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ABSTRACT 
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Bayesian variable selection using hyper-g prior and Adaptive 

sampling 

    June 2015 

 

 

 

 Bayesian variable selection has become an area of extensive research 

through the last decades. The two main challenges that a researcher confronts, 

is the specification of the prior distribution on model parameters and the 

calculation of the posterior model probability which makes the evaluation of a 

candidate model feasible. In linear models, popular prior choices are based on 

conjugate analysis of Normal-Gamma family. Among them, alternatives based 

on Zellner’s g-prior are mainly preferred, as they lead to tractable marginal 

likelihoods. On the other hand, since posterior inference is related to high 

dimensional integrals, Bayesian model selection became popular only after the 

adoption of advanced simulation algorithms, that are used to overcome 

demanding computational issues.  

In the current thesis, we will attempt a review of the existing 

methodologies that deal with the Bayesian model selection problem.  Different 

ways of estimating Bayes Factors will be covered and major MCMC based 

algorithms that deal with the exploration of model space and estimation of 

posterior will be presented. Emphasis will be given on Bayesian adaptive 

sampling algorithm of Clyde et al. (2011) that exploits the idea of adaptive 

sampling algorithms and adopts Zellner’s g-prior to perform sampling over 

model space. Its performance will be explored both using small and large 

simulated data.   
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ΠΕΡΙΛΗΨΗ 

 

Φνίβνο Αλαζηαζάθεο 

 

Μπεϋδιανή επιλογή μεηαβλεηών με χρήζε g-prior καηανομής 

και προζαρμοζηικής δειγμαηολεψίας 

Ινύληνο  2015 

 

 Οη κέζνδνη Μπεϋδηαλήο επηινγήο κεηαβιεηώλ απνηεινύλ ηηο ηειεπηαίεο 

δεθαεηίεο έλα ηνκέα ελδειερνύο έξεπλαο. Οη δύν ζεκαληηθόηεξεο πξνθιήζεηο 

πνπ νη εξεπλεηέο έρνπλ λα αληηκεησπίζνπλ είλαη ε επηινγή ηεο εθ ησλ 

πξνηέξσλ θαηαλνκήο ησλ παξακέηξσλ ηνπ κνληέινπ θαη ν ππνινγηζκόο ηεο εθ 

ησλ πζηέξσλ θαηαλνκήο ηνπ κνληέινπ, ε νπνία θαζηζηά ηθαλή ηελ αμηνιόγεζή 

ηνπ. ΢ηα γξακκηθά ππνδείγκαηα, δεκνθηιείο επηινγέο εθ ησλ πξνηέξσλ 

θαηαλνκώλ, βαζίδνληαη ζηελ ζπδπγή αλάιπζε κέζσ ηεο νηθνγέλεηαο 

Καλνληθήο θαη Γάκα θαηαλνκήο. Δμ απηώλ, πξνηηκηηέεο ελαιιαθηηθέο, 

βαζίδνληαη ζηελ εθ ησλ πξνηέξσλ θαηαλνκή g ηνπ Zellner, δενκέλνπ όηη 

θαζηζηνύλ ηνλ ππνινγηζκό ηεο πεξηζώξηαο θαηαλνκήο εθηθηή. Από ηελ άιιε, 

δεδνκέλνπ όηη ε εθ ησλ πζηέξσλ ζπκπεξαζκαηνινγία, ζρεηίδεηαη κε ηνλ 

ππνινγηζκό νινθιεξσκάησλ πςειώλ δηαζηάζεσλ, νη Μπεϋδηαλέο κέζνδνη 

επηινγήο κεηαβιεηώλ απέθηεζαλ δεκνηηθόηεηα  κε ηελ πηνζέηεζε 

εμεηδηθεπκέλσλ αιγνξίζκσλ πξνζνκνίσζεο, πνπ ρξεζηκνπνηνύληαη γηα λα 

μεπεξαζηνύλ απαηηεηηθά ππνινγηζηηθά πξνβιήκαηα.  

 ΢ηελ παξνύπζα εξγαζία, ζα επηρεηξεζεί κία αλαζθόπεζε ησλ 

ππαξρνπζώλ κεζνδνινγηώλ πνπ ζρεηίδνληαη κε ηελ Μπεϋδηαλή επηινγή 

κεηαβιεηώλ. Θα θαιπθζνύλ δηαθνξεηηθέο κέζνδνη εθηίκεζεο ηνπ παξάγνληα 

Bayes θαζώο θαη βαζηθνί αιγόξηζκνη βαζηζκέλνη ζηελ MCMC κεζνδνινγία, 

πνπ ζρεηίδνληαη κε ηελ δεηγκαηνιεςία ζην ρώξν ηνπ κνληέινπ θαη ζηελ 

εθηίκεζε ηεο εθ ησλ πζηέξσλ θαηαλνκήο. Έκθαζε ζα δνζεί ζηνλ αιγόξηζκν 

Μπεϋδηαλήο πξνζαξκνζηηθήο δεηγκαηνιεςίαο ησλ Clyde et al (2011), ν νπνίνο 

ρξεζηκνπνηεί ηελ ηδέα ηεο πξνζαξκνζηηθήο δεηγκαηνιεςίαο θαη πηνζεηεί ηελ 

εθ ησλ πξνηέξσλ θαηαλνκή g ηνπ Zellner γηα λα πξαγκαηνπνηήζεη 
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δεηγκαηνιεςία ζηνλ ρώξν ηνπ κνληέινπ. Η  επίδνζή ηνπ ζα κειεηεζεί ζε 

πξνζνκνησκέλα δεδνκέλα.    
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Chapter 1 : Introduction

1.1 Purpose of the thesis

The Bayesian approach for model selection problems, unlike classical methods, attempts to 

control for model and parameter uncertainty simultaneously.  Implementation of model selection 

from a Bayesian perspective, entails two challenging problems: prior specification and posterior 

calculations. In practice, applying Bayesian methods, is associated with computationally demanding 

integrals, necessary in order to evaluate candidate models. These quantities can be evaluated only 

under specific cases, strongly related to the selection of the prior. Moreover, in cases of large model  

spaces,  where  computational  complexity  increases,  makes  the  evaluation  of  all  candidates 

prohibitive. 

MCMC algorithms,  offer  a  powerful  tool,  that  helps  surpass  both  demanding  posterior 

calculation difficulties through approximations and facilitates the evaluation of candidate models 

through sampling over model space. An optional algorithm, namely Bayesian adaptive sampling 

(BAS), that has been introduced to perform Bayesian model selection, is provided by Clyde et al 

(2011). In contrast to MCMC methods, BAS performs sampling without replacement over model 

space. The main argument that makes the algorithm applicable, is that when model probabilities are 

tractable, visiting past sampled models is not necessary. In order to evaluate posterior probabilities 

analytically,  BAS  is  based  on  conjugate  Bayesian  analysis  and  adopts  Zellner's  g  prior  over 

parameters. The purpose of the current thesis is to present BAS and explore its performance on 

simulated data. 

  1.2 Structure of the thesis

Chapter 2 focuses on classical methods for model selection. Traditional hypothesis testing 

for  comparing  models  and  basic  model  selection  criteria  that  are  commonly  used  in  classical 

approach  are  presented.  We  review  the  family  of  information  criteria  and  distinguish  their 

performance  based  on  their  asymptotic  properties.  Basic  model  selection  algorithms  are  also 

presented.

The third chapter deals with the Bayesian approach. Inference based on Bayes Factor and 

posterior  odds  is  presented,  focusing  on computational  difficulties  and paradoxes  related  to  it. 

Alternatives  such  as  Bayes  Factor  variants  and  mathematical  ways  of  approximating  it,  are 

reviewed. In the last section of the chapter, Monte Carlo methods of approximating Bayes Factor 
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are presented. We review Monte Carlo integration, Importance sampling and MCMC algorithms 

introduced to deal with the specific problem.

In the fourth chapter we present  existing MCMC based algorithms for model determination 

that avoid the extensive enumeration of all candidate models. The first part describes methods for 

variable  selection,  namely  SSVS,  KM  Sampler  and  GVS,  while  the  second  part  discusses 

algorithms that directly sample from model space. Some latest advances are additionally reviewed 

in the final part.

Chapter 5 focuses on the Bayesian Adaptive Sampling algorithm for variable selection and is 

divided in two parts. After introducing the basic concepts of adaptivity in MCMC algorithms, we 

fully review Zellner's g prior for conjugate analysis and present different variants that have been 

introduced. The second part focuses on BAS algorithm.  We present a full review of the algorithm, 

including its sampling strategy, how is adaptive and  the way is implemented in detail.

The sixth chapter provides with a review of the BAS package and its functions, that Clyde et 

al  (2011) developed in R, in order to implement the algorithm. The performance of the package is 

also examined in small  and large sample simulated data,  focusing on the comparison of results  

under different prior distributions that are provided by BAS package. 
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Chapter 2 : Classical Methods

2.1 Introduction

In classical statistics model selection issues have been studied thoroughly. In brief, there are 

two major ways used for model determination : hypothesis tests and model selection criteria. In 

hypothesis testing a model's performance is mainly evaluated in terms of error sums of squares 

(SSError). SSError is a measure of discrepancy between the data and the model's estimation and 

provides  a  statistic  that  measures  the  adequacy  of  the  model  (Dobson,  2002,  sec  2.3.4).  By 

comparing the model's fit with and without a vector of variables, it is actually tested whether the 

reduction in SSError is statistically significant. In order to conduct such a test, the models that are  

compared must be nested; Model A is nested within model B if it derives from model B by deleting 

a number of terms; in other words models A is a special case of model B (Agresti, 2002, sec 4.5.4) . 

Alternatively,  model  comparison,  even  between  non-nested  models,  can  be  based  on  model 

selection criteria.  They are mainly functions of the likelihood followed by an extra term, which is 

used to penalize for the addition of any extra term in the equation. Especially information criteria 

have become very popular and tend to replace the hypothesis tests in model comparison, due to the 

fact that the latter are occasionally misused. Both significance tests and selection criteria are used as 

stopping  rules  in  stepwise  algorithms.  As  it  is  implied  by  their  name,  stepwise  algorithms, 

sequentially fit models by adding or deleting terms in the equation. Depending on the stopping rule, 

at each step, models are either sequentially tested until there is no significant improvement in fit, or 

evaluated  by  a  selected  criterion  until  it  reaches  an  optimal  value.  With  the  development  of 

computer science, these procedures have become the most widespread tool in model determination 

since they can be computed automatically, easily and rapidly. 

 

2.2 Hypothesis Testing

The general form of hypothesis testing in model selection for normal regression  is 

                                                 
H 0 : Y = X q β q  ε
H 1 : Y = X p β p  ε  , q  p                                   (2.1).

As it can be seen, the model corresponding to the null hypothesis is a special case of the one in the 

alternative and derives by setting a regressor coefficient or a vector of coefficients equal to zero 

β i = 0 , i = q1,... , p. Using goodness of fit statistics that are based either on maximized 

likelihood or minimized SSError, it is actually tested whether the improvement in fit due to added 
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regressors in the full model is statistically significant. By accepting the null hypothesis, there is no 

evidence of statistically significant improvement in fit by adding extra terms in the equation and 

therefore the simpler model is preferable.

In linear regression applications, under the hypothesis that the reduced model fits the data 

adequately  and  assuming  that  the  error  term  is  identically  and  independently  distributed,  the 

hypothesis of reduced model against the full model is tested through an F test of the following form

                                           F =
SSEReduced − SSEGeneral / p − q

SSEGeneral /n−p                                    (2.2),

where n is the number of observations, p is the number of parameters of the general model and q is  

the number of parameters of the reduced model. It is a log-likelihood ratio (LRT) typed test and the 

sampling distribution of the statistic is F with (p-q) and (n-p) degrees of freedom, which derives as 

the ratio of two chi-square distributions. In particular, the numerator is chi-squared distributed with 

p-q  degrees  of  freedom,  while  the  denominator  is  chi-squared  distributed  with  n-p  degrees  of 

freedom (Dobson, 2002, sec 6.2.4). Further details on LRT tests can be found in Dobson, 2002, sec 

5.5.

Two special cases of the F test is the F to enter statistic and the lack of fit test. The F to enter 

statistic tests for the statistical significance of only one regressor coefficient and it is computed by 

the ratio

                                                       F enter =
SSE p − SSE p1

SSE p1/n− p−1
.                                             (2.3)

It is F distributed with 1 and n-p-1 degrees of freedom and  although it has been criticized as an 

inappropriate  tool  for  model  selection  (Miller  1984)  it  is  widely  used,  especially  in  stepwise 

algorithms which will be discussed later in this chapter.

The lack of fit statistic, tests the adequacy of a fitted model containing q out p existing 

variables against the full model which contains all p variables (Full model). Under the assumption 

that the full model fits the data well, this statistic can be used to determine whether any significant  

variables are missing or misspecified in the equation of the reduced model. 

In generalized linear models (GLM) applications the log likelihood ratio test is computed 

through a different goodness of fit measure, called deviance. It is defined as

                                                                     D0s = 2l s−l0 ,                                                  (2.4)

where l s is  the maximized log likelihood of the saturated model;  the model  that fits  the data 

exactly and its number of parameters coincides with the number of observations, and l 0 is the 

maximized log likelihood of a reduced model. The saturated model is the one that fits the data 

exactly and will always have the greater value of maximized likelihood in contrast to other models 
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with less number of parameters. Hence, the difference between a reduced model and the saturated 

one provides a distance measure through which can be tested whether a simpler model fits the data 

adequately.

Under  the  null  hypothesis D0s is  asymtotically chi-squared  distributed  with  degrees  of 

freedom equal  to  the difference between the size of the two models and by accepting the null 

hypothesis the simple model can be used to describe the data sufficiently. Assuming, now, that there 

are  two  models  that  have  been  accepted  through  the  LRT test,  a  simple  one  with  number  of 

parameters q and deviance D0s and a more general  with number of paramaters p, so that q<p and 

deviance D1s , the difference in deviances can be used in order to compare the fit  of the two 

models.  Again,  under  the  assumption  that  the  two  models  fit  the  data  well, D0s−D1s is 

asymptotically  chi  squared  distributed  with  p-q  degrees  of  freedom.  The  above  results  are 

asymptotic; further details and examples on GLM can be found in Dobson, 2002, chapter 3, while 

asymptotic  properties  of  the  sampling  distribution  of  deviance  and  examples  can  be  found  in 

Dobson, 2002, sec. 5.6. 

2.3 Model Selection Criteria

Apart  from  significance  tests,  the  decision  on  the  number  of  variables  that  should  be 

included in a model can be based on model selection criteria. They are either functions of SSError 

or of the likelihood and are used to evaluate the performance of a model. Through this approach,  

some candidate models are fitted, a selected criterion corresponding to each model is calculated and 

the calculated values are then compared. The model that produces the best value according to the 

selected criterion provides the most adequate description of the data. It follows a brief description of 

the most popular model selection criteria.

The  main  goal  in  regression  is  the  understanding  and  reducing of  the  observed  and 

unexplained  variance  of  the  dependent  variable,  through  some  explanatory  ones.  The  overall 

variance can be analyzed and expressed as the sum of two different quantities; the sum of squares 

due to regression (SSReg)

                                                                    ∑
i=1

n

 y i−y 
2                                                             (2.5)

and the sum of squares due to error (SSError)

                                                                    ∑
i=1

n

 y i−y 
2.                                                            (2.6)

Since the SSError is a distance measure between the observed and fitted values, among  a set of 
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candidate models, the best one is expected to minimize the error's sum of squares. Consequently, it  

would be reasonable to use this  quantity as a selection criterion.  However,  it  is  known that as 

variables are added in the equation there will always be a decrease in SSError, independently of the 

variables' importance. This property makes SSError itself inappropriate for use as a model selection 

criterion,  due to the fact that the full model will  be  always  producing the smallest SSError. It is 

presented though, as it is the basic goodness of fit measure, especially in linear regression.

A useful exploratory tool for model determination is the unbiased estimator of σ 2 : 

                                                              MSE = SSError
n−p                                                         (2.7),

where n is the number observations and p is a candidate model's size, including constant. In a data  

set where n is essentially greater than p (Drapper and Smith, 1981), and given that all the necessary-

important variables are considered as possible covariates, MSE tends to approximate the real value 

of variance as variables are added in the equation. Thus,  even when overfitted  models are used, 

MSE will provide a good estimate of σ 2 , which  can be also determined by models of smaller 

complexity.

Another statistic that is used for model evaluation is the coefficient of determination  

                                                        R2 = 1− SSError
SSTotal

, R2∈[0,1] .                                        (2.8).

It measures the proportion of the error variance explained by the regressors and a value equal to 1 

implies that the variance due to prediction is fully explained by the fitted model. However, since it 

is a function of SSError, it behaves in a similar way as discussed above. A modified form of R2 ,

is the adjusted coefficient of determination 

                                                      Radj
2 = MSE

σ y
2 = 1−1−R2

n−1
n− p

,                                    (2.9),

where s y
2 is the sample variance of y. Radj

2 adjusts R2 for the number of explanatory variables 

p in the model. Unlike R2 , it increases only if the reduction in MSError is appreciable and it can 

possibly be used for comparison among models of different size. Finally, three generalizations of

R2 have been proposed for the evaluation of GLMs :

• McFadden's  (1974)  pseudo RM
2 =1− logL  θ

logL 0
, which  tends  to  be  smaller  than R2 ;

values between 0.2 and 0.4 can be considered satisfatory,

• Cox and  Snell's  (1989) pseudo RCS
2 =1−exp{−2

n
[logL  θ −logL 0]}, which  takes  the 

number of observations into account but it also does not reach the value of one and
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• Negelkerke's  (1991) pseudo RN
2 =

RCS
2

Rmax
2 , Rmax

2 = 1−exp{2n logL 0}, which  modifies 

Cox and Snell's RCS
2 , such that its upper bound is equal to one; where n is the number of 

observations, L  θ is the likelihood of the fitted model and L 0 is the likelihood of the 

constant or null model.

The last  criterion that  will  be discussed  in  this  section (before presenting the family of 

information  criteria) is  the  Mallows' C p statistic. Mallows  (1973) introdused  the  following 

statistic 

                                                     C p =
SSError
σ2 −n2p ,                                                    (2.10),

where p is  the number of candidates in  a model  and σ 2 is  the estimate of σ 2 using the full 

model. Then, by assuming that the full model provides with an unbiased estimate of σ 2 , it follows 

that SSError =n− p σ2 and hence 

         C p = p                                                                 (2.11).

According to this criterion, a well-performing model is expected to produce a low C p value that 

approximates p. Due to randomness, C p may take  value  lower than p (Mallows 1975). On the 

contrary, models that produce C p greater than p , should be considered biased and excluded from 

the analysis.

2.4 Information Criteria

 The information criteria (IC) includes several model evaluation tools, that are based on the 

maximised likelihood, and take the following general form 

                                                     IC =−2logL  θ p/ yC  p ,n.                                         (2.12)

The likelihood's negative logarithm is used as a goodness of fit measure which, however, decreases 

every time a variable is added in the model. The second term, is mainly a function of the number of  

parameters p and possibly of the sample size  n,  which,  in contrast to, increases as  the number of 

covariates increases. In other words, information criteria are trying to balance between the goodness 

of fit and the model complexity by penalising the likelihood for each variable is in the model. The 

IC values are meaningless  by their own,  they  are used only for comparison between models of 

different size even if they are non-nested. The model with the lowest IC, is selected. Akaike (1973), 

used Kullback-Leibler's Information (K-L direct divergence) to produce the first IC defined as
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                                                         AIC =−2logf  θ p / y 2p                                             (2.13),

which is called Akaike's information criterion or simply AIC.

2.4.1 K-L Based Information Criteria

 Let us assume that the observed data S : y1, y2, , yn ' generated from a true but unknown 

density g(y) which cannot be determined exactly due to its complexity.  Let us further assume a 

parametric family of models f  y /θm , m= 1, , M , that is used to approximate the true data 

generating mechanism g(y). K-L Information is defined as  

                                                              I θm = E g{log g y 
f  y∣θm}                                       (2.14),

and quantifies  the  distance between  g(y) and  f(y). In  order  to  determine  which  model  best 

approximates  g  without  important  loss  of  information,  the  K-L discrepancy  (or relative  K-L 

information) 

                                                       d θm = E [−2logf  y∣θm]                                             (2.15)

can be used as a distance measure. In practice, θ must be estimated from the data and the above 

quantity could be estimated by

                                                       d  θm = E g[−2logf  y∣θm]θ=θ m
.                                      (2.16)

However, since the lack of knowledge concerning g, makes this computation impossible, Akaike, 

proposed −2logf  y∣θm as a biased estimator of d  θ p and estimated the bias 

                                                        E [d  θ p] − E [−2logf  y∣θm]                                        (2.18)

to be, asymptotically equal to 2p. Therefore, AIC provided an asymptotically unbiased estimator of 

the average distance between a fitted model and the true but unknown density that generated the 

observed data. In  other words, the model that minimises AIC, is expected  to provide the closest  

approximation  to  g(y).  This  is  the  main  difference  between criteria  that  derived based on K-L 

Information and consistent criteria.  The main goal of  the latter is to asymptotically  identify the 

exact true model that generated the observed data instead of minimizing the distance between them.

The introduction of AIC in the statistical inference generated a new research on the topic, 

introducing new and variants of it. Some of  these variants derived from  taking  different starting 

points  (f.i.  Bayesian  analysis,  predictive  risk,  etc),  while others  derived  by relaxing the  initial 

assumptions of AIC's construction, and others focused on the improvement its properties. 
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Regarding the assumptions, the asymptotic unbiasedness of AIC holds only when (i) the true 

density that generated the data  S  is a member of the  models under consideration and (ii) a large 

sample relative to p is available. 

Takeuchi (1976), by assuming that the true density is not included in the set of models under 

consideration, introduced a generalised large sample estimate of K-L discrepancy defined as

                                        TIC =−2logL  θm divided y 2tr [ J  θm I  θm
−1]                       (2.19), 

where

                                                           J  θm =−
∂2logf  x∣ θm

∂θm
2                                              (2.20)

and

                                             I  θ p =∑
i=1

n

[ ∂∂θ
logf  y∣θm][ ∂∂θ

logf  yi / θm] '                       (2.21).

When (I) is true, then TIC's penalty coincides with AIC's penalty.  Eventhough, TIC is a useful 

generalization of AIC, accurate estimation of I and J requires large samples, which practically is 

difficult to be obtained.

Hurvich and Tsai (1989) introduced

                                                         AIC c = AIC2m m1
n−m−1                                           (2.22),

as a corrected form of AIC for small samples. In their simulation studies, they showed that in cases 

when n is small in comparison to the number of regressors (rule of thumb n/m < 40), AIC tends to 

select over-fitted models, while AIC c selects the correct one. 

Fujikoshi and Satoh (1997) introduced modified AIC by relaxing both the true model and 

the large sample assumptions, which in linear regression applications takes the form of                 

                               MAIC = AIC c[2m n−m  σm
2

n−M  σ full
2 −2 n−m  σm

2

n−M  σ full
2 −1

2

]                   (2.23),

where m is  the size of the candidate model,  M the size of the full  model, σ m
2 the maximum 

likelihood (ML) estimator of error variance associated to the candidate model and σ full
2 the ML 

estimator of error variance associated to the full model) .

Leberton  et  al.  (1992)  introduced  the  Quasi-AIC  family  which  is  appropriate  in  GLM 

applications  where  overdispersion  is  detected.  In  the  exponential  family  of  distributions,  if  μ 

represents the mean of the dependent variable, then the variance of the dependent variable Y is  

computed  from Var Y  = a φVar  μ. Usually, a φ has  the  form  of
φ
w

, where  w  is  a 
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known  weight  for  each  observation  (for  instance  the  number  of  observations  n)  and  φ  is  the 

dispersion parameter. Theoretically, for binomial or Poisson distributed data, φ is equal to one and 

under  the  assumption  of  independence  and  homogeneity  among  the  observations,  it  can  be 

estimated  from the  global  model,  by dividing  the  models  deviance  by the  number  of  residual  

degrees  of  freedom.  When φ1 , the  observed  variance  is  greater  than  the  expected 

(overdispersion) and this could lead in selecting  over-fitted models. If this is the case, the extra 

variability should be taken into account and the selection should be then based on the following 

modified criteria

                          QAIC =−
2logf  θm∣y 

φ
2m  and QAIC c = QAIC2m m1

n−m−1         (2.24).

Finally, Cavanaugh (1999, 2004) proposed  the use of the K-L symmetric divergence as an 

alternative basis for information criteria derivation. The K-L symmetric divergence, defined as the 

sum of two directed as

                                              J θm = E g[ g  y 
f  y∣θm ]E f [ f  y∣θm

g  y  ]                                  (2.25),

was  suggested  as  a  more  sensitive  distance  measure  that  would  reflect    more  accurately  the 

separation between two densities. Depending on that, Cavanaugh, introduced    

                                                         KIC =−2logf  θm∣y 3m                                            (2.26),

as a large sample estimator of  K-L symmetric divergence and a corresponding correction for small  

samples 

                                                            KICc = KIC 2mm1
n−m−1                                           (2.27). 

2.4.2 Consistent Criteria

A distinction  between  model  selection  criteria  are  made  according  to  their  asymptotic 

properties. In particular, they are divided in two categories; the first one includes AIC, AIC c , 

C p  and adjusted R2 all of which are asymptotically efficient with respect to MSE. This means 

that  as  the  number  of  observations  increases,  the  above  criteria  tend  to  select  the  model  that 

minimizes MSE.

The  second  group  of  information  criteria,  is  characterized  by  property  of  consistency. 

Assuming  that  the  true  model  is  among  the  list  of  candidate  models,  then  an  asymptotically 

consistent criterion, will choose the true model with probability tending to one (weak consistency) 

or almost surely (strong consistency) for large samples. 
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Obviously, the above assumption is  not realistic in most applications and, thus, consistency 

has been also examined in terms of K-L distance. Then, a consistent criterion would select the 

model that minimized the K-L distance. Furthermore, due to the parsimony, a consistent criterion 

would select the simplest model when two or more models are equivalent in terms of K-L distance.  

AIC,  TIC, AIC c  and,  all  criteria  with  penalty  that  does  not  depend  on  n,  do  not  achieve 

consistency. As a consequence, there is a possibility of selecting, unnecessarily, over-fitted models. 

(Claeskens G. and Hjort N. L. , 2008, sec. 4.1)

The most popular consistent criterion was introduced by Schwarz (1978) and derived using 

purely Bayesian arguments. A Bayesian rule of  selection would choose the candidate model M

with the highest posterior probability

                                                P m∣y =
π m∫ Lθm∣y g θ m∣m ∂θm

h  y
                              (2.28),

 where π m is  a  discrete  prior  distribution  over  the  model m , Lθm∣y  is  the  likelihood 

function, g θ m∣m is the prior distribution over parameter vector given the model and h  y is 

the marginal distribution of the data vector.

By minimizing −2log P m∣y , Schwarz proposed the Schwarz Information Criterion

                                                  BIC =−2logL  θm∣y plog n                                          (2.29),

as a large sample approximation of the log-transformed posterior distribution of model m . BIC, is 

closely related to AIC, yet, it penalizes model complexity more stringently.

Hannan and Quinn (1979), in order to achieve strong consistency in the selection of time 

series model, proposed 

                                          HQC =−2logL  θm∣y clog [ log n] , c≥2                              (2.30),

and Bozdogan (1987), based on Akaike's work, extended AIC to make it consistent. He introduced 

consistent AIC, defined as

                                               CAIC =−2logL  θ p/ y  p [ log n1]                                   (2.31)

and consistent AIC with Fisher Information, defined as 

                                                CAICF = AIC plog nlog∣J  θ p∣                                   (2.32).
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2.4.3 Minimum Description Length

Rissanen  (1978)  introduced  the  minimum  description  length  principle,  which  again  is 

derived from the field of information theory. According to MDL principle, one would choose the 

model that achieves the shortest description of the data. MDL is based on Kolmogorov's theory of 

algorithmic complexity which is simply the length of the shortest computer program that describes a 

sequence. In a similar way to the K-L Distance, the algorithmic complexity cannot be computed 

(theorem  of  incomputability  of  Kolmogorov's  complexity).  Thus,  Rissanen  suggested  that  the 

encoding of the data could be achieved using probability distributions. This is strongly related to 

Shannon's  source coding theorem, which provides a  lower bound for  iid  variable  compression, 

without  crucial  loss  of  information.  In  that  sense,  a  probability  distribution  is  just  used  as  a 

description measure of complexity in order to achieve the shortest data compression. 

Depending  on  the  strategy  used  for  data  encoding,  there  have  been  proposed  several 

functions providing a lower bound of compression (valid description length).  The first  strategy 

applied to produce such a compression is called two-stage coding scheme and its corresponding 

lower bound coincides with BIC. Other coding schemes include : Mixture MDL (a coding scheme 

that resembles to bayesian analysis),  Normalized maximum likelihood MDL and predictive MDL 

all of which lead to different MDL based criteria for linear regression applications while other MDL 

criteria focus on GLMs are also available in the literature (Hansen and Yu, (2003). 

Rissanen's approach differs the traditional derivation of IC, since there are no assumptions 

regarding the random process of the data. Moreover, probability distributions are only used just as 

description tools of the data. This allows comparisons between models of different type.
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2.5 Model Selection Procedures

In the current section the most popular techniques for model construction will be discussed. 

2.5.1 All Subsets Regression

A  reasonable,  yet  computationally exhaustive method, is  to evaluate  all  possible  models 

using a model selection criterion. This is often called full enumeration or exhaustive search. For 

instance, in a data set of p=5 explanatory variables, an all subsets algorithm would consist of the 

following steps : 

• Compute the intercept model Y i=β0e i , i=1,... , n and evaluate it.

• Compute all models including one explanatory variable   

 Y i , j=β0β j X i , je i , j , i=1,... , n , j=1,...,5 and evaluate them.

• Compute all models including two explanatory variables

Y i , j=β0β j X i , jβk X i , kei , j , i=1,... , n , j , k=1,...,5 , j≠k  

and evaluate them.

                                                             ⋮

• Compute full model and evaluate it.

• Choose the best model according to a selected criterion.

In practice, such a thorough search is not useful when dealing with  real data sets, especially 

large ones. A huge number of possible models needs to be evaluated even for moderate p since the 

number of all possible models will be equal 2 p . Moreover, the researcher's aim of constructing 

simple and small-sized models with satisfactory fit and possibly the prior knowledge concerning the 

relationship between dependent and independent variables (in the sense that some regressors should 

or should not be excluded from the equation), make the use of all subset  regression unnecessary in  

practical problems. Yet, in cases of small or moderate-sized data sets, it could still be a useful tool.
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2.5.2 Stepwise Algorithms

An effective, timesaving and computationally simple alternative compared to all possible 

regressions, is offered by techniques. There are three main approaches that are widely used in model 

construction via stepwise search: forward selection, backward elimination and stepwise selection. 

Depending  on  the  algorithm,  the  particular  methodology  attempts  to  construct  a  model  by 

sequentially adding or deleting one variable at each step, taking into account the presence of the 

other regressors that are in the model. In order to achieve this, the algorithm selects a candidate 

variable and evaluates its contribution, measuring whether the reduction in the total SSError is large 

enough or  not.  In  other  words,  the  model  that  includes  and the  one  that  does  not  include  the 

candidate variable are compared and is decided weather the model's fit is improved. The evaluation 

can be performed in two ways; either by using an F or chi-squared test and their corresponding p-

value, or a model selection criterion. 

(a) Forward Selection & Backward Elimination

The forward selection algorithm starts  with the intercept model,  adding at  each step the 

independent  variable  X that  is  most  significant,  according to  a  significance  test  or  a  selection 

criterion. The algorithm stops when no further improvement is achieved by adding an explanatory 

variable. A general form of forward addition using an F test would be: 

• Begin with the intercept model

• Choose the k th regressor that produces the maximum F test value

max k=1...p F k ; k=argmax F k 

• If max Fk  F enter , where  F enter is  an  arbitrary  significance  value,  (usually  the  95th 

percentile of the F distribution) add X k in the model and go to step 2

•  Stop if for all remaining candidates max Fk  F enter  

Conversely, the Backward Elimination Algorithm, would have as a starting point the model 

that contains all available variables, and would decide, which of the regressors are not statistically 

significant, so as to be removed. An example of such an algorithm would be:

• Begin with the full model

• Choose the k th regressor that produces the minimum F test value
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 mink=1...p F k ; k=argmin F k 

• If min F k  F remove , where  F enter is  similarly an arbitrary significance value,  (usually 

the 5th percentile of the F distribution) remove X k from the model and go to step 2

• otherwise STOP

(b) Stepwise Search

As it can be seen, the above algorithms do not re-examine the significance of  a variable that 

is added or deleted from the model. In forward selection, once a variable is added, it will never be 

deleted. Similarly, in backward elimination, once a variable is excluded, it will never be added in 

any further  step.  Stepwise  Algorithms,  combining  Forward  and Backward  selection,  provide  a 

solution to this problem 

There are two alternatives when using stepwise search: Stepwise Forward Algorithm, begins 

with the null model, adding at each step the most significant independent variable. However, before 

proceeding to a new addition,  re-examines whether any of the previously added variables have 

become insignificant in the presence of the new variable. On the other hand, Stepwise Backward 

Algorithm begins with the full model, testing for variables to exclude. Since a variable is excluded, 

previously deleted variables are re-examined for potential re-addition. Obviously, despite the fact 

that the computations in Forward and Backward Selection are quicker,  stepwise search is preferable 

since it conducts double tests at each step.

Stepwise procedures, have become very popular and are widely used by non-profesional 

statistician too, as they can be easily performed automatically in all statistical packages. However, 

there are  disadvantages that have been discussed in several papers, and are briefly summarized in 

the next paragraph.

Firstly,  not  only there is  no guarantee that  the different  algorithms will  select  the same 

model, but also, there is no guarantee that the selected model will be the correct one. The order of  

variable addition or deletion and the selection criterion, affects the final construction of the model.  

As a result, there might exist a different one, performing equally well which will not be examined..  

An additional issue that weakens the performance of the algorithms, is  the multiple testing of the 

null  hypothesis H 0 : βk = 0 . That  leads  to  an increase  of  the  tests  Type I  and Type II  Error 

(include not significant regressors that should be deleted and delete important regressors that should 

be  added  in  the  model).  Furthermore,  the  distribution  of  the  F  statistic  is  also  affected  as  the 

selection of variables is decided with respect to the existing observations (Pope and Webster, 1972). 
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Finally,  since the problem of multi-collinearity is  not  taken into consideration as the algorithm 

proceeds, the final model  will require further examination and in most cases corrections.
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Chapter 3 : Bayesian Methods

3.1 Introduction

Inference  using  classical  statistical  arguments,  is  based  on  probability  density  function

f  y∣θ p. The observed data vector y is considered to be an outcome from a random variable 

Y, which is characterized by the population parameter vector θ . The parameter vector is assumed 

to be a constant quantity,  that has to be estimated properly.  In order to achieve that,  likelihood 

function L θ p∣y is  used.  By  maximising  the  likelihood  function  with  respect  to θ , the 

appropriate estimates are obtained.

Bayesian statistics use an alternative approach. Taking into account the uncertainty that is 

produced due to the ignorance concerning the parameter vector, the latter is treated as a random 

variable and the statistical inference is based on the posterior probability function of the parameter 

vector, given the observed data p θ p∣y . Posterior probability is defined through Bayes theorem 

as the joint distribution of the data and the parameter vector, divided by the marginal distribution of 

the data.

                      p θ p∣y  =
f  y ,θ p

f  y 
=

f  y∣θ pπ θ p
f  y 

=
f  y∣θ pπ θ p

∫ f  y∣θ pπ θ pdθ p
               (3.1). 

The integral in the denominator is called normalizing constant and and is used in case of continuous 

priors.  When  discrete  priors  are  used,  the  integral  is  replaced  by  the  corresponding  sum

∑
i

f  y∣θ iπ θ i .

The joint probability of θ and y can be calculated as the product of the likelihood function 

and π θ p , which is called prior distribution of the parameter vector. The existence of the prior 

distribution  distinguishes  the  Bayesian  from  the  classical  analysis  and  represents  the  prior 

knowledge that someone may have concerning the parameter of interest. Depending on the prior 

knowledge, it could be chosen an informative distribution that would favor certain values for the 

parameter vector instead of others, or it could be chosen an uninformative one, such as the uniform 

distribution, assigning equal probabilities irrespective of the value.
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3.2 Model Comparison & Hypothesis Testing

In model selection problems using Bayesian arguments, the comparison between candidate 

models  and  the  decision  on  which  model  best  describes  the  observed  data,  is  based  on  the 

comparison of models' posterior probabilities. Assume that the observed data y = {y1, y2,... , yn}'

have been generated from one of the two following models, {M 0 , M 1}, according to a density 

f  y∣M 0 or f  y∣M 1. The first step in testing a hypothesis of the following form

                                                              
H 0 : M = M 0

H 1 : M = M 1
                                                        (3.2),

is to assign prior probabilities on each model. Note that the models do not need to be nested as in  

classical  model  comparison.  Let π Μ 0 denote  the  prior  probability  over  model Μ 0 and 

π Μ 1 = 1−π Μ 0 the prior probability over model Μ 1. Then, the posterior probability of 

model Μ i , i={0,1} is defined as 

                                                     p Μ i∣y =
f y∣M iπ M i

∑
i

f  y∣M iπ M i                                         (3.3).

The  decision  on  which  of  the  two  models  is  preferable  can  be  based  simply  on  the 

comparison of their posterior probabilities. Then, for example, the model in the null hypothesis 

would be accepted if    

                                                              p M 0∣y  pM 1∣y                                                (3.4).

 Alternatively, the posterior model odds can be used, defined as 

                              PO01 =
p M 0∣y 
p M 1∣y 

=
p M 0∣y

1− p M 0∣y 
=

f  y∣M 0
f  y∣M 1

∗
π M 0
π Μ 1

=

Bayes Factor × prior model odds
              (3.5).

It can be easily seen that there is no need to compute the normalizing constant appearing in the 

denominator of eq (3.3) since it appears both in the numerator and the denominator and it cancels 

out. Similarly, in cases of uninformative priors over candidate models, the posterior model odds 

equals to the Bayes factor.

Bayes factor, which was introduced in 1948 by Jeffreys, is of major importance in Bayesian 

inference and is defined as the ratio of posterior odds over prior odds. In model comparison, each 

model is fully specified by its parameters, yielding a likelihood of the form f  y∣M p ,θ M p
 , where 

p is the size of the parameter vector. Hence, the computation of Bayes factors needs the integration 

of f  y∣M p ,θ M p
 (rather than its maximization) over the parameter vector. Let BF 01 denote the 

Bayes  factor  of  model M 0 over  model M 1. Then, BF 01 is  computed  by  the  following 
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equation 

                               BF 01 =
f  y∣M 0
f  y∣M 1

=
∫ f  y∣M 0, θM 0

π θM 0
∣Μ 0dθ M 0

∫ f  y∣M 1, θM 1
π θM 1

∣Μ 1dθM 1

                         (3.6).

The quantity f  y∣M p is called marginal likelihood of the data vector given a model of 

size p, or the predictive probability of the observed data under a model M of size p and represents 

the probability of obtaining the actually observed data, before any data are available, under the 

assumption that the model M is the real stochastic mechanism that generated the observed data 

(Ntzoufras 1999) ; f  y∣M p ,θ M p
 is the likelihood function of the data vector and π θM p

∣Μ p

is the prior distribution of the parameter vector of size p under the model M. As mentioned before, 

in  cases  of  no  prior  knowledge  concerning  the  candidate  models,  inference  is  based  only  on

BF01 , expressing  the  evidence  in  favor  of  the  model  corresponding  to  the  null  hypothesis. 

Conversely, BF 10 provide evidence against the model corresponding to the null hypothesis. (see 

tables provided by Kass & Raftery (1995)  with numerical values of BF10 in logarithmic scale, on 

which the inference can be based).

3.2.1 Problems using Bayes factor

There are two significant problems when using Bayes factors for Bayesian inference, both of 

which concern the specification of the prior distribution π θM p
∣Μ p. The first one, is related to 

the  calculation  of  the  integral ∫ f  y∣M p ,θ M p
π θ M p

∣M pdθM p
. In  many  cases  the  use  of 

complex informative priors may lead in  various computational  problems that  are  impossible  to 

overcome. This results in incapability of evaluating the above integral, unless  numerical methods 

are used.  The exact  derivation can be achieved when modeling a  likelihood of the exponential 

family with conjugate prior distribution for the parameter vector (see for instance Zellner 1971)

The second problem occurs due to the dependency and sensitivity of Bayes factors on the 

choice of the prior distribution. It was studied firstly by Lindley (1957) and then by Bartlett (1957) 

and  is called Lindley's (or Bartlett) paradox, while others refer to it as Jeffrey's paradox (Lindley,  

1980). The term is used to describe any situation in which classical and Bayesian analysis provide 

contradicting results in hypothesis testing problems and occurs in the presence of uninformative 

prior distributions. 

In brief, it can be shown that the prior variance affects the value of Bayes factor in a way 

that as the variance increases, Bayes factor also increases, working always in favor of the simplest 
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model. This implies that flat proper priors cannot be used. Moreover, in cases of improper priors,  

Bayes factor can be defined only to an undetermined constant and it cannot be fully specified.  

Further details on Lindley's paradox are provided by Shafer (1982). 

However, the use of uninformative prior distributions is essential in Bayesian analysis and 

therefore several marginal likelihood's estimators and Bayes factors variants that try to cope with 

the discussed problems, have been proposed in the literature.

3.3 Bayes factors' variants

In order to avoid BF indeterminacy when using improper priors, three variants of Bayes 

factors have been proposed the following 

• Posterior Bayes Factor (Aitkin 1991)

• Fractional Bayes Factor (O' Hagan 1995) and

• Intrinsic Bayes Factor (Berger & Pericchi 1996)

Posterior  Bayes  Factor  uses  the  ratio  of  the  likelihood's  posterior  means  instead  of  the 

likelihood's  prior means ratio.  Defining the likelihood's  posterior  means under  model M 0 and 

model M 1 as

                                        
PM 0 = ∫ f  y∣θM 0

,M 0 pθ M 0
∣y , M 0dθM 0

PM 1 = ∫ f  y∣θM 1
, M 1 p θM 1

∣y ,M 1dθM 1

and 

respectively,  then  the  posterior  Bayes  factor  is  given by the ratio PBF 01 =
PM 0

PM 1
, providing 

evidence in favor of the model M 0 . More specifically, Aitkin claimed that PBF 01 ' s values that 

are  less  than
1
20

, 1
100 and

1
1000

, provide  strong,  very  strong  and  overwhelming  evidence 

against M 0 .

PBF 01  avoids Lindley's paradox and is not affected by normalizing constants. However, 

it  uses the data twice and hence it  does not go along with Bayesian rationale.  Furthermore,  as 

pointed out in Berger and Pericchi (1995) and O' Hagan (1995), it is not consistent in a sense that it  

does not tend to infinity as the sample size increases. 

Intrinsic  Bayes  Factor,  derived  by  using  the  idea  of  Partial  Bayes  Factors,  which  was 

introduced by Spiegelhalter & Smith (1982). According to the Partial Bayes Factor approach, when 

there is weak prior information the observed data y could be divided  into two parts  y0, y1 ,
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one of quite small length l and one of length n−l . Then, the first subsample y0 could be used 

as a training sample to update the prior and the rest of the sample y1 to obtain Bayes Factor. For 

two models M 0 and M 1 , the partial Bayes factor based on subsample y0 is defined as 

                      PBF 01
y0 =

f  y1∣y0, M 0
f  y1∣y0, M 1

=
∫ f  y1∣θΜ 0

, M 0π θ Μ 0
∣y0, M 0dθ Μ 0

∫ f  y1∣θ Μ 1
, M 1π θ Μ 1

∣y0, M 1dθΜ 1

                  (3.7),

where π θΜ p
∣y0, M p is the updated prior based on y0 , computed as

                                              π θΜ∣y0, M p∝ f  y0∣θM , M π θΜ∣Μ                                       (3.8).

PBF 01
y0 is  less sensitive to the prior  distribution of  the parameter  vector  and do not  face the 

problem of unknown constants in cases of improper priors. This happens since it can be expressed 

as the ratio of the overall Bayes factor, that is based on the full data vector, over the Bayes factor 

based on the subsample y0 . The overall marginal likelihood of the data given the model M, can 

be written in the following form

                                       f  y∣M = f  y0, y1∣M = f  y1∣y0, M  f  y0∣M .                                (3.9)

It follows that 

                                   f  y1∣y0, M  =
f  y∣M 
f y0∣M 

⇔ PBF 01
y0 =

BF 01

BF 01 y0
.         (3.10) 

However, the disadvantage of Partial Bayes Factor is its high dependence on the subsample 

y0 and its corresponding size. In order to decrease this dependency, Berger & Pericchi (1996) 

suggested  to  replace BF 01  y0 in  (2.10) by  its  average BF01  y0 computed  over  all L  

samples for which all the parameters corresponding to all models are identifiable (minimal training 

samples; Berger & Pericchi 1996) and derived the Intrinsic Bayes Factor

                                                    IBF 01=
BF 01

BF01 y0
= BF01∗ BF10 y0                              (3.11).

Depending on which way the average is calculated, the following variants of IBF 01 derive

• the Arithmetic IBF 01 for which BF 10 y0 =
1
L∑l=1

L

BF 10[ y0l ]

• the Geometric IBF 01 for which GBF 10 y0 = [∏l=1

L

BF10 [ y0l ]]
1
l 

(DeSantis & Spezzaferri, 1997)

• the Median IBF 01 for which MBF10 y0 = med
l∈L

BF10 [ y0 l ]          

(Berger & Pericchi, 1998)

Finally,  when the size of the subsample l and the size of the sample n is  essentially 
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large, the following approximation is obtained

                                         f  y0∣θΜ p
,M p≈ f  y∣θΜ p

, M p
b , b= l

n
 1                            (3.12),

where b is called fractional parameter. Then, if in equation (2.11), BF 01 y0 is substituted by the 

following quantity

                                       BF 01
b =

∫ f  y∣θ Μ 0
,Μ 0

b π θΜ 0
∣Μ 0dθΜ 0

∫ f  y∣θΜ 1
, Μ 1

b π θΜ 1
∣Μ 1dθΜ 1

                                   (3.13),

the Fractional Bayes Factor is obtained 

                                                                 FBF 01=
BF01

BF01
b                                                       (3.14).

Further  details  concerning  the  derivation  and  properties  of  Bayes  factors'  variants  are 

provided in the original papers of Spiegelhalter & Smith (1982), Aitkin (1991), O' Hagan (1995) 

and Berger & Pericchi (1996, 1998), while discussion on the use and comparisons between the 

different variants, are provided by DeSantis & Spezzaferri (1997) and Berger & Pericchi (1998). 

3.4 Approximating Bayes factors

3.4.1 The Bayesian Information Criterion

As discussed in the first chapter, the Schwarz information criterion defined as

                                                  SIC =−2logL  θM p
∣y  plog n                                          (3.15),

derived as a large sample approximation of the log transformed posterior density of a candidate 

model , given the observed data. Hence, the following quantity (based on the Schwarz criterion)

                         S01= logL  θM 0
∣y ,M 0−logL  θ M 1

∣y , M 1−
1
2
 pM 0

−pM 1
log n                 (3.16),

provides a rough approximation of the log transformed Bayes factor of model M 0 over model 

M 1 , since its main property is 

                                                    
S 01−logBF 01

logBF 01
0, for n∞                                              (3.17).

Kass  & Wasserman (1995),  studied  under  which  conditions  (3.17 holds  and provided a 

corrected  form of  the  approximation  where  needed.  They  showed  that  a  wide  range  of  prior 

distributions  exists,  under  which S01 provide a  useful  approximation  and they suggested  it  as 

preferable in contrast to BF variants, since it, in addition, does not require very large samples to 

provide adequate results.  In general,  even though S01 is  the simplest  and not  always the best 
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approximation of Bayes Factor, it can be used as an explanatory tool, to evaluate the evidence in 

favor of the null hypothesis, in cases where prior distributions are hard to determine

3.4.2 The Laplace approximation

Under certain circumstances (see Kass & Raftery, 1995 and references therein), one accurate 

way to approximate the marginal likelihood, is the Laplace approximation (De Bruijn 1970 and 

Tierney & Kadane 1986). According to this method, if a real valued function h(.) of a p dimensional 

vector x, is expanded quadratically using the Taylor series about the value x (the value that h(x) 

attains  its  maximum)  and  then  is  exponentiated,  its  integral  can  be  approximated  using  the 

following formula

                                              ∫exp {h x }dx = 2π
p
2∣A∣

1
2 exp {h  x }.                                 (3.18)

 The quantity A equals to minus the inverse Hessian matrix H h of h x  , evaluated at x .

The Hessian matrix  is simply the square matrix of second order partial derivatives of h, describing 

the local curvature of the function and is computed providing that all second partial derivatives 

exist.

                                        H h=[
∂2 h
∂ x1

2
∂2 h

∂ x1∂ x2
⋯ ∂2 h

∂ x1∂ x p

∂2 h
∂ x2∂ x1

∂2 h
∂ x2

2 ⋯ ∂2 h
∂ x2∂ x p

⋮ ⋮
∂2 h

∂ x p∂ x1

∂2 h
∂ x p∂ x2

⋯ ∂2 h
∂ x p

2
]
x= x

.                         (3.19)

In  order  to  apply  the  method  for  approximating  the  marginal  likelihood 

f  y∣M p = ∫ f  y∣M p , θM p
π θM p

∣Μ pdθ M p
, the  posterior  density  of  the  parameter  vector 

p θM p
∣y ,M p should be unimodal,  or at least dominated by one single mode. This occurs for  

large samples, when the likelihood function f  y∣θM p
, M p is highly peaked near its maximum 

θmax (Gelfand & Dey, 1994 ; Kass & Raftery, 1995 ).

Then, if h x  is substituted in (2.9), by the logarithm of f  y∣M p ,θ M p
π θ M p

∣Μ p , the 

following estimate is obtained

                                 f Laplace y∣M p = 2π
p
2 ∣A∣θ p=θM p

1
2 f  y∣θM p

, M pπ  θ M p
∣M p                 (3.20),
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where p is the dimension of the parameter vector θM p
is the posterior mode of θM p and A is 

minus  the  inverse  Hessian  matrix  of  the  function f  y∣M p ,θ M p
π θ M p

∣Μ p evaluated  at

θM p
=θ M p

.

The approximation error (also relative error), ∣ f − f
f ∣, as proved in the appendix of Tiernay & 

Kadane (1986) is On−1 and when the approximation is applied for estimating both marginal 

densities for the computation of Bayes factor, the relative error remains the same.

3.4.3 Variants of Laplace 

Kass and Vaidyanathan (1992) derived two variants of  Laplace's method that are easier to 

compute,  but  are  less  accurate  compared  to  the  first  approximation.  Yet,  they  provide  useful 

alternatives that remain reliable.

The first one is of the following form 

                                    f MLE  y∣M p = 2π
p
2∣ Σ∣

1
2 f  y∣θ MLE , M π  θMLE∣M                        (3.21),

where θMLE is the maximum likelihood estimator of the log-likelihood and Σ−1  is the observed 

information matrix; the Hessian matrix of the log-likelihood evaluated at θMLE .

The second variant is obtained simply by substituting the observed information matrix with 

the  expected  information  matrix  (Fisher  Information) I θ=Ε[ ∂∂θ
logf  y ;θ ] , as  the 

asymptotic  covariance matrix.  Their  corresponding approximation error  is O n−1 for the first 

estimate, while for the second is larger, equal to O n−1 /2 .
Another variant of Laplace' s method was introduced by Raftery (1996a) and is useful in 

cases  of  difficulties  concerning  the  computation  of  the  posterior  mode  and  the  inverse  of  the 

Hessian matrix. Then, by generating a sample of size T, from the posterior p θM p
∣y ,M p using 

an MCMC algorithm, the above quantities could be substituted by the simulated estimates of the 

posterior  mean  and  the  posterior  covariance  matrix.  Such  an  algorithm  would  consist  of  the 

following steps :

1. Generate a sample {θ1 , θ 2  , θ3 ,⋯ ,θ Τ } from the posterior density p θM p
∣y ,M p

2. Calculate θ = 1
T∑t=1

T

θ t  and S = 1
T−1∑t=1

T

θ  t−θ θ t −θ  '
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3. Calculate f Metropolis  y∣M p = 2π 
p
2∣S∣

1
2 f  y∣θ M p

,M pπ θM p
∣M p

      3.4.4 Monte Carlo integration and importance sampling estimators 

An optional  way to estimate the value of  the integral  is  provided through Monte Carlo 

integration. Assume that   we want to calculate the value of the integral I = ∫ g x  f xdx and 

assume that f x   is a probability density function. Then, from probability theory is known that 

the  above  integral  equals  to  the  expected  value  of g  x with  respect  to  the  density 

f : I = ∫ g x  f x dx = E f [ g x ]. Then,  by  using  the  law  of  large  numbers,  for  an 

adequately large random sample {x1, x2, x3,⋯, xn} , n∞ , an estimator of the expected value is 

obtained  by the sample mean as I = 1
n∑i−1

n

g x i. The variance of the estimator can be easily 

shown that is  proportional to
1
n and hence,  asymptotically, I is  expected to be near the real 

value of I . Proper choice of g and f results in minimizing the estimator's variance.

Monte  Carlo  integration  can  be  applied  directly  for  estimating  the  marginal  density 

f  y∣M p , simply by generating a random sample from the prior distribution π θM p
∣Μ p and 

calculating the sample mean of the likelihood. In particular, since the following equation holds

            f  y∣M p = ∫ f  y∣M p , θM p
π θM p

∣Μ pdθ M p
= Eπ θM p

∣M p
[ f  y∣M p , θM p

]          (3.22)

then,  by  generating  a  random  sample {θ1 , θ 2  , θ3 ,⋯ ,θ Τ } from  the  prior  distribution

π θM p
∣Μ p an estimate of the marginal density is obtained by 

                                                  f  y∣M p =
1
T ∑T=1

T

f  y∣M p ,θ M p

 t                                        (3.23).

As mentioned before, the variance of the estimator is affected by the functions involved in 

the integral. Hence, the choice of the prior distribution affects the efficiency of the estimator. More 

precisely, the choice of uninformative priors leads in increasing the variance of the estimator and 

the convergence of the algorithm will be slow. 
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3.4.5 Importance sampling

One way to obtain smaller values of the estimator's standard error is provided by importance 

sampling. Assuming a density function h x  , the integral I can be rewritten in the following 

form 

          I = ∫ g x  f xdx = ∫ g x f x
h x 

hx dx = ∫w x h x dx = Eh[w x]     (3.24).

Then,  by  generating  a  random  sample {x1, x2, x3,⋯, xn} from h x  , the  estimator  that  is 

obtained is 

                                              I = 1
n∑i−1

n

w x i = ∑
i=1

n

g x i
f x i
hx i

                                       (3.25).

The advantage of importance sampling is that it can obtain estimators of zero variance as long as 

the importance sampling density h x  is shaped in a similar way to the function of g .

A marginal likelihood approximation through importance sampling method, is obtained by 

considering the following formula

                f  y∣M p = ∫ f  y∣M p , θ M p

π θM p

∣Μ p
hθM p


hθM p

dθ M p
= Ehθ M p

[
f  y∣M p , θM p

π θ M p
∣M p

hθ M p


]        (3.26).

By generating  a  random sample {θ1 , θ 2  , θ3 ,⋯ ,θ Τ } from the  importance  sampling  density 

h θM p
 , the marginal likelihood estimate has the following form

                                       f  y∣M p =
1
T∑t=1

T f y∣M p , θM p

 t  π θM p

 t  ∣M p

h θ M p

 t 
                              (3.27).

In some cases the importance sampling density is  known up to  a  constant  C,  such that 

h θ p = Cφθ p. When  this  is  the  case,  the  constant  C  could  also  be  expressed  as  an 

expectation, using the following formula

                     C = ∫Cπ θ M p
∣M p = ∫

h θM p


φθM p

π θM p

∣M p = Eh[ π θM p
∣M p

φθ M p
 ]              (3.28).

and  the  marginal  likelihod's  estimate  is  obtained  by  generating  a  random  sample

{θ1 , θ 2  , θ3 ,⋯ ,θ Τ } from h θM p
 and calculating the quantity

                          f  y∣M p =
∑
t=1

T

f y∣M p , θM p

 t  w θM p

t  

∑
t=1

T

w θM p
t 

, w θM p

t   =
π θ M p

 t 

φθM p

t  
                (3.29).
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3.4.6 Sampling from the posterior

Another  alternative  that  derived  using  Monte  Carlo  method  of  estimating  the  marginal 

likelihood,  is  the  harmonic  mean  estimator  (Newton  & Raftery ,1994).  By considering  Bayes' 

theorem,

           p θM p
∣y ,M p =

f  y∣M p , θM p
π θM p

∣Μ p
f  y∣M p

⇔
p θM p

∣y ,M p
f  y∣θM p

, M p
=

π θ M p
∣M p

f  y∣M p
  (3.30)

the marginal likelihood can be expressed as an expectation with respect to the posterior distribution 

p θM p
∣y ,M p , since

                 
[ f  y∣M p]

−1 = ∫ [ f  y∣M p]
−1 π θM p

∣M pdθ M p
=

∫ pθ M p
∣y , M p[ f  y∣θ M p

,M p]
−1 dθ M p

= E p θ M p
∣y ,M p

[  f  y∣θ M p
,M p

−1]
       (3.31).

By  generating  a  random  sample {θ1 , θ 2  , θ3 ,⋯ ,θ Τ } from  the  posterior  probability

p θM p
∣y ,M p , the harmonic mean estimator is defined as 

                                           f  y∣M p = [ 1
T∑T=1

T

[ f  y∣M p , θM p

t  ]−1]
−1

                                  (3.32).

Despite that the estimator is consistent and simple to compute, is proved to be unstable and often its 

variance appears to be infinite. 

In order to overcome harmonic mean's instability, Newton & Raftery (94) proposed the use 

of a mixture of prior and posterior distribution  as an importance sampling density, defined as

                          h θM p
 = wπ θ M p

∣M p1−w  p θM p
∣y ,M p , 0w1                      (3.33).

The corresponding estimator of the marginal density is 

                                          f  y∣M p =
∑
T=1

T

[ f  y∣M p ,θ M p

 t ]/h θM p

 t  

∑
t=1

T

hθM p

t  
                                  (3.34).

Finally  Gelfand  &  Dey  (1994)  derived  the  generalized  harmonic  mean  estimator,  an 

unbiased and consistent estimator of the marginal likelihood (Kass & Raftery 95 , Chib 95). Again, 

by using the Bayes theorem, the following formula is obtained

                    p θ M p
∣y , M p =

f  y∣M p ,θ M p
π θM p

∣Μ p
f  y∣M p

⇔
pθM p

∣y , M p
f  y∣θM p

, M p π θ M p
∣M p 

=
1

f  y∣M p
       (3.35).

By choosing an importance sampling density h θM p
 , such that
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1
f  y∣M p

= ∫ 1
f  y∣M p

h θM p
 dθM p

= ∫
p θ M p

∣y , M p
f  y∣θM p

, M pπ θ M p
∣M p 

h θM p
dθ M p

=

E p θ M
p
∣y , M p[ h θM p


f  y∣θ M p

, M p π θM p
∣M p ]

          (3.36)

the generalized harmonic mean estimator is defined as 

                                               f  y∣M p = [ 1
T∑t=1

T h θM p

t  

f  y∣θ M p

t  π θ M p

t  ∣M p ]
−1

                        (3.37).

Again the performance of the method depends on the proper choice of sampling density. As pointed 

out in Kass & Raftery (1995) and Chib (1995), for high dimensional problems, h θM p
 is difficult 

to determine, while in low-dimensional problems a proper choice of h θM p
 provide satisfying 

results. Especially in cases where h θM p
 is proportional to the likelihood, the method provides 

also efficient estimators.

3.4.7  The Chib's estimator

Finally, in high-dimensional problems the use of MCMC methods is claimed to be the most 

promising. MCMC algorithms provide useful tools for simulating from a multivariate density. The 

most  popular  are  the  Gibbs  sampler  (Geman  &  Geman  1984)  and  the  Metropolis-Hastings 

algorithm (Metropolis et al. 1953, Hastings 1970).

Using the Gibbs' sampler, one can simulate from a p-dimensional distribution f θ p∣y  ,  

by  simply  generating  values  from  its  p  conditional  distributions, f θ i∣θ j , y  , i≠ j . The 

algorithm is of the following form :

• Set a vector of initial values θ p
0  = θ1

0 , θ2
0 ,⋯, θ p

0

• Generate θ1
1~ f θ1∣y ,θ2

0  , θ3
0 ,⋯, θ p

0

      θ2
1~ f θ2∣y ,θ1

1 , θ3
0 ,⋯, θ p

0

                                                    ⋮

                             θ p
1~ f θ p∣y , θ1

1 ,θ2
1  ,⋯, θ p−1

1 

• at the k th iteration

Generate θ j
k~ f θ j∣y ,θ1

k ,θ 2
k  ,⋯, θ j−1

k  , θ j1
k−1 ,⋯, θ p

k−1 etc.

Then, after a few iterations, the simulated vectors θ t  , θ t1 ,⋯, θ Τ  , will be a sample from the 

multivariate density f θ p∣y . At a chosen point θ ' , the multivariate density is approximated by 

                    f θ '∣y  = 1
T∑t=1

T

f θ1
'∣y ,θ 2

t  ,⋯ , θ p
 t  f θ 2

'∣y , θ1
' ,θ 3

 t  ,⋯ , θ p
t  ,⋯ , f θ p

' ∣y , θ1
' ,θ 2

' ,⋯ , θ p−1
'          (2.38).
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In order to apply the method for calculating the marginal likelihood at the point of interest 

θ ' , one should generate a sample from the posterior density p θΜ p
∣y ,M p and evaluate it at 

the following formula, using (2.38)

                                                        f  y∣M P =
f  y∣θ M p

' π θ M p

' ∣M p

p θM p

' ∣y ,M p
                              (2.39). 

A slightly different approach is  proposed by Chib (1995).  The general  idea remains  the 

same, yet, in order to approximate posterior density at a chosen point θ ' ,  , he uses the following 

equation

          p θΜ p

' ∣y ,M p = p θ1
'∣y ,M p pθ2

' ∣θ1
' , y ,Μ p ,⋯, pθ p

' ∣θ1
' ,θ2

' ,⋯, θ p−1
' , y ,M p   (2.40).

Each conditional density can be estimated using the following updating scheme

                     

p θ1
'∣y ,M p =

1
T∑t=1

T

p θ1
' /θ 2

 t ,θ3
 t ,⋯, θ p

 t  , y ,M p

p θ2
' ∣θ1

' , y ,Μ p =
1
T∑t=1

T

p θ2
'∣θ1

' , θ3
 t  ,⋯, θ p

 t  , y , M p

p θ3
'∣θ1

' ,θ2
' , y ,Μ p =

1
T∑t=1

T

p θ3
'∣θ1

' ,θ2
' , θ4

 t  ,⋯, θ p
 t  , y , M p

⋮

pθ p
' ∣θ1

' , θ2
' ,⋯, θ p−1

' , y , M p =
1
T∑t=1

T

pθ1
' ,θ2

' , θ2
' ,⋯, θ p−1

' , y , M p

           (2.41).

A  presentation  of  the  above  two  methodologies,  discussion  on  their  properties  and 

applications on real data sets are provided by Yu & Tunner (1999), while Chib & Jeliazkov (2001) 

extended  the  same  method,  using  the  Metropolis-Hastings  algorithm.  There  have  been  also 

introduced estimators that are based on different sampling schemes, namely the bridge sampling 

estimator (Meng & Wong, 1996) and the path sampling estimator (Gelman & Meng, 1998). 

3.5 Discussion

Except from BIC, the methods presented above for approximating the marginal likelihood, 

are  a  few alternatives  that  have been developed in order  to  deal  with the so called integration 

problem. The adequate approximation of such integrals, as the one needed for the calculation of the 

marginal likelihood, is of major importance, especially when Bayesian analysis is applied. Evans & 

Swartz (1995) have summarized and categorized the existing methods in the five following groups :

1. Asymptotic methods

2. Importance sampling

3. Adaptive importance sampling
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4. Multiple quadrature and

5. Markov Chain methods

In their paper each method is presented and evaluated through several examples.

Both Evans & Swartz (1995) and Kass & Raftery (1995) suggest the use of asymptotic 

methods as more accurate and efficient, but only in cases where the integrated function is obviously 

unimodal.  Otherwise,  importance  sampling   should  be  preferred,  even though  it  appears  to  be 

computationally more demanding and less accurate.  Yet, in order to be reliable, the importance 

sampling  density  must  be  chosen  carefully.  An  accurate,  effective  and  strongly  recommended 

alternative, is provided by quadrature methods and especially by the subregion adaptive integration 

(Genz  & Kass,  1993),  which  was  not  discussed  here.  However,  it  is  preferable  only for  low-

diamentional problems p ≤ 8 (Kass & Raftery, 1995). In high dimensional problems, MCMC 

based methods as Chib's estimator Chib & Jeliaskov's extension (2001) or Chen's extension (2005), 

that deals with the case when latent variables are present, retain their usefulness and popularity. 

However, all methods discussed in this Chapter require the estimation of all marginal likelihoods of 

models  under  comparison,  which  in  real  life  problems  can  be  computationally  prohibitive.  In 

following Chapter, we will deal with the Bayesian algorithms that have been developed, in order to 

explore  model  space  and  try  to  uncover  efficiently  candidate  models  of  higher  posterior 

probabilities  Further  details  and  review of  the  methods  of  approximating  BF can  be  found  in 

Gamerman & Lopes (2006) and in Ntzoufras (2011, pg. 392-397)
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Chapter 4 : Bayesian Variable Selection

4.1 Introduction

The third chapter of this dissertation dealt with the problem of Bayesian model comparison. 

Inference based on posterior odds and Bayes Factors, requires the computation of the the posterior  

model probabilities p M p∣y  of all candidate models M p∈M and their corresponding marginal 

likelihood f  y∣M p. The main problems that one may face when using the above tools, concerns 

the intractability of the integrals  needed for the computation of  f  y∣M p or the behavior of 

posterior odds under the use of certain kind of priors (Lindley's Paradox). Despite the fact that  

several methods have been developed to overcome the above mentioned problems, the choice of the 

most promising model requires the evaluation of all candidates. As mentioned in the first chapter, a 

thorough search might be time consuming especially in cases where many regressors are present. 

Hence, similarly to stepwise algorithms, several Bayesian algorithms have been proposed which 

efficiently explore large model spaces, focusing on the most probable posterior models (Ntzoufras 

2009, p. 405). 

Bayesian variable selection algorithms were, initially introduced by  George and McCullagh 

(1993). Using an indicator variable to identify the candidate subsets and a hierarchical structure of 

the regression model, which will be presented in the next paragraph, they developed , the Stochastic 

Search Variable Selection (SSVS), a general Gibbs based algorithm, to sample from models with 

highest a posteriori probabilities, avoiding the exhaustive evaluation of all 2 p  candidates (George 

and McCullach, 1993). Apart  from SSVS, other methods that have been developed and will be 

discussed in the first part of chapter 3, exploiting the idea of George and McCullogh, is the Kuo and 

Mallick sampler (1998) and the Gibbs Variable Selection (GVS), introduced by Dellaportas et al 

(2002).

The second group of algorithms that will be described, were proposed as an extension and 

generalization of Gibbs - based algorithms, in order to overcome convergence issues arose when 

using Gibbs - based algorithms. Main representatives of this group are the Carlin Chib method 

(1995) and the Reversible Jump MCMC algorithm (Green, 1995). 

Finally,  some  latest  advances  will  be  briefly  reviewed,  including  Population-based 

Reversible Jump MCMC (Jasra et  al,  2007),  Shotgun Stochastic Search (Hans et  al,  2007) and 

Subspace Carlin and Chib algorithm (Petralias and Dellaportas, 2012).
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4.2 Bayesian Variable Selection For Normal and GLMs : Initial Concepts

4.2.1 Model structure

Consider the linear regression formula 

                  y i = β0  ∑
j=1

p

β j x i , je i , e i~N n 0,σ2 Ι  ,                            (4.1) 

It assumes a linear relationship between a random variable y , with y i , i = 1,... , N outcomes 

and p independent  variables,  taking  values x i , j = 1,... , p , given  a  vector  of  parameters

β j = 1,... , p . Parameter β0 is  the  constant  of  the  model  and e i is  the  error  term.  By 

assuming that y is generated from a distribution that is a member of the exponential family, we 

obtain the generalized linear model, introduced by McCullach and Nelder (1989) and is given by 

the following formula         

                                                   E [ g  y i] = ηi = β0  ∑
j=1

p

β j x i , j ,                                    (4.2) 

The  extension  of  the  linear  regression  formula,  enables  us  to  model  both  discrete  and 

continuous data, including Poisson or Binomial data. In order to do so, the link function g . is 

introduced in the model and is used to combine the stochastic part of (4.2) with the the systematic 

part β0  ∑
j=1

p

β j xi , j .  For instance, in case of Poisson data, the logarithm of the expected value 

of y , is used as a link function, while when modeling binomial data the logarithm of odds is 

used.

An alternative way to represent formulas (3.1) and (3.2), is by introducing a binary indicator 

variable γ j , that takes two possible values {0,1}. By doing so, the presence, when γ j=1 ,  or 

absence,  when γ j=0 , of  a  candidate  variable  could  be  controlled.  Depending  on  how γ j is 

treated, the above formulas can be formed in two different ways. 

George and McCullogh (1993) introduced γ j without embedding it in the linear predictor 

(4.2).  The  parameter  vector  consists  only  of  the  effects  of  the  covariates,  i.e

θ = θ1,θ 2,... ,θ p ' = β1, β2,... , β p ' and the regression formula remains as in (3.2). In that case, 

the indicator gets involved in the model through the following hierarchical structure

                                                                   
y∣β~ f  y∣β 
β∣γ~π β∣γ 

γ~π γ 
                                                          (4.3)

where f  y∣β   is  the  likelihood  function,  while π  β∣γ and π γ  indicate  the  priors  of 
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parameter vector and indicator variable respectively.

Conversely,  by  defining  as β j the  effect  of  the j th covariate,  the  indicator  could  be 

embedded in 3.2 (or 3.1), yielding the expanded regression formula (Kuo and Mallick, 1998), used 

for the Kuo and Mallick sampler and GVS. Then, the parameter vector takes the following form 

θ = θ1 , θ2 , ... , θ p ' =  γ1 β1 , γ2 β2 , ... , γ p β p ' and equation 3.2 can be rewritten as 

                                                     E [ g  y i] = ηi = ∑
j=0

p

γ j β j x i , j                                           (4.4)

4.2.2 The Gibbs algorithm     

Regardless of the model structure, both type of algorithms proceed by using a Gibbs sampler 

to  obtain  values  from the  joint  posterior  distribution p γ , β∣y . The  main  interest  lies  in  the 

simulation  of  the  posterior p γ j=1∣y , ,  which  is  called  marginal  inclusion  probability.  Full 

specification of marginal inclusion probabilities, enables us to identify those variables with higher 

posterior  probabilities  (Kuo  and  Mallick,  1998).  The  produced  sequence γ1 , γ2 , ... , γΤ  ,  as 

pointed  out  in  George  and  McCullogh (1993),  converges  rapidly in  the  target  distribution  and 

contains all the information needed for variable selection. This occurs due to the fact that candidate 

models  with  higher  posterior  probabilities  (those  for  which γ j=1 ,  appear  in  the  simulated 

sample  with high  frequencies.  On the  contrary,  those candidate  models  that  hardly appear,  are 

simply  not  of  interest  and  can  be  excluded  from the  analysis.  Hence,  the  method  requires  to 

generate  a sequence

γ1 , β1 , γ2 , β 2  ,... , γΤ  , β Τ 

 from the full  conditional posterior distributions of γ and β iteratively and then identify the 

most promising candidate models, by counting the frequency of their appearance (Kuo and Mallick, 

1998). By denoting as β− j all the effects except the one associated to covariate x i , j = 1,... , p ,

the  general  steps  of  Gibbs  algorithm that  are  used  to  produce  values  from the  full  posterior  

p  β , γ∣y  are :

• Update β j for j=1,... , p from  full  conditional  posterior p  β j∣y , β− j , γ  , where 

β− j= β1 , β 2 , ... , β j−1 , β j1 , ... , β p     

• Update γ j for j=1,... , p , sequentially  or  in  random  order,  from  full  conditional 

posterior p γ j∣y , γ− j , β  , where γ− j=γ1 , γ2 ,... , γ j−1 , γ j1 , ... , γ p , with probability . 
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4.2.3 Posterior Inference 

Once the algorithm is terminated, the results can be used in order to draw inference on the 

model with the highest estimated posterior probability. In terms of Bayesian analysis, this is referred 

to, as the maximum a posteriori probability (MAP) model. Following Ntzoufras (2009, sec. 11.6), a 

common way to estimate a  MAP model  is  to  use the indicator  variable γ , in  order  to  index 

existing candidate models. Let m be an indicator variable that is to be used to index all candidate 

models. A formula that provides with a one-to-one transformation between γ and m is given by 

                                                                m  γ = ∑
j=k

p

γ j 2
j−k ,                                                  (4.5)

where k=1 in case of including the constant in the model and k=0 otherwise. Assuming that 

the algorithm has been implemented for T iterations, let B be the number of burn-in iterations and 

denote  as m t the  indicator  of  model m at  iteration t . Then,  the  corresponding  posterior 

probability of each model can estimated in a straightforward manner, by

                                                          p m∣y = 1
T−B ∑t=B1

T

I m t=m                                 (4.6).

As described in chapter 3,  posterior model probabilities,  can also be used to estimate posterior 

model odds or Bayes Factors and draw inference through them, by comparing for instance, each 

model to the one with the highest estimated model posterior probability.  

It  is  also  possible  to  estimate  the  marginal  inclusion  posterior  probabilities  for  every 

candidate by

                                                         p γ j=1∣y = 1
T−B ∑t=B1

T

I γ j
 t=1                               (4.7).

Apart from tracing the desired MAP model using (4.6), the MCMC output enables us to estimate 

the Median Probability (MP) model via (4.7). The latter, was introduced by Barbieri and Berger 

(2004) as an optimal choice of model with better predictive performance under certain conditions. 

According to this approach, MP model is defined as the model which consists of those candidates 

whose marginal inclusion probability is greater than
1
2

, that is γ MP=γ j : p γ j=1∣y   1
2

.  

Before proceeding in a more detailed description of the developed algorithms, there is one 

estimation issue that should be further pay attention. As described in section 3.2.2, the number of 

visits of candidate regressors models differs, according to the target posterior model probabilities. 

Consequently, the estimates' accuracy of posterior model probabilities, posterior model odds and 

Bayes Factors, increases with the number of times a variable is sampled, during the algorithm. In 
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order to ensure that all candidates are sampled in a sufficient number of times, Ntzoufras (2009, p. 

413) provides with two alternative strategies. The first approach, requires a proper choice of prior 

distribution  over γ , favoring  candidates  with  lower  probabilities  of  sampling;  for  details  and 

illustration in a simple setup see Ntzoufras et al, (2005). The second one, introduced by Fouskakis 

et al. (2009), can also be implemented in data sets consisting with large p, compared to the sample 

size. When this is the case, he suggests a reduction in the number of candidate models by excluding 

from the analysis those ones with low estimated marginal inclusion probabilities.

4.3 Variable Selection Methods

Despite the fact that the general idea when using Gibbs sampler remains the same, there are 

differences between the methods mentioned above. Apart from the model scheme, the assumptions 

made regarding the relationship between γ and β and the prior specification of γ , β  has led 

in the development of different methods. Following O Hara and Sillanpaa (2009), Bayesian variable 

selection methods can be categorized in four groups :

• Stochastic Search Variable Selection (George and McCullogh, 1993)

• Indicator Model Selection

• Adaptive Shrinkage

• Model Space Search

4.3.1 Stochastic Search Variable Selection (SSVS)

 

To begin with,  SSVS was introduced by George and McCullogh (1993),  as  a  Bayesian 

variable  selection  procedure,  used  to  identify  the  most  promising  models  between  all 2 p

candidates. As mentioned above, in order to avoid the exhaustive evaluation of models' complete 

posterior distribution, they developed a Gibbs based algorithm to sample from models with higher 

posterior  probabilities.  To  do  so,  they  considered  the  hierarchical  structure  of  the  regression 

equation (4.4), introduced the auxiliary variable γ , to indicate whether a variable is included or 

excluded from the likelihood and assigned such a prior distribution on model effects β , to keep 

the parameter  space for  all  models constant.  The latter  is  the main advantage of the particular 

method, since it ensures the convergence of the algorithm.
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4.3.1.1 Prior specification

To complete the full specification of Bayesian variable selection via SSVS, the specification 

of the priors π  β∣γ and π γ  , is required. For the first prior, the method assumes a 'slab and 

spike'-type prior on each parameter β j . In brief, the 'slab and spike' prior, which was introduced 

by Mitchel and Beauchamp (1988), is a mixture of priors  on each β j . which puts mass on zero 

with probability h0j (spike), while is uniformly distributed over the range − f j , f j , for some 

large f j , with density
1−h0j

2f j
(slab) (Miller, 2002).

Exploiting Mitchel and Beauchamp's (1988) idea, George and McCullogh (1993) proposed 

the following mixture of  Normal distributions

                                                      β j∣γ j~1−γ jN 0, τ j
2γ j N 0, g j

2 τ j
2 ,                               (4.8)

which does not set unimportant regressors exactly equal to zero, but forces them to be close to it. 

This  can  be  achieved  by  setting τ j0 small,  so  that  if γ j=0 , the  effect  of  the  candidate 

variable β j to be safely estimated by zero and g j1 large, so that if γ j=1 , β j is non zero and 

therefore, the regressor is candidate for inclusion (Dellaportas et al, 2002). The use of such a prior 

does not actually drop variables out of the model, but shrinks them toward zero and, by this way, 

keeps  the  size  of  the  equation  constant  in  every step  of  the  algorithm,  in  order  to  ensure  the 

convergence of Gibbs algorithm. (Carlin and Chib, 1995, p. 475)

As far as π γ  is concerned, George and McCullogh propose alternatives to depict  the 

prior knowledge on the indicator γ For instance, by assuming each γ j as independent Bernoulli 

trials with probability p j , then 

                                                                π γ =∏
j

p j
γ j1− p j

1−γ j

,                                           (4.9)

implying that the addition of each variable does not depend on the inclusion of another. A special 

case of (4.9), is obtained if each γ j is Bernoulli12  distributed. Then, the corresponding prior 

is 

                                                                         π γ = 1
2 p  ,                                                      (4.10)

implying prior ignorance concerning the inclusion of each variable. 
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4.3.1.2 The SSVS algorithm and derivation of conditional posterior distributions

After  defining  the  priors  involved  in  the  model's  construction,  the  conditional  posterior 

distributions must be calculated, in order to implement the Gibbs sampler in the SSVS approach. 

The full conditional posterior of the parameters can be simply derived from 

                                         p  β j∣y , γ , β− j∝ f  y∣β , γ π  β j∣γ j .                                 (4.11)

Taking into account mixture of  Normals as specified in (3.8), then (3.11) can be rewritten as

                                  
p β j∣y , γ , β− j∝ f  y∣β N 0, g j

2 τ j
2 , for γ=1

p  β j∣y , γ , β− j∝ f  y∣β N 0, τ j
2 , for γ=0

               (4.12) 

By  considering,  now,  the  full  conditional  posterior p γ j∣y , γ− j , β  , the  hierarchical 

structure of the model given in (3.4), implies independence between  γ  and y and therefore, the 

likelihood f  y∣β , γ  does not get involved in the computation (George and McCullogh, 1993). 

The corresponding posterior depends only on priors and is again Bernoulli, with success probability 

                       

p  y ;γ , β ~Bernoulli  p post , with

p post= p γ j=1∣β , γ− j=
a j

a jb j
=

a j /b j

a j /b j1
=

O j

O j1
,

O j=
π  β∣γ j=1,γ− j
π  β∣γ j=0,γ− j

π γ j=1∣γ− j
π γ j=0∣γ− j

                       (4.13)

(Ntzoufras, 2009,p. 411)

Then,  the  Gibbs  sampler  can  be  applied  as  described  in  paragraph  4.2.2  by  iteratively 

producing values from (4.9) and (4.10).

4.3.1.3 Discussion

 The effectiveness of the algorithm strongly depends on the parameters of π  β∣γ that 

must be specified and this, can be considered as the main disadvantage of the method (O' Hara and 

Sillanpaa,  2009).  It  must  be  noted  that  in  case  of  linear  regression,  the  method  gets  further 

complicated, since it requires the specification of an additional prior on σ 2. In that case the Gibbs 

algorithm  requires  an  intermediate  step  of  updating  from  the  corresponding  posterior 

p σ 2∣y , β , γ ; for details see George and McCullogh (1993), where it can be found an extensive 

discussion  on  algorithm's  convergence  issues  and suggestions  through  which  the  method gets 

simplified. They also provide details on how the parameters should be tuned to obtain a sufficiently 

well behaved SSVS algorithm. 
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However, the algorithm can be considered rather simple and hence, the method has been 

adopted in many applications.  Extensions of the method have been proposed for  GLM models 

(George  and  McCullogh,  1996  ;  1997),  Poisson  log-linear  models  (Ntzoufras  et  al,  2000), 

Multivariate regression (Brown et al, 1997), genetics applications (Oh et al, 2003; Yi et al, 2003), 

implementions using BUGS; see Ntzoufras (2009, sec. 11.7) and factor analytics models (Mavridis 

& Nzoufras, 2014).

4.3.2 Indicator variable selection

As discussed in section 4.2.1, an alternative way to use the indicator variable in Bayesian 

variable selection, is to embed γ directly in the likelihood equation as in (4.3). The two methods 

developed by this  approach (KM sampler  and GVS),  do  not  only differ  from SSVS in  model  

structure (the likelihood depends on the indicator), but also in prior specification of β j∣γ j . The 

spike part of the prior is centered exactly on zero, while the slab part is Normally distributed around 

a pre-specified value β0j , representing the prior belief on each variable; for discussion on the 

choice of priors see for example Ntzoufras (2009). The difference between KM sampler and GVS, 

lies in how π  β , γ is specified.

4.3.2.1 Kuo and Mallick sampler 

The simplest way to define the prior π  β , γ  , was suggested by Kuo and Mallick (1998) 

and assumes independence between β and γ . Then it follows that 

                                             π  β , γ ∝π  β π γ                                             (4.14).

By also assuming the partition of β in β γ , β−γ as in Ntzoufras (2009),  then,  the parameter 

vector is divided in two parts: the active part, which consists of those β that are included in the 

equation,  noted  as βγ (those  for  which γ=1 and  the  remaining  part  of  the  vector,  which 

consists of the variables excluded from the model, noted as β−γ (those for which γ=0 . Then, 

the prior π  β , γ  is defined                  

                                                        π  β , γ ∝π  βγ∣β−γπ  β−γπ γ                                        (4.15)

and the corresponding posterior required for the Gibbs algorithm is of the following form

             
p  β j∣y , γ , β− j∝ f  y∣γ , β π  β j∣β− j , for γ=1
p  β j∣y , γ , β− j∝π  β j∣β− j , for γ=0 .                     (4.16)

The presence of the above equation implies that when updating the parameter vector β in 
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the Gibbs algorithm, in case of the presence of a variable,  the produced values depend on the 

likelihood  and  the  posterior  derives  as  usual.  Conversely,  when  the  effect  of  a  variable  is 

constrained to zero, the algorithm proposes values from a linking density, which  depends only on 

the conditional prior π  β j∣β− j. As pointed out in Kuo and Mallick (1998), this is reasonable, 

because in the absence of the variable, all information needed can be provided only from the prior  

and not from the data. This prior can be characterized as a pseudoprior, a term introduced by Carlin 

and Chib (1995) and was used for this purpose by Dellaportas et al (2002).

As far as p γ j∣y , γ− j , β  is concerned, Kuo and Mallick, using similar arguments for the 

prior π γ  specification as in George and McCullogh (1993), derived a Bernoulli full conditional 

posterior, with success probability given by   

                 

p post= p γ j=1∣β , γ− j=
O j

O j1
,

O j=
f  y∣γ j=1,γ− j , β 
f  y∣γ j=0,γ− j , β 

π γ j=1 , γ− j
π γ j=0 , γ− j

                               (4.17).

As it can be seen, the posterior probability of the indicator, depends on the likelihood, since it is  

embedded  in  the  model,  however  it  is  independent  of  the  parameters'  prior  due  to  prior 

independence assumption.

 ΚΜ  sampler is simple to apply, avoids the exhaustive evaluation of all candidate models 

and, unlike SSVS, requires only the specification of  the prior on the parameter vector and the 

indicator variable (Kuo and Mallick, 1998). However, as stated in Dellaportas et al (2000, 2002), 

the  fact  that  the  conditional  prior π  β j∣β− j derives  directly  from  the  prior  of β , may  be 

considered as a disadvantage, since this restriction may cause inefficiency of the method, due to 

'bad' behaved pseudopriors.

4.3.2.2 Gibbs Variable Selection (GVS)

GVS is the second method that uses the indicator variable as part of the model equation and 

was introduced by Ntzoufras (1999) and Dellaportas et (2000, 2002), extending the idea of Carlin 

and Chib (1995). In GVS the prior is formed in the following way 

                                                    π  β , γ ∝π  βγ∣γ π  β−γ∣βγ , γπ γ  ,                                    (4.18)

where the intermediate term π  β−γ∣β γ , γ  is a pseudoprior which does not affect the posterior of

p  βγ∣y , γ  , since β−γ is independent of the likelihood. This independence allows the user to 

specify the pseudoprior 'freely', and unlike KM sampler make the method work more efficiently. 

39



(Ntzoufras, 2009, sec. 11.5.3)         

The full conditional posterior is obtained by

      
p  βγ∣y , β−γ , γ∝ f  y∣β , γπ βγ∣γπ β−γ∣βγ , γ 

p  β−γ∣y , βγ , γ∝π β−γ∣βγ , γ                             (4.19)

and the full conditional posterior of the indicator variable is obtained by

                                       

p post= p γ j=1∣β , γ− j=
O j

O j1
,

O j=
f  y∣γ j=1, γ− j , β 
f  y∣γ j=0, γ− j , β 

π β∣γ=1, γ− j
π β∣γ=0, γ− j

π γ j=1 , γ− j
π  γ j=0 , γ− j

                     (4.20).

As pointed out in Ntzoufras (2009, p.409), the dependence of the full conditional posterior

p  βγ∣y , β−γ , γ on the pseudoprior π  β−γ∣β γ , γ  , can be useful when collinearity is detected 

between candidate variables. However, in cases of orthogonal candidates, the dependence between

βγ and β−γ is useless. Then, it follows that  

                                                      π  β−γ∣β γ , γ =π  β−γ∣γ                                            (4.21)

and the computation of the full conditional posterior gets simplified in 

                      
p  βγ∣y , γ , β−γ∝ f  y∣γ , βπ βγ∣γ

p β−γ∣y , γ , βγ∝π  β−γ∣γ 
                               (4.22)

Ways to further simplify the method are presented in Dellaportas et al (2000, 2002) and in 

Ntzoufras (2009, p. 409, 410), by assuming prior conditional independence for all parameters given 

the model γ. As stated in Ntzoufras (2009) they are rather restrictive, however might be reasonable, 

for instance, when the candidate variables are centered, or standardized, or orthogonal.

4.3.2.3 Discussion 

The methods described above, provide smart and efficient Gibbs based algorithms, that are 

used as faster alternatives for Bayesian model specification. Their difference among them,  lies in 

the model formulation as described in section 4.2.1 and the assumptions regarding the relationship 

between the parameter vector and the indicator variable. Dellaportas et al., (2002) summarize these 

differences  by  commenting  on  how  the  initial  assumptions  affect  the  posterior  conditional 

probability p γ j∣y , γ− j , β .

SSVS  assumes  a  hierarchical  structure  for  the  model  equation  and  therefore, 

p γ j∣y , γ− j , β  does not depend on the likelihood, but only on  priors. The method requires the 

careful  treatment  of  several  tuning  parameters,  the  specification  of  which  strongly  affects  the 

efficiency of the algorithm. On the other hand, GVS and KM sampler, embed the indicator variable 
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in the model equation and p γ j∣y , γ− j , β  depends on the likelihood. For the KM sampler, the 

independence assumption on priors of the parameter vector and the indicator variable, implies that 

in the computation of p γ j∣y , γ− j , β  , only the prior of γ gets involved. It is considered to be the 

simplest of the Gibbs based methods and the efficiency of the algorithm strongly depends on the 

specification of the parameter's prior. Finally, in GVS, the conditional posterior is not only affected 

by the likelihood and the prior of γ but also by the pseudoprior π  β−γ∣β γ , γ . The use of the latter, 

despite the fact that improves the efficiency of the algorithm can be also considered as a drawback, 

since it requires careful treatment.

As stated in Dellaportas et al (2000), all methods can be easily applied using the Gibbs 

sampler algorithm, however they require a careful specification of priors and as pointed out in O' 

Hara and Sillanpaa (2009) they should not be used unwisely. Review of the methods, examples and 

applications using BUGS on different kinds of data are provided by Dellaportas et al (2000) and 

Ntzoufras (2009, chapter 11, 11.5.2, 11.5.3, 11.7) 

4.3.3 Model space search 

The second group of algorithms are more general and have been developed to cope with the 

model  determination  problem.  They  use  MCMC techniques  to  sample  directly  from the  joint 

posterior  distribution p m , βm∣y . Under  this  notation, m=1,... , M is  used  to  index  the 

candidate  models  and  each βm represents  its  corresponding  parameter  vector.  Therefore,  the 

parameter  space  consists  of  all β1 ,... , β M  vectors.  By  applying  an  MCMC  algorithm,  the 

interest lies in sampling directly from models of high posterior probability (Han and Carlin, 2001). 

The methods that are mainly used, are the Carlin Chib method (Carlin and Chib, 1995) and the 

reversible jump MCMC (Green, 1995).

4.3.3.1 The Carlin Chib method

The introduction of  the integer  valued parameter m , m=1,2 ,... ,M in  Bayesian model 

selection, was proposed by Carlin and Chib (1995) in order to overcome convergence problems that 

arose in Gibbs algorithm, when sampling from models of different size. Unlike SSVS which forces 

the dimension of the model to be fixed throughout the sampling procedure, Carlin and Chib worked 

with the product space of all parameter vectors and the model indicator m , β ∈Μ×∏m∈M
Bm.  

Their algorithm samples over the defined product space, which is now constant, independently of 
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the size of the parameter vector. (Godsill, 2001 ; Han and Carlin, 2001)

To  derive  the  Carlin  Chib  method,  each  model m is  associated  to  the  likelihood

f  y∣β m ,m  and  the  corresponding  prior π  βm∣m . Given  a  model m , the  data  vector  is 

allowed to depend only on its corresponding parameter vector βm and thus, the likelihood is of 

the following form 

                                                           f  y∣β ,m= f  y∣βm ,m                                              (4.23).

By also assuming conditional independence among the data vectors for simplicity,  the marginal 

likelihood is obtained by

                  f  y∣m=∫ f  y∣β ,mπ  β∣mdβ=∫ f y∣m ,mπ β m∣mdβm               (4.24).

To completely specify the  model,  a  pseudoprior π  βm'∣m'≠m  is  required  (Dellaportas  et  al, 

2002); it can be formed, though, independently from the usual prior, since it does not get involved 

in the above computation and works as a linking density to improve the efficiency of the algorithm 

(Ntzoufras,  2009).  Under  the  prementioned  assumptions,  the  full  conditional  posterior  of  the 

parameter vector required for the first step of Gibbs sampler, is given by

                   
p  βm'∣β m , y , m∝ f y∣βm ,mπ  βm∣m , m'=m
p m'∣βm , y ,m∝π β m'∣m , m '≠m                    (4.25).

 To derive the conditional posterior of m , the usual discrete prior π m on each model and 

the  joint  probability  of y and β under  the  model m is  required.  Given  the  independence 

assumptions, the latter is obtained over the product space as

                                     f  y , β , m = f  y∣β m ,m {∏m∈M
π  βm∣m}π m                      (4.26).

Then, the posterior distribution can be generated as a discrete random variable (Dellaportas et al, 

2002) using the following formula

           p m∣β , y=
f  y∣βm ,m {∏m∈M

π β m∣m}π m

∑
m∈M

f  y∣βm , m{∏m∈M
π  βm∣m}π m

, ∀m∈M  .           (4.27)

Han and Carlin (2001), suggest that the prior probabilities on the models π m , should be 

chosen in such a way that would facilitate the algorithm to sample from each model equally and  

consequently obtain more accurate estimators. By also commenting on the use of pseudopriors, they 

argue  that  the  efficiency of  the  method depends  on their  proper  specification  and as  stated  in 

Dellaportas  et  al  (2002)  they  should  resemble  the  scheme  of   their  corresponding  posterior 

distribution p  βm'∣y , m '≠m . As in the indicator selection algorithms, the use of pseudopriors 

can be considered as the main drawback of the method. However, unlike GVS and KM sampler 

which require only one prior at each step of the algorithm, for the Carlin-Chib method, in order to 
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sample from the full condition posterior p m∣β , y , the specification of all π  βm∣m , m∈M is 

needed. In practice, when the number of candidate models is large, the latter can be time consuming 

and restricts the performance and the implementation of the method (Ntzoufras, 2009).

4.3.3.2 The Metropolised Carlin Chib

In order to overcome the exhaustive use of too many pseudopriors, the Metropolised Carlin 

Chib method,  or  independence sampler,  was introduced by Dellaportas  et  al  (2002).  Instead of 

updating from the full conditional posterior p m∣β , y , the second step of the Gibbs algorithm is 

substituted  by  a  Metropolised  move  from  model m to m ' . Analytically,  the  steps  of  the 

algorithm are the following

• Let the current state of the algorithm be m , βm , where βm~ p β m∣y , m.

• Propose a new model with probability h m , m' .

• Generate β ' m'~π  β ' m'∣y , m≠m'  , where π  βm'∣y , m≠m'  a pseudoprior.

• Accept model m ' with probability 

amm'=min{1,
f  y∣β ' m' ,m ' π β 'm'∣m ' π β m∣m' π m ' h m' ,m

f  y∣βm , mπ  βm∣mπ  βm'∣mπ mhm ,m'  }   

Obviously the method gets simplified since it requires the use of only one pseudoprior at each run 

of the algorithm. 

4.3.3.3 Reversible Jump MCMC (RJMCMC)

An alternative  Metropolis-based algorithm that  has  been developed in order  to  generate 

values from the joint posterior p m , βm∣y  is the reversible jump MCMC (Green, 1995), which 

explores the parameter and model space, by allowing sampling from models of varying dimensions 

(Han and Carlin, 2001). 

Supposing that the current state of the algorithm is m , βm , where βm is the parameter 

vector associated to model m , of dimension dim β m , the algorithm proceeds by proposing a 

new  value m' , β ' m'  , where dim β 'm'  can  be  of  different  length  from βm . Due  to  this 

change in the length of the chain, the algorithm's convergence is ensured under the condition of 

reversibility  and dimension  matching  (Hartman and Hart,  2009).  In  order  to  satisfy the  above 

conditions, an auxiliary random variable u~qu∣β m , m , m'  is introduced. The latter is associated 

to each candidate model m , m∈M , so that the dimension of β m , u  remains constant for all 
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models (dimension matching). In other words, when proposing a move from model m to m '

where dim β m≠dim β ' m'  , the following equality should hold

                                      dim β mdimu=dim  β 'm ' dimu '  ,                             (4.28)

where u , actually, consists of the random elements that needs to be added in βm so as to match 

the dimension of β ' m' .

In addition each β m , u  is associated to β 'm , u '  through an invertible function g ,

so that 

                                                             β ' m , u ' =gm m' β m , u                                             (4.29)

The latter, satisfies reversibility, which implies that the algorithm can move backwards from the 

proposed values to the current state.

Finally, the proposed move is accepted or not, by calculating the acceptance probability. Its 

calculation is similar to the usual acceptance probability of Metropolis algorithm, but is adjusted for 

the change in dimension by multiplying it with the Jacobian J=∣∂ g  βm , u 
∂ βm ,u  ∣ (Godsill, 2001).

The algorithm as described in Han and Carlin (2001) and Dellaportas et al (2002) uses the 

following steps

• Let the current state be m , βm

• Propose a new model m ' with probability h m , m' 

• Generate u~qu∣β m , m , m' 

• Set β ' m' , u ' =gm m' βm , u

• Accept the proposed move with probability 

amm'=min{1,
f  y∣βm' ,m' π  βm'∣m' π  βm∣m' π m ' hm' ,m

f  y∣βm ,mπ β m∣mπ β m'∣mπ mhm ,m ' 
×∣∂ g  βm , u 
∂ βm , u  ∣}

           RJMCMC provides a useful tool for model determination and has become one of the most  

widely applicable algorithms as it allows moves between models of different size in a flexible way 

(Dellaportas et al., 2002). More details about the algorithm are provided by Han and Carlin (2001) 

and variations of the method can be found in Dellaportas et al. (2002) and Ntzoufras (2009). A 

rather  comprehensive  mathematical  derivation  with  applications  on  genetics  is  provided  by 

Waagepetersen and Sorensen (2001),  while  Hartman and Hart  (2009)  offer  a  nice  review with 

applications on econometrics. Finally, further details and the relationship between RJMCMC and 

Carlin Chib method can be found in Godsill (2001), who also records lots of references of the 

algorithm's applications.
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4.3.3.4 Model Composition MC 3

One of the earliest and easiest Metropolis based model search algorithms, is the Markov 

Chain  Monte  Carlo  Model  Composition MC 3 , which  requires  posterior  model  probabilitie

p M∣y (Fernandez  et  al.,  2001). MC3 was  introduced  by  Madigan  and  York  (1995)  for 

Bayesian analysis  of graphical models for discrete data and was then adopted by Raftery et  al. 

(1997) and Fernandez et al. (2001)  for linear regression (Miller, 2002). The algorithm operates over 

model space and searches for the most probable a posteriori candidate models by comparing them 

through posterior model odds. In its general form, if the current state of the chain is in model M a 

new  model  in  the  neighborhood  of M is  proposed  with  probability h M , M ' . The 

neighborhood of the current model includes the current model M and those candidates that are 

formed after adding one more variable or removing one of the existing ones (Raftery et al., 1997). 

Then the proposed move is accepted with probability 

                                                     aM M '=min{1, pM '∣yhM , M ' 
p M∣y hM ' , M  }.                             (4.30)

 MC3 algorithm, as described in Miller (2002), uses an integer variable j=0,... , p to 

index the candidate variables. For a randomly selected model M , a number j is sampled. Zero 

value corresponds to the existing model and when is picked, the chain remains in the current state. 

If number j∈1,... , p corresponds to an absent candidate, the latter is added in M  Otherwise, 

if j corresponds to an existing variable, it is removed from the model. In both cases  posterior 

odds between the produced model M ' and the current one is calculated and is decided weather 

the first will be accepted.

Dellaportas et al (2002) proved that MC3 is a special case of Metropolised Carlin & Chib 

algorithm,  while  Miller  (2002)  characterizes MC3 as  an  extension  of  Efroymson's  (1960) 

stepwise  algorithm.  As  he  states,  the  results  that  both  methods  produce  are  similar.  However, 

occasionally,  MC3 tends to provide with more accurate results due to its stochastic nature. The 

main disadvantage of the method is that the posterior distribution on the model space is not always 

tractable. When this is the case, Fernandez et al (2001) suggests the use of Green's RJMCMC.

45



4.4 Latest Advances

4.4.1 Population-based Reversible Jump MCMC (Pop-RJMCMC)

As described in previous paragraphs, trying to deal with convergence issues that appear in 

MCMC algorithms when sampling from models of different dimensions, led to the development of 

several alternatives in Bayesian variable selection.  RJMCMC (Green, 1995) is  one of the most 

efficient choices. However, a second issue that arises when applying MCMC methods in variable 

selection problems, concerns the nature of the joint posterior distribution p m , βm∣y . As Brooks 

et al. (2002) states, in case of multi-modal target distributions, traditional MCMC methods, fail to 

explore  adequately  both  within  and  between  distribution's  local  maxima.  Motivated  by  this 

problem,  Jasra  et  al.  (2007),  adopted  population  based  sampling  methods  and  developed  the 

population based Reversible Jump Markov chain Monte Carlo algorithm (Pop-RJMCMC). The key 

difference between traditional MCMC and population based algorithms, is the ability of the latter to 

sample from  various number of chains - say for instance N - in parallel (Liu, 2001 chapter 11).

In  brief,  following  Fouskakis  et  al  (2009),  the  algorithm  is  constructed  to  generate

l=1,... , N parallel  auxiliary chains,  in  order  to achieve a  thorough search over  model  space. 

Practically, apart from sampling over set of parameters β , γ  , using traditional RJMCMC steps, 

this leads to an additional sampling step over candidate chains. This is carried out by raising each 

candidate chain to a power t l0 referred to us, as the temperature.  Assuming that at iteration

t  , the algorithm's state is in chain l , sampling from chains powered on lower values of t l ,  

will result in larger jumps over model space and thus in visits over regions of lower probability. On 

the other  hand,  when  sampling from chains  powered on  greater  values,  the algorithm will  be 

limited to current state's neighborhood. 

The efficiency of Pop - RJMCMC depends mainly on two aspects. The first one concerns 

the conditions of reversibility and dimension matching, as described in section 3.3.3.3. Since these 

conditions are covered, convergence of the algorithm is ensured and the results are valid (Jasra et 

al., 2007). The second one, concerns the ability of the algorithm to explore the whole model space 

efficiently. To achieve this, running a large number of candidate chains, is required. One way to deal 

with this, is by specifying a sufficiently large number of different t l temperatures. However, as 

Fouskakis et al. (2009) claims, this could be computationally exhaustive. To avoid the latter, they 

propose the use of only two auxiliary chains. The first one is suggested to be raised to a power such 

that 0t11 , while the other to be raised to a power of t 21 . Then, by assigning a distribution 

46



over t l , l=1,2 temperatures are considered as random variables and at each step different values 

of t l can be sampled, resulting in an efficient exploration of the model space.

 Details  on  theoretical  and  practical  aspects  concerning  Pop-RJMCM  and  extended 

discussion on every aspect of Pop-RJMCM can be found in Jasra et al. (2007), while Fouskakis et al 

(2009)  apply  the  method  in  a  health  evaluation  study  indicating  its  efficiency  over  original 

RJMCMC algorithm.  

4.4.2 Shotgun Stochastic Search (SSS)

 An MCMC motivated algorithm, which is developed to explore model space more rapidly 

and aggressively in contrast  to other MCMC algorithms and therefore can be more effective in 

problems of higher dimensions, is the Shotgun Stochastic Search (SSS), introduced by Hans et al  

(2007). 

Model selection based on MCMC methods discussed above, aims to simulate the posterior 

distribution of the model space, by seeking for individual models at each step of the algorithm. One 

candidate is randomly selected, is evaluated and is accepted if it is of higher posterior probability in  

contrast to the model in the current state of the chain. Finally, by estimating the posterior probability 

of  each  model,  depending  on  how many times  each  candidate  was  visited,  one  can  trace  the 

maximum a  posteriori  model,  as  described in  Ntzoufras  (2009,  sec.  11.6).  Conversely,  SSS,  is 

designed to search for regions with models of higher probability, by running multiple parallel chains 

at each iteration. By exploring regions and evaluating more than one models at each step, SSS, 

accelerates the models space search and is likely to reach the best model faster.

In  brief,  let p denote  the  number  of  all  candidate  models  and γ a p×1 vector 

indicating  the  presence  or  the  absence  of  the j th variable  if γ=1 or γ=0 respectively. 

Supposing  that  the  current  state  of  the  algorithm  is  in  model γ k ,1≤k≤ p , a  neighborhood

nbd γκ of proposal models is defined, based on the current candidate.  The neighborhood of 

proposals  consists  of  three  possible  model  sets  : {γk
 , γ k

o , γ k
− }, where γ k

 is  produced  after 

adding one more variable in the current model, γ k
o after replacing one of the existing variables 

and γ k
− after  removing one  of  the  existing  ones.  Each  proposal  in  this  neighborhood is  then 

evaluated in parallel, using the models' posterior probability p γ∣y  or other models' fit criterion. 

Depending on the models' score a new candidate is chosen  and the algorithm repeats the above 

steps. This procedure, actually, results in ranking a large number of candidates, until the algorithm 

reaches the one that sufficiently describes the data.

47



Hans et al (2007) discus extensively the aspects of the method, describing the steps of the 

algorithm,  suggesting  alternatives  on  evaluating  the  proposal  models  and  comparing  it  with 

traditional MCMC methods through examples in linear and binary regression. 

4.4.3 Subspace Carlin and Chib (SCC)

The last  algorithm that  will  be briefly discussed,  is  the Subspace Carlin Chib algorithm 

(SCC), which has been developed by Petralias and Dellaportas (2012) as a combination of the 

Carlin  Chib,  the  Metropolised  Carlin  Chib  and  the  Shotgun  Stochastic  Search  algorithm.  As 

discussed  in   paragraph  3.3.3.2,  in  order  to  avoid  the  exhaustive  calculation  of  all  possible 

pseudopriors π  βm∣m , m∈M , MCC replaces  Gibbs  sampling  over  candidate  models  with  a 

metropolised step, by proposing a new model with probability h m ,m' . SCC adopts the idea of 

SSS's  sampling  on  neighborhoods  and  the  proposed  move  form  model m to  model m ' is 

restricted, in the sense that it allows jumps between models that are formed by deleting, replacing or 

adding one of the existing variables in the current model.  Analytically, considering that the current 

state of the algorithm is in model m , then neighborhood of candidate models for evaluation in the 

next  step  of  the  algorithm  is  defined  to  be Sm'={S m '
− , Sm'

o , S m'
 }. The  algorithm  samples  at 

random  a  neighborhood  of  models  with  probability  Qm'={qm'
− , qm'

o , qm'
 } and  proceeds  by 

sampling a model in the sampled neighborhood with probability h m ,m' .

4.5 Discussion

In  this  chapter  the  basic  algorithms  used  for  Bayesian  model  determination  have  been 

presented. The first part describes methods for variable selection, namely SSVS, KM Sampler and 

GVS, while the second part discusses algorithms that directly sample from model space. A review 

with applications on variable selection strategies using Gibbs sampler is provided by Dellaportas et 

al  (2000).  A comparative review on model selection algorithms is  provided by Han and Carlin 

(2001) and their relationship is examined in Godsill (2001). Ntzoufras (2009) reviews all discussed 

methods, apart from those reviewed in paragraph 3.4, and provides examples using BUGS. Details 

on Pop RJMCMC can be found in Jasra et al (2007) and Fouskakis et al (2009). SSS, is extensively 

discussed in Hans et al (2007) and a combination of SSS and Carlin Chib method is provided by 

Petralias and Dellaportas (2012).  
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Chapter 5: Bayesian Adaptive Sampling for Variable Selection and Model Averaging

5.1 Introduction

As  discussed  in  Chapter  3  MCMC  techniques  provide an  important  and  easy  to  use 

computational tool, especially in complicated statistical problems, i.e in high dimensional problems 

or in computations of analytically intractable posterior distributions. In order to efficiently sample 

from large model spaces and draw inference regarding higher posterior models, the Gibbs sampler 

and the Metropolis Hastings algorithm were adopted, based on which, several algorithms have been 

developed.

Despite the fact that MCMC based model selection algorithms resulted in overcoming major 

computational problems in Bayesian variable selection, their efficiency is not guaranteed, since it 

strongly  depends  on  the  careful  specification  of  their  related  proposal  distributions  and  the 

specification of their corresponding tuning parameters. Mistreating them may result in slow mixing 

of the chains or worse, failure of algorithms' convergence and hence inefficient estimation of the 

desired posterior distributions. Gibbs based algorithms can be highly affected either by careless 

specification  of  the  prior  distributions  or  by highly correlated  data.  In  the  first  case,  improper 

specification  of  a  prior  distribution  over  candidate  models,  may  prevent  the  algorithm  from 

sampling  equally from all  models.  Furthermore,  a  bad  choice  of  pseudopriors  may restrict  the 

algorithm to 'local' moves, meaning that the algorithm can be 'trapped' in areas of lower dimensions 

compared  to  the  proposed  ones  (Dellaportas  et  al.  2002).  The  shape  and  size  of  the  proposal 

distribution of the Metropolis-Hastings algorithm, also plays a key role on the efficiency of such 

algorithms.  Heavy  tailed  proposals,  decreases  the  number  of  the  accepted  points  forcing  the 

algorithm to  stand still  in  specific  areas  of  the  target  distribution.  On the  other  hand,  using  a 

proposal that increases the acceptance rate of the algorithm leads in small jumps and hence full 

exploration of the target distribution is very slow (Haario et al, 1999, Pasarica and Gelman 2003).

Selecting an efficient proposal distribution within an MCMC method can be proved a hard 

and time consuming  task  for  the  researcher.  During  the  last  decade,  adaptive  modifications  of 

traditional  Markov  Chain  Monte  Carlo  (AMCMC) schemes  have  been  proposed,  as  a  way to 

accelerate and improve the efficiency of the Gibbs sampler and the M-H algorithm (Gilks et al., 

1998, Haario et al., 2001, Atchade and Rosenthal, 2003, Pasarica and Gelman, 2003, Andrieu and 

Thoms, 2008,  Roberts and Rosenthal, 2009). The main idea behind AMCMC alternatives is to take 

advantage of the algorithm's history and let the proposal distribution learn from it. In other words, 

as the algorithm proceeds, past sampled values are used in order to modify, mainly, the proposal 

distribution and hence automatically tune it during the simulation, aiming in faster convergence and 

more efficient estimation of posterior quantities (Ji and Schmidler, 2009).
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Applications of adaptive methods have also been presented in Bayesian inference (Tierney 

and Mira, 1999), in variable selection and model averaging (Nott and Kohn, 2005, Clyde et al., 

2011,  Lamnisos  et  al.,  2012).  This  chapter  focuses  on the  Bayesian  Adaptive  Sampling  (BAS) 

algorithm. The algorithm was recently developed algorithm by Clyde et al (2011) and exploits the 

idea of adaptation. It can be applied in linear regression where marginal likelihood is analytically 

available or easy to estimate. As described in their paper, BAS algorithm, samples models without 

replacement from the model space. In cases of moderate number of candidate models, p≈30,  BAS 

fully explores model space in  2 p
iterations, while it provides perfect samples without replacement 

when the number of candidate models is large to handle. Sampling is based on marginal inclusion 

probabilities  which  are  adaptively  calculated  as  the  algorithm proceeds,  in  order  to  avoid  re-

sampling a model that was visited in a previous step. Clyde et al (2011) focus on variable selection 

problems in  linear  regression,  adopting  the  Normal-Gamma prior  family.  For  its  computational 

simplicity,  they  adopt  Zellner's  g-prior  (Zellner,  1986)  and  their  extensions;  the  Zellner-Siow 

Cauchy prior (Zellner and Siow, 1980) and the hyper g-prior (Liang et al., 2008). Hence, before 

presenting  BAS  algorithm,  there  will  be  a  brief  representation  regarding  main  results  for  the 

Normal-Gamma formulation in Bayesian variable selection problem and a more detailed review of 

the Zellner's family of priors. 

5.2 Conjugate  Analysis for Linear Regression models

Recall the linear regression formula, as described in paragraph 3.2.1, equation 3.1,

y i = β0  ∑
j=1

p

β j x i , je i , e i~N n 0, σ2 Ι 

and the p-diamensional vector γ∈{0 ,1}p used to index the candidate variables that are included in 

the model. In matrix form, the linear regression formula under model Μ γ can be rewritten as

                                                       Y∣βγ , σ2 , Μ γ~N n X γ βγ , σ2 I n                                         (5.1).

Under this notation, the likelihood takes the following form:

                                           f Y∣βγ , σ2 ,Μ γ=exp{− 1
2σ2  X γ β γ '  X γ βγ}                            (5.2).

The maximum likelihood estimators of a model's unknown parameters can be computed as 

                                                       

βγ= Χ γ
' X γ

−1 X γ y ,

σ 2=
1
n  y−X γ

βγ'  y−X γ
βγ ,

Cov βγ∣σ
2 , Χ γ= Χ γ

' Χ γ
−1 σ2

                                          (5.3),

providing that  Χ γ
' X γ

−1 exists. 

Instead of using σ 2 , when modeling the error term, (4.1) can be parametrized in terms of 
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precision τ=σ−2 .  By  doing  so,  a  more  straightforward  interpretation  of  the  parameter  is 

achieved, since τ quantifies the accuracy of the estimated quantity that is to be used to summarize

Y .

Proper prior formulation for unknown parameters in linear model is of major concern since 

it  strongly affects  the posterior  results.  There are  two main alternatives when choosing a  prior 

distribution over β γ , τ . On the one hand, the need of representing prior ignorance concerning 

the  parameter  vector,  is  supported  by using  a  non-informative  prior.  This  approach  eliminates 

subjectivity during the analysis and maximizes data contribution in posterior results.

In brief,  there are three basic methods in prior formulation when dealing with objective 

Bayesian analysis. Laplace's rule is based on the principle of insufficient reason and states that if 

there is no reason to a priori favor specific values of the parameter vector, then each one should be 

treated and weighted equally. This can be achieved by assigning a uniform prior over parameter 

vector. However, such a selection is sensitive in terms of invariance principle, meaning that any 

transformation upon the parameters, affects the prior distribution, making it potentially informative. 

Motivated by that, Jeffrey's (1946) proposed a widely accepted prior distribution, proportional to 

the  square  root  of  Fisher  information  matrix,  which  remains  invariant,  independently  of  the 

parametrization. The third option for constructing a non-informative prior is the reference prior, 

introduced  by Bernardo (1979).  By maximizing Kullback-Liebler  divergence  a  reference  prior, 

attempts to maximize the distance between the prior and the posterior function and hence maximize 

the contribution of the data in posterior estimation (Kass and Wasserman, 1996). 

In  case  of  subjective Bayesian  analysis,  researcher's  prior  beliefs  can be represented by 

assigning an informative prior distribution over the parameters. Formulation of an informative prior 

for linear regression has been mainly based on conjugate analysis with Normal-Gamma distribution 

(Smith and Kohn, 1996;  George and McCullagh,  1997; Raftery et  al,  1997),  since it  facilitates 

computations  regarding  the  posterior  quantity  of  interest  and  avoids  intractability  of  models' 

marginal likelihood. The  Normal-Gamma prior scheme is presented by

                                                 β γ , τ ~NGβπγ ,
V π

τ
, aπ , bπ                                                  (5.4),

with

                                                   β γ∣τ , γ~N p βπγ ,
V π

τ 
τ∣γ~Gammaaπ , bπ

                                                   (5.5),

where π is used to index the prior distribution parameters.

The  resulting  posterior  is  again  a  multivariate  Normal-Gamma  distribution, 

βγ , τ~NG  βγ , T , a , b  with updated parameters given by
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β γ= T Χ γ
' yV π

−1 βπγ
T=V π

−1X γ
' X γ

−1

a=1
2

naπ

b=1
2

SSbπ

SS= y ' y− βγ
' T−1 βγβπγ

' V π
−1 βπγ

                                    (5.6).

Considering  the  marginal  posterior  of  parameter  vector βγ , by  integrating  out  the 

precision τ , we obtain the following p-dimensional Student's t distribution with n2a degrees 

of freedom

                                        βγ∣y ,M γ~MSt p βγ , SS2b
n2a

T ,n2a.                                           (5.7)

Similarly, by integrating out βγ we obtain the marginal posterior of the precision as a Gamma 

distribution

                                                             τ∣y ,M γ~G  a , b                                                         (5.8).

A detailed review concerning conjugate analysis for Normal data and Bayesian linear regression can 

be found in Ntzoufras (2009, ch 1.5, p 9 – 13), while computational details on posterior derivation 

can be found in Bernardo and Smith (1994).  Detailed review concerning non-informative prior 

formulation can be found in Kass and Wasserman (1996).

5.3 Zellner's g prior

5.3.1 Introduction

Even under the conjugate Normal-Gamma structure, prior formulation is not straightforward 

(Zellner, 1983). Specification of prior parameters involved in equation (4.4), has been an area of 

extended research in literature, especially focusing on prior covariance matrix formulation. Zellner 

(1986), proposed a specific prior scheme based on conjugate Normal-Gamma family.  The so called 

g prior for a model Μ γ , assumes a Jeffrey's prior over the precision and a p-dimensional Normal 

distribution over coefficient vector βγ , with prior covariance matrix proportional to the inverse of 

Fisher information matrix; 

                                               
βγ∣τ , γ~N p βπ γ , g τ−1 Χ γ

' X γ
−1.

f τ∣γ ∝τ−1                                             (5.9)

 In contrast to the scheme presented in (4.5), Zellner's prior simplifies prior covariance set-up 

by reducing the number of unknown parameters to one. The unspecified parameter g , plays a key 

role in the analysis, since it controls prior weight and quantifies the prior contribution in posterior  

results (Liang et al., 2008). The influence of g can be measured, in terms of additional observational 
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units added by the prior, in conditional posterior of βγ∣y , τ , γ . A choice of g=1 corresponds to 

adding n observations in the analysis; in other words the posterior result, depends on the prior on a 

50%.  Similarly,  a  choice  of g=10 implies  a  prior  weight  equal  to  10% contribution.  Larger 

values  of g , reflect  prior  ignorance  regarding βγ . Detailed  choices  concerning g , will  be 

discussed in section 5.3.3.

  

5.3.2 Model comparison via Zellner's g-prior

Apart from simplifying prior set-up, Zellner's prior became popular due to the fact that it 

leads to closed form expressions of marginal likelihoods. Consequently, Bayes factors, which can 

now be expressed as a function of the coefficient of determination Rγ
2 , facilitates and accelerates 

computations in model comparison (Liang et al., 2008).

Since  for  any base model Μ b , we can compute the Bayes  factor  of  model Μ γ over

Μ b , by

                                                               BF γ , b=
f  y∣M γ
f  y∣M b

,                                                     (5.10)

we can compare any two models Μ γ and Μ γ' by

                                                                  BF γ , γ'=
BF γb

BF γ' b

.                                                        (5.11)

 A common strategy for model comparison, is  to compare nested models. In such cases 

Zellner and Siow (1980), proposed to to assign a flat prior over the parameters that appear in both 

models and a g-prior over the remaining parameters of the more complex model. In this context, the 

use of the null or the full model as a base model, makes each pair under consideration nested (Liang 

et al., 2008, Guo and Speckman, 2009). 

If we chose as the base the model null; Μ null , under equation (4.1), σ 2 or τ is the only 

common parameter between all models. A simplification adopted by Fernandez et al., 2001, Liang 

et  al.,  2008, Bottolo and Richardson, 2010 and others,   occurs by assuming a centering of the 

covariates, so that 1' X γ=0γ . Then, the intercept β0 can be considered as a common parameter 

between  any  model Μ γ and Μ null and  can  be  treated  in  the  same  way  as τ . The  above 

scheme leads to the following optional form of Zellner's g-prior

                                                    
βγ∣τ , γ~N p0γ , g τ−1Χ γ

' X γ
−1

β0, τ∣γ~τ−1                                         (5.12). 

            Under (4.12) and centered covariates the marginal likelihood can be analytically computed 

as
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                                      f  y∣γ , g = Γ ν−1/ 2
π n−1n

∥y−y∥
1g n−1− pγ /2

[1g 1−R γ
2]n−1 /2 ,                     (5.13)

where Rγ
2 is the coefficient of determination of candidate model Μ γ .

The resulting Bayes factor, used for comparisons between Μ γ and Μ null can be obtained as a 

function of Rγ
2 and g  

                                                        BF γ , null=
1 g n− pγ−1 /2

[1g 1−Rγ
2]n−1 /2 .                                         (5.14) 

Using similar arguments, see Liang et al., (2008) for details, if we consider the full model

Μ full as a base for comparisons, Bayes factors can be obtained, as

                                          BF γ , full=1 g −n− p−1 /2[1g
1−R full

2

1−Rγ
2 ]

n−pγ−1/2

.                         (5.15)

5.3.3 Selecting g

5.3.3.1 Fixed values 

As discussed in section 5.3.1, the choice of g quantifies the amount of subjectivity in the 

analysis and in case of uninformative prior over models, it actually controls model selection. In 

general,  as pointed out in George and Foster (2000), a choice of larger values of g , leads to 

models  with  fewer  parameters  and  large  coefficients.  On  the  other  hand,  smaller  values  are 

associated to a selection of saturated models with small values of coefficients. Moreover, as stated 

in Liang et al., (2008), g acts as a dimensionality penalty and specific fixed choices of g , have 

been studied and introduced in relation to information criteria, such as BIC.

A popular choice in case of prior ignorance, is setting g=n. Such a selection, retain the 

spirit  of  unit  information  priors  of  Kass  and  Wassermann  (1995)  and  corresponds  to  prior 

distribution that adds information equal to one observation in the posterior analysis (Fernandez et 

al., 2001). Besides that, by setting g=n , a strong connection between BIC and the log posterior 

f γ∣y  is obtained. In Chapter 2 we discussed that BIC derives as a large sample approximation 

of  the  log  transformed posterior  of  model Μ γ and  penalizes  model  complexity by adding  in 

deviance measure a penalty term equal to pγ log n

                                                      BIC γ=Cnlog RSS γpγ log n                                    (5.16),

where C is a common constant over all candidate models.

A similar expression of the log transformed posterior of model Μ γ is obtained, under the unit 

information prior and a uniform distribution over model space. 

                                         −2log f γ∣y=const.nlog RSS γ pγ log n1                       (5.17).
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The penalty term in (5.16) is replaced by pγ log n1 , depicting the influence of one additional 

informational unit added by the prior (Ntzoufras, 2009 p. 96-98).

Other recommendations for a fixed-valued g, include

• g=pγ
2 , introduced by Foster and George (1994), connecting the g-prior with the risk 

inflation criterion (RIC) 

• g=max n , pγ
2 , namely the benchmark prior, introduced by Fernandez et al., (2001), 

combining BIC and RIC (BRICK)

• g=log n3 , which asymptotically mimics the Hanna-Quinn criterion.

 5.3.3.2 Empirical Bayes methods  

 Under  the null  baseline model  approach, Liang et  al.,  (2008) examine the influence of 

selecting a fixed value for g , and focus on two undesirable issues that arise. In case of prior 

ignorance, selecting large values for g  imply an uninformative prior over parameter space. Such 

a choice, though,  activates the Lindley's paradox.  Supposing a fixed value for n and pγ , Bayes 

factor, as derived in (4.14), always favors the null model, irrespective of the evidence provided by 

the data; i.e when g∞ , BF γ , null0 . In addition, in case of a perfectly fitted model, so that

Rγ
21 ,  a  fixed  choice  of g does  not  allow  Bayes  factor  go  to  infinity,  activating  the 

information  paradox.  In  other  words,  for  a  constant  value  of g , n and pγ ,  as Rγ
21 , 

Bayes factor converges to a constant BF γ , null1g n− pγ−1 /2 .      

 Obviously, a preselected value of g , is related to some undesirable issues and as stated in 

Celeux et al., (2010), although they rely on asymptotic properties, they heavily depend on sample 

size, involve a degree of arbitrariness and, thus, could be characterized as unsatisfactory choices. In 

an attempt to provide with more objective approaches, George and Foster (2000) and Clyde and 

George (2000), exploited empirical Bayes methods to develop a common or global data dependent 

estimate of g .

The  global  empirical  Bayes  approach assumes  a  common value  of g over  all  models, 

which  is  estimated  by maximizing  the  marginal  likelihood p  y∣γ , g  , as  an  average  over  all 

models.

                                       g EBG=argmax
g0

=∑
γ

p γ  1g 1− pγ−1 /2

[1g 1−R γ
2]n−1/ 2 ,                                 (5.18)

  A related approach is  the local  empirical Bayes estimate,  introduced by Hansen and Yu 

(2001). It assumes varying data-based estimates of g for each model, obtained by

                                                          gγ
EBL=max {F γ−1,0}                                                     (5.19),

where F γ is the common F statistic for testing the hypothesis H 0: βγ=0 ; 
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                                                          F γ=
R γ

2/ pγ

1−Rγ
2/n−1− pγ

                                              (5.20).

 The resulting Bayes factor is obtained below

                                          BF γ , null=
[1Rγ

2 n−1−pγ/ pγ−Rγ
2]n− p γ−1 /2

[1n−1−pγRγ
2/ pγ 1−Rγ

2]n−1 /2                             (5.21). 

      

5.3.3.3 Full Bayes approach 

The information paradox is resolved through empirical Bayes methods; see Liang et  al., 

(2008). However,  model selection consistency,  as considered in Fernandez et  al.,  (2001), is not 

guaranteed. In other words, the selection of the true model is not asymptotically certain by EB 

approaches.  Besides that, empirical methods stand in contrast to fully Bayesian approaches and are 

often criticized for using data-based estimates for prior quantities. Instead of fixing the unknown 

parameter, the most natural alternative to deal with the uncertainty of g , is to assign a weakly 

informative  hyperprior  over g (Zellner,  1986).   The  most  popular  choices  that  have  been 

developed in literature, as fully Bayesian approaches, are the Zellner-Siow prior (Zellner and Siow, 

1980) and the hyper-g family of priors, introduced by Liang et al., (2008).

The Zellner-Siow prior, has been developed, exploiting Jeffreys' (1961) work on hypothesis 

testing of univariate normal means. Jeffreys proposed using a Cauchy prior instead of a Normal, to 

avoid inconsistency related to Bayes factors. Following Jeffreys, Zellner and Siow (1980), proposed 

a hierarchical scheme for comparing nested models in linear regression, based on the multivariate 

Cauchy distribution. Utilizing the same strategy described in 4.3.2, they proposed a flat prior on 

parameters that appear in both models under comparison and a Cauchy prior on the remaining ones. 

Representing  the  Zellner-Siow  priors  as  a  scale  mixture  of  Gaussian  random  variables,  the 

recommended prior on βγ can be expressed as

                                             π  βγ∣τ ∝∫N β γ∣0 , gτ−1 Χ γ
' Χ γ

−1 π g dg                              (5.22),

with an Inverse Gamma assigned on g , so that

                                                                 g~IG 1
2

, n
2                                                        (5.23).

 The main drawback of the Zellner-Siow priors is that marginal likelihoods are intractable 

and can be evaluated using for instance a Laplace approximation (Liang et al., 2008). 

Liang et al., (2008), introduced a broader class of hyper-g priors as an alternative to Zellner-

Siow prior, given by 

                                                           π g =
β0−2

2
1g−β 0/2                                               (5.24). 
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The prior (5.24) is a proper distribution for β02. For β0=2 can be considered both as 

a reference and a Jeffreys prior, while a reasonable choice include a range of 2β0≤4. Further 

details and arguments on hyper parameter specification can be found in Liang et al. (2008).

In  contrast  to  Zellner-Siow priors,  the  hyperprior  of  Liang et  al.,  allows  a  closed  form 

expression  for  marginal  likelihood  and  posterior  quantities  of  interest,  even  though  it  requires 

evaluation  of  the  Gaussian  hypergeometric  function,  which  is  proved  to  be  problematic  under 

certain  circumstances.  However,  the  Zellner-Siow prior  results  in  a  consistent  model  selection 

procedure under the null model, as considered in Fernandez et al. (2001). The property does not 

hold for the hyper-g family of priors even though Liang et al. (2008) proved that the null model  

remains the highest probability model. This occurs due to the fact that Zellener-Siow prior allows to 

depend on the sample size n . Motivated by that, Liang et al., proposed a sample-size dependent 

modification, namely the hyper-g/n prior

                                                         π g =
β0−2

2n 1 g
n 

−β0 /2

                                              (5.25).

The hyper-g/n prior is model selection consistent, but it does not allow analytical evaluation 

of posterior quantities. Computation of these quantities require a Laplace approximation, provided 

by Liang et al., (2008).

5.3.3.4 Discussion and Further Extensions of g-priors.

Uncertainty over g has been encountered through the three different ways described in 

this  section.  Liang  et  al.,  (2008),  either  by considering  their  theoretical  properties  in  terms  of 

consistency and through simulation  studies,  showed that  fully  Bayesian  approaches  outperform 

selecting  a  fixed  value  of g or  estimating  from the  data  using  empirical  Bayes  approaches. 

Choices of a fixed value, are strongly related to the information paradox and are not model selection 

consistent, except from those that correspond to the BIC or BRIC approach. Empirical methods, 

apart from being partially Bayesian although they do not activate the information paradox, they do 

not guarantee model selection consistency. Setting a prior over g resolve both the information 

paradox  and  model  selection  inconsistency.  Besides  that  they  retain  prediction  consistency,  a 

property which is occasionally preferred.   

Apart  from Liang et  al.,  (2008), several authors have presented work based on g-priors, 

either  proposing  modifications  of  traditional  Zellner's  prior  or  studying  theoretical  aspects  on 

existing extensions. Some of this work include Marin and Robert (2007), who propose a continuous 

improper  prior on hyperparameter  g,  without  considering consistency properties,  Krishna et  al., 

(2009), who provide with a modification of the prior covariance set up in Zellner's g-prior, Guo and 

Speckman (2009), who examine consistency issues of several g-prior settings, including improper 
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prior  of  Marin and Robert  (2009),  Celeux et  al.,  (2010) who compare g-prior  modifications  to 

frequentist approaches in case of p=n , Bottolo and Richardson (2010), Maruyama and George 

(2010), Yang and Song (2010) and Baragatti and Pommeret (2012) who adopt g-prior to cope with 

'large p small n' problem, and Fouskakis et al (2009, 2015, 2015).  As stated in the introduction of  

the current  chapter,  Zellner's  g-prior  was also adopted by Clyde et  al.,  (2011) to develop their 

Bayesian adaptive sampling scheme (BAS), which will be discussed in section 5.4 that follows, 

exploiting the computational simplifications that it provides.

5.4 Bayesian Adaptive Sampling

5.4.1 Introduction

BAS was introduced as an alternative to traditional MCMC algorithms, making use of an 

innovative  model  search  algorithm  which  performs  sampling  without  replacement  from  the 

posterior distribution.  The key idea is described in Clyde et al., (2009); MCMC algorithms are 

designed to sample with replacement from finite model spaces.  Then, by counting the visits on 

each model; i.e. by counting the MCMC model frequencies, each model is a posteriori ranked or 

selected as the highest probability one. In case of conjugate analysis or in general, in cases where 

marginal likelihoods are analytically tractable, the latter can replace MCMC model frequencies to 

produce marginal likelihoods and provide comparisons through models under consideration. In that 

sense, re-sampling over model space, does not actually provide with any additional information and 

sampling over model spaces without replacement could provide with a more efficient strategy for 

model search.

The algorithm's main features can be summarized in five bullets:

• BAS samples models without replacement. 

• It fully enumerates model space, for a moderate number of covariates p≈30 . 

• It  provides  perfect  samples,  under  the  condition  of  orthogonality  or  of  limiting 

dependence, when the number of covariates is larger and sampling is unavoidable.

• It  samples  near  the  the  median  probability  model,  providing  that  the  sampling 

probabilities are the marginal inclusion probabilities.

• Estimates marginal inclusion probabilities adaptively, as they are not known beforehand.

5.4.2 Sampling strategy

According to Clyde et al., (2011) the simplest way to perform sampling without replacement 

over the model space Γ ,  is by assigning equal probabilities to all  models and draw a simple 
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random sample of size T . However, such an approach, does not account for the magnitude of 

each model, leading to samples that may exclude models of high posterior probabilities, especially 

in cases of carelessly selected sample size T . 

 In  contrast  to  simple  random sampling  without  replacement,  they  suggest  a  probability 

proportional to size sampling scheme (PPS). The idea behind PPS sampling, is to use an auxiliary 

variable as a size measure for each model, in order to improve sampling accuracy and efficiency. 

The efficiency of such a  sampling scheme,  strongly depends on the constructed size variables, 

which should be correlated to the variable of interest. In this context, Clyde et al., (2011) propose 

that sampling variables should be correlated to the product of the marginal likelihood and the prior 

probability of each model. Once a model is sampled, to ensure that the latter will not be re-sampled, 

its probability is set to zero and the remaining sampling probabilities are re-caclulated, under the 

restricted set of unselected models. 

In  order  to  perform  PPS  sampling,  one  needs  to  fully  specify  the  initial  sampling 

probabilities over all models in advance and at each step re-normalize them under the restricted 

sampling frame. Such an exhaustive enumeration is avoided by representing the model space by a 

binary tree. The following scheme represents the model space in case of 3 candidate variables.

Each node represents a candidate variable. Beginning from top,  the first  node represents

γ1 . followed  by  the  remaining  2  candidates.  Each  branch  corresponds  to  the  inclusion  or 

exclusion of each candidate. Specifically, the left branch corresponds to the exclusion of a variable

γ j=0. while the right one represents the inclusion of a variable γ j=1. Each path leads to a 

unique model, with 23=8 endpoints, which represent all candidate models. Under this scheme, 

after a model is selected, its contribution is removed and as the algorithm proceeds the sampling 

distributions are re-calculated only once a node is sampled. In other words, the update of sampling 
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probabilities, is limited to the ones getting involved in the path being sampled at each step. The 

sampling probabilities that do not include the sampled model remain the same as in the previous 

iteration. 

5.4.3 BAS notation and implementation

Following  Clyde  et  al.,  (2011),  assume  that  under  BAS,  a  model  is  sampled  without 

replacement using probabilities proportional to a probability mass function f γ  . Since γ j is 

binary, we can consider that the pmf used to sample models, is a product Bernoulli distribution with 

probability ρ j , so that

                                                       f γ =∏
j=1

p

ρ j
γ j1− ρ j

1−γ j                                                 (5.26).

Let, γ j denote the subset of indicators {γk} for k j and γ≥ j the corresponding subset for

k≥ j . Then, the pmf f γ  can be expressed as a product of univariate conditional distributions 

as above:

                                                           f γ =∏
j=1

p

f γ j∣γ j                                                     (5.27).

Using (4.26), f γ  becomes

                                                  f γ∣ρ=∏
j=1

p

ρ j∣ j
γ j 1− ρ j∣ j

1−γ j                                            (5.28),

where ρ is the sequence of all {ρ j∣ j} formed as ρ j∣ j= f γ j=1∣γ j. The latter corresponds 

to the partial conditional distribution of inclusion of variable j. given the inclusion history of past 

sampled variables 1,2 ,... , j−1.

Then the algorithm consists of the following steps:

• At time t=0 , initialize with starting sampling probabilities ρ=ρ0 .

• For t=1,2 ,... ,T , consider the partition of model space Γ between Γ t
 s  , the set of all 

previously selected models and Γ t
u  the set of the remaining unselected models, so that

Γ={Γ t
s , Γ t

u}  

• Sample a model γ t with γ j
 t∣γ j

t  ~Ber  ρ j∣ j
 t−1 .

• Set Γ t
s =Γ t−1

s  ∪{γ t} .  

• For j=1,2 ,... , p update the conditional probabilities ρ j∣ j
 t−1 over the path of the binary 

tree of model γ t with

                                   ρ j∣ j
 t  =

ρ j∣ j
t−1− f γ ≥ j

 j∣γ j
 t  , ρ t−1  γ j

 t 

1− f  γ≥ j
 t  ∣γ j

t  , ρt−1
                                         (5.29),
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where

                           f γ≥ j
 t ∣γ j

 t  , ρ t−1=∏
k= j

p

 ρk∣k
 t−1γ k

t 

1− ρk∣k
t−11−γk

t

                                (5.30).

• For all other paths let 

                                                      ρ j∣ j
 t  =ρ j∣ j

 t−1                                                           (5.31).

Under equation (4.29), BAS ensures two things; either that all models will be sampled in

T=2p iterations and also that at  each step, f γ∣ρ t  assigns zero probability to past 

sampled  models γ∈Γ t
s  while  for  unselected  models Γ t

s =Γ t−1
s  −{γ t} assigns 

probability equal to one. The proof is provided in the supplement of Clyde et al., (2011) in 

the Supplemental Materials  

5.4.4 Approximation and adaptivity

A main problem in the algorithm described above, is setting the starting values ρ0 that 

initialize  model  sampling.  In  practice,  the  partial  conditional  posterior  distribution

ρ j∣ j= f γ j=1∣γ  j is unknown and evaluating them  in advance, is computationally exhaustive. 

Clyde  et  al.,  (2011)  suggest  using  marginal  inclusion  probabilities p γ j=1∣y instead,  as  an 

approximation  of  the posterior  model  probabilities.  In  particular  a  first  order  approximation of 

posterior model probabilities in terms of Kullback-Leibler divergence can be obtained, using the 

current  estimates  of   the  marginal  inclusion  probabilities,  at  each  step  of  the  algorithm,  tas 

described in equation (4.26); see proof 2 at the Supplemental Material of Clyde et al (2011). So,  

ideally,  the rationale of the algorithm, is to utilize past sampled models, in an adaptive way, to  

update marginal inclusion probabilities of each candidate at each step, through 

                                                      ρ j∣ j
 t  =

∑
γ∈Γ t

s 

p  y∣γ  p γ γ j

∑
γ∈Γ t

s 

p  y∣γ p γ 
                                                (5.32), 

and decide weather a candidate should be included in the model or not.

Updating  the  sampling  inclusion  probabilities  at  each  step  of  the  algorithm,  is 

computationally expensive,  since it  also requires re-normalization over the sampling probability 

sequence,  to  avoid  duplications  over  past  sampled  models.  Clyde  et  al.,  (2011)  suggest  a 

compromise, estimating the marginal inclusion probabilities periodically, every U iterations, so 

that there is a significant change and the update is meaningful. They also claim that the update of

ρ0 should not be implemented too early, so that estimates do not receive zero probability. So, 
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they  propose  shrinking ρ j∣ j
 t  away  from zero  or  one,  so  that  all  models  receive  a  possitive 

probability. Taking into account the above, the proposed algorithm, proceeds using the following 

steps:

• Set ε and δ=ε . Set T≤2 p . 

• At time t=0 , initialize with starting sampling probabilities ρ=ρ0 .

• For t=1,2 ,... ,T , consider the partition of model space Γ between Γ t
 s  , the set of all 

previously selected models and Γ t
u  the set of the remaining unselected models, so that

Γ={Γ t
s , Γ t

u}  

• Sample a model γ t with γ j
 t∣γ j

t  ~Ber  ρ j∣ j
 t−1 .

• Set Γ t
s =Γ t−1

s  ∪{γ t} .  

• For j=1,2 ,... , p update the conditional probabilities ρ j∣ j
 t−1 over the path of the binary 

tree of model γ t with

                                           ρ j∣ j
 t  =

ρ j∣ j
t−1− f γ ≥ j

t  γ j
t

1− f γ≥ j
t 

                                                  (5.33),

where

                                    f γ≥ j
 t =∏

k= j

p

 ρk∣k
 t−1 γk

t

1−ρ k∣k
 t−11−γk

t

                                        (5.34).

• For all other paths let 

                                                      ρ j∣ j
 t  =ρ j∣ j

 t−1                                                           (5.35).

• If t mod U=0 , estimate marginal inclusion probabilities 

                                            p j
t =
∑
i−1

t

p  y∣γi  p  γ i γ j
i 

p  y∣γ i p γ i
                                             (5.36).

• If ∥ρ j∣ j
t  − p j

t ∥2/ pδ  

◦ Set ρ j∣ j
0 =min max ε , p j

 t , 1−ε 

◦ Re-normalize probabilities  using equations (4.33) and (4.34) and sample with a new

ρ j∣ j
0 .  
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5.4.5 Estimation of initial values

The  last  step  to  complete  the  algorithm is  to  set  the  initial  sampling  probabilities.  As 

discussed  in  Clyde  et  al.,  (2011),  under  the  assumption  of  orthogonality,  marginal  inclusion 

probabilities,  can be evaluated prior to  sampling.  In the general case,  these quantities,  must be 

estimated. The authors provide with three different choices on how this could be achieved. Initially, 

they propose using ρ j∣ j
0 =1/2 corresponding to simple random sampling without replacement.  

The second approach suggests estimating ρ j∣ j
0 through p-values, based on the work of 

Selke  et  al.,  (2001),  on  p-value  calibration  for  testing  precise  hypothesis.  The  methodology 

proceeds as above:

• Fit the full model to the data.

• For j=1,... , p test H 0j : β j=0 versus H 1j : β j≠0 ,  given  that  the  remaining 

coefficients β j , i=1,... , j−1, j1,... , p , are not zero.

• Calculate p , p-values, namely p j
v .

• Set ρ j∣ j
0 =1/{1−ep j

vlogp j
v} if p j

v1/e≈0.37

• Otherwise set ρ j∣ j
0 =1/2 .    

The third option that is highly recommended in case of highly correlated data, is to estimate 

initial  values  of  marginal  inclusion  probabilities  through  MCMC  frequencies.  The  suggested 

estimate is calculated as

                                                         ρ j∣ j
0 =∑

γ∈A
γ j p

MC γ∣y                                                    (5.37),

where A corresponds to the unique sampled models and pMC γ∣y is estimated as in equation 

(3.7), Section 3.2.3.
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Chapter 6: Illustration and examples of the BAS package 

6.1 Introduction

In the final chapter of the current dissertation, the performance of the BAS algorithm will be 

tested. We will explore the ability of the algorithm to uncover the true model, for the case of linear 

regression. The main area of focus will be the effect of the coefficient vector's prior, on posterior 

results. Both independent and correlated simulated data sets will be used. At first, we will study the 

performance of the BAS algorithm in case of a relatively small model space using 10 candidates. 

Recall that, when this is the case, BAS ensures that model space will be fully explored. The second 

part will deal with a larger model space of 30 candidates, where sampling is required. Before that, 

there will be a brief presentation of the main formulas that are included in the BAS package.

 

6.1 The BAS package in R

The BAS package version 1.0, has been developed by Clyde and Littman (2005) as a tool 

for Bayesian model selection in R and implements the BAS algorithm that has been described in 

chapter 4. 

The main formula that applies the aforementioned algorithm, is the the bas.lm() function. It 

performs  random or  deterministic  sampling  without  replacement  in  model  space  using  a  prior 

distribution  on  coefficients  that  belong  to  Zellner's  g-prior  family for  p>15.  For  p<15 it  fully 

enumerates  the  marginal  likelihoods  of  all  models  under  consideration  (equal  to  2p)  Possible 

choices include Zellner's g-prior, Zellner-Siow Cauchy prior, hyper-g prior of Liang et al. (2008), 

Local and Global empirical Bayes estimates of g and AIC or BIC, as model selection criteria. To 

initialize  the  algorithm  BAS  provides  with  two  options  on  the  starting  marginal  inclusion 

probabilities. One can assign either equal probabilities on each predictor or can use the p-value 

calibration  of  Selke  et  al.  (2001),  as  described  in  section  4.4.5.  There  is  also  a  possibility  of  

preselecting the number of models that the algorithm will sample and the frequency of sampling 

probabilities  updates.  Results  can  be  updated  using  a  different  prior,  without  rerunning  the 

algorithm, through the update.bma() function.

Considering the results, the  summary.bma()  function, by default,  prints the top 5 highest 

posterior probability models with their corresponding Bayes factor, posterior probability, R square, 

dimension  and  logarithm  of  the  marginal  likelihood.  The  marginal  posterior  summaries  of 

coefficients can be obtained by the coef.bma() function, which prints their posterior means, standard 

deviations and marginal inclusion probabilities, under Bayesian Model Averaging. The Posterior 

distributions of coefficients can also be graphically displayed using the plot.coef.bma() function.  
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The  BAS  package  includes  two  more  plotting  functions,  namely  image.bma()  and 

plot.bma().  The first function displays a heat map of the model space sampled under BAS, while 

plot.bma()  returns four plots; the residuals vs fitted values plot, the cumulative model probability 

plot,  the models' log marginal likelihood vs model complexity and a graph of marginal inclusion 

probabilities.

Finally,  fitted  values  and  predictions  can  be  calculated  through  fitted.bma()  and 

predict.bma() functions. The fitted.bma() function returns fitted values under the highest probability 

model, the median probability model and the posterior means of BMA using the top m sampled 

models.  predict.bma()  calculates the predicted values using BMA. The last function which deals 

with predictions,  is  the  cv.summary.bma() function.  It  provides  with  out  of  sample  predictions, 

given the output of predict.bma() function, returning the average prediction error form the highest 

probability model and the average prediction error under BMA. 

6.2 Examples

6.2.1 Priors used in BAS

Under the data that will be generated and the prior model distribution, we applied the BAS 

algorithm under the priors choices that can be implemented using BAS package and have been 

discussed in detail, in chapter 4, section 4.3. In specific, we applied the following prior choices: 

• AIC: The Akaike Information Criterion,

• BIC: The Bayesian Information Criterion,

• g-prior: The prior of Zellner with g=100 corresponding to the Unit information prior, of 

Kass and Wassermann (1995)

• ZS-Null: The prior of Zellner & Siow, utilizing the null model as a base for comparison, 

Zellner and Siow (1980)

• ZS-Full: The prior of Zellner & Siow, utilizing the full model as a base for comparison, 

Zellner and Siow (1980)

• Hyper-g:  The prior  of Liang et  al.  (2008),  with a=3 as recommended in Clyde et  al 

(2011),

• Hyper-g-Laplace:  The  prior  of  Liang  et  al.  (2008),  using  a  Laplace  approximation  to 

estimate g,

• EB-Local: The local empirical Bayes estimate of g, of Hansen and Yu (2001)

• EB-Global: The global empirical estimate of g, of George and Foster (2000) and Clyde and 

George (2000)
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6.2.2 Full enumeration – Simulated Data

In  our  first  example,  we  used  simulated  data  with p=10 candidates  and n=150.

observations.  The data  set  was split,  so that  the first  100 observations  were used to  apply the 

algorithm and the last 50 observations were used to perform out of sample predictions. All columns 

of the design matrix were generated from independent N 0,1 random variables. Τhe parameters 

were,  deliberately,  chosen  to  be  relatively high,  to  ensure  that  will  be  included  in  the  model, 

independently  of  the  prior  coefficients  setup.  In  particular,  we  chose

α=4, β=3.2,−1.05,0,0 ,0 ,0 ,0 ,0 ,0.5,0 and φ=1. To  complete  the  prior  specification,  the 

prior distribution over model space was set to be Uniform, using p M γ=
1
2 p .

Posterior Results

All methods achieved to detect the true model as the maximum a posteriori model (MAP), 

with  the  inclusion  probabilities  of  the  first  2  candidates  to  be  equal  to  1.  The  corresponding 

probability of the ninth candidate was estimated to be approximately 0.99. However, as noticed, the 

'AIC' and 'ZS-Full' methods, seem less confident in detecting the true model. Their corresponding 

model's posterior probability appeared to be significantly low; 0.07 and 0.17, in contrast to all other 

methods,  the  value  of  which,  fluctuated  around  0.5.  In  addition,  the  above  methods  assigned 

significantly higher marginal inclusion probabilities to the variables excluded from the model. In 

contrast, the highest model posterior probabilities, corresponded to the Empirical Bayes methods 

(approximately 0.57), which also computed the lowest values of marginal inclusion probabilities for 

the excluded candidates.

Regarding the marginal posterior means of each coefficient under BMA, the intercept was 

estimated to be 3.97 with a marginal posterior standard deviation around 0.11. The closest estimates 

of the effects  were provided by the 'g-prior'  method,  while  'AIC'  and 'BIC',  provided the most 

distant ones. The 'BIC' method, seemed to be related to higher estimates of  marginal posterior  

standard deviations for each coefficient under BMA.

Finally,  concerning  the  Average  Prediction  Error  (APE),  the  'AIC',  'BIC'  and  'ZS-Full' 

methods, provided with the lowest values of both in sample and out of sample APE under MAP 

(1.053645 and 0.9247008).  The corresponding highest  values  were detected under  the 'g-prior'. 

'AIC' prior, also provided with the smallest in sample APE under BMA (1.046514) but the largest 

out of sample APE under BMA (0.9348658). The highest ones were computed under the 'hyper-g' 

and 'BIC' prior, respectively. Summary tables of the results are provided in Appendix A.
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Consistency of results

In order to examine the stability of the results, we repeated the experiment by generating 

100 samples as described above and applied the algorithm in each sample. The first two candidates, 

X 1 and X 2 were  included  in  the  selected  model  in  all  samples  with  an  average  marginal 

inclusion  probability  1.  The  ninth  candidate  was  selected  99  times,  with  an  average  marginal 

inclusion probability 0.97, except from the 'AIC' and 'ZS-Full' case where it was also found in the  

selected model in all samples. 

Under 'AIC' prior, the algorithm failed to detect the true model as the HPM, in 76 samples 

As it can be seen in table 1, 'AIC' prior and tends to select overfitted models and is related to higher 

rate of selecting candidates with zero effect, as significant ones. The 'ZS-Full' method also seems 

inefficient, however the probability of selecting the true model is increased, in contrast to 'AIC' 

(57%). The most effective methods are the 'ZS-Null', 'Hyper-g', 'Hyper-g Laplace', 'EB-Local' and 

'EB-Global',  which succeeded to uncover  the true model in 89 samples,  with average posterior 

probability of the model selected to be on average 0.5.  
Table 6.1: Frequencies of candidate spotted as important for 100 simulations

  AIC BIC g-prior
 (g=n)

ZS-
Null

ZS-
Full

Hyper-g
 (a=3)

hyper-g 
Laplace
 (a=3)

EB 
Local

EB 
Global

Intercept 100 100 100 100 100 100 100 100 100
x1* 100 100 100 100 100 100 100 100 100
x2* 100 100 100 100 100 100 100 100 100
x3 15 3 3 3 5 3 3 3 3
x4 19 4 3 3 10 2 2 2 3
x5 12 2 1 0 4 0 0 0 0
x6 17 4 3 1 9 1 1 1 1
x7 19 5 3 3 9 3 3 3 3
x8 17 4 4 2 11 2 2 2 2
x9* 100 99 99 99 100 99 99 99 99
x10 14 1 0 0 4 0 0 0 0

count 34 78 83 89 57 89 89 89 89
MPP 0,062 0,344 0,358 0,494 0,136 0,501 0,499 0,504 0,51
SD 0,012 0,078 0,076 0,111 0,032 0,111 0,111 0,112 0,116
log 

marginal 
likelihood

-230,3 -235,4 115,4 116,5 10,7 115 115 118 118

SD log 7,738 7,513 8,684 9,605 0,98 9,571 9,571 9,68 9,682
count: no of times that the true model was detected as the HPM
MPP: average posterior probability of the true model over 100 samples 
SD HPM: average standard deviation of true model's posterior probability over 100 samples
log marginal likelihood: average log marginal likelihood of the true model
SD log: average sd of log maginal likelihood of the true model

Regarding  the  marginal  posterior  inclusion  probabilities  of  zero  effect  candidates,  most 

methods estimate them, on average, at around 0.1. Under 'ZS-Full', their estimates were increased at 

0.25, while using the 'AIC' prior the estimates are even higher, reaching 0.4. As it can be seen in 
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graph 1, the variability of zero effect candidates is considerably increased for the 'AIC' and 'ZS-Full' 

priors, in contrast to other. However, a closer look in the 9th candidate, depicts an opposite attribute. 

The distribution of the marginal inclusion probability under the aforementioned priors has less low 

extreme values (graph 6.1).  

Considering  the  posterior  means  of  the  coefficients X 1 , X 2 and X 9 ,  'AIC'  prior 

provided with the closest estimates, under BMA. Their distribution, though do not seem to alter 

considerably (graph 6.2). On the other hand, the distribution of the zero effect candidates is found to 

be of greater variance (graph 6.3).

Finally, as far as APE is concerned, 'AIC' and 'ZS-Full' prior are related to smallest in sample 

APE and out of sample APE under BMA. However, the corresponding out of sample APE for HPM, 

can be seen that is higher, in contrast to other priors. 

                                               Figure 6.1: Marginal inclusion probabilities. (100 samples)
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 Figure 6.2: Posterior means – Non-zero coefficients. (100 samples)

                  Figure 6.3: Posterior means – Zero coefficients. (100 samples)
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  Figure 6.4: In sample & Out of sample Average Prediction Error. (100 samples)

6.2.3 Adaptive Sampling -  Simulated Data

In the second example, we explored the performance of the algorithm using simulated data 

with p=30 and n=15, so that all calculated results may be obtained by sampling the model 

space. The first 26 columns of the model space were generated using independent N 0,1. The 

last four candidates were generated under the following correlation matrix
 Table 6.2: Correlation matrix

x27 x28 x29 x30
x1 0,993 -0,033 -0,007 0,080
x2 -0,061 0,794 0,069 -0,065
x3 0,055 0,059 0,730 -0,191
x4 -0,050 -0,132 -0,205 0,689

The regression parameters were chosen as 

a=3.2, β=2.3,−1.5,0 ,0 ,0 ,0 ,0 ,0,0 ,0 ,0 ,0 ,0 ,0,0 ,0 ,0 ,−0.8,0 ,0 ,0 ,0 ,0 ,0,0 ,0 ,0 ,0 ,0 ,−0.48 '

and φ=1. We ran the algorithm for 215 iterations and the updating step for sampling inclusion 

probabilities was chosen to be 500. At first, the performance of the algorithm was explored under 

Uniform initial probabilities and afterwards the p-value calibration was examined. 

Similarly to the first example, the true model was successfully identified as the MAP, under 

all priors except from the AIC and ZS-Full prior, which tend to select models of considerably higher 
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dimensions. In particular, for the top 20 ranked models, independently from the initial sampling 

probabilities choice, while all other priors selected models of 5 or 6 candidates, under AIC and ZS- 

Full prior, the number of significant candidates, varied between 7 and 11. (Table 6.3)
Table 6.3: Dimension of the top 20 sampled models (constant included)

Model 
Rank

Initial probabilities: Uniform Initial probailities: p-value calibration
AIC BIC ZS-

Null
ZS-
Full g-prior hyper-

g Laplace EB-
Local

EB-
Global AIC BIC ZS-

Null
ZS-
Full g-prior hyper-

g Laplace EB-
Local

EB-
Global

1 8 5 5 8 5 5 5 5 5 8 5 5 8 5 5 5 5 5

2 9 6 5 7 5 5 5 5 5 9 6 5 7 5 5 5 5 5

3 10 6 6 7 6 6 6 6 6 10 6 6 7 6 6 6 6 6

4 9 5 6 9 6 6 6 6 6 9 5 6 9 6 6 6 6 6

5 7 6 6 8 6 6 6 6 6 7 6 6 8 6 6 6 6 6

6 9 7 6 9 6 6 6 6 6 9 7 6 9 6 6 6 6 6

7 10 6 6 8 7 6 6 6 6 10 6 6 8 7 6 6 6 6

8 7 7 6 10 6 6 6 6 7 7 7 6 10 6 6 6 6 7

9 9 6 6 9 7 6 6 6 6 9 6 6 9 7 6 6 6 6

10 8 6 6 8 6 6 6 7 6 8 6 6 8 6 6 6 7 6

11 10 6 7 9 6 7 7 6 6 10 6 7 9 6 7 7 6 6

12 9 6 6 8 6 6 6 6 7 9 6 6 8 6 6 6 6 7

13 10 6 6 9 6 6 6 6 6 10 6 6 9 6 6 6 6 6

14 8 6 7 8 6 7 7 7 6 8 6 7 8 6 7 7 7 6

15 9 6 6 8 6 6 6 6 6 9 6 6 8 6 6 6 6 6

16 8 6 6 8 6 6 6 6 6 8 6 6 8 6 6 6 6 6

17 9 6 6 9 6 6 6 6 6 9 6 6 9 6 6 6 6 6

18 10 6 6 9 6 6 6 6 6 10 6 6 9 6 6 6 6 6

19 11 6 6 6 6 6 6 6 6 11 6 6 6 6 6 6 6 6

20 9 6 6 9 6 6 6 6 6 9 6 6 9 6 6 6 6 6

 

Graphically, as it can be seen from the top 100 models sampled (see Figure 6.5 -6.6), each 

prior's results, does not seem to alter between the two alternatives of initial sampling probabilities. 

AIC  and  ZS-Full,  tend  to  additionally  support  the  selection  of  the  subset  of  non  significant 

covariates {x6 , x11 , x14 }. Moreover  seem  more  confident  concerning  the  identification  of 

candidate {x30} , as significant one (selected in all 100 models).   
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Figure 6.5: Top 100 models sampled (Initial Probabilities: Uniform)

     Figure 6.6: Top 100 models sampled (P-Value calibration)

As mentioned in the previous paragraph, the results, are not affected by the two alternative 

choices of initial sampling probabilities. The main difference between the two methods lies in the 

reduction of the number of updates that the p-value calibration needs to reach the final model. In 

particular,  in  most  cases,  the  latter  required  almost  half  updates  to  select  the  final  model. 

Interestingly, under AIC, g-prior and EB-Global prior required a larger number of updates.  
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Table 6.4: Marginal Inclusion Probabilities
Initial probabilities: Uniform Initial probailities: p-value calibration

AIC BIC ZS-
Null ZS-Full g-prior hyper-g Laplac

e
EB-

Local
EB-

Global AIC BIC ZS-Null ZS-Full g-prior hyper-g Laplace EB-Local EB-
Global

const 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,000

 x1* 1,000 0,998 0,996 0,999 0,997 0,996 0,996 0,996 0,996 0,9998 0,9978 0,9954 0,9995 0,9961 0,9955 0,9956 0,9954 0,9959

 x2* 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000

x3 0,172 0,085 0,076 0,180 0,086 0,075 0,076 0,075 0,076 0,1815 0,0906 0,0752 0,1063 0,0823 0,0767 0,0778 0,0752 0,0760

x4 0,322 0,314 0,305 0,350 0,314 0,315 0,312 0,306 0,312 0,3308 0,2735 0,3041 0,2284 0,3323 0,3122 0,3098 0,3203 0,3090

x5 0,105 0,067 0,056 0,183 0,064 0,060 0,057 0,057 0,059 0,1257 0,0626 0,0573 0,0765 0,0641 0,0584 0,0576 0,0576 0,0572

x6 0,906 0,340 0,256 0,793 0,288 0,253 0,256 0,256 0,256 0,9555 0,3493 0,2541 0,8296 0,2875 0,2535 0,2580 0,2586 0,2590

x7 0,094 0,066 0,057 0,158 0,064 0,058 0,058 0,057 0,058 0,1085 0,0647 0,0572 0,0967 0,0639 0,0579 0,0583 0,0577 0,0572

x8 0,083 0,061 0,057 0,062 0,063 0,058 0,057 0,058 0,057 0,1027 0,0652 0,0574 0,0630 0,0641 0,0578 0,0575 0,0568 0,0574

x9 0,170 0,093 0,084 0,165 0,093 0,084 0,084 0,082 0,083 0,1833 0,0939 0,0830 0,1669 0,0938 0,0834 0,0824 0,0830 0,0832

x10 0,151 0,071 0,060 0,081 0,068 0,061 0,060 0,061 0,062 0,1297 0,0684 0,0611 0,1479 0,0680 0,0625 0,0614 0,0619 0,0613

x11 0,840 0,262 0,198 0,604 0,229 0,198 0,197 0,201 0,201 0,8732 0,2653 0,1988 0,6955 0,2236 0,2011 0,2017 0,1969 0,2017

x12 0,101 0,068 0,060 0,113 0,069 0,062 0,060 0,061 0,061 0,1043 0,0653 0,0587 0,1188 0,0682 0,0612 0,0620 0,0610 0,0605

x13 0,096 0,059 0,056 0,075 0,061 0,055 0,055 0,056 0,056 0,0652 0,0616 0,0552 0,1103 0,0611 0,0564 0,0558 0,0549 0,0549

x14 0,554 0,209 0,164 0,518 0,185 0,164 0,165 0,164 0,162 0,5542 0,2202 0,1619 0,5425 0,1875 0,1612 0,1650 0,1671 0,1638

x15 0,121 0,064 0,059 0,160 0,065 0,058 0,059 0,059 0,058 0,0906 0,0642 0,0583 0,1306 0,0643 0,0591 0,0590 0,0571 0,0582

x16 0,095 0,062 0,055 0,086 0,062 0,055 0,056 0,055 0,055 0,0727 0,0604 0,0546 0,0768 0,0609 0,0550 0,0557 0,0553 0,0548

x17 0,366 0,086 0,072 0,239 0,085 0,072 0,072 0,072 0,073 0,3737 0,0925 0,0721 0,3146 0,0787 0,0722 0,0727 0,0727 0,0736

 x18* 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000

x19 0,063 0,063 0,058 0,069 0,064 0,059 0,058 0,058 0,058 0,0912 0,0654 0,0583 0,0932 0,0631 0,0578 0,0589 0,0572 0,0579

x20 0,085 0,060 0,056 0,063 0,063 0,055 0,057 0,056 0,056 0,1109 0,0612 0,0565 0,0744 0,0616 0,0565 0,0565 0,0559 0,0556

x21 0,501 0,149 0,116 0,281 0,139 0,119 0,117 0,117 0,120 0,5032 0,1374 0,1174 0,3908 0,1398 0,1200 0,1176 0,1164 0,1191

x22 0,293 0,106 0,089 0,170 0,104 0,093 0,092 0,090 0,092 0,2428 0,1066 0,0899 0,2411 0,1028 0,0917 0,0904 0,0936 0,0903

x23 0,074 0,065 0,059 0,068 0,066 0,060 0,061 0,060 0,061 0,0578 0,0697 0,0596 0,1297 0,0686 0,0610 0,0602 0,0592 0,0607

x24 0,428 0,108 0,092 0,207 0,101 0,089 0,092 0,091 0,089 0,4507 0,1149 0,0902 0,3240 0,1015 0,0897 0,0918 0,0874 0,0923

x25 0,351 0,100 0,083 0,231 0,095 0,084 0,085 0,083 0,084 0,3998 0,1011 0,0835 0,2947 0,0988 0,0839 0,0848 0,0829 0,0864

x26 0,058 0,057 0,053 0,055 0,059 0,054 0,056 0,053 0,054 0,1095 0,0590 0,0531 0,0535 0,0594 0,0536 0,0543 0,0536 0,0538

x27 0,076 0,065 0,062 0,098 0,068 0,062 0,062 0,062 0,063 0,1157 0,0662 0,0633 0,0976 0,0694 0,0629 0,0620 0,0622 0,0618

x28 0,110 0,067 0,061 0,131 0,067 0,061 0,062 0,061 0,061 0,0781 0,0682 0,0606 0,1026 0,0674 0,0610 0,0617 0,0594 0,0607

x29 0,065 0,065 0,059 0,117 0,064 0,059 0,058 0,057 0,059 0,0881 0,0636 0,0591 0,0957 0,0656 0,0580 0,0580 0,0572 0,0580

 x30* 0,989 0,827 0,798 0,981 0,808 0,788 0,792 0,798 0,791 0,9892 0,8655 0,7981 0,9901 0,7903 0,7913 0,7942 0,7846 0,7939

Dimension 8 5 5 8 5 5 5 5 5 8 5 5 8 5 5 5 5 5

posterior 
probability 0,001 0,025 0,057 0,001 0,030 0,056 0,056 0,057 0,049 0,001 0,026 0,057 0,001 0,030 0,056 0,056 0,057 0,049

R2 0,920 0,912 0,912 0,920 0,912 0,912 0,912 0,912 0,912 0,920 0,912 0,912 0,920 0,912 0,912 0,912 0,912 0,912

In sample 
APE 

(HPM)
0,946 0,990 0,990 0,946 0,990 0,990 0,990 0,990 0,990 0,946 0,990 0,990 0,946 0,990 0,990 0,990 0,990 0,990

In sample 
APE 

(BMA)
0,935 0,974 0,976 0,942 0,975 0,976 0,976 0,976 0,975 0,935 0,974 0,976 0,942 0,975 0,976 0,976 0,976 0,975

Out of 
sample 
APE 

(HPM)

1,080 1,039 1,040 1,080 1,043 1,041 1,041 1,040 1,041 1,080 1,039 1,040 1,080 1,043 1,041 1,041 1,040 1,041

Out of 
sample 
APE 

(BMA)

1,058 1,042 1,046 1,050 1,048 1,046 1,046 1,046 1,046 1,058 1,042 1,046 1,050 1,048 1,046 1,046 1,046 1,046

Dimension: Dimension of HPM
posterior probability: Posterior Probability of HPM
R2: R2 of HPM
In sample APE (HPM): In sample average prediction error under HPM
In sample APE (BMA): In sample average prediction error under BMA
Out of sample APE (HPM): Out of sample average prediction error under HPM
Out of sample APE (BMA): Out of sample average prediction error under BMA

 

Both AIC and ZS-Full method, are related to lower posterior probability of selecting the 

HPM and the lowest in sample prediction error; both under MAP and BMA. Considering the out of 

74



sample prediction error, the lowest values were calculated under the BIC prior. Finally, regarding 

the marginal inclusion probabilities the main difference lies in candidate {X 30},  for which both 

AIC and ZS-Full prior supports higher values and equal to 1, while the rest of the methods support 

its selection with values approximately 0.8. (Summary results regarding the coefficients estimates 

can be found in Appendix B.) 

  

Consistency of results

Similarly to the first example we repeated the algorithm for 100 times for each prior, in 

order to examine the stability of results. Due to lack of computational power and restricted memory 

capacity, we adopted a different approach regarding the number of sampled models that , however 

approaches  the  one  applied  above.  In  particular,  we  performed  the  algorithm by reducing  the 

number  of  iterations  in 210 , but  we increased  the  number  of  updates,  by choosing  a  step  of 

updating every 100 iterations.  

Each candidate included in the true model was sampled as a significant one for over than 90 

samples,  with  an  average  marginal  inclusion  probability  to  be  approximately  equal  to  one, 

independently of the initial sampling probability choice. As in the full enumeration example, AIC 

and ZS-Full method, both under Uniform initial sampling probabilities and p-value calibration, tend 

to  include  insignificant  candidates  more  times  in  the  MAP model,  tend  to  select  models  of 

significantly higher dimension and as it can be seen in graph 6 and 7, the distribution of candidates' 

marginal  posterior  probabilities  appear  to  be  of  greater  variance.  Regarding  the  subset  of  true 

candidates,  all  methods,  independently  from  the  prior  set  up,  select {x2, x18} , with  marginal 

inclusion probability equal to one and with zero variance. On the other hand, the marginal inclusion 

probability  distribution  of  the  subset {x1, x30} , displays  a  significant  number  of  low  extreme 

values, indicating a slight instability in selecting candidates of higher correlations or lower effects. 

Especially for the subset {x1, x27} , which is constructed to be highly correlated, the estimates of 

their posterior means appear to be of considerably greater variance (approximately 0.5), something 

that is also depicted in graph 6.9 and 6.10. (Summary posterior tables are provided in Appendix C)
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Table 6.5: Number of inclusion for each variable
Initial probabilities: Uniform Initial probailities: p-value calibration

AIC BIC g-
prior

ZS-
Null

ZS-
Full

hyper-
g

Lapla
ce

EB-
Local

EB-
Globa

l
AIC BIC g-prior ZS-Null ZS-Full hyper-g Laplace EB-

Local
EB-

Global

x1* 97 95 98 94 97 96 93 94 93 98 95 93 95 96 96 96 95 95

x2* 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

x3 28 4 3 2 20 1 0 1 1 25 5 3 1 22 2 2 2 1

x4 15 8 5 3 15 4 5 3 4 19 8 6 5 15 4 4 4 5

x5 16 4 2 2 12 3 3 3 4 15 5 4 4 12 4 4 3 4

x6 21 6 3 4 18 4 4 3 4 18 6 5 5 15 4 5 5 5

x7 20 7 6 5 17 6 6 6 7 20 9 6 5 17 5 6 7 5

x8 24 7 6 6 19 4 6 4 4 24 9 6 5 17 6 4 4 4

x9 21 3 2 1 14 1 1 2 1 19 5 1 1 15 1 1 1 1

x10 18 3 2 2 17 2 2 1 2 17 5 2 2 12 3 2 3 2

x11 23 4 1 2 14 2 2 2 3 22 6 3 2 16 2 2 3 4

x12 22 5 4 3 18 3 4 3 3 22 6 4 3 17 3 3 3 3

x13 25 2 0 0 21 1 2 1 1 25 3 3 0 18 1 2 1 0

x14 21 7 5 5 15 4 4 3 4 19 8 7 7 16 5 5 5 6

x15 24 7 5 3 23 4 4 5 4 24 9 5 5 17 5 5 4 5

x16 15 6 4 5 14 4 4 4 5 16 6 5 5 9 5 4 4 5

x17 30 6 3 3 29 3 4 3 3 30 8 3 3 26 3 3 3 3

x18* 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

x19 20 2 1 1 16 1 1 2 1 20 4 1 1 14 1 1 1 1

x20 24 4 1 1 13 2 1 1 2 19 7 3 2 13 2 3 2 2

x21 29 2 2 2 23 2 2 2 2 27 3 2 2 20 2 2 2 2

x22 21 5 5 2 14 3 5 4 3 18 6 5 4 12 3 4 4 5

x23 17 2 1 2 11 1 2 1 2 16 2 2 1 12 2 2 2 2

x24 29 3 2 1 20 2 1 2 1 27 3 2 2 23 3 2 2 2

x25 23 3 3 3 19 2 3 4 2 26 5 4 3 17 2 4 3 2

x26 24 3 0 0 16 0 1 1 1 17 4 0 1 19 1 1 0 1

x27 19 10 8 8 17 5 9 8 9 22 9 9 7 15 7 8 9 8

x28 25 5 2 2 14 2 2 2 3 21 4 3 2 17 3 3 3 3

x29 21 3 3 3 16 3 3 3 3 16 3 3 3 14 3 3 3 3

x30* 98 95 94 96 96 95 95 96 95 98 95 95 95 97 95 96 95 96

mpp 0,016 0,060 0,067 0,091 0,016 0,089 0,088 0,089 0,084 0,010 0,055 0,061 0,084 0,009 0,083 0,082 0,085 0,079

mpp sd 0,0049 0,021 0,023 0,037 0,006 0,036 0,035 0,035 0,030 0,002 0,019 0,021 0,033 0,002 0,034 0,034 0,035 0,033

median 
dim 10 6 5 5 9 5 5 5 5 10 6 5 5 9 5 5 5 5

dim sd 2,275 1,338 1,140 0,925 1,977 1,018 1,065 1,029 1,092 2,273 1,361 1,136 1,037 2,014 1,009 1,056 1,046 1,041

mpp:             Average Model's Poterior Probability

mpp sd:         Std Deviation of Average Model's Posterior Probability

median dim:  HPM Median Dimension

dim sd:          Std Deviation of HPM Average Dimension
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Figure 6.7: Marginal Inclusion Probabilities (Initial Probabilities: Uniform)

 Figure 6.8: Marginal Inclusion Probabilities (P-Value calibration)
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Figure 6.9: BMA Posterior Means of coefficients (Initial Probabilities: Uniform)

Figure 6.10: BMA Posterior Means of coefficients (P-Value calibration)
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Finally, in Table 6.6 and 6.7 we present the in sample and out of sample average prediction 

error, both under HPM and BMA. A first remark is that there is no obvious difference in APE 

between the initial sampling probability choice. As it can be noticed, BMA provides lower average 

APE, both in sample and out of sample. Looking deeper in differences between prior set up, AIC 

prior and ZS-Full method, provides with the lowest average in sample APE (<0.9), while under all 

other priors the latter fluctuates around 0.95.  
Table 6.6: In sample APE

HPM BMA
Uniform P-value Calibration Uniform P-value Calibration

Average Std Deviation Average Std Deviation Average Std Deviation Average Std Deviation

AIC 0,881 0,075 0,881 0,076 0,875 0,074 0,874 0,075

BIC 0,938 0,080 0,938 0,080 0,923 0,077 0,923 0,077

g-prior 0,946 0,079 0,946 0,079 0,930 0,074 0,929 0,075

ZS-Null 0,951 0,078 0,950 0,078 0,934 0,074 0,933 0,074

ZS-Full 0,894 0,076 0,890 0,075 0,886 0,075 0,883 0,074

hyper-g 0,950 0,078 0,951 0,078 0,934 0,074 0,934 0,074

Laplace 0,950 0,078 0,950 0,078 0,934 0,074 0,933 0,074

EB-L 0,951 0,078 0,950 0,078 0,934 0,074 0,933 0,074

EB-G 0,948 0,078 0,949 0,078 0,932 0,074 0,932 0,074

On the  other  hand,  average  out  of  sample  APE seems to  follow a completely opposite 

pattern. AIC and ZS-Full priors are associated to higher out of sample APE (around 1.13). The 

corresponding average for all other priors does not exceed the value of 1.075, the lowest value of 

which is provided by Local Empirical Bayes method.

Table 6.7: Out of  sample APE
HPM BMA

Uniform P-value Calibreation Uniform P-value Calibreation

Average Std Deviation Average Std Deviation Average Std Deviation Average Std Deviation

AIC 1,145 0,131 1,144 0,133 1,138 0,131 1,139 0,130

BIC 1,075 0,134 1,077 0,135 1,071 0,129 1,072 0,131

g-prior 1,067 0,131 1,067 0,130 1,062 0,128 1,063 0,128

ZS-Null 1,061 0,129 1,062 0,130 1,058 0,128 1,059 0,127

ZS-Full 1,130 0,128 1,138 0,128 1,123 0,131 1,128 0,128

hyper-g 1,063 0,129 1,063 0,131 1,059 0,128 1,059 0,128

Laplace 1,064 0,130 1,063 0,130 1,061 0,129 1,059 0,128

EB-L 1,063 0,128 1,063 0,129 1,060 0,128 1,060 0,128

EB-G 1,064 0,132 1,064 0,130 1,061 0,128 1,060 0,128
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Chapter 7: Discussion-Further Research

7.1 Conclusion

In the current thesis we attempted a review of basic concepts and tools for Bayesian model 

selection, focusing on the Bayesian adaptive sampling algorithm of Clyde et al (2011).  Differences 

between  classical  and  Bayesian  approaches  were  presented,  while  more  focus  is  given  in  the 

Bayesian variable selection methods. Bayesian adaptive sampling (BAS) of Clyde et al. (2011) was 

fully reviewed explaining the key difference between the sampling strategies of traditional MCMC 

algorithms and its performance under different kinds of priors was explored.

For the small  sample case,  where full  enumeration is allowed, Bayesian model selection 

using several priors was applied both in one sample of 100 observations and 100 samples in order to 

explore the stability of results for each prior. The general picture obtained is that under AIC and ZS-

Full prior, the models selected are overfitted. Under AIC, the true model was selected only on 30% 

of cases, while for ZS-Full the corresponding rate was increased at 60%. The rest of the methods 

using other prior schemes, identified the true model in 90% of cases. Naturally, AIC and ZS-Full 

priors  are  related  to  higher  marginal  inclusion  probabilities  for  zero  coefficients.  For  AIC,  the 

average inclusion probability for non zero coefficients was 40%, for ZS-Full prior was 20%, while 

for other priors was 10%. Following this result, AIC and ZS-Full methods are more confident in 

selecting non-zero coefficients of lower values. Finally,  on average, AIC and ZS-Full prior was 

related to lower in-sample APE and out-of-sample APE under BMA, but greater out-of-sample APE 

under MAP 

For the large sample case,  were sampling is  required,  we performed the algorithm in a 

similar  way as  above.  By controlling  for  the  number  of  iterations  and  the  updating  step,  the 

performance  of  each  prior  was  explored,  using  both  initial  sampling  probabilities  and  p-value 

calibration.  A  first  conclusion  reached,  is  that  the  algorithm  performed  almost  identically 

irrespective from the initial probabilities set up. Naturally, the only difference lied in the fact that 

under p-value calibration, the algorithm converged faster. Regarding the performance of each prior, 

the results did not differentiate much in comparison to the small sample case. The main difference 

observed was the incapability of the AIC and ZS-Full method to detect the true model in all cases. 

The  latter  consistently  selected  models  of  higher  dimension  as  the  Highest  probability  model. 

Finally, a last remark that observed is related to the APE. In particular, while for AIC and ZS-Full 

prior in-sample APE was lower, out-of-sample APE for both methods, was greater.
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7.2 Further Research

Apart from the cases described in the current dissertation, the performance of BAS needs to 

be explored further, especially in case of large samples, where sampling is required. The optimal 

number of iterations that provides with trustworthy results is a field that could easily be identified, 

while the effect of the updating step could be examined in detail for each prior set up. A second 

point that worth examining in detail, is the ability of the algorithm to detect non zero coefficient 

candidates of different values for small effects, for instance below 0.6. In the current thesis we 

observed that for a value of 0.5 the candidate was supported in the highest probability model as 

significant one under AIC and ZS-Full prior, however more detailed simulation studies for such 

cases could provide a deeper insight and a more detailed review for each prior. Similarly, detailed 

simulation studies  could provide with results  for  the performance of  the  algorithm in  cases  of 

different values in correlated data. By doing so, for each prior, it could be explored under which 

cases the algorithm is able to distinguish a true candidate from a correlated one. Moreover, the 

algorithm should be tested in different kinds and of varying complexity real data.

Apart  from deepening in  its  performance,  BAS should be  examined in comparison to  existing 

Bayesian algorithms that are already widely applicable. Its extension in generalized linear models 

should be deeply explored both in simulated and real data. Variants of g-priors for GLM that have 

been introduced lately in the literature (Fouskakis et al., 2009, Gupta and Ibrahim, 2009, Bove & 

Held, 2009, Hanson et al., 2014)  might be explored in conjuction with BAS. The large p small n 

problem,  could  also  be  an  area,  in  which  BAS could  be  examined,  adopting  for  instance  the 

proposed generalization of Zellner's g-prior of Maruyama and George (2011), that allows for p>n. 

Finally,  non-local  priors,  introduced  by  Johnson  &  Rossell  (2010)  and  adopted  for  Bayesian 

variable selection in high dimensional problems (Johnson and Rossell, 2012) could be an alternative 

to the current used family of priors and could be used to extend BAS.
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Appendix A: Full Enumeration (One Sample)

 
Table A1: marginal posterior inclusion probabilities

AIC BIC ZS-Null ZS-Full g-prior (g=n) hyper-g (a=3) hyper-g 
Laplace (a=3) EB Local EB Global

Intercept 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000
x1* 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000
x2* 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000
x3 0,323 0,118 0,085 0,224 0,114 0,084 0,085 0,083 0,079
x4 0,284 0,097 0,070 0,194 0,096 0,070 0,070 0,069 0,065
x5 0,403 0,158 0,113 0,283 0,150 0,112 0,113 0,111 0,106
x6 0,358 0,135 0,096 0,249 0,129 0,096 0,097 0,095 0,091
x7 0,270 0,091 0,066 0,185 0,091 0,066 0,066 0,065 0,061
x8 0,270 0,091 0,066 0,185 0,091 0,066 0,066 0,065 0,061
x9* 1,000 0,998 0,996 0,998 0,996 0,996 0,996 0,996 0,996
x10 0,280 0,096 0,069 0,191 0,095 0,069 0,069 0,068 0,064
model's 
posterior 
probability

0,070 0,431 0,559 0,167 0,441 0,561 0,559 0,566 0,573

log marginal
 likelihood -239,484 -244,694 101,092 11,716 101,426 99,676 99,634 102,471 102,450

in sample 
APE

HPM 1,054 1,054 1,054 1,054 1,054 1,054 1,054 1,054 1,054
BMA 1,047 1,051 1,051 1,049 1,051 1,052 1,051 1,051 1,055

out of sample 
APE

HPM 0,925 0,925 0,927 0,925 0,930 0,927 0,927 0,927 0,927
BMA 0,935 0,928 0,930 0,930 0,934 0,930 0,930 0,929 0,929

Table A2: marginal posterior means of coefficients under BMA

AIC BIC ZS-Null ZS-Full g-prior (g=n) hyper-g (a=3) hyper-g 
Laplace (a=3) EB Local EB Global true value

Intercept 3,972 3,972 3,972 3,972 3,972 3,972 3,972 3,972 3,972 4,000
x1* 3,310 3,312 3,296 3,311 3,280 3,294 3,294 3,299 3,299 3,200
x2* -1,093 -1,090 -1,084 -1,092 -1,079 -1,084 -1,084 -1,085 -1,085 -1,050
x3 -0,025 -0,010 -0,007 -0,018 -0,009 -0,007 -0,007 -0,007 -0,006 0,000
x4 0,013 0,004 0,003 0,009 0,004 0,003 0,003 0,003 0,003 0,000
x5 -0,044 -0,017 -0,012 -0,031 -0,016 -0,012 -0,012 -0,012 -0,012 0,000
x6 0,035 0,014 0,010 0,025 0,013 0,010 0,010 0,010 0,009 0,000
x7 0,001 -0,001 -0,001 0,000 -0,001 -0,001 -0,001 -0,001 -0,001 0,000
x8 0,001 0,001 0,000 0,001 0,001 0,000 0,000 0,000 0,000 0,000
x9* 0,541 0,530 0,524 0,535 0,523 0,523 0,523 0,524 0,524 0,500
x10 -0,011 -0,004 -0,003 -0,007 -0,004 -0,003 -0,003 -0,003 -0,002 0,000

Table A3: marginal posterior standard deviations of coefficients 
under BMA

AIC BIC ZS-Null ZS-Full g-prior (g=n) hyper-g 
(a=3)

hyper-g 
Laplace 

(a=3)
EB Local EB Global

Intercept 0,108 0,108 0,108 0,108 0,108 0,108 0,108 0,108 0,108
x1* 0,122 0,124 0,123 0,122 0,123 0,122 0,122 0,122 0,122
x2* 0,112 0,114 0,113 0,112 0,113 0,112 0,112 0,112 0,112
x3 0,038 0,073 0,046 0,039 0,062 0,045 0,039 0,039 0,039
x4 0,033 0,069 0,040 0,034 0,056 0,039 0,034 0,034 0,033
x5 0,047 0,084 0,057 0,048 0,073 0,055 0,048 0,048 0,048
x6 0,044 0,082 0,054 0,046 0,071 0,052 0,045 0,046 0,045
x7 0,027 0,057 0,033 0,028 0,047 0,032 0,028 0,028 0,027
x8 0,025 0,054 0,031 0,026 0,044 0,031 0,026 0,026 0,026

x9* 0,128 0,127 0,126 0,128 0,127 0,128 0,128 0,128 0,128
x10 0,032 0,066 0,039 0,033 0,055 0,038 0,033 0,033 0,033

83



Appendix B: Posterior Tables – Adaptive Sampling (One Sample)

Table B1: Marginal Posterior means

Initial probabilities: Uniform Initial probailities: p-value calibration
TRUE AIC BIC ZS-Null ZS-Full g-prior hyper-g Laplace EB-L EB-G AIC BIC ZS-Null ZS-Full g-prior hyper-g Laplace EB-L EB-G

const 3.2 3,6 3,6 3,6 3,6 3,6 3,6 3,6 3,6 3,6 3,6 3,6 3,6 3,6 3,6 3,6 3,6 3,6 3,6
x1* 2.3 2,2 2,2 2,2 2,2 2,2 2,2 2,2 2,2 2,2 2,2 2,2 2,2 2,2 2,2 2,2 2,2 2,2 2,2
x2* -1,5 -1,6 -1,6 -1,6 -1,6 -1,6 -1,6 -1,6 -1,6 -1,6 -1,6 -1,6 -1,6 -1,6 -1,6 -1,6 -1,6 -1,6 -1,6
x3 0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0
x4 0 -0,1 -0,1 -0,1 -0,1 -0,1 -0,1 -0,1 -0,1 -0,1 -0,1 -0,1 -0,1 0,0 -0,1 -0,1 -0,1 -0,1 -0,1
x5 0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0
x6 0 -0,2 -0,1 -0,1 -0,2 -0,1 -0,1 -0,1 -0,1 -0,1 -0,2 -0,1 -0,1 -0,2 -0,1 -0,1 -0,1 -0,1 -0,1
x7 0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0
x8 0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0
x9 0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0

x10 0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0
x11 0 0,2 0,1 0,0 0,1 0,0 0,0 0,0 0,0 0,0 0,2 0,1 0,0 0,1 0,0 0,0 0,0 0,0 0,0
x12 0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0
x13 0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0
x14 0 0,1 0,0 0,0 0,1 0,0 0,0 0,0 0,0 0,0 0,1 0,0 0,0 0,1 0,0 0,0 0,0 0,0 0,0
x15 0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0
x16 0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0
x17 0 0,1 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,1 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0
x18* -0,8 -0,9 -0,8 -0,8 -0,9 -0,8 -0,8 -0,8 -0,8 -0,8 -0,9 -0,8 -0,8 -0,9 -0,8 -0,8 -0,8 -0,8 -0,8
x19 0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0
x20 0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0
x21 0 0,1 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,1 0,0 0,0 0,1 0,0 0,0 0,0 0,0 0,0
x22 0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0
x23 0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0
x24 0 0,1 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,1 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0
x25 0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,1 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0
x26 0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0
x27 0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0
x28 0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0
x29 0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0
x30* -0,48 -0,3 -0,3 -0,3 -0,3 -0,3 -0,3 -0,3 -0,3 -0,3 -0,3 -0,3 -0,3 -0,4 -0,3 -0,3 -0,3 -0,3 -0,3

Table B2:Standard Deviation of Marginal Posterior means

Initial probabilities: Uniform Initial probailities: p-value calibration
     AIC    BIC  ZS-Null   ZS-Full  g-prior     hyper-g  Laplace     EB-L EB-G      AIC    BIC  ZS-Null  ZS-Full   g-prior     hyper-g     Laplace     EB-L    EB-G

const 0,10 0,10 0,10 0,10 0,10 0,10 0,10 0,10 0,10 0,10 0,10 0,10 0,10 0,10 0,10 0,10 0,10 0,10
x1* 0,28 0,26 0,28 0,30 0,28 0,28 0,28 0,27 0,28 0,33 0,27 0,28 0,31 0,28 0,28 0,28 0,28 0,28
x2* 0,11 0,11 0,11 0,12 0,11 0,11 0,11 0,11 0,11 0,11 0,11 0,11 0,11 0,11 0,11 0,11 0,11 0,11
x3 0,05 0,04 0,04 0,05 0,04 0,04 0,04 0,04 0,04 0,05 0,04 0,04 0,04 0,04 0,04 0,04 0,04 0,04
x4 0,12 0,17 0,17 0,13 0,17 0,17 0,17 0,17 0,17 0,12 0,16 0,17 0,11 0,17 0,17 0,17 0,18 0,17
x5 0,04 0,03 0,03 0,05 0,03 0,03 0,03 0,03 0,03 0,04 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03
x6 0,13 0,12 0,11 0,14 0,11 0,11 0,11 0,11 0,11 0,12 0,12 0,11 0,14 0,11 0,11 0,11 0,11 0,11
x7 0,04 0,03 0,03 0,05 0,03 0,03 0,03 0,03 0,03 0,04 0,03 0,03 0,04 0,03 0,03 0,03 0,03 0,03
x8 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03
x9 0,05 0,04 0,04 0,05 0,04 0,04 0,04 0,04 0,04 0,05 0,04 0,04 0,05 0,04 0,04 0,04 0,04 0,04

x10 0,05 0,04 0,03 0,04 0,04 0,03 0,03 0,03 0,03 0,05 0,04 0,03 0,05 0,04 0,03 0,03 0,03 0,03
x11 0,13 0,10 0,09 0,13 0,09 0,09 0,09 0,09 0,09 0,12 0,10 0,09 0,13 0,09 0,09 0,09 0,09 0,09
x12 0,04 0,03 0,03 0,04 0,03 0,03 0,03 0,03 0,03 0,04 0,03 0,03 0,04 0,03 0,03 0,03 0,03 0,03
x13 0,04 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,04 0,03 0,03 0,03 0,03 0,03
x14 0,10 0,07 0,07 0,10 0,07 0,07 0,07 0,07 0,07 0,10 0,08 0,07 0,11 0,07 0,07 0,07 0,07 0,07
x15 0,04 0,03 0,03 0,05 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,04 0,03 0,03 0,03 0,03 0,03
x16 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03
x17 0,10 0,04 0,04 0,08 0,04 0,04 0,04 0,04 0,04 0,10 0,05 0,04 0,09 0,04 0,04 0,04 0,04 0,04
x18* 0,12 0,11 0,11 0,12 0,11 0,11 0,11 0,11 0,11 0,11 0,11 0,11 0,12 0,11 0,11 0,11 0,11 0,11
x19 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03
x20 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,04 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03
x21 0,11 0,07 0,06 0,09 0,07 0,06 0,06 0,06 0,06 0,11 0,07 0,06 0,10 0,07 0,06 0,06 0,06 0,06
x22 0,08 0,05 0,05 0,06 0,05 0,05 0,05 0,05 0,05 0,07 0,05 0,05 0,07 0,05 0,05 0,05 0,05 0,05
x23 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,04 0,03 0,03 0,03 0,03 0,03
x24 0,10 0,05 0,05 0,07 0,05 0,05 0,05 0,05 0,05 0,10 0,05 0,05 0,09 0,05 0,05 0,05 0,05 0,05
x25 0,08 0,04 0,04 0,07 0,04 0,04 0,04 0,04 0,04 0,09 0,04 0,04 0,08 0,04 0,04 0,04 0,04 0,04
x26 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,04 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03
x27 0,26 0,24 0,26 0,28 0,26 0,26 0,26 0,25 0,26 0,32 0,25 0,26 0,29 0,26 0,26 0,26 0,26 0,25
x28 0,06 0,05 0,05 0,07 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,06 0,05 0,05 0,05 0,05 0,05
x29 0,03 0,03 0,03 0,04 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03
x30* 0,13 0,17 0,18 0,13 0,18 0,18 0,18 0,18 0,18 0,13 0,16 0,18 0,12 0,18 0,18 0,18 0,18 0,18

84



Appendix C: Posterior Tables – Adaptive Sampling (100 Samples)

Table C1: Average Marginal inclusion Probabilities (100 samples)

Initial Probabilities: Uniform Initial Probabilities: P-value Calibration

AIC BIC g-prior ZS-Null ZS-Full hyper-g Laplace EB-Local EB-Global AIC BIC g-prior ZS-Null ZS-Full hyper-g Laplace EB-Local EB-Global

x1* 0,97 0,95 0,96 0,94 0,97 0,95 0,93 0,94 0,94 0,97 0,95 0,94 0,95 0,95 0,96 0,96 0,94 0,95
x2* 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00
x3 0,35 0,10 0,09 0,08 0,25 0,08 0,07 0,08 0,08 0,33 0,11 0,09 0,08 0,29 0,08 0,08 0,08 0,08
x4 0,23 0,12 0,11 0,09 0,22 0,09 0,10 0,09 0,10 0,26 0,11 0,11 0,10 0,22 0,10 0,10 0,10 0,10
x5 0,24 0,09 0,08 0,07 0,19 0,07 0,07 0,07 0,07 0,21 0,09 0,08 0,08 0,19 0,08 0,08 0,08 0,08
x6 0,26 0,10 0,09 0,09 0,25 0,08 0,08 0,08 0,09 0,25 0,10 0,09 0,09 0,21 0,09 0,08 0,09 0,09
x7 0,26 0,12 0,10 0,10 0,21 0,11 0,11 0,11 0,11 0,28 0,13 0,11 0,11 0,23 0,10 0,11 0,11 0,11
x8 0,30 0,12 0,11 0,10 0,24 0,10 0,11 0,10 0,11 0,31 0,13 0,12 0,11 0,24 0,11 0,11 0,11 0,11
x9 0,27 0,09 0,08 0,07 0,22 0,07 0,07 0,07 0,07 0,26 0,10 0,08 0,07 0,23 0,07 0,08 0,07 0,07

x10 0,24 0,08 0,07 0,07 0,22 0,07 0,07 0,07 0,07 0,25 0,09 0,08 0,07 0,19 0,07 0,08 0,07 0,08
x11 0,26 0,10 0,08 0,08 0,22 0,09 0,08 0,09 0,08 0,27 0,11 0,10 0,09 0,24 0,09 0,09 0,09 0,09
x12 0,28 0,11 0,09 0,09 0,23 0,09 0,09 0,09 0,08 0,28 0,11 0,10 0,09 0,23 0,09 0,09 0,09 0,09
x13 0,30 0,09 0,08 0,07 0,25 0,07 0,08 0,07 0,08 0,30 0,10 0,09 0,08 0,25 0,08 0,08 0,08 0,08
x14 0,26 0,12 0,09 0,09 0,21 0,09 0,09 0,09 0,10 0,27 0,12 0,11 0,10 0,23 0,10 0,10 0,10 0,10
x15 0,28 0,12 0,10 0,09 0,27 0,10 0,09 0,10 0,10 0,30 0,13 0,11 0,10 0,27 0,10 0,10 0,10 0,10
x16 0,22 0,10 0,09 0,08 0,21 0,08 0,08 0,08 0,08 0,23 0,09 0,09 0,09 0,18 0,09 0,08 0,09 0,09
x17 0,33 0,12 0,09 0,09 0,30 0,09 0,10 0,09 0,10 0,35 0,13 0,11 0,10 0,29 0,10 0,10 0,10 0,10
x18* 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00
x19 0,25 0,08 0,07 0,06 0,21 0,06 0,06 0,07 0,06 0,26 0,09 0,08 0,07 0,22 0,07 0,07 0,07 0,07
x20 0,27 0,09 0,08 0,07 0,20 0,07 0,07 0,07 0,07 0,24 0,09 0,09 0,08 0,21 0,07 0,08 0,07 0,08
x21 0,34 0,09 0,09 0,08 0,27 0,08 0,08 0,07 0,08 0,31 0,10 0,09 0,08 0,25 0,08 0,09 0,08 0,08
x22 0,27 0,10 0,09 0,08 0,20 0,08 0,08 0,08 0,08 0,24 0,10 0,09 0,08 0,20 0,08 0,09 0,08 0,08
x23 0,23 0,07 0,06 0,06 0,17 0,06 0,06 0,06 0,06 0,22 0,08 0,07 0,06 0,19 0,07 0,07 0,07 0,07
x24 0,31 0,11 0,09 0,09 0,28 0,09 0,08 0,08 0,08 0,33 0,11 0,10 0,09 0,29 0,09 0,09 0,09 0,09
x25 0,29 0,10 0,09 0,09 0,24 0,09 0,08 0,09 0,09 0,29 0,11 0,10 0,09 0,24 0,09 0,09 0,09 0,09
x26 0,29 0,08 0,07 0,06 0,21 0,06 0,06 0,06 0,06 0,25 0,09 0,08 0,07 0,22 0,07 0,06 0,07 0,07
x27 0,27 0,14 0,13 0,13 0,26 0,12 0,14 0,13 0,13 0,27 0,13 0,13 0,12 0,25 0,11 0,11 0,13 0,12
x28 0,30 0,10 0,08 0,08 0,20 0,08 0,08 0,08 0,09 0,27 0,10 0,09 0,09 0,23 0,08 0,08 0,08 0,09
x29 0,28 0,09 0,08 0,08 0,24 0,08 0,08 0,08 0,08 0,25 0,09 0,09 0,08 0,22 0,08 0,08 0,09 0,08
x30* 0,98 0,95 0,95 0,96 0,96 0,95 0,95 0,96 0,95 0,98 0,96 0,95 0,95 0,97 0,95 0,95 0,95 0,95

Table C2 : Std Deviation of Average Marginal inclusion Probabilities (100 samples)

Initial Probabilities: Uniform Initial Probabilities: P-value Calibration

AIC BIC g-prior ZS-Null ZS-Full hyper-g Laplace EB-L EB-Gl AIC BIC g-prior ZS-Null ZS-Full hyper-g Laplace EB-L EB-G

x1* 0,14 0,17 0,14 0,20 0,14 0,19 0,22 0,19 0,20 0,13 0,20 0,20 0,18 0,17 0,16 0,17 0,20 0,19
x2* 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00
x3 0,38 0,14 0,12 0,11 0,32 0,11 0,09 0,09 0,11 0,36 0,15 0,12 0,10 0,33 0,11 0,11 0,11 0,11
x4 0,29 0,22 0,19 0,15 0,29 0,17 0,19 0,16 0,18 0,32 0,20 0,19 0,19 0,29 0,18 0,18 0,19 0,19
x5 0,31 0,17 0,14 0,13 0,25 0,14 0,13 0,13 0,14 0,29 0,17 0,15 0,14 0,27 0,14 0,14 0,15 0,14
x6 0,35 0,18 0,14 0,14 0,31 0,14 0,13 0,12 0,15 0,33 0,17 0,15 0,15 0,30 0,14 0,14 0,15 0,15
x7 0,35 0,22 0,20 0,20 0,32 0,20 0,21 0,20 0,20 0,35 0,23 0,21 0,20 0,32 0,20 0,21 0,21 0,20
x8 0,35 0,21 0,19 0,17 0,33 0,17 0,18 0,17 0,18 0,36 0,23 0,20 0,19 0,33 0,18 0,19 0,18 0,18
x9 0,33 0,15 0,13 0,11 0,30 0,12 0,11 0,12 0,12 0,31 0,16 0,12 0,12 0,28 0,12 0,12 0,12 0,12

x10 0,31 0,15 0,12 0,13 0,29 0,12 0,13 0,12 0,13 0,32 0,16 0,14 0,13 0,28 0,13 0,13 0,13 0,14
x11 0,35 0,17 0,11 0,12 0,29 0,13 0,11 0,11 0,13 0,34 0,17 0,14 0,13 0,31 0,12 0,13 0,12 0,13
x12 0,34 0,19 0,16 0,15 0,30 0,14 0,15 0,14 0,15 0,34 0,19 0,17 0,15 0,31 0,15 0,15 0,15 0,15
x13 0,33 0,13 0,09 0,09 0,30 0,09 0,10 0,09 0,10 0,35 0,15 0,11 0,10 0,30 0,10 0,11 0,11 0,09
x14 0,35 0,21 0,16 0,16 0,29 0,15 0,15 0,15 0,17 0,34 0,21 0,18 0,17 0,31 0,16 0,16 0,16 0,17
x15 0,34 0,21 0,17 0,16 0,34 0,16 0,16 0,18 0,16 0,34 0,21 0,18 0,17 0,31 0,17 0,17 0,16 0,17
x16 0,31 0,20 0,16 0,17 0,28 0,16 0,15 0,15 0,17 0,29 0,19 0,18 0,18 0,25 0,17 0,16 0,17 0,17
x17 0,37 0,17 0,13 0,14 0,34 0,13 0,14 0,13 0,14 0,37 0,18 0,15 0,14 0,35 0,14 0,14 0,14 0,14
x18* 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00
x19 0,32 0,12 0,11 0,09 0,30 0,10 0,10 0,11 0,09 0,31 0,16 0,11 0,09 0,28 0,10 0,09 0,10 0,09
x20 0,32 0,15 0,11 0,10 0,25 0,11 0,11 0,11 0,12 0,30 0,17 0,13 0,12 0,28 0,10 0,12 0,11 0,12
x21 0,36 0,15 0,13 0,12 0,32 0,13 0,12 0,12 0,12 0,33 0,16 0,14 0,13 0,31 0,12 0,13 0,13 0,13
x22 0,33 0,18 0,17 0,15 0,27 0,15 0,15 0,15 0,15 0,31 0,19 0,16 0,16 0,27 0,15 0,16 0,15 0,16
x23 0,30 0,12 0,10 0,11 0,25 0,09 0,11 0,09 0,09 0,30 0,13 0,11 0,09 0,26 0,10 0,10 0,10 0,11
x24 0,36 0,16 0,12 0,11 0,32 0,12 0,09 0,10 0,10 0,34 0,15 0,12 0,12 0,30 0,12 0,12 0,12 0,12
x25 0,33 0,16 0,14 0,13 0,31 0,12 0,13 0,13 0,14 0,34 0,18 0,15 0,14 0,29 0,13 0,14 0,13 0,14
x26 0,35 0,12 0,09 0,07 0,29 0,07 0,08 0,09 0,09 0,33 0,15 0,11 0,09 0,29 0,09 0,09 0,08 0,09
x27 0,33 0,23 0,20 0,22 0,29 0,21 0,24 0,23 0,23 0,33 0,25 0,24 0,21 0,31 0,19 0,20 0,23 0,21
x28 0,34 0,18 0,14 0,14 0,29 0,13 0,14 0,13 0,16 0,35 0,16 0,16 0,15 0,31 0,14 0,14 0,14 0,16
x29 0,33 0,17 0,16 0,16 0,29 0,16 0,15 0,16 0,16 0,31 0,17 0,17 0,16 0,27 0,16 0,16 0,17 0,16
x30* 0,14 0,19 0,19 0,18 0,17 0,19 0,20 0,18 0,19 0,12 0,19 0,19 0,19 0,14 0,19 0,19 0,20 0,19
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Table C3: Average Posterior Means (100 samples)

Initial Probabilities: Uniform Initial Probabilities: P-value Calibration

 TRUE AIC BIC g-prior ZS-Null ZS-Full hyper-g Laplace EB-L EB-G AIC BIC g-prior ZS-Null ZS-Full hyper-g Laplace EB-L EB-G

x1* 2,3 2,2 2,2 2,2 2,2 2,2 2,2 2,1 2,2 2,2 2,3 2,2 2,2 2,2 2,2 2,2 2,2 2,2 2,2
x2* -1,5 -1,5 -1,5 -1,5 -1,5 -1,5 -1,5 -1,5 -1,5 -1,5 -1,5 -1,5 -1,5 -1,5 -1,5 -1,5 -1,5 -1,5 -1,5
x3 0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0
x4 0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0
x5 0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0
x6 0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0
x7 0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0
x8 0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0
x9 0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0

x10 0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0
x11 0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0
x12 0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0
x13 0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0
x14 0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0
x15 0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0
x16 0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0
x17 0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0

x18* -0,8 -0,8 -0,8 -0,8 -0,8 -0,8 -0,8 -0,8 -0,8 -0,8 -0,8 -0,8 -0,8 -0,8 -0,8 -0,8 -0,8 -0,8 -0,8
x19 0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0
x20 0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0
x21 0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0
x22 0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0
x23 0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0
x24 0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0
x25 0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0
x26 0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0
x27 0 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1
x28 0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0
x29 0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0
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Table C4: Std Deviation of Average Posterior Means (100 samples)

Initial Probabilities: Uniform Initial Probabilities: P-value Calibration

AIC BIC g-prior ZS-NullZS-Full hyper-gLaplace EB-L EB-G AIC BIC g-prior ZS-NullZS-Full hyper-gLaplace EB-L EB-G

x1 0,63 0,52 0,44 0,52 0,58 0,49 0,57 0,52 0,52 0,65 0,56 0,54 0,48 0,65 0,45 0,46 0,54 0,5
x2 0,17 0,13 0,12 0,13 0,15 0,12 0,12 0,12 0,13 0,17 0,13 0,13 0,13 0,16 0,12 0,12 0,12 0,13
x3 0,12 0,04 0,03 0,03 0,09 0,03 0,02 0,03 0,03 0,12 0,04 0,03 0,03 0,1 0,03 0,03 0,03 0,03
x4 0,09 0,08 0,07 0,06 0,1 0,07 0,07 0,06 0,07 0,1 0,07 0,07 0,07 0,1 0,07 0,07 0,07 0,07
x5 0,08 0,05 0,04 0,04 0,06 0,04 0,04 0,03 0,04 0,07 0,04 0,04 0,04 0,07 0,04 0,04 0,04 0,04
x6 0,08 0,05 0,04 0,04 0,08 0,04 0,04 0,03 0,04 0,08 0,05 0,04 0,04 0,08 0,04 0,04 0,04 0,04
x7 0,1 0,07 0,06 0,06 0,09 0,07 0,07 0,07 0,07 0,1 0,07 0,07 0,06 0,09 0,06 0,07 0,07 0,07
x8 0,1 0,06 0,05 0,05 0,09 0,05 0,05 0,05 0,05 0,1 0,07 0,06 0,05 0,1 0,05 0,05 0,05 0,05
x9 0,08 0,04 0,04 0,04 0,07 0,04 0,04 0,04 0,04 0,08 0,04 0,04 0,04 0,07 0,04 0,04 0,04 0,04
x10 0,08 0,04 0,04 0,04 0,07 0,04 0,04 0,04 0,04 0,08 0,05 0,04 0,04 0,07 0,04 0,04 0,04 0,04
x11 0,09 0,04 0,03 0,03 0,07 0,03 0,03 0,03 0,03 0,09 0,04 0,04 0,03 0,08 0,03 0,03 0,03 0,03
x12 0,09 0,05 0,04 0,04 0,07 0,04 0,04 0,04 0,04 0,09 0,05 0,04 0,04 0,08 0,04 0,04 0,04 0,04
x13 0,08 0,03 0,02 0,02 0,07 0,02 0,02 0,02 0,03 0,09 0,04 0,03 0,02 0,08 0,03 0,03 0,03 0,02
x14 0,09 0,06 0,05 0,05 0,08 0,05 0,05 0,05 0,05 0,09 0,06 0,06 0,05 0,09 0,05 0,05 0,05 0,05
x15 0,09 0,06 0,04 0,04 0,08 0,04 0,04 0,05 0,04 0,09 0,06 0,05 0,04 0,08 0,05 0,04 0,04 0,05
x16 0,09 0,07 0,06 0,06 0,08 0,05 0,05 0,05 0,06 0,09 0,06 0,06 0,06 0,08 0,06 0,05 0,05 0,06
x17 0,1 0,05 0,04 0,04 0,09 0,04 0,04 0,04 0,04 0,1 0,05 0,04 0,04 0,09 0,04 0,04 0,04 0,04
x18 0,12 0,11 0,11 0,11 0,12 0,11 0,11 0,11 0,11 0,12 0,12 0,11 0,11 0,12 0,11 0,11 0,11 0,11
x19 0,07 0,03 0,03 0,02 0,06 0,02 0,02 0,03 0,02 0,07 0,04 0,03 0,02 0,06 0,03 0,02 0,03 0,02
x20 0,07 0,04 0,03 0,03 0,06 0,03 0,03 0,03 0,03 0,07 0,04 0,03 0,03 0,07 0,03 0,03 0,03 0,03
x21 0,09 0,04 0,04 0,03 0,08 0,04 0,03 0,03 0,03 0,09 0,04 0,04 0,04 0,08 0,04 0,04 0,04 0,04
x22 0,08 0,06 0,05 0,05 0,07 0,05 0,05 0,05 0,05 0,08 0,06 0,05 0,05 0,07 0,05 0,05 0,05 0,05
x23 0,07 0,03 0,02 0,03 0,06 0,02 0,03 0,02 0,02 0,07 0,03 0,03 0,02 0,06 0,02 0,03 0,03 0,03
x24 0,09 0,04 0,03 0,03 0,07 0,03 0,02 0,03 0,02 0,08 0,04 0,03 0,03 0,08 0,03 0,03 0,03 0,03
x25 0,08 0,04 0,04 0,03 0,08 0,03 0,03 0,04 0,04 0,09 0,05 0,04 0,04 0,08 0,04 0,04 0,04 0,04
x26 0,08 0,03 0,02 0,02 0,07 0,02 0,02 0,02 0,02 0,08 0,03 0,02 0,02 0,07 0,02 0,02 0,02 0,02
x27 0,61 0,5 0,42 0,5 0,57 0,48 0,56 0,51 0,51 0,63 0,55 0,52 0,46 0,63 0,43 0,45 0,53 0,48
x28 0,15 0,09 0,07 0,08 0,13 0,07 0,07 0,06 0,08 0,15 0,08 0,08 0,08 0,14 0,07 0,07 0,07 0,08
x29 0,11 0,06 0,06 0,06 0,09 0,05 0,05 0,05 0,05 0,12 0,06 0,06 0,05 0,1 0,06 0,06 0,06 0,05
x30 0,14 0,14 0,14 0,13 0,14 0,14 0,14 0,13 0,14 0,13 0,14 0,14 0,14 0,14 0,14 0,14 0,14 0,14
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