 

compulsive buying. It is observed a strong effect of the odds ratio of 

compulsive buying on the four factors. From Table 5.15 is indicated an 

increase with a range between 77 and 87% for each unit increase of the 

factors.  

• Table 5.17 presents the factor loadings of the Paranoid four- factor model. 

There are changes in the values of the factor loadings from the corresponding 

values of the previous chapter. Therefore, the interpretation must be adjusted 

accordingly. Equivalently to the previous chapter, the log odds ratio of odd 

beliefs or magical thinking load strongly on the cognitive/ perceptual factor. 

The effect of this factor on the log odds ratio of unusual perceptual thinking is 

lowest while it has a small but negative effect on suspiciousness. We observe 

that the log odds ratios of the correspondent traits are negatively associated to 

the second (negative) factor. In contrast to the previous chapter where this 

factor was positively associated to the corresponding traits. In addition, for the 

last two factors we observe that the log odds ratio of their corresponding traits 

have a positive effect on them. From Table 5.5 we observe that the log odds 

ratio of compulsive buying loads positively on the second factor (the negative 

factor) although this relation is the weakest, In comparison with the results for 

the negative factor (Table 5.17). We conclude that consuming behaviour of a 

person who is characterized by negative feelings (i.e. negative factor 

expressed by suspiciousness, constricted affect, no close friends, social 

anxiety) can not be characterized as compulsive. 
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Figure 5.7 BoxPlot diagram for the parameters of the model 5.10 ([1], [2], [3], [4] 

correspond to factor 1, factor2, factor3 and factor 4 respectively. 

 

          Figure 5.7 displays the boxplot diagram for the four factors of the model. Here, 

we can conclude that none of the factors is a- posteriori distributed away from zero. 

As a result, the effect of the four factors factor on compulsive buying seems to be 

minor and cannot be considered as important. 

 

5.5.3 Model 3 

 

          Finally, a third model based on the predictive posterior distribution of the 

paranoid four factor model is constructed. 

          Here we have constructed a model relating compulsive buying and the 

predictive values of the nine schizotypal. By this way we add increased variability to 

the first model concerning the association between the two set of variables. In this 

model, compulsive buying and the predicted nine schizotypal traits are connected on a 

direct way (5.12). This implies an indirectly relation between compulsive buying and 

the initially observed schizotypal traits (5.13). 
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The model is summarized by the following: 

),5(~ comp
ii pnBinomialcomp = , i=1,…, 167 

                                      logit                                    (5.12) i
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ijx  are the predicted schizotypal traits coming from the predictive posterior 

distribution and and they have the same distribution with : 

,  j=1,…,9. In addition for the 

random effects we have that . Finally the priors follow 

and .  
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The second relation as in the previous cases is described by the model: 
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The above model represents the paranoid four-factor model which was selected as the 

most appropriate for fitting our data in the previous chapter. For i=1,…, 167, j=1,…,9 

and k=1,…,5 here we have that the random effects follow: , 

. For priors we used for this model:   and .  

),0(~ 2
2 σNb ij

)1,0(~ Nfik )100,0(~2 Na j )1,0(~ Nl jk

          In the next table are interpreted the posterior means of the estimated factor 

loadings for the model (5.12) and the constant , as these have been  appeared after 

our analysis: 

0a

 

Model 1     
Schizotypal Traits-predictive means s.d. 2.50% 9.75% 
Ideas of reference 0.220 0.106 0.002 0.419 
Odd beliefs or magical         
 Thinking 0.076 0.072 -0.063 0.224 
Unusual perceptual 
experience 0.070 0.139 -0.207 0.344 
Odd speech -0.073 0.111 -0.291 0.146 
Suspiciousness -0.169 0.101 -0.367 0.031 
Constricted affect -0.233 0.139 -0.505 0.044 
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Odd behaviour 0.169 0.107 -0.044 0.374 
No close friends 0.205 0.142 -0.084 0.466 
Social anxiety 0.051 0.121 -0.189 0.279 

0α  -1.806 0.427 -2.620 -0.957 
 

Table 5.18 Posterior means of parameters effects of the predicted traits on the 

log odds ratio of compulsive buying. 

 

model3     
Schizotypal Traits exp(means) s.d 2,5% 97,5% 
Ideas of reference 1,253 0,132 1,002 1,522
Odd beliefs or magical         
 thinking 1,082 0,079 0,939 1,251
Unusual perceptual 
experience 1,083 0,151 0,813 1,410
Odd speech 0,936 0,105 0,748 1,157
Suspiciousness 0,849 0,086 0,693 1,031
Constricted affect 0,799 0,111 0,604 1,044
Odd behaviour 1,192 0,127 0,957 1,453
No close friends 1,240 0,175 0,919 1,593
Social anxiety 1,060 0,128 0,827 1,322

0α  0,180 0,081 0,073 0,384
 

Table 5.19 Posterior summaries of parameters effects of the predicted traits on 

odds ratio of compulsive buying. 

 

model4   Factors       

Schizotypal Traits Cogn/Perc Negative Disorganized Paranoid j2α  

Ideas of reference       0.571 -0.295
Odd beliefs or magical          
 Thinking 1.286      -0.487
Unusual perceptual 
experience 0.464       -1.052
Odd speech     0.811   -1.392
Suspiciousness -0.017 0.808   1.480 -1.778
Constricted affect   0.755     -1.599
Odd behaviour     0.669   -0.681
No close friends   0.886     -1.548
Social anxiety   0.799     -0.777

 

Table 5.20 Factor loadings and constants for 5.13 model. 

 

• The traits ideas of reference, odd beliefs or magical thinking, unusual 

perceptual thinking, odd behaviour, no close friends and finally social anxiety 
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have positive effect on the odds of compulsive buying as we can observe from 

Table 5.18 (the same is observed from Table 5.19 where these traits present 

values larger to one). An increase of one point on these scales cause an 

increase of 22%, 8%, 7% , 17%, 21% and 5% respectively on the odds of 

compulsive buying. 

• Moreover, the predicted odd speech, suspiciousness and constricted affect 

have a negative effect on the odds of compulsive buying. These odds are 

decreased by 7%, 17% and 23% with an increase of one point in each scale 

respectively. 

• Table 5.20 presents the factor loadings of the model 5.13 (the factor structure 

is the same as in the previous chapter). There are minor changes in the values 

of the factor loadings from the corresponding values in the previous chapter 

(Table 4.4). We can conclude that these differences are minor since the 

interpretation is the same as in the previous chapter.  
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Figure 5.8 BoxPlot diagram for the parameters of the model 5.12 ([1], [2], [3], [4], 

[5], [6], [7], [8], [9] correspond to ideas of reference, odd beliefs or magical 

thinking, unusual perceptual experience, odd speech, suspiciousness, constricted 

affect, odd behaviour, no close friends and social anxiety respectively). 
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          Figure 5.8 depicts the Boxplot diagram for the parameters of the model 5.12. 

We observe that four of the parameters have posterior distribution dispersed around 

zero. The effect of them on the odds of compulsive buying can not be considered as 

important. In contrast, ,  , ,  and   are a- posteriori away from zero. As a 

result the traits that correspond to these parameters have a significant effect on 

compulsive buying.   

1a 5a 6a 7a 8a

 

5.6 Models Comparison of the compulsive buying- schizotypy 

 

          In the previous section 5.5 three models were presented able to describe the 

relation between compulsive buying and schizotypy. 

          The three models analyzed above are compared here using the information 

criteria AIC, BIC. As the number of free parameters we consider, the number of 

estimated factor loadings. In all the cases the most appropriate model is this one 

which seems to have the smallest value of the information criteria. After the 

calculations via WinBugs we come up with the results presented in the Table 5.20. 

 

  AIC BIC deviance
model1 4266 4294 4852
model2 4046 4074 4856
model3 3998 4026 4841

 

Table 5.21 Information Criteria for the three models assessing the association 

between compulsive buying and sschizotypy. 

 

          It is easily observable from the Table 5.20 that here in the case of compulsive 

buying the model which is proved to be the best one, is the third model (model 5.12, 

see section 5.5.3). This is based for the calculations on the predictive posterior 

distribution of the latent factor model. It displays the smallest value of AIC and BIC 

information criteria. So, we can say that the replicate schizotypal traits have the 

greater influence to the probability of positive response in compulsive buying. 

          Relatively to the chi-square statistic test in the case of compulsive buying is 

observed the same as in the case of impulsive buying. Although the third model is 

chosen as the best model to fit our data according to AIC/ BIC. 
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          According to chi-square statistic test (Table 5.22) the three models have an 

acceptable fit while the best fit is provided by the first model.  

 

  p-value 
model1 0,501 
model2 0,476 
model3 0,372 

 

Table 5.22 Chi-square p-values for the three models assessing the association 

between compulsive buying and schizotypy. 

 

5.7 Conclusion 

 
          In this chapter our concern was to relate consumer’s behaviour which was 

expressed by impulsive and compulsive buying to schizotypy. In order to examine 

this relationship we constructed and fitted three models. In both cases it was easily 

concluded that the most appropriate model to fit our data was the model which was 

based on the predictive distribution. It was observed that the replicate schizotypal 

traits have the greater influence to the probability of positive response in both 

impulsive and compulsive buying. 

           Something that has to be mentioned here is that in both cases-of impulsive and 

compulsive buying- there was not observed a strong relation between consumer’s 

behavior and schizotypy. We concluded that, because the traits related to schizotypy 

cause changes of small percentages on impulsive and compulsive buying. Only the 

trait no close friends is of higher effect on impulsive buying since an increase of one 

point in its scale will cause an increase of 46% on the odds  of impulsive buying.  

          Thus, if someone is used to impulsive or compulsive buying this does not mean 

that he is characterized by schizotypy. In contrast we could say that this relation 

seems to be weak since the majority of schizotypal traits affect weakly the two 

consuming behaviors. As a result a person who is characterized by the nine 

schizotypal traits or even some of them this can not ensure us that there is an 

impulsive or compulsive consuming behavior.  
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CHAPTER 6 

FURTHER DISCUSSION AND RESEARCH 

 

6.1 Discussion and conclusion 
 

6.1.1 Introduction  

 

          In this thesis we have examined the association between impulsive- compulsive 

buying and schizotypy and the nine schizotypal traits: ideas of reference, odd beliefs 

or magical thinking, unusual perceptual experience, suspiciousness, social anxiety, no 

close friends, constricted affect, odd behaviour and odd speech. These schizotypal 

traits aggregate all the information available coming from the 74 items of the 

schizotypal personality questionnaire (SPQ). Since the SPQ expresses the schizotypal 

personality disorder, our goal was to examine whether such a disorder is connected to 

consumer’s specific behavior.  

 

6.1.2 The dimension of schizotypy  

 

          The Bayesian approach has been adopted for the analysis of schizotypy in this 

thesis. To facilitate estimation MCMC algorithms were used with WinBugs software. 

Originally only one or two dimensions (or factors) of SPQ were considered in 

psychiatric research. Recently more complex structures have been developed in 

literature for explaining schizotypal traits.  

          Raine et al. (1994) proposed that the nine traits of the SPQ must be analyzed 

using three dimensions. His model was named the Disorganized three factor model. 

However, recent researchers did not adopt his point of view (Bergman, 1966; Stefanis 

et al., 2004). Stefanis et al. (2004) proposed the Paranoid four factor model where the 

nine factors analyzed in four dimensions. Finally Fogelson et al. (1999) introduced the 

five factor model which adopts the idea that the traits are analyzed in five dimensions.  

          In our analysis, all the above five models were implemented using the Binomial 

response distribution while the previous researchers have used the normal 

distribution. Three different information criteria were used to decide which model is 
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more appropriate. According to our results we have concluded that the Paranoid four 

factor model assures us the best fit since it presents the smallest value of AIC/ BIC. 

          In other words, we have concluded that the nine schizotypal traits are best 

described by the Paranoid four factor model. The factors as were proposed by Stefanis 

et al. (2004) are known as: the cognitive/ perceptual, the negative, the disorganized 

and finally the paranoid factor. Additionally all factors had an important contribution 

to our model since the posterior distribution of the loadings was away from zero. 

  

6.1.3 Association of schizotypy and impulsive buying 

 

         Since we have concluded to the best fitted factor model, our next goal was to 

relate SPQ with impulsive and compulsive buying behaviour. This scale was formed 

from five responses in each case. We had aggregated the information available from 

the questions in one separate scale. 

          In the first case this one of impulsive buying, we have applied three models in 

order to associate impulsive buying with the schizotypy that is the nine schizotypal 

traits. In fact, our aim was to link impulsive buying with the above schizotypy factor 

model.  

          Three alternative models have been considered. Firstly, we have associated it 

with the nine schizotypal traits while in the second case we related directly the data of 

impulsive buying with the four factors. Finally in the third model we have constructed 

a model which relates impulsive buying with the predictive values of the nine 

schizotypal traits. 

          After having completed our analysis we propose one model which provides the 

best description of our data according to AIC/ BIC. The third model which includes 

the predictive schizotypal values was selected in this case. From the results we have 

seen only some of them influence impulsive buying. 

          To be more specific, the predicted traits ideas of reference, unusual perceptual 

thinking, odd behaviour and no close friends have positive effect on the odds of 

impulsive buying. They can cause an increase of 18%, 2%, 5% and 46% respectively 

on the odds of impulsive buying by an increase of one point on their scales. The trait 

no close friends seem to have the highest effect on impulsive buying as it causes the 

highest change on its odds. The rest of the traits cause a low decrease on these odds. 

These are the predicted odd beliefs or magical thinking, odd speech, suspiciousness, 
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constricted affect and social anxiety have a negative effect on the odds of impulsive 

buying which can decrease by 5%, 7%, 13%, 1% and 17% the correspondent odd of 

impulsive buying with an increase of one point in each scale respectively. 

          As it is observed from the results, the trait no close friends is more closely 

related to impulsive buying since it can cause the highest percentage of positive 

change. While the trait social anxiety cause the highest negative change on impulsive 

buying. 

  
6.1.4 Association of schizotypy and compulsive buying 

 

          The same analysis as for impulsive buying was also performed for compulsive 

buying. Similarly as in the case of impulsive the third model was selected (which 

includes the predictive schizotypal values) as the best one according to AIC/ BIC.  

          Ideas of reference, odd beliefs (or magical thinking), unusual perceptual 

thinking, odd behaviour, no close friends and finally social anxiety have a positive 

effect on the odds of compulsive buying. They cause an increase of 22%, 8%, 7%, 

17%, 21% and 5% respectively on the odds of compulsive buying by an increase of 

one point on their scales. The predicted odd speech, suspiciousness and constricted 

affect have a negative effect on the odds of compulsive buying. These odds decrease 

by 7%, 17% and 23% with an increase of one point in each scale respectively. 

          Equivalently to the results of impulsive buying, the trait no close friends is 

strongly associated with compulsive buying since it can cause the highest percentage 

of positive change. On the contrary, social anxiety has a weak influence on 

compulsive buying. Finally the  trait constricted affect causes the highest percentage 

of  compulsive buying decrease. 

 

6.1.5 Conclusion  

 

          A general conclusion here for the two cases of buying is that no strong 

connection of buying behavior and schizotypy is observed. Therefore, even if a person 

responds positively or not to the nine schizotypal traits or even some of them this can 

not ensure us that will be characterized by the two consuming behaviors. In contrast, 

it does not seem to exist a strong relation between schizotypy and consuming 

behavior in both cases. 
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          Thus, a schizotypal person is not strongly possible to display an impulsive or a 

compulsive consuming behavior. In contrary, only in cases that this person reacts 

positively to some of the traits expressing schizotypy may display such a consuming 

behavior. 

 

 

6.2 Further research 
 

          Further methodological approaches can be facilitated to analyze data with 

similar structure. In this section we briefly describe some of them. 

          These data used in this thesis were collected in a general questionnaire 

including the Schizotypal personality questionnaire (SPQ) and items measuring 

impulsive and compulsive behaviour of individuals (see Iliopoulou, 2004).  

          The responses to the 74 SPQ items were coded using the zero- one scale (0, 1). 

These 74 items were assumed to follow a Bernoulli distribution: 

                                       ,                                                         (6.1)    )(~ ijij pBernoulliw

where represents the probability of positive response or success of i subject on j 

item (j=1,…, 9, i=1,…, 74).  

jip

          The results were summed and on this way we formed the nine schizotypal traits. 

These nine traits were following binomial distribution:           

                          ),(~ jijij nBinomialx π , i=1,…,74 and j=1,…, 9                           (6.2) 

where ijπ is the probability of success of i subject on j SPQ sub- scale and  is the 

number of individual Bernoulli items included in the j-th schizotypal trait.  

jn

          In this thesis we have used the logit link function resulting in the following 

model equation: 
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6.2.1 Link functions    

 

6.2.1.1 Probit function  

          Alternatively we may use the probit transformation as link function, 

where  is the standard normal cumulative distribution function. In the case of this 

transformation the general model becomes: 

))((1 yπ−Φ

Φ

                         .                                       (6.4) iiqiqiii yayaay επ ++++=Φ− ...))(( 110
1

          As a result and according to the above general model, the model (4.1) that was 

applied in our analysis now becomes: 

                              .                                                  (6.5) ij
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k
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for K=1, …, 5 representing the five possible factors and their associated model(e.g. if 

k=3 then we have the three facor model), j=1, …, 9 representing the nine schizotypal 

traits and i=1, …, 167 representing the observations where: 

 ,  and . )1,0(~ Nbij )100,0(~ Na j )1,0(~ Nfik

 

6.2.1.2 Loglog function 

          In this case the link function is the log-log function (Laaksonen, 2006). Using 

this transformation the general model becomes: 

                        iiqiqiii yayaay επ ++++=−− ..)))(log(log( 110                               (6.6) 

The model 5.1 will be: 

                                                                    (6.7) ij
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6.2.1.3 Complementary Loglog function 

          In this case the link function is based on the previous the log-log function. 

Using this transformation the general model becomes: 

                          iiqiqiii yayaay επ ++++=− ..)))(log(log( 110 .                              (6.8) 

The model 5.1 becomes: 
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for ,  and . )1,0(~ Nbij )100,0(~ Na j )1,0(~ Nfij

 

6.2.1.4 Suggestion 

 

          In the previous section (6.2.1) we mention three different link functions. It will 

be interesting to fit all the above models and examine which link function might be 

describing the data better. However, in our analysis we chose to use the logit link 

function because according to previous researchers it is the more conventional link 

function in survey estimation as far as a categorical variable including response 

indicator have been applied.  

          Rarely the other links have been used, this being probit according to Laaksonen 

(2006). She also added that: “the choice of the link function is not the most important 

issue in survey estimation but still a user could also look forward to some other link 

functions”. 
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APPENDIX A 
Descriptive characteristics of the sample- Frequency Tables 

 

 

University 
  Frequency Percent 
TEI 72 43,1 
AEI 95 56,9 
Total 167 100 

 
Table A.1 Frequency Table for university. 
 
 
 
 

Study level 
  Frequency Percent 
Bsc 152 91 
Msc 15 9 
Total 167 100 

  
Table A.2 Frequency Table for Study level. 
 
 
 

Age 
  Frequency Percent 
18-21 90 53,9
22-25 64 38,3
26-29 11 6,6
30+ 2 1,2
Total 167 100

 
Table A.3 Frequency Table for age. 
 
 
 

Gender 
  Frequency Percent 
Male 74 44,3 
Female 93 55,7 
Total 167 100 

 
Table A.4 Frequency Table for gender. 
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Economic Status 

  Frequency Percent 
Low 9 5,4 
Median 151 90,4 
High 7 4,2 
Total 167 100 

 
 
Table A.5 Frequency Table for Economic Status. 
 
 
 

Independence 
  Frequency Percent 
Yes 137 82 
No 21 12,6 
Else 9 5,4 
Total 167 100 

 
Table A.6 Frequency Table for financial independence. 
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APPENDIX B  
Factor loadings of five factor models 

 

 

Model 1 

 

 

model1 Factor1 alpha[j] 
Ideas of reference 0,708 -0,285
Odd beliefs or magical     
 thinking 0,632 -0,405
Unusual perceptual 
experience 0,801 -1,046
Odd speech 0,879 -1,367
Suspiciousness 1,425 -1,651
Constricted affect 0,532 -1,533
Odd behaviour 0,749 -0,659
No close friends 0,619 -1,495
Social anxiety 0,897 -0,747

 

Table B.1  Factor loadings for the one factor model. 
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Model 2 

 

 

model2 Factors    
Schizotypal Traits Positive Negative alpha[j] 
Ideas of reference 0,747   -0,297 
Odd beliefs or magical      
 thinking 0,473   -0,405 
Unusual perceptual 
experience 0,954   -1,085 
Odd speech 0,902   -1,379 
Suspiciousness 1,133 0,732 -1,682 
Constricted affect   0,732 -1,575 
Odd behaviour   0,579 -0,649 
No close friends   0,929 -1,571 
Social anxiety 0,737 0,398 -0,748 

 

 

 

Table B.2  Factor loadings for the Kendler’s two- factor model. 
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Model 3  

 

 

model3   Factors    

Schizotypal Traits Cogn/Perc 
Interpersona
l 

Disorganize
d alpha[j] 

Ideas of reference 0,034     -0,293
Odd beliefs or magical         
 thinking -1,161     -0,471
Unusual perceptual 
experience -0,493     -1,037
Odd speech     -0,742 -1,375
Suspiciousness -0,032 1,450   -1,714
Constricted affect   0,644   -1,565
Odd behaviour     -0,617 -0,675
No close friends   0,667   -1,517
Social anxiety   0,822   -0,744

 

 

Table B.3  Factor loadings for the Disorganized three- factor model. 
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Model 5 

 

model5   Factors        
Schizotypal Traits Paranoid Positive Schizoid Avoidant Disorganized alpha[j] 
Ideas of reference 0,319 0,210   0,558   -0,308
Odd beliefs or magical             
 thinking   1,278       -0,473
Unusual perceptual 
experience   0,521       -1,006
Odd speech     0,509     -1,286
Suspiciousness 1,032       1,335 -1,823
Constricted affect     0,641   0,266 -1,563
Odd behaviour         0,625 -0,648
No close friends     0,937     -1,563
Social anxiety       1,006   -0,778

 

 

 

Table B.4  Factor loadings for the Fogelson’s five- factor model. 
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APPENDIX C 
Characteristics of impulsive and compulsive buying. 

 

 

1. Impulsive buying 
 

Q1 
  Frequency Percent 
Agree 79 47,3 
Disagree 98 52,7 
Total 167 100,0 

 
 
Table C.1 Just do it. 

 

 

Q2 
  Frequency Percent 
Agree 97 58,1 
Disagree 70 41,9 
Total 167 100,0 

 
 
 
Table C.2 Buy without thinking. 

 

 
 

Q3 
  Frequency Percent 
Agree 132 79,0 
Disagree 35 21,0 
Total 167 100,0 

 
 
Table C.3 Buy now, think of it later. 
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Q4 
  Frequency Percent 
Agree 58 34,7 
Disagree 109 65,3 
Total 167 100,0 

 
 
Table C.4 React carelessly when buying. 

 

 
 
 

Q5 
  Frequency Percent 
Agree 41 24,6 
Disagree 126 75,4 
Total 167 100,0 

 
 
 
Table C.5 Buy sth that want it immediately when see it. 
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2. Compulsive Buying 
 
 
 

Q1 
  Frequency Percent 
Agree 136 21,4 
Disagree 31 18,6 
Total 167 100,0 

 
 

Table C.6 Do not feel comfortable without buying. 
 
  
 

Q2 
  Frequency Percent 
Agree 120 71,9 
Disagree 47 28,1 
Total 167 100,0 

 
 
Table C.7 Buy because I want it. 
 
 
 
 

Q3 
  Frequency Percent 
Agree 87 52,1 
Disagree 80 47,9 
Total 167 100,0 

 
 
Table C.8 Buy now, regret it later. 
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Q4 
  Frequency Percent 
Agree 92 55,1 
Disagree 75 44,9 
Total 167 100,0 

 
 

Table C.9 Buy without knowing why. 
 
 
 

Q5 
  Frequency Percent 
Agree 42 25,1 
Disagree 125 74,9 
Total 167 100,0 

 
 
 
Table C.10 Buy because of bad mood. 
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APPENDIX D 
Codes of chosen models  

 
1. Four-Factor Paranoid Model 

 

model; 
{ 
   for (i in 1:N){ 
  for(j in 1:9){ 
   x[i,j]~dbin(p[i,j],n[j]) 
 
####model (5.1) 
   logit(p[i,j])<-alpha[j]+l[1,j]*f[i,1]+l[2,j]*f[i,2]+l[3,j]*f[i,3]+l[4,j]*f[i,4]+b[i,j]  
   b[i,j]~dnorm(0.0,tau) 
   f[i,j]~dnorm(0,1) 
 
####log- likelihood function 
   loglikel[i,j]<-logfact(n[j]) - logfact(x[i,j]) - logfact(n[j]-
x[i,j])+x[i,j]*log(p[i,j])+(n[j]-x[i,j])*log(1-p[i,j]) 
  } 
} 
####priors 
   for(j in 1:9){ 
    alpha[j]~dnorm(0,0.01) 
   } 
   l[1,1]<-0 
   l[1,2]~dnorm(0,1)I(0,) 
   l[1,3]~dnorm(0,1) 
   l[1,4]<-0 
   l[1,5]~dnorm(0,1) 
   l[1,6]<-0 
   l[1,7]<-0 
   l[1,8]<-0 
   l[1,9]<-0 
   l[2,1]<-0 
   l[2,2]<-0 
   l[2,3]<-0 
   l[2,4]<-0 
   l[2,5]~dnorm(0,1) 
   l[2,6]~dnorm(0,1) 
   l[2,7]<-0 
   l[2,8]~dnorm(0,1) 
   l[2,9]~dnorm(0,1) 
   l[3,1]<-0 
   l[3,2]<-0 
   l[3,3]<-0 
   l[3,4]~dnorm(0,1)I(0,) 
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   l[3,5]<-0 
   l[3,6]<-0 
   l[3,7]~dnorm(0,1) 
   l[3,8]<-0 
   l[3,9]<-0 
   l[4,1]~dnorm(0,1)I(0,) 
   l[4,2]<-0 
   l[4,3]<-0 
   l[4,4]<-0 
   l[4,5]~dnorm(0,1) 
   l[4,6]<-0 
   l[4,7]<-0 
   l[4,8]<-0 
   l[4,9]<-0 
   tau~dgamma(1,1) 
   L1<-sum(loglikel[,]) 
   BIC<- -2*L1+11*log(N) 
   AIC<- -2*L1+ 11*2 
  
  } 
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2. Impulsive model  

 

2.1 Model 1 

model; 
{ 
   for (i in 1:N){  
     imp[i]~dbin(p[i],5)   
####model (6.1) 
      logit(p[i])<-alpha0+inprod(alpha[],x[i,])+b[i]  
      b[i]~dnorm(0.0,tau)      
      for(j in 1:9){      
      x[i,j]~dbin(p2[i,j],n[j]) 
####model (6.2) 
      logit(p2[i,j])<-alpha2[j]+l[1,j]*f[i,1]+l[2,j]*f[i,2]+l[3,j]*f[i,3]+l[4,j]*f[i,4]+b2[i,j] 
      b2[i,j]~dnorm(0.0,tau)  
      f[i,j]~dnorm(0,1)      
####log-likelihood function 
      loglikel[i,j]<-logfact(5)-logfact(imp[i])-logfact(5-imp[i])+imp[i]*log(p[i])+(5-
imp[i])*log(1-p[i]) 
     } 
   } 
####priors 
   tau~dgamma(1,1)    
   alpha0~dnorm(0,0.01) 
   e.alpha0<-exp(alpha0) 
   for(j in 1:9){ 
    e.alpha[j]<-exp(alpha[j]) 
    alpha[j]~dnorm(0,0.01) 
    alpha2[j]~dnorm(0,0.01) 
   }  
   l[1,1]<-0 
   l[1,2]~dnorm(0,1)I(0,) 
   l[1,3]~dnorm(0,1) 
   l[1,4]<-0 
   l[1,5]~dnorm(0,1) 
   l[1,6]<-0 
   l[1,7]<-0 
   l[1,8]<-0 
   l[1,9]<-0 
   l[2,1]<-0 
   l[2,2]<-0 
   l[2,3]<-0 
   l[2,4]<-0 
   l[2,5]~dnorm(0,1) 
   l[2,6]~dnorm(0,1) 
   l[2,7]<-0 
   l[2,8]~dnorm(0,1) 
   l[2,9]~dnorm(0,1) 
   l[3,1]<-0 
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   l[3,2]<-0 
   l[3,3]<-0 
   l[3,4]~dnorm(0,1)I(0,) 
   l[3,5]<-0 
   l[3,6]<-0 
   l[3,7]~dnorm(0,1) 
   l[3,8]<-0 
   l[3,9]<-0 
   l[4,1]~dnorm(0,1)I(0,) 
   l[4,2]<-0 
   l[4,3]<-0 
   l[4,4]<-0 
   l[4,5]~dnorm(0,1) 
   l[4,6]<-0 
   l[4,7]<-0 
   l[4,8]<-0 
   l[4,9]<-0 
   s2<-1/tau 
   L1<-sum(loglikel[,]) 
   BIC<- -2*L1+9*log(N) 
   AIC<- -2*L1+ 9*2 
  } 
 
2.2 Model 2 

model; 
{ 
   for (i in 1:N){   
   imp[i]~dbin(p[i],5) 
####model (6.3) 
   logit(p[i])<-alpha0+alpha[1]*f[i,1]+alpha[2]*f[i,2]+alpha[3]*f[i,3]+alpha[4]*f[i,4] 
   for(j in 1:9){   
   f[i,j]~dnorm(0,1)   
   x[i,j]~dbin(p2[i,j],n[j])   
####model (6.4) 
   logit(p2[i,j])<-alpha2[j]+l[1,j]*f[i,1]+l[2,j]*f[i,2]+l[3,j]*f[i,3]+l[4,j]*f[i,4]+b2[i,j]    
   b2[i,j]~dnorm(0.0,tau)   
####log-likelihood function 
   loglikel[i,j]<-logfact(5)-logfact(p[i])-logfact(5-p[i])+imp[i]*log(p[i])+(5-
imp[i])*log(1-p[i])     
  } 
 }  
####priors   
 tau~dgamma(1,1)    
   alpha0~dnorm(0,0.01) 
   e.alpha0<-exp(alpha0)   
   for(k in 1:4){ 
    e.alpha[k]<-exp(alpha[k]) 
    alpha[k]~dnorm(0,0.01) 
   } 
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   for(j in 1:9){ 
    alpha2[j]~dnorm(0,0.01) 
   } 
 
   l[1,1]<-0 
   l[1,2]~dnorm(0,1)I(0,) 
   l[1,3]~dnorm(0,1) 
   l[1,4]<-0 
   l[1,5]~dnorm(0,1) 
   l[1,6]<-0 
   l[1,7]<-0 
   l[1,8]<-0 
   l[1,9]<-0 
   l[2,1]<-0 
   l[2,2]<-0 
   l[2,3]<-0 
   l[2,4]<-0 
   l[2,5]~dnorm(0,1) 
   l[2,6]~dnorm(0,1) 
   l[2,7]<-0 
   l[2,8]~dnorm(0,1) 
   l[2,9]~dnorm(0,1) 
   l[3,1]<-0 
   l[3,2]<-0 
   l[3,3]<-0 
   l[3,4]~dnorm(0,1)I(0,) 
   l[3,5]<-0 
   l[3,6]<-0 
   l[3,7]~dnorm(0,1) 
   l[3,8]<-0 
   l[3,9]<-0 
   l[4,1]~dnorm(0,1)I(0,) 
   l[4,2]<-0 
   l[4,3]<-0 
   l[4,4]<-0 
   l[4,5]~dnorm(0,1) 
   l[4,6]<-0 
   l[4,7]<-0 
   l[4,8]<-0 
   l[4,9]<-0 
   s2<-1/tau 
   L1<-sum(loglikel[,]) 
   BIC<- -2*L1+9*log(N) 
   AIC<- -2*L1+ 9*2 
  } 
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2.3 Model 3 

model; 
{ 
   for (i in 1:N){ 
     imp[i]~dbin(p[i],5) 
####model (6.6) 
     logit(p[i])<-alpha0+inprod(alpha[],x.rep[i,])+b[i] 
     b[i]~dnorm(0.0,tau) 
     for(j in 1:9){ 
      x.rep[i,j]~dbin(p2[i,j],n[j])       
      x[i,j]~dbin(p2[i,j],n[j]) 
####model (6.7)    
      logit(p2[i,j])<-alpha2[j]+l[1,j]*f[i,1]+l[2,j]*f[i,2]+l[3,j]*f[i,3]+b2[i,j] 
      b2[i,j]~dnorm(0.0,tau)  
      f[i,j]~dnorm(0,1)      
####log- likelihood function 
      loglikel[i,j]<-logfact(5)-logfact(imp[i])-logfact(5-imp[i])+imp[i]*log(p[i])+(5-
imp[i])*log(1-p[i]) 
     } 
   } 
####priors 
  tau~dgamma(1,1) 
    alpha0~dnorm(0,0.01) 
   e.alpha0<-exp(alpha0)   
   for(j in 1:9){ 
    e.alpha[j]<-exp(alpha[j]) 
    alpha[j]~dnorm(0,0.01) 
    alpha2[j]~dnorm(0,0.01) 
   } 
   l[1,1]<-0 
   l[1,2]~dnorm(0,1)I(0,) 
   l[1,3]~dnorm(0,1) 
   l[1,4]<-0 
   l[1,5]~dnorm(0,1) 
   l[1,6]<-0 
   l[1,7]<-0 
   l[1,8]<-0 
   l[1,9]<-0 
   l[2,1]<-0 
   l[2,2]<-0 
   l[2,3]<-0 
   l[2,4]<-0 
   l[2,5]~dnorm(0,1) 
   l[2,6]~dnorm(0,1) 
   l[2,7]<-0 
   l[2,8]~dnorm(0,1) 
   l[2,9]~dnorm(0,1) 
   l[3,1]<-0 
   l[3,2]<-0 
   l[3,3]<-0 
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   l[3,4]~dnorm(0,1)I(0,) 
   l[3,5]<-0 
   l[3,6]<-0 
   l[3,7]~dnorm(0,1) 
   l[3,8]<-0 
   l[3,9]<-0 
   l[4,1]~dnorm(0,1)I(0,) 
   l[4,2]<-0 
   l[4,3]<-0 
   l[4,4]<-0 
   l[4,5]~dnorm(0,1) 
   l[4,6]<-0 
   l[4,7]<-0 
   l[4,8]<-0 
   l[4,9]<-0 
   s2<-1/tau 
   L1<-sum(loglikel[,]) 
   BIC<- -2*L1+9*log(N) 
   AIC<- -2*L1+ 9*2 
  } 
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APPENDIX E 

 
Markov Chain Monte Carlo (MCMC) Methods  

 

Monte Carlo Integration  

          Monte Carlo method was originally named by Ulam (1951). This method is 

based on the drawing of random samples, which have some useful properties, for 

solving a problem. It is of great importance because it enables us to simplify 

complicated calculations. Nicolas Metropolis had also an important contribution to 

the development of such methods.  

          Monte Carlo integration is a method for estimating complicated integrals of 

random samples (drawn from a target distribution) by calculating their expectations. 

Let us consider the quantity: 

( ) ( )x f x dxθ μ= ∫  . 

We will approximate this integral by sampling. Suppose we have a sample of 

 from the above density),...,( 1 NXXx = ( )f x , then the estimate of θ  will be: 

                                                      ∑
Ν

=Ν
≈

1
)(1ˆ

ι

μθ iX                                           

          Hence the population expectation of ( )xμ can be estimated by the 

corresponding sample mean. Since  results from a simulation process we can set N 

large (the bigger the better) and hence  will asymptotically approximate 

θ̂

θ̂ θ . When 

the generated observations are independent then we can increase the sample size to 

get more accurate estimations. It is not necessary to have independent realizations. 

The samples can be drawn by any process we desire (Gilks, Richardson and 

Spiegelhalter, 1996 p.4). Having in mind the above, we can conclude that the 

application of Monte Carlo integration is relatively simple since we only have to 

generate samples and then use point estimates for the quantities of interest.  
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Markov Chain  

          Let us now consider a sequence of discrete random variables   

( ) ( ) ( ){ }1 2, ,..., tθ θ θ  with the property that the distribution of conditioning 

on

( )1tθ +

( ) ( ) ( ){ }0 1, ,..., tθ θ θ  depends only on the previous value of ( )tθ and not on the values 

of ( ) ( ) ( ){ }0 1 1, ,..., tθ θ θ − :  

( ) ( ) ( ) ( )( ) ( ) ( )( )1 1 1 1| , ..., |t t t t tf fθ θ θ θ θ θ+ − +=  , 

where ( ) ( )( )1 |t tf θ θ+ is independent of t. 

 

Such a stochastic process ( ){ }: 0,1,...t tθ = is called Markov Chain  

MCMC Algorithms  

Metropolis –Hasting Algorithm   

          Metropolis et al (1953) introduced the Metropolis algorithm described in this 

section. 

As it was proposed, in order to generate ( )1tθ + having already observed we have 

to: 

)(tθ

 

• Draw  *θ from a proposal distribution ( )( )* | tq θ θ , which is symmetric:  

                                                         ( )( ) ( )( )* | t tq q *|θ θ θ= θ                                                 

• Calculate the acceptance probability:  

                                              ( )( ) ( )
( )( )
*

*
|

, min 1,
|

t
t

f y
a

f y

θ
θ θ

θ

⎛ ⎞
⎜=
⎜
⎝ ⎠

⎟
⎟

                                       

• Accept the proposed more from θ  to  with probability a .  *θ
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Generate u~ U (0, 1). If au <  then accept and ( )1 *tθ θ+ = , otherwise reject 

the more and set ( ) ( )1t tθ θ+ =  

And then repeat the above steps until an accepted sample from the target distribution 

is obtained.  

            In Metropolis –Hasting algorithm we do not have the restriction of using a 

symmetrical proposal distribution. Hence the algorithm is now given by the following 

steps. 

 

• Draw  *θ from a distribution ( )( )* | tq θ θ  

• The acceptance probability now is: 

                                ( )( ) ( ) ( )( )
( )( ) ( )( )
* *

*
*

| |
, min 1,

| |

t
t

t

f y q
a

f y q

θ θ θ
θ θ

θ θ θ

⎛ ⎞
⎜ ⎟=
⎜ ⎟
⎝ ⎠

t
                                  

• Accept the proposed more from θ  to  with probability a .  *θ

           Generate u~ U (0,1). If au <  then accept and ( )1 *tθ θ+ = , otherwise reject the        

more and set ( ) ( )1t tθ θ+ = . 

The Gibbs Sampler 

          The Gibbs sampler is a special case of Metropolis Hasting algorithm. Here the 

proposal distribution is the full conditional distribution. For the i-th component of a 

vector θ  is generated from ),|( yf iii −θθ . i−θ  represents the vector θ  excluding the i-

th component: ),...,,,...,( 111 kiii θθθθθ +−− = . Suppose we have a vector of k random 

variables ( 1 2, ,..., k )θ θ θ θ=  and a set of initial values ( ) ( ) ( )( )0 0 0
1 2, ,..., kθ θ θ  . Then 

• we generate 

             

( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( )

1 0 0
1 1 1 2 3

1 1 0
2 2 2 1 3

1 1 1
3 3 3 1 2

1 1 1
1 2 1

      from   | , ,..., ,

      from   | , ,..., ,

      from   | , ,..., ,

                                          

      from   | , ,..., ,

k

k

k

k k k k

0

0

0

1

f y

f y

f y

f y

θ θ θ θ θ

θ θ θ θ θ

θ θ θ θ θ

θ θ θ θ θ −

M M M M
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Generally we sample  from:  )1( +t
jθ

( ) ( ) ( ) ( ) ( ) ( )( )1 1 1 1
1 2 1 1~ | , ,..., , ,..., ,t t t t t

j j j j j k
tf yθ θ θ θ θ θ θ+ + + +

− +  

 So as a result we get the new vector  after updating t times equal to  )(tθ

( )

( )

( )

1

2

 

 

 

t

t

t
k

θ

θ

θ

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

M

• The acceptance probability here is:  

                                                         .                                                  1),,( *)()( =− i
tt

ia θθθ

• Since the proposal distribution ( ) ( )( )* | , ,t t
i i iq θ θ θ− y  for updating the i-th 

component of θ  becomes the full conditional distribution . 

Hence every new point is always accepted. 

),|( )(* yf t
iii −θθ

Convergence 

          An important issue in MCMC algorithms is convergence. There are several 

factors that must be taken into account for this topic (see for example in Congdon 

2001, p.467). Problems with small data sets or few parameters achieve convergence 

faster. Furthermore, the sampling scheme as well as the parametrization used play a 

substantial role in convergence speed. In addition the closeness of the starting value to 

that of the stationary distribution is also important. 

          In MCMC algorithms we need to specify the number of chains, the starting 

values, the burn-in iterations and the total number of iterations (i.e. when the 

algorithm is terminated).  

          Concerning the number of chains, three different views have been proposed in 

literature: to use one very long chain, many long ones or finally to generate many 

short chains. However, the prevalent idea is to use the first or the second approach. 

Another important aspect here is the choice of the starting values. Their specification 

varies from problem to problem and strongly depends on the mixing of the chain. The 

number of burn-in iterations also depends on the starting values. The number of the 
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burn-in iterations can be specified by specific convergence diagnostics described 

below (Gelman and Rubin, 1992; Raftery and Lewis, 1992; Geweke, 1992).  

          From another point of view, Geyer (1992) proposed that is sufficient to 

consider as the burn-in period between the 1% and the 2% of the total number of 

iterations. One way to determine the length of the chain is to run a number of chains 

with different starting values and then to examine whether all chains give the same 

results or not. If the results do not coincide then we need to generate chains of larger 

length (Gilks, Richardson and Spiegehalter, 1996 p.13).  

 

Gelman and Rubin’s Diagnostic Test 

           The diagnostic proposed by Gelman and Rubin (1992) is a univariate 

diagnostic and can be applied to two or more parallel chains. Under the assumption of 

m parallel chains with different starting points, run these chains for 2n iterations and 

then the aim is to check whether the variation within chains equals to the variation 

between the chains for the last n iterations. This convergence can be monitored by 

estimating the “scale reduction factor”: 

                                           
1 1

2
n m B dfR

n mn W df
− +⎛ ⎞= +⎜ ⎟ −⎝ ⎠

.                                    

Where 
B
n

denotes the variance between the means of the m-parallel chains, W is the 

average of the m-within chain variances and df denote the degrees of freedom of t-

density which is an approximation to the posterior density. This factor ( R ) tends to 

1 for  and is the quantity by which the scale parameter will be shortened if 

sampling repeats infinitely. 

n→∞

 
Geweke’s Diagnostic Test 

          Geweke (1992) proposed to consider the values of the sequence , as a 

time series. Here we have two different portions of Gibbs of size ,  , 

respectively. Finally let’s consider  the estimates of their spectral 

densities. An estimation of the means of g function for these two portions of Gibbs 

sampling is: 

)}({ tg θ

An Bn

(.),A
gS (.),B

gS
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A

n

t

t

n n

g
g

A

A

∑
== 1

)(θ
    , 

B

n

t

t

n n

g
g

B

B

∑
== 1

)(θ
                                        

For the fixed ratios ,A Bn n
n n

and for 1A Bn n
n
+

< , the convergence diagnostic is: 

                             )1,0(
)0(1)0(1

N
S

n
S

n

gg

B
g

B

A
g

A

nn BA →
+

−
, for                             n →∞

The above diagnostic is nothing else than an application of central limit theorem 

having taken as 
10
nnA =  the first 10% of the total Gibbs sample and as 

2B
nn =  the last 

50% of the Gibbs sample and checks the null hypothesis : 

                                                       
BnAn ggH =:0 .                                                  

 

Raftery and Lewis’s Diagnostic Test   

          Raftery and Lewis (1992) proposed another diagnostic test for convergence. 

This test depends on the estimation of the quantiles of the posterior distribution of a 

function ( ).f of the parameters for a required probability of attaining a known degree 

of accuracy. If we wish to estimate the posterior quantile ( )|P f u y<  within an 

interval of  units with probabilityr± α , we start this Gibbs sampler initially for some 

iterations suppose n  and then we repeat for iterations of which we accept every k-

th sample after burn-in. Hence we simply have to run the sampler in order to 

determine , and . In literature the values to use

N

n N k 1000n = ,  and 

 (Besag, York and Mollie, 1991). In the case of then we have to 

use all the generated values. On the other hand for large enough the generated 

samples are independent. 

10000N =

10 or 20k = 1k >
N k

 

 

 

 

Heidelberger and Welch’s Diagnostic Test 

          Heidelberger and Welch’s (1983) diagnostic test is an application of Brownian 

bridge statistics. According to this test we generate a sequence of 1, , nX XK  that 

converges to X  and we consider them as a time series with a spectral density at 
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zero . Then we create confidence interval for the expected value of  ( )0S X  and use 

the width of this interval to estimate the total run length. This sequence follows a 

normal distribution with variance: 

                                                         
( ) ( )0

k

S
k

n
γ

∞

=−∞

= ∑                                                 

( ) :kγ This is the covariance function.   

forε : be a determined requirement and the estimated relative half-width: 
 

                                      
  
2

Confidence Interval widthERHW
X

=                                

If ERHW ε≤  then the chain is successfully stopped in the opposite case it fails and 

we need to run a chain of larger length.  

          Moreover in this test we have to examine whether or not the samples come 

from a stationary process.  There are several tests for testing this null hypothesis of 

stationarity (Cramer-von Mises’s, Anderson-Darling’s, Kolmogorov-Smirnov’s and 

Schruben’s). If the null hypothesis is rejected then the initial 10% of the sequence is 

removed and repeat the test for the rest of the sequence. The property of stationarity is 

succeeded if at least the half of the observations has passed the test. In this case we 

conclude that the chain has reached convergence.           
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