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ABSTRACT

Fivos Anastasakis

Bayesian variable selection using hyper-g prior and Adaptive
sampling
June 2015

Bayesian variable selection has become an area of extensive research
through the last decades. The two main challenges that a researcher confronts,
is the specification of the prior distribution on model parameters and the
calculation of the posterior model probability which makes the evaluation of a
candidate model feasible. In linear models, popular prior choices are based on
conjugate analysis of Normal-Gamma family. Among them, alternatives based
on Zellner’s g-prior are mainly preferred, as they lead to tractable marginal
likelihoods. On the other hand, since posterior inference is related to high
dimensional integrals, Bayesian model selection became popular only after the
adoption of advanced simulation algorithms, that are used to overcome
demanding computational issues.

In the current thesis, we will attempt a review of the existing
methodologies that deal with the Bayesian model selection problem. Different
ways of estimating Bayes Factors will be covered and major MCMC based
algorithms that deal with the exploration of model space and estimation of
posterior will be presented. Emphasis will be given on Bayesian adaptive
sampling algorithm of Clyde et al. (2011) that exploits the idea of adaptive
sampling algorithms and adopts Zellner’s g-prior to perform sampling over
model space. Its performance will be explored both using small and large

simulated data.
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HEPIAHYH

d®oifog Avactacdkng

Mnevlraviy emioyn neTofintoOv pe ypRion g-prior katavoung
KOl TPOGAPUOGTIKNG OELYRATOAN YOG

Iovviog 2015

Ot pnéboodotr Mrebliovng emAoyng LeTaPANTOV anoTeA0VV TIG TEAEVTAIESG
dekaetieg €éva topuéa gvdereyovg épevvag. Ot 0VO0 GNUAVTIKOTEPEG TPOKANGELG
TOV Ol EPELVNTEG €XOLV VO OVIIUETOTMICOVV &ival M €mMAOYN NG €K TOV
TPOTEPOV KATAVOUNG TOV TOPAUETPOV TOV LOVTEAOD KOl O DVTOAOYIOHOS TNG €K
TOV VOTEPOV KATAVOUNG TOV HOVTELOL, N otola KaBioTd tkovh TNV a&loAdynon
TOV. XT0 YPOUUIKE VTodelypota, ONUOQIAEIC €MAOYEG €K TOV TPOTEP®V
koatovop®v, Poacifoviar ommv ovlvynq avdivon HEC® NG  OWKOYEVELNG
Kavovucng xatr T'apo xatavouns. EE avtdv, mpotipitéeg eVAALAKTIKEC,
BaociCovial otnv €k TV mpoTtépwv Katavour g tov Zellner, deopévov ot
Ka016To0V TOV LITOAOYIoHO TNG TEPODPLOG KATAVOUNG EPIKTN. ATO TV GAAN,
Oe00UEVOD OTL M €K TOV VOTEPOV ovumepacpatoroyia, oyetiletor pe tov
VTOAOYIGUO OAOKANPOUATOV LYNADV Olactdoewv, ot Mmebliavég pébodot
EMAOYNG  HETOPANTOV  amékTnoav  ONUOTIKOTNTO UE TNV vwoBétnon
egeowevuéveov aryopibpuov mpocopoimong, mov YPMNGIHLOTOLOVVTOL Yo VO
EEMEPAGTOVV ATOLTNTIKE VTOAOYIGTIKA TPOPATLOTA.

Ytv mapovvoa epyocio, Oa emyeipnbel pio ovackoéOTNon TOV
vapyovo®v pebodoroyidv mov oyxetifovroar pe v Mmebliovy emioyn
petafaAntov. Oo kaivebovv dtapopetikéc uéBodotl eKTiunong Tov TapAyovTa
Bayes kafwg kot Pacikoi adydpiBuot Baciopévol otnv MCMC pebodoroyia,
mov oyetiCovtal pe TNV OEyHATOANYio GTO YM®PO TOV HOVIEAOL KOL GTNV
eKTiunon g ex tov votépov katavouns. 'Epeacn Ba do0el otov alydpibuo
Mmredliovig Tpocapuootikng derypatoinyiog tov Clyde et al (2011), o omoiog
YPNOULOTOLEL TNV 10€0 TNG TPOGAPUOCTIKNG detypatoinyiog kot vioBetel v

EK TV Tpotépev Katavoury g tov Zellner yw vo wpaypatomomoet
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detypatoinyia otov ydpo tov poviélov. H emidoon tov Oa peietnBei oe

TPOGOUOIOUEVO OEOOUEVQL.
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Chapter 1 : Introduction

1.1 Purpose of the thesis

The Bayesian approach for model selection problems, unlike classical methods, attempts to
control for model and parameter uncertainty simultaneously. Implementation of model selection
from a Bayesian perspective, entails two challenging problems: prior specification and posterior
calculations. In practice, applying Bayesian methods, is associated with computationally demanding
integrals, necessary in order to evaluate candidate models. These quantities can be evaluated only
under specific cases, strongly related to the selection of the prior. Moreover, in cases of large model
spaces, where computational complexity increases, makes the evaluation of all candidates
prohibitive.

MCMC algorithms, offer a powerful tool, that helps surpass both demanding posterior
calculation difficulties through approximations and facilitates the evaluation of candidate models
through sampling over model space. An optional algorithm, namely Bayesian adaptive sampling
(BAS), that has been introduced to perform Bayesian model selection, is provided by Clyde et al
(2011). In contrast to MCMC methods, BAS performs sampling without replacement over model
space. The main argument that makes the algorithm applicable, is that when model probabilities are
tractable, visiting past sampled models is not necessary. In order to evaluate posterior probabilities
analytically, BAS is based on conjugate Bayesian analysis and adopts Zellner's g prior over
parameters. The purpose of the current thesis is to present BAS and explore its performance on

simulated data.

1.2 Structure of the thesis

Chapter 2 focuses on classical methods for model selection. Traditional hypothesis testing
for comparing models and basic model selection criteria that are commonly used in classical
approach are presented. We review the family of information criteria and distinguish their
performance based on their asymptotic properties. Basic model selection algorithms are also
presented.

The third chapter deals with the Bayesian approach. Inference based on Bayes Factor and
posterior odds is presented, focusing on computational difficulties and paradoxes related to it.
Alternatives such as Bayes Factor variants and mathematical ways of approximating it, are

reviewed. In the last section of the chapter, Monte Carlo methods of approximating Bayes Factor



are presented. We review Monte Carlo integration, Importance sampling and MCMC algorithms
introduced to deal with the specific problem.

In the fourth chapter we present existing MCMC based algorithms for model determination
that avoid the extensive enumeration of all candidate models. The first part describes methods for
variable selection, namely SSVS, KM Sampler and GVS, while the second part discusses
algorithms that directly sample from model space. Some latest advances are additionally reviewed
in the final part.

Chapter 5 focuses on the Bayesian Adaptive Sampling algorithm for variable selection and is
divided in two parts. After introducing the basic concepts of adaptivity in MCMC algorithms, we
fully review Zellner's g prior for conjugate analysis and present different variants that have been
introduced. The second part focuses on BAS algorithm. We present a full review of the algorithm,
including its sampling strategy, how is adaptive and the way is implemented in detail.

The sixth chapter provides with a review of the BAS package and its functions, that Clyde et
al (2011) developed in R, in order to implement the algorithm. The performance of the package is
also examined in small and large sample simulated data, focusing on the comparison of results

under different prior distributions that are provided by BAS package.



Chapter 2 : Classical Methods
2.1 Introduction

In classical statistics model selection issues have been studied thoroughly. In brief, there are
two major ways used for model determination : hypothesis tests and model selection criteria. In
hypothesis testing a model's performance is mainly evaluated in terms of error sums of squares
(SSError). SSError is a measure of discrepancy between the data and the model's estimation and
provides a statistic that measures the adequacy of the model (Dobson, 2002, sec 2.3.4). By
comparing the model's fit with and without a vector of variables, it is actually tested whether the
reduction in SSError is statistically significant. In order to conduct such a test, the models that are
compared must be nested; Model A is nested within model B if it derives from model B by deleting
a number of terms; in other words models A is a special case of model B (Agresti, 2002, sec 4.5.4) .
Alternatively, model comparison, even between non-nested models, can be based on model
selection criteria. They are mainly functions of the likelihood followed by an extra term, which is
used to penalize for the addition of any extra term in the equation. Especially information criteria
have become very popular and tend to replace the hypothesis tests in model comparison, due to the
fact that the latter are occasionally misused. Both significance tests and selection criteria are used as
stopping rules in stepwise algorithms. As it is implied by their name, stepwise algorithms,
sequentially fit models by adding or deleting terms in the equation. Depending on the stopping rule,
at each step, models are either sequentially tested until there is no significant improvement in fit, or
evaluated by a selected criterion until it reaches an optimal value. With the development of
computer science, these procedures have become the most widespread tool in model determination

since they can be computed automatically, easily and rapidly.
2.2 Hypothesis Testing

The general form of hypothesis testing in model selection for normal regression is

Hy:Y=Xp, +¢
H :Y=Xxp8+& *1°7F @1

As it can be seen, the model corresponding to the null hypothesis is a special case of the one in the
alternative and derives by setting a regressor coefficient or a vector of coefficients equal to zero
(f; = 0, i = g+1,.., p). Using goodness of fit statistics that are based either on maximized

likelihood or minimized SSError, it is actually tested whether the improvement in fit due to added



regressors in the full model is statistically significant. By accepting the null hypothesis, there is no
evidence of statistically significant improvement in fit by adding extra terms in the equation and
therefore the simpler model is preferable.

In linear regression applications, under the hypothesis that the reduced model fits the data
adequately and assuming that the error term is identically and independently distributed, the

hypothesis of reduced model against the full model is tested through an F test of the following form

— ( SSEReduced - SSEGeneml)/( p B q)
SSEGeneml /(n - p )

(2.2),

where n is the number of observations, p is the number of parameters of the general model and q is
the number of parameters of the reduced model. It is a log-likelihood ratio (LRT) typed test and the
sampling distribution of the statistic is F with (p-q) and (n-p) degrees of freedom, which derives as
the ratio of two chi-square distributions. In particular, the numerator is chi-squared distributed with
p-q degrees of freedom, while the denominator is chi-squared distributed with n-p degrees of
freedom (Dobson, 2002, sec 6.2.4). Further details on LRT tests can be found in Dobson, 2002, sec
5.5.

Two special cases of the F test is the F to enter statistic and the lack of fit test. The F to enter
statistic tests for the statistical significance of only one regressor coefficient and it is computed by
the ratio

_ SSE, — SSE,.,
enter SSEPH/(n—p—l)

(2.3)

It is F distributed with 1 and n-p-1 degrees of freedom and although it has been criticized as an
inappropriate tool for model selection (Miller 1984) it is widely used, especially in stepwise
algorithms which will be discussed later in this chapter.

The lack of fit statistic, tests the adequacy of a fitted model containing q out p existing
variables against the full model which contains all p variables (Full model). Under the assumption
that the full model fits the data well, this statistic can be used to determine whether any significant
variables are missing or misspecified in the equation of the reduced model.

In generalized linear models (GLM) applications the log likelihood ratio test is computed
through a different goodness of fit measure, called deviance. It is defined as

D, = 2(I,-1,), (2.4)
where [ is the maximized log likelihood of the saturated model; the model that fits the data
exactly and its number of parameters coincides with the number of observations, and [, is the
maximized log likelihood of a reduced model. The saturated model is the one that fits the data

exactly and will always have the greater value of maximized likelihood in contrast to other models
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with less number of parameters. Hence, the difference between a reduced model and the saturated
one provides a distance measure through which can be tested whether a simpler model fits the data
adequately.

Under the null hypothesis D, is asymtotically chi-squared distributed with degrees of
freedom equal to the difference between the size of the two models and by accepting the null
hypothesis the simple model can be used to describe the data sufficiently. Assuming, now, that there
are two models that have been accepted through the LRT test, a simple one with number of
parameters q and deviance D, and a more general with number of paramaters p, so that q<p and
deviance D), the difference in deviances can be used in order to compare the fit of the two
models. Again, under the assumption that the two models fit the data well, Dy — D is
asymptotically chi squared distributed with p-q degrees of freedom. The above results are
asymptotic; further details and examples on GLM can be found in Dobson, 2002, chapter 3, while
asymptotic properties of the sampling distribution of deviance and examples can be found in

Dobson, 2002, sec. 5.6.
2.3 Model Selection Criteria

Apart from significance tests, the decision on the number of variables that should be
included in a model can be based on model selection criteria. They are either functions of SSError
or of the likelihood and are used to evaluate the performance of a model. Through this approach,
some candidate models are fitted, a selected criterion corresponding to each model is calculated and
the calculated values are then compared. The model that produces the best value according to the
selected criterion provides the most adequate description of the data. It follows a brief description of
the most popular model selection criteria.

The main goal in regression is the understanding and reducing of the observed and
unexplained variance of the dependent variable, through some explanatory ones. The overall
variance can be analyzed and expressed as the sum of two different quantities; the sum of squares

due to regression (SSReg)

2 (5—7) (2.5)

> (=3 2.6)

i=1

Since the SSError is a distance measure between the observed and fitted values, among a set of

5



candidate models, the best one is expected to minimize the error's sum of squares. Consequently, it
would be reasonable to use this quantity as a selection criterion. However, it is known that as
variables are added in the equation there will always be a decrease in SSError, independently of the
variables' importance. This property makes SSError itself inappropriate for use as a model selection
criterion, due to the fact that the full model will be always producing the smallest SSError. It is

presented though, as it is the basic goodness of fit measure, especially in linear regression.

A useful exploratory tool for model determination is the unbiased estimator of © .

MSE = SSError Q).

n—p
where n is the number observations and p is a candidate model's size, including constant. In a data
set where n is essentially greater than p (Drapper and Smith, 1981), and given that all the necessary-
important variables are considered as possible covariates, MSE tends to approximate the real value
of variance as variables are added in the equation. Thus, even when overfitted models are used,
MSE will provide a good estimate of >, which can be also determined by models of smaller
complexity.
Another statistic that is used for model evaluation is the coefficient of determination

_ SSError

R =
SSTotal

, R€[0,1]. (2.8).
It measures the proportion of the error variance explained by the regressors and a value equal to 1
implies that the variance due to prediction is fully explained by the fitted model. However, since it

is a function of SSError, it behaves in a similar way as discussed above. A modified form of R,

is the adjusted coefficient of determination

MSE 2 (n—1)
R = =1-(1-R
adj 6_?} ( ) (n_p) ’ (29)7

where Si is the sample variance of y. Ridj adjusts R® for the number of explanatory variables

p in the model. Unlike R®, it increases only if the reduction in MSError is appreciable and it can

possibly be used for comparison among models of different size. Finally, three generalizations of

R® have been proposed for the evaluation of GLMs :

A

logL (0)
logL(0)

»  McFadden's (1974) pseudo R, =1— , which tends to be smaller than R,

values between 0.2 and 0.4 can be considered satisfatory,

« Cox and Snell's (1989) pseudo R7 =1—exp —%[logL(@)—logL(O)] , which takes the

number of observations into account but it also does not reach the value of one and



2
R CS

2
* Negelkerke's (1991) pseudo Ry= 2 R}, = l—exp[;logL(O)], which modifies

max

Cox and Snell's RZs, such that its upper bound is equal to one; where n is the number of
observations, [ (é) is the likelihood of the fitted model and L (0) is the likelihood of the

constant or null model.

The last criterion that will be discussed in this section (before presenting the family of
information criteria) is the Mallows' C, statistic. Mallows (1973) introdused the following

statistic

_ SSError

€= ntIp (2.10),

2

where p is the number of candidates in a model and &° is the estimate of &> using the full

model. Then, by assuming that the full model provides with an unbiased estimate of ¢*, it follows

that SSError =(n—p)&” and hence

C,=p (2.11).
According to this criterion, a well-performing model is expected to produce a low C, value that
approximates p. Due to randomness, C, may take value lower than p (Mallows 1975). On the
contrary, models that produce C, greater than p , should be considered biased and excluded from

the analysis.
2.4 Information Criteria

The information criteria (IC) includes several model evaluation tools, that are based on the
maximised likelihood, and take the following general form
IC = —2logL(6,/y)+C(p,n). (2.12)
The likelihood's negative logarithm is used as a goodness of fit measure which, however, decreases
every time a variable is added in the model. The second term, is mainly a function of the number of
parameters p and possibly of the sample size n, which, in contrast to, increases as the number of
covariates increases. In other words, information criteria are trying to balance between the goodness
of fit and the model complexity by penalising the likelihood for each variable is in the model. The
IC values are meaningless by their own, they are used only for comparison between models of
different size even if they are non-nested. The model with the lowest IC, is selected. Akaike (1973),
used Kullback-Leibler's Information (K-L direct divergence) to produce the first IC defined as



AIC = —2logf (6,1y)+2p (2.13),

which is called Akaike's information criterion or simply AIC.
2.4.1 K-L Based Information Criteria

Let us assume that the observed data S': (yl, Yaees V) generated from a true but unknown
density g(y) which cannot be determined exactly due to its complexity. Let us further assume a
parametric family of models f(y/6,) , m=1,...,M, that is used to approximate the true data

generating mechanism g(y). K-L Information is defined as

gy
f(yo,)

and quantifies the distance between g(y) and f(y). In order to determine which model best

1(0,)= E,log (2.14),

approximates g without important loss of information, the K-L discrepancy (or relative K-L
information)

d(0,)=E[-2logf(y0,)] (2.15)
can be used as a distance measure. In practice, 8 must be estimated from the data and the above
quantity could be estimated by

d(0,) = E,[—2logf (y10,)],_; . (2.16)
However, since the lack of knowledge concerning g, makes this computation impossible, Akaike,
proposed —2logf (y|6,,) as a biased estimator of d (6 ,) and estimated the bias

E[d(0,)] - E[~2logf (y(0,,)] (2.18)
to be, asymptotically equal to 2p. Therefore, AIC provided an asymptotically unbiased estimator of
the average distance between a fitted model and the true but unknown density that generated the
observed data. In other words, the model that minimises AIC, is expected to provide the closest
approximation to g(y). This is the main difference between criteria that derived based on K-L
Information and consistent criteria. The main goal of the latter is to asymptotically identify the
exact true model that generated the observed data instead of minimizing the distance between them.

The introduction of AIC in the statistical inference generated a new research on the topic,

introducing new and variants of it. Some of these variants derived from taking different starting
points (f.i. Bayesian analysis, predictive risk, etc), while others derived by relaxing the initial

assumptions of AIC's construction, and others focused on the improvement its properties.



Regarding the assumptions, the asymptotic unbiasedness of AIC holds only when (i) the true
density that generated the data S is a member of the models under consideration and (ii) a large
sample relative to p is available.

Takeuchi (1976), by assuming that the true density is not included in the set of models under

consideration, introduced a generalised large sample estimate of K-L discrepancy defined as

TIC = —2logL (0, divided y)+2tr[J (6,)1(0,)"'] (2.19),
where
A % logf (x|6,,)
J(0,)=——7 2.20
and
A _ ! i A i R .
100, = 20| 55 logf (110.)|| 5 losf (110 21,

When (I) is true, then TIC's penalty coincides with AIC's penalty. Eventhough, TIC is a useful
generalization of AIC, accurate estimation of I and J requires large samples, which practically is
difficult to be obtained.

Hurvich and Tsai (1989) introduced

(m+1)

AIC .= AIC+2m
n—m—1

(2.22),

as a corrected form of AIC for small samples. In their simulation studies, they showed that in cases
when n is small in comparison to the number of regressors (rule of thumb n/m < 40), AIC tends to
select over-fitted models, while AIC, selects the correct one.

Fujikoshi and Satoh (1997) introduced modified AIC by relaxing both the true model and
the large sample assumptions, which in linear regression applications takes the form of

(n—m)é,’ )_2(((n—m)cfm2 _1) (2.23).

(”_M)a'fmzl ”_M)&iulz

MAIC = AIC ,+|2m

where m is the size of the candidate model, M the size of the full model, &, the maximum
likelihood (ML) estimator of error variance associated to the candidate model and 62” the ML

estimator of error variance associated to the full model) .
Leberton et al. (1992) introduced the Quasi-AIC family which is appropriate in GLM
applications where overdispersion is detected. In the exponential family of distributions, if p

represents the mean of the dependent variable, then the variance of the dependent variable Y is

computed from Var(Y)=a(p)Var(u). Usually, a(p) has the form of % where w is a



known weight for each observation (for instance the number of observations n) and ¢ is the
dispersion parameter. Theoretically, for binomial or Poisson distributed data, ¢ is equal to one and
under the assumption of independence and homogeneity among the observations, it can be
estimated from the global model, by dividing the models deviance by the number of residual
degrees of freedom. When @>1, the observed variance is greater than the expected
(overdispersion) and this could lead in selecting over-fitted models. If this is the case, the extra
variability should be taken into account and the selection should be then based on the following
modified criteria

+1
+2m and QAIC,= QAIC+2m(m—_)1 (2.24).

_ 2logf (8,y)

A

QAIC =

Finally, Cavanaugh (1999, 2004) proposed the use of the K-L symmetric divergence as an
alternative basis for information criteria derivation. The K-L symmetric divergence, defined as the

sum of two directed as

f(y6,)

wE g(y)

(2.25),

J(6 )= Eg[Ly) ,

£ (¥6,)

was suggested as a more sensitive distance measure that would reflect —more accurately the

separation between two densities. Depending on that, Cavanaugh, introduced

A

KIC = —2logf (6,]y)+3m (2.26),
as a large sample estimator of K-L symmetric divergence and a corresponding correction for small
samples

KiCe = kic+2mtmt1) 2.27).
n—m—1

2.4.2 Consistent Criteria

A distinction between model selection criteria are made according to their asymptotic

properties. In particular, they are divided in two categories; the first one includes AIC, AIC, |

C, and adjusted R* all of which are asymptotically efficient with respect to MSE. This means
that as the number of observations increases, the above criteria tend to select the model that
minimizes MSE.

The second group of information criteria, is characterized by property of consistency.
Assuming that the true model is among the list of candidate models, then an asymptotically
consistent criterion, will choose the true model with probability tending to one (weak consistency)

or almost surely (strong consistency) for large samples.
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Obviously, the above assumption is not realistic in most applications and, thus, consistency
has been also examined in terms of K-L distance. Then, a consistent criterion would select the
model that minimized the K-L distance. Furthermore, due to the parsimony, a consistent criterion
would select the simplest model when two or more models are equivalent in terms of K-L distance.
AIC, TIC, AIC, and, all criteria with penalty that does not depend on n, do not achieve
consistency. As a consequence, there is a possibility of selecting, unnecessarily, over-fitted models.
(Claeskens G. and Hjort N. L. , 2008, sec. 4.1)

The most popular consistent criterion was introduced by Schwarz (1978) and derived using
purely Bayesian arguments. A Bayesian rule of selection would choose the candidate model M
with the highest posterior probability
x(m) [ L(0,ly)g(0,m)d0,

h(y)

where 7z (m) is a discrete prior distribution over the model m,L(6,|y) is the likelihood

function, g(6,|m) is the prior distribution over parameter vector given the model and 7%(y) is
the marginal distribution of the data vector.
By minimizing —2log P(m|y), Schwarz proposed the Schwarz Information Criterion
BIC = —210gL(ém|y)+plog(n) (2.29),
as a large sample approximation of the log-transformed posterior distribution of model m. BIC, is
closely related to AIC, yet, it penalizes model complexity more stringently.
Hannan and Quinn (1979), in order to achieve strong consistency in the selection of time
series model, proposed
HOC = —2logL (0, |y)+clog[log(n)], c=2 (2.30),
and Bozdogan (1987), based on Akaike's work, extended AIC to make it consistent. He introduced
consistent AIC, defined as
CAIC = —2logL(0,/y)+ p|log(n)+1] (2.31)
and consistent AIC with Fisher Information, defined as

CAICF = AIC + plog (n)+log|J (d,) (2.32).
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2.4.3 Minimum Description Length

Rissanen (1978) introduced the minimum description length principle, which again is
derived from the field of information theory. According to MDL principle, one would choose the
model that achieves the shortest description of the data. MDL is based on Kolmogorov's theory of
algorithmic complexity which is simply the length of the shortest computer program that describes a
sequence. In a similar way to the K-L Distance, the algorithmic complexity cannot be computed
(theorem of incomputability of Kolmogorov's complexity). Thus, Rissanen suggested that the
encoding of the data could be achieved using probability distributions. This is strongly related to
Shannon's source coding theorem, which provides a lower bound for iid variable compression,
without crucial loss of information. In that sense, a probability distribution is just used as a
description measure of complexity in order to achieve the shortest data compression.

Depending on the strategy used for data encoding, there have been proposed several
functions providing a lower bound of compression (valid description length). The first strategy
applied to produce such a compression is called two-stage coding scheme and its corresponding
lower bound coincides with BIC. Other coding schemes include : Mixture MDL (a coding scheme
that resembles to bayesian analysis), Normalized maximum likelihood MDL and predictive MDL
all of which lead to different MDL based criteria for linear regression applications while other MDL
criteria focus on GLMs are also available in the literature (Hansen and Yu, (2003).

Rissanen's approach differs the traditional derivation of IC, since there are no assumptions
regarding the random process of the data. Moreover, probability distributions are only used just as

description tools of the data. This allows comparisons between models of different type.
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2.5 Model Selection Procedures

In the current section the most popular techniques for model construction will be discussed.

2.5.1 All Subsets Regression

A reasonable, yet computationally exhaustive method, is to evaluate all possible models
using a model selection criterion. This is often called full enumeration or exhaustive search. For
instance, in a data set of p=5 explanatory variables, an all subsets algorithm would consist of the

following steps :

« Compute the intercept model Y, =fB,+e, , i=1,..,n and evaluate it.
*  Compute all models including one explanatory variable

Y, ,;=ptB, X, ;+e,; , i=l,..,n , j=1,.,5 and evaluate them.
* Compute all models including two explanatory variables

Y, =Bo+B, X, 4B X, He , . i=lo,n, jk=1..5, j#k

and evaluate them.

e Compute full model and evaluate it.

* Choose the best model according to a selected criterion.

In practice, such a thorough search is not useful when dealing with real data sets, especially
large ones. A huge number of possible models needs to be evaluated even for moderate p since the
number of all possible models will be equal 2”. Moreover, the researcher's aim of constructing
simple and small-sized models with satisfactory fit and possibly the prior knowledge concerning the
relationship between dependent and independent variables (in the sense that some regressors should
or should not be excluded from the equation), make the use of all subset regression unnecessary in

practical problems. Yet, in cases of small or moderate-sized data sets, it could still be a useful tool.
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2.5.2 Stepwise Algorithms

An effective, timesaving and computationally simple alternative compared to all possible
regressions, is offered by techniques. There are three main approaches that are widely used in model
construction via stepwise search: forward selection, backward elimination and stepwise selection.
Depending on the algorithm, the particular methodology attempts to construct a model by
sequentially adding or deleting one variable at each step, taking into account the presence of the
other regressors that are in the model. In order to achieve this, the algorithm selects a candidate
variable and evaluates its contribution, measuring whether the reduction in the total SSError is large
enough or not. In other words, the model that includes and the one that does not include the
candidate variable are compared and is decided weather the model's fit is improved. The evaluation
can be performed in two ways; either by using an F or chi-squared test and their corresponding p-

value, or a model selection criterion.

(a) Forward Selection & Backward Elimination

The forward selection algorithm starts with the intercept model, adding at each step the
independent variable X that is most significant, according to a significance test or a selection
criterion. The algorithm stops when no further improvement is achieved by adding an explanatory

variable. A general form of forward addition using an F test would be:

* Begin with the intercept model
+ Choose the k" regressor that produces the maximum F test value
max,_,  F,; k=argmax(F )
e If maxF,>F, .., where F,. is an arbitrary significance value, (usually the 95"

percentile of the F distribution) add X, in the model and go to step 2

Stop if for all remaining candidates max I, < F,,,

Conversely, the Backward Elimination Algorithm, would have as a starting point the model
that contains all available variables, and would decide, which of the regressors are not statistically
significant, so as to be removed. An example of such an algorithm would be:

* Begin with the full model

+ Choose the k" regressor that produces the minimum F test value

14



min,_, F ;k=argmin(F)
e If mnF,<F, .. where F,. is similarly an arbitrary significance value, (usually
the 5™ percentile of the F distribution) remove X, from the model and go to step 2

¢ otherwise STOP

(b) Stepwise Search

As it can be seen, the above algorithms do not re-examine the significance of a variable that
is added or deleted from the model. In forward selection, once a variable is added, it will never be
deleted. Similarly, in backward elimination, once a variable is excluded, it will never be added in
any further step. Stepwise Algorithms, combining Forward and Backward selection, provide a
solution to this problem

There are two alternatives when using stepwise search: Stepwise Forward Algorithm, begins
with the null model, adding at each step the most significant independent variable. However, before
proceeding to a new addition, re-examines whether any of the previously added variables have
become insignificant in the presence of the new variable. On the other hand, Stepwise Backward
Algorithm begins with the full model, testing for variables to exclude. Since a variable is excluded,
previously deleted variables are re-examined for potential re-addition. Obviously, despite the fact
that the computations in Forward and Backward Selection are quicker, stepwise search is preferable
since it conducts double tests at each step.

Stepwise procedures, have become very popular and are widely used by non-profesional
statistician too, as they can be easily performed automatically in all statistical packages. However,
there are disadvantages that have been discussed in several papers, and are briefly summarized in
the next paragraph.

Firstly, not only there is no guarantee that the different algorithms will select the same
model, but also, there is no guarantee that the selected model will be the correct one. The order of
variable addition or deletion and the selection criterion, affects the final construction of the model.
As a result, there might exist a different one, performing equally well which will not be examined..
An additional issue that weakens the performance of the algorithms, is the multiple testing of the
null hypothesis H,: B, =0. That leads to an increase of the tests Type I and Type II Error
(include not significant regressors that should be deleted and delete important regressors that should
be added in the model). Furthermore, the distribution of the F statistic is also affected as the

selection of variables is decided with respect to the existing observations (Pope and Webster, 1972).
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Finally, since the problem of multi-collinearity is not taken into consideration as the algorithm

proceeds, the final model will require further examination and in most cases corrections.
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Chapter 3 : Bayesian Methods
3.1 Introduction

Inference using classical statistical arguments, is based on probability density function

f( y|é ,). The observed data vector y is considered to be an outcome from a random variable

Y, which is characterized by the population parameter vector . The parameter vector is assumed

to be a constant quantity, that has to be estimated properly. In order to achieve that, likelihood

function L (0 p|y) is used. By maximising the likelihood function with respect to &, the
appropriate estimates are obtained.

Bayesian statistics use an alternative approach. Taking into account the uncertainty that is
produced due to the ignorance concerning the parameter vector, the latter is treated as a random
variable and the statistical inference is based on the posterior probability function of the parameter
vector, given the observed data p(6,|y). Posterior probability is defined through Bayes theorem
as the joint distribution of the data and the parameter vector, divided by the marginal distribution of
the data.

f(y.0,) _ fO0,)x(0,) _  f(30,)x(6,)
f(y) f(y) J r(16,)x(6,)d0,

p(0,ly) = (3.1).

The integral in the denominator is called normalizing constant and and is used in case of continuous

priors. When discrete priors are used, the integral is replaced by the corresponding sum
Zf(y|0i)ﬂ:(9i)'

The joint probability of 6 and y can be calculated as the product of the likelihood function
and 7(6,), which is called prior distribution of the parameter vector. The existence of the prior
distribution distinguishes the Bayesian from the classical analysis and represents the prior
knowledge that someone may have concerning the parameter of interest. Depending on the prior
knowledge, it could be chosen an informative distribution that would favor certain values for the
parameter vector instead of others, or it could be chosen an uninformative one, such as the uniform

distribution, assigning equal probabilities irrespective of the value.
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3.2 Model Comparison & Hypothesis Testing

In model selection problems using Bayesian arguments, the comparison between candidate
models and the decision on which model best describes the observed data, is based on the
comparison of models' posterior probabilities. Assume that the observed data y = {yl,yz,_,_, Vol
have been generated from one of the two following models, (M, . M}, according to a density

f(yIMy) or f(yIM,). The first step in testing a hypothesis of the following form

Hy: M =M,

H : M =M, (3.2),

is to assign prior probabilities on each model. Note that the models do not need to be nested as in

classical model comparison. Let 7(M,) denote the prior probability over model M, and
w(M,) = 1—=n(M,) the prior probability over model M. Then, the posterior probability of

model M, , i={0,1} is defined as

f M= (M)

A WIFTTAET (33)

The decision on which of the two models is preferable can be based simply on the
comparison of their posterior probabilities. Then, for example, the model in the null hypothesis

would be accepted if

p(Myly) > p(M\|y) (3.4).
Alternatively, the posterior model odds can be used, defined as
PO = p(Miy) _ pMy) _ fyIMy) =(M,) _
. p(Mily) 1—p(My) fylMy) =(M,) (3.5).

Bayes Factor X prior model odds
It can be easily seen that there is no need to compute the normalizing constant appearing in the
denominator of eq (3.3) since it appears both in the numerator and the denominator and it cancels
out. Similarly, in cases of uninformative priors over candidate models, the posterior model odds
equals to the Bayes factor.

Bayes factor, which was introduced in 1948 by Jeffreys, is of major importance in Bayesian
inference and is defined as the ratio of posterior odds over prior odds. In model comparison, each
model is fully specified by its parameters, yielding a likelihood of the form f (¥|M .0 Mp)’ where
p is the size of the parameter vector. Hence, the computation of Bayes factors needs the integration

of f(ylM »0 Mp) (rather than its maximization) over the parameter vector. Let BF, denote the

Bayes factor of model M, over model M,. Then, BF, is computed by the following
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equation

f(y|Mo) . J.f(y|M0’t9Mo)7r((9M0|M0)d<9Mo

F = =
Bl Sy J‘f(y|M1,0M1>7[(0M,|M1)dHM1

(3.6).

The quantity f(¥|M,) is called marginal likelihood of the data vector given a model of
size p, or the predictive probability of the observed data under a model M of size p and represents
the probability of obtaining the actually observed data, before any data are available, under the

assumption that the model M is the real stochastic mechanism that generated the observed data
(Ntzoufras 1999) ; f(¥IM,.,0,,) is the likelihood function of the data vector and 7 (6, |M )
is the prior distribution of the parameter vector of size p under the model M. As mentioned before,
in cases of no prior knowledge concerning the candidate models, inference is based only on
BF, expressing the evidence in favor of the model corresponding to the null hypothesis.
Conversely, BF' |, provide evidence against the model corresponding to the null hypothesis. (see
tables provided by Kass & Raftery (1995) with numerical values of BF', in logarithmic scale, on

which the inference can be based).
3.2.1 Problems using Bayes factor

There are two significant problems when using Bayes factors for Bayesian inference, both of

which concern the specification of the prior distribution 7 (QMJM ,,)- The first one, is related to

the calculation of the integral ff(y|Mp,(9Mp)n(HMp|Mp)d<9Mp. In many cases the use of

complex informative priors may lead in various computational problems that are impossible to
overcome. This results in incapability of evaluating the above integral, unless numerical methods
are used. The exact derivation can be achieved when modeling a likelihood of the exponential
family with conjugate prior distribution for the parameter vector (see for instance Zellner 1971)

The second problem occurs due to the dependency and sensitivity of Bayes factors on the
choice of the prior distribution. It was studied firstly by Lindley (1957) and then by Bartlett (1957)
and 1is called Lindley's (or Bartlett) paradox, while others refer to it as Jeffrey's paradox (Lindley,
1980). The term is used to describe any situation in which classical and Bayesian analysis provide
contradicting results in hypothesis testing problems and occurs in the presence of uninformative
prior distributions.

In brief, it can be shown that the prior variance affects the value of Bayes factor in a way

that as the variance increases, Bayes factor also increases, working always in favor of the simplest
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model. This implies that flat proper priors cannot be used. Moreover, in cases of improper priors,
Bayes factor can be defined only to an undetermined constant and it cannot be fully specified.
Further details on Lindley's paradox are provided by Shafer (1982).

However, the use of uninformative prior distributions is essential in Bayesian analysis and
therefore several marginal likelihood's estimators and Bayes factors variants that try to cope with

the discussed problems, have been proposed in the literature.
3.3 Bayes factors' variants

In order to avoid BF indeterminacy when using improper priors, three variants of Bayes
factors have been proposed the following
* Posterior Bayes Factor (Aitkin 1991)
* Fractional Bayes Factor (O' Hagan 1995) and
* Intrinsic Bayes Factor (Berger & Pericchi 1996)

Posterior Bayes Factor uses the ratio of the likelihood's posterior means instead of the
likelihood's prior means ratio. Defining the likelihood's posterior means under model M, and
model M, as

PM,
PM,

[ rxloy, .My)p(6,|y. M,)do,,

and
ff<y|0M,’M1)p(9M, y:M1)d9M,

PM
respectively, then the posterior Bayes factor is given by the ratio PBF, = P—]MO providing
1

evidence in favor of the model Mo More specifically, Aitkin claimed that PBF 'S values that

1 1 1 ) . .
are less than 20 100 and 1000 provide strong, very strong and overwhelming evidence

against M,.

PBF,, avoids Lindley's paradox and is not affected by normalizing constants. However,
it uses the data twice and hence it does not go along with Bayesian rationale. Furthermore, as
pointed out in Berger and Pericchi (1995) and O' Hagan (1995), it is not consistent in a sense that it
does not tend to infinity as the sample size increases.

Intrinsic Bayes Factor, derived by using the idea of Partial Bayes Factors, which was
introduced by Spiegelhalter & Smith (1982). According to the Partial Bayes Factor approach, when

there is weak prior information the observed data y could be divided into two parts (o ;).
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one of quite small length / and one of length n—1I. Then, the first subsample ), could be used

as a training sample to update the prior and the rest of the sample »;, to obtain Bayes Factor. For

twomodels Mo and M. the partial Bayes factor based on subsample Vo is defined as
f(y1|J’0,Mo) _ ff(y1|0MO’MO)n(0M0|y0,M0)d9MO

PBF" = = 3.7),
T T M) T [ Sl M (0, |y M ) do,, S

where n(@MlJyO,M ,) is the updated prior based on Y,, computed as
T (Oy|yo M ,)oc f (300, M)z (0,|M) (3.8).

PBFy; is less sensitive to the prior distribution of the parameter vector and do not face the
problem of unknown constants in cases of improper priors. This happens since it can be expressed
as the ratio of the overall Bayes factor, that is based on the full data vector, over the Bayes factor
based on the subsample ),- The overall marginal likelihood of the data given the model M, can

be written in the following form

f(y|M):f(yo,y1|M):f(y1|yo,M)f(yo|M)~ (3.9)
It follows that
UMY o BR,
ko) =5y < PP S B () 610

However, the disadvantage of Partial Bayes Factor is its high dependence on the subsample

Yo and its corresponding size. In order to decrease this dependency, Berger & Pericchi (1996)
suggested to replace BF (y,) in (2.10) by its average BF (y,) computed over all L

samples for which all the parameters corresponding to all models are identifiable (minimal training

samples; Berger & Pericchi 1996) and derived the Intrinsic Bayes Factor

BF _
IBF,,= ———— = BF,*BF (v, (3.11).
BFOl(yO)

Depending on which way the average is calculated, the following variants of /BF derive

L
+ the Arithmetic /BF, for which BF ,(y,) = %Z BF | v,(1)]
=1

* the Geometric /BFy for which GBF ,(y,) =

(DeSantis & Spezzaferri, 1997)
+ the Median BFy, for which MBFio(ys) = med BF o[ y,(1)]

(Berger & Pericchi, 1998)

Finally, when the size of the subsample / and the size of the sample 7 is essentially
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large, the following approximation is obtained

!
S (5lOy, M )= (910, M) b= <1 (3.12),

where b is called fractional parameter. Then, if in equation (2.11), BF,(y,) is substituted by the

following quantity

b ff(y|0MO’M0)b7[(0M0|M0)d0MO

B = T 6, M a6, ) ds,, R
the Fractional Bayes Factor is obtained
FBF = EEI (3.14).
BF

01
Further details concerning the derivation and properties of Bayes factors' variants are
provided in the original papers of Spiegelhalter & Smith (1982), Aitkin (1991), O' Hagan (1995)
and Berger & Pericchi (1996, 1998), while discussion on the use and comparisons between the

different variants, are provided by DeSantis & Spezzaferri (1997) and Berger & Pericchi (1998).
3.4 Approximating Bayes factors
3.4.1 The Bayesian Information Criterion

As discussed in the first chapter, the Schwarz information criterion defined as

A

SIC = —2logL (0, |y)+ plog(n) (3.15),
derived as a large sample approximation of the log transformed posterior density of a candidate

model , given the observed data. Hence, the following quantity (based on the Schwarz criterion)

y,Ml)—l(pMo—le)log(n) (3.16),

So1 = logL(0,,|y . M ,)—logL(d,, >

provides a rough approximation of the log transformed Bayes factor of model M, over model
M, since its main property is

Sy —logBF

0 A7).
logBF, —0, for n—o (3.17)

Kass & Wasserman (1995), studied under which conditions (3.17 holds and provided a
corrected form of the approximation where needed. They showed that a wide range of prior
distributions exists, under which S, provide a useful approximation and they suggested it as
preferable in contrast to BF variants, since it, in addition, does not require very large samples to

provide adequate results. In general, even though S, is the simplest and not always the best

22



approximation of Bayes Factor, it can be used as an explanatory tool, to evaluate the evidence in

favor of the null hypothesis, in cases where prior distributions are hard to determine
3.4.2 The Laplace approximation

Under certain circumstances (see Kass & Raftery, 1995 and references therein), one accurate
way to approximate the marginal likelihood, is the Laplace approximation (De Bruijn 1970 and
Tierney & Kadane 1986). According to this method, if a real valued function h(.) of a p dimensional
vector X, is expanded quadratically using the Taylor series about the value X (the value that h(x)
attains its maximum) and then is exponentiated, its integral can be approximated using the

following formula

1
fexp )ldx = (2n) \A\zexp (%)} (3.18)
The quantity A equals to minus the inverse Hessian matrix H (h) of h(x), evaluated at X.
The Hessian matrix is simply the square matrix of second order partial derivatives of h, describing

the local curvature of the function and is computed providing that all second partial derivatives

exist.
0’ h ’h Oh
ox;  0x,0x, 0x,0x,
0’ h ’n &k
H(h)=|0x,0x, dx; Ox,0x, : (3.19)
&n_ . &h
O0x,0x, 0x,0x, axi =3

In order to apply the method for approximating the marginal likelihood
fylm,) = ff(y|Mp,QMP)E(QM/JMp)dQMﬂ, the posterior density of the parameter vector
P(QMJJ/’M ,) should be unimodal, or at least dominated by one single mode. This occurs for

large samples, when the likelihood function | (¥ |9MF’M p) is highly peaked near its maximum
0,. (Gelfand & Dey, 1994 ; Kass & Raftery, 1995 ).
Then, if A(x) is substituted in (2.9), by the logarithm of f(y|Mp’0Mp)7T(9Mp|Mp) , the

following estimate is obtained

r 1 N .
S raace M) = (21 |4ly 5, £ (910, M )7 (0, M) (3.20),
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where p is the dimension of the parameter vector ¢, is the posterior mode of QMP and A is
minus the inverse Hessian matrix of the function f (y|M 0 Mp)n-<9 MP|M p) evaluated at

O =0, .
f=r
S

, as proved in the appendix of Tiernay &

The approximation error (also relative error), ‘

Kadane (1986) is O(n ') and when the approximation is applied for estimating both marginal

densities for the computation of Bayes factor, the relative error remains the same.
3.4.3 Variants of Laplace

Kass and Vaidyanathan (1992) derived two variants of Laplace's method that are easier to
compute, but are less accurate compared to the first approximation. Yet, they provide useful
alternatives that remain reliable.

The first one is of the following form

~ o1 . R
FaurIM,) = (20)2 )21 £ (e, M) 7 (Bl M) (3.21),
where éMLE is the maximum likelihood estimator of the log-likelihood and X~' is the observed

information matrix; the Hessian matrix of the log-likelihood evaluated at 0 MLE -

The second variant is obtained simply by substituting the observed information matrix with

the expected information matrix (Fisher Information) / (0)=E [ 8% logf (y ;0 )} as the

asymptotic covariance matrix. Their corresponding approximation error is O(n~') for the first

estimate, while for the second is larger, equal to O

Another variant of Laplace' s method was introduced by Raftery (1996a) and is useful in
cases of difficulties concerning the computation of the posterior mode and the inverse of the
Hessian matrix. Then, by generating a sample of size T, from the posterior 2 (¢ Mp|y,M ,) using
an MCMC algorithm, the above quantities could be substituted by the simulated estimates of the
posterior mean and the posterior covariance matrix. Such an algorithm would consist of the
following steps :

1. Generate a sample [6'",0% ¢% ... 9'")] from the posterior density p(QMJy,Mp)

> 6" and § = L

1 0 _av(a0_ g\
s 71 (6'"—6)(6"-80)

1

2. Calculate 8 =

T
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21 ~ ~
3. CalCUIate fMetropolis(y|Mp) = (27[)2 ‘S‘z f (y|9Mp’ Mp)” (0M”|Mp)
3.4.4 Monte Carlo integration and importance sampling estimators

An optional way to estimate the value of the integral is provided through Monte Carlo

integration. Assume that we want to calculate the value of the integral 1 = fg(x) f(x)dx and
assume that f(x) is a probability density function. Then, from probability theory is known that
the above integral equals to the expected value of g(x) with respect to the density
f:1 = J'g(x)f(x)dx = E,[g(x)]. Then, by using the law of large numbers, for an

adequately large random sample {x 1, Xp X300, x,} . n—o, an estimator of the expected value is

A 1

obtained by the sample mean as [ = Z g(x,). The variance of the estimator can be easily
i—1

n:

. . 1 . A
shown that is proportional to ” and hence, asymptotically, 7/ is expected to be near the real
value of /. Proper choice of g and f results in minimizing the estimator's variance.
Monte Carlo integration can be applied directly for estimating the marginal density

f(y|M p), simply by generating a random sample from the prior distribution 7 (HMJM p) and

calculating the sample mean of the likelihood. In particular, since the following equation holds
fim,) = [ fim,, 0, )x(0,|M ,)do, = Eo, )l f (VM 0, )] (3.22)
then, by generating a random sample {0“),0(2),0(3),~--,¢9(”} from the prior distribution

(0 MP|M p) an estimate of the marginal density is obtained by

i) = 2 X 1o, 0) (3.23).

As mentioned before, the variance of the estimator is affected by the functions involved in
the integral. Hence, the choice of the prior distribution affects the efficiency of the estimator. More
precisely, the choice of uninformative priors leads in increasing the variance of the estimator and

the convergence of the algorithm will be slow.
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3.4.5 Importance sampling

One way to obtain smaller values of the estimator's standard error is provided by importance
sampling. Assuming a density function /4 (x), the integral I can be rewritten in the following

form

= [ el rdr = [e LB nmar = [wwion = Bl 629

Then, by generating a random sample [xl,xzﬂx&---,x”} from /(x), the estimator that is

obtained is

i = %iw(xi) - gg(xi)flz((jf)) (3.25).

The advantage of importance sampling is that it can obtain estimators of zero variance as long as
the importance sampling density /4 (x) is shaped in a similar way to the function of g.
A marginal likelihood approximation through importance sampling method, is obtained by

considering the following formula

”(HMJM[)) f(y|Mp’9Ml‘)ﬂ:(9Mp|Mp)
f(y|Mp) = J‘f(y|Mp’ HM”)}I(TIMI’) h<0M,,)d0M,, = Eh(Q‘,”)[ h(gM”) ] (3.26).
By generating a random sample {0“),0(2>,0(3) ,---,H(T)] from the importance sampling density

h(6,, p), the marginal likelihood estimate has the following form

1S f(yIM,, 00z (64 |M )
fly = 7 "o M),,) (3.27).

In some cases the importance sampling density is known up to a constant C, such that

h(6,) = Cp(0,). When this is the case, the constant C could also be expressed as an

expectation, using the following formula

h(0, (0, M
= [Cr(0,M,) = fgn(eMJMp) = E, (7”] (3.28).

¢(0Mp) ¢(0Mp)

and the marginal likelihod's estimate is obtained by generating a random sample

(67,69, ... 7)) from h (HMP) and calculating the quantity

) > £ (o1, 8 w6l (0
fOIM ) = F— ,w(oy) = — (3.29).
Y w(o, (1) o el

t=1
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3.4.6 Sampling from the posterior

Another alternative that derived using Monte Carlo method of estimating the marginal
likelihood, is the harmonic mean estimator (Newton & Raftery ,1994). By considering Bayes'

theorem,

fIM .0, )x(0, M) . pOyly.M,) _ =0, M)
fyM ) fWloy . Mm,)  fM)

the marginal likelihood can be expressed as an expectation with respect to the posterior distribution

P(QMP

p(Oy|y.M)) (3.30)

p), since

LFIM ) = [l M ) = (6, |M )d6,, =
fp |y M )LSf (y|9Mp’Mp)]7ld9M = E,p, Iv.M,) [( (y|9Mp’Mp))7l:|

By generating a random sample {9(”,0(2),(9(3),---,9(”} from the posterior probability

(3.31).

p(0y |y, M,), the harmonic mean estimator is defined as
T -1
Folu,) = | F XL, 00 (3:32)
Despite that the estimator is consistent and simple to compute, is proved to be unstable and often its
variance appears to be infinite.
In order to overcome harmonic mean's instability, Newton & Raftery (94) proposed the use
of a mixture of prior and posterior distribution as an importance sampling density, defined as

h(0,) = wr(0,|M,)+(1-w)p(0, [y.M,) , 0<w<l (3.33).

The corresponding estimator of the marginal density is

TZﬂ[f(ylMpﬁ;‘)p)]/hw;?)

P

flylm,) = (3.34).

ih(e;’})

t=1

Finally Gelfand & Dey (1994) derived the generalized harmonic mean estimator, an
unbiased and consistent estimator of the marginal likelihood (Kass & Raftery 95, Chib 95). Again,

by using the Bayes theorem, the following formula is obtained

fyIM,.0, )x(6, M) Oy |y. M) 1

POuly. M) = TOM T T, M0, C o) 839

By choosing an importance sampling density / (6 Mp)’ such that
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1 _ (HM,,LV»M,;)
oy = 7om )@ = 1 50 " e, )

h(6, )dd, =

. ho,) (3.36)
PO S (A0, M )2 (0, M )
the generalized harmonic mean estimator is defined as
(t) -
. | - (0M )
fiM,) = -—22 (3.37).
T )7T M |M )

Again the performance of the method depends on the proper choice of sampling density. As pointed
out in Kass & Raftery (1995) and Chib (1995), for high dimensional problems, 7 (0 Mp) is difficult
to determine, while in low-dimensional problems a proper choice of h(QMp) provide satisfying

results. Especially in cases where /7 (‘9M,,) is proportional to the likelihood, the method provides

also efficient estimators.
3.4.7 The Chib's estimator

Finally, in high-dimensional problems the use of MCMC methods is claimed to be the most
promising. MCMC algorithms provide useful tools for simulating from a multivariate density. The
most popular are the Gibbs sampler (Geman & Geman 1984) and the Metropolis-Hastings
algorithm (Metropolis et al. 1953, Hastings 1970).

Using the Gibbs' sampler, one can simulate from a p-dimensional distribution [ (9p| y),
by simply generating values from its p conditional distributions, f (6,0, v) , i#j. The
algorithm is of the following form :

» Set a vector of initial values HS)) = (6,67 ..., 0(;))
« Generate 6\~ f(6,y, 0, 0(30),---,6([?))
0y~ 1 (0)y.0,".65, .6,

P

1) 0(21> 9(1)1)

p

0y~ 110,

e atthe k™ iteration

(k) (k) (k) (k) (k=1) (k=1)
Generate 0~ f(0,|y,0,",05",---,0,2,,0,,,---,0, ") etc.

J=b )4
Then, after a few iterations, the simulated vectors #, 9"V ... 9 will be a sample from the
multivariate density f (6 p|y ). Atachosen point ¢, the multivariate density is approximated by

“in 1 . ' t t ' ' ‘ ‘ ' " '
f(0ly) = 7; f(91|y’9(2)"”’e(p))f(62|y’91’9(3)’”.’9(]7))"..’f(6p|y’91’92)”.4'91771) (238)
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In order to apply the method for calculating the marginal likelihood at the point of interest
', one should generate a sample from the posterior density P (¢ MP|)’:M ,) and evaluate it at
the following formula, using (2.38)
£ (510) )7 (03, 1M )
POy ly.M,)

A slightly different approach is proposed by Chib (1995). The general idea remains the

]A((y|MP) =

(2.39).

same, yet, in order to approximate posterior density at a chosen point ', , he uses the following

equation
POy ]y, M,) = p(@i]y,M,)p(6:l6,, v, M), p(6,)6,,6,,,6, ,v.M,) (240).

Each conditional density can be estimated using the following updating scheme

M~

(0,105,050, y,.M )

o N
pOly.M,) = T

Il
~

(0316, y, M) = p(66,,67,,8" v, M)

(2.41).

M~

p(036,,05, v, M)

Nl— |-
]

p(646,,05,67,--,67, v, M)

~
Il
—

RUPCIUTE 1S
p(0p|01’02’...’0p71’y’Mp) = ?Zp(el’ez’02’...’9p71’y’Mp)

A presentation of the above two methodologies, discussion on their properties and
applications on real data sets are provided by Yu & Tunner (1999), while Chib & Jeliazkov (2001)
extended the same method, using the Metropolis-Hastings algorithm. There have been also
introduced estimators that are based on different sampling schemes, namely the bridge sampling

estimator (Meng & Wong, 1996) and the path sampling estimator (Gelman & Meng, 1998).
3.5 Discussion

Except from BIC, the methods presented above for approximating the marginal likelihood,
are a few alternatives that have been developed in order to deal with the so called integration
problem. The adequate approximation of such integrals, as the one needed for the calculation of the
marginal likelihood, is of major importance, especially when Bayesian analysis is applied. Evans &
Swartz (1995) have summarized and categorized the existing methods in the five following groups :

1. Asymptotic methods
2. Importance sampling

3. Adaptive importance sampling
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4. Multiple quadrature and
5. Markov Chain methods
In their paper each method is presented and evaluated through several examples.

Both Evans & Swartz (1995) and Kass & Raftery (1995) suggest the use of asymptotic
methods as more accurate and efficient, but only in cases where the integrated function is obviously
unimodal. Otherwise, importance sampling should be preferred, even though it appears to be
computationally more demanding and less accurate. Yet, in order to be reliable, the importance
sampling density must be chosen carefully. An accurate, effective and strongly recommended
alternative, is provided by quadrature methods and especially by the subregion adaptive integration
(Genz & Kass, 1993), which was not discussed here. However, it is preferable only for low-
diamentional problems p =< 8 (Kass & Raftery, 1995). In high dimensional problems, MCMC
based methods as Chib's estimator Chib & Jeliaskov's extension (2001) or Chen's extension (2005),
that deals with the case when latent variables are present, retain their usefulness and popularity.
However, all methods discussed in this Chapter require the estimation of all marginal likelihoods of
models under comparison, which in real life problems can be computationally prohibitive. In
following Chapter, we will deal with the Bayesian algorithms that have been developed, in order to
explore model space and try to uncover efficiently candidate models of higher posterior
probabilities Further details and review of the methods of approximating BF can be found in

Gamerman & Lopes (2006) and in Ntzoufras (2011, pg. 392-397)
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Chapter 4 : Bayesian Variable Selection
4.1 Introduction

The third chapter of this dissertation dealt with the problem of Bayesian model comparison.
Inference based on posterior odds and Bayes Factors, requires the computation of the the posterior
model probabilities p(M ,|y) of all candidate models M ,€M and their corresponding marginal
likelihood f (¥|M p)- The main problems that one may face when using the above tools, concerns
the intractability of the integrals needed for the computation of f (y|M p) or the behavior of
posterior odds under the use of certain kind of priors (Lindley's Paradox). Despite the fact that
several methods have been developed to overcome the above mentioned problems, the choice of the
most promising model requires the evaluation of all candidates. As mentioned in the first chapter, a
thorough search might be time consuming especially in cases where many regressors are present.
Hence, similarly to stepwise algorithms, several Bayesian algorithms have been proposed which
efficiently explore large model spaces, focusing on the most probable posterior models (Ntzoufras
2009, p. 405).

Bayesian variable selection algorithms were, initially introduced by George and McCullagh
(1993). Using an indicator variable to identify the candidate subsets and a hierarchical structure of
the regression model, which will be presented in the next paragraph, they developed , the Stochastic
Search Variable Selection (SSVS), a general Gibbs based algorithm, to sample from models with
highest a posteriori probabilities, avoiding the exhaustive evaluation of all 27 candidates (George
and McCullach, 1993). Apart from SSVS, other methods that have been developed and will be
discussed in the first part of chapter 3, exploiting the idea of George and McCullogh, is the Kuo and
Mallick sampler (1998) and the Gibbs Variable Selection (GVS), introduced by Dellaportas et al
(2002).

The second group of algorithms that will be described, were proposed as an extension and
generalization of Gibbs - based algorithms, in order to overcome convergence issues arose when
using Gibbs - based algorithms. Main representatives of this group are the Carlin Chib method
(1995) and the Reversible Jump MCMC algorithm (Green, 1995).

Finally, some latest advances will be briefly reviewed, including Population-based
Reversible Jump MCMC (Jasra et al, 2007), Shotgun Stochastic Search (Hans et al, 2007) and
Subspace Carlin and Chib algorithm (Petralias and Dellaportas, 2012).
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4.2 Bayesian Variable Selection For Normal and GLMs : Initial Concepts
4.2.1 Model structure

Consider the linear regression formula

)4
y, = B, + Zlﬁjx,,ﬁe,. . e~N,(0,6°1) , 4.1
J=

It assumes a linear relationship between a random variable y, with y; , i = 1,.., N outcomes
and p independent variables, taking values X; ; = l...,p, given a vector of parameters

B; = l,..,p. Parameter B, is the constant of the model and e; is the error term. By
assuming that y is generated from a distribution that is a member of the exponential family, we
obtain the generalized linear model, introduced by McCullach and Nelder (1989) and is given by

the following formula

E[g(yi)] =, = By + ZIB_jxi,j ) (4.2)

The extension of the linear regression formula, enables us to model both discrete and
continuous data, including Poisson or Binomial data. In order to do so, the link function g(.) is

introduced in the model and is used to combine the stochastic part of (4.2) with the the systematic

P
part B, + Z; B;x; ;. For instance, in case of Poisson data, the logarithm of the expected value
=

of y, is used as a link function, while when modeling binomial data the logarithm of odds is
used.

An alternative way to represent formulas (3.1) and (3.2), is by introducing a binary indicator
variable );, that takes two possible values {0,1}. By doing so, the presence, when ¥ =1, or
absence, when 7;=0, of a candidate variable could be controlled. Depending on how 7, is
treated, the above formulas can be formed in two different ways.

George and McCullogh (1993) introduced 7; without embedding it in the linear predictor
(4.2). The parameter vector consists only of the effects of the covariates, i.e

0 = (91,92,“.;9,7) "= (BB, ,3,,)' and the regression formula remains as in (3.2). In that case,

the indicator gets involved in the model through the following hierarchical structure

yIg~f(yp)
Bly~m(Bly) (4.3)
y~z(y)

where f(y|B) is the likelihood function, while 7 (p|y) and z(y) indicate the priors of

32



parameter vector and indicator variable respectively.

Conversely, by defining as f; the effect of the ;" covariate, the indicator could be
embedded in 3.2 (or 3.1), yielding the expanded regression formula (Kuo and Mallick, 1998), used
for the Kuo and Mallick sampler and GVS. Then, the parameter vector takes the following form

0 = (0,,0,,..,0,)" = (y,8,,7,85 --.7,8,) and equation 3.2 can be rewritten as

E[g<yi)] = n = Z(:)yjﬁjxi,j (4.4)

4.2.2 The Gibbs algorithm

Regardless of the model structure, both type of algorithms proceed by using a Gibbs sampler
to obtain values from the joint posterior distribution p(y,A|y). The main interest lies in the
simulation of the posterior p(y j:1|J/), , which is called marginal inclusion probability. Full
specification of marginal inclusion probabilities, enables us to identify those variables with higher
posterior probabilities (Kuo and Mallick, 1998). The produced sequence y(”,y(z),,_,,ym , as
pointed out in George and McCullogh (1993), converges rapidly in the target distribution and
contains all the information needed for variable selection. This occurs due to the fact that candidate
models with higher posterior probabilities (those for which 7,=1), appear in the simulated
sample with high frequencies. On the contrary, those candidate models that hardly appear, are
simply not of interest and can be excluded from the analysis. Hence, the method requires to
generate a sequence

y(l), ,B(l),y(Z), ﬁ(z),...,)}(T),ﬂ(T)
from the full conditional posterior distributions of y and / iteratively and then identify the
most promising candidate models, by counting the frequency of their appearance (Kuo and Mallick,
1998). By denoting as fS_; all the effects except the one associated to covariate X; ; = l,..., p,
the general steps of Gibbs algorithm that are used to produce values from the full posterior
p(B.y
e Update B, for j=1,..,p from full conditional posterior pl B;
B_i=(Bi. By Byt Bisrss By)

* Update 7, for j=1,..,p, sequentially or in random order, from full conditional

y) are:

Vs ,37_,,7’), where

posterior  p(y,ly.7_;, B) ,where ¥ ;=(y1,72, .71, 7515 -+7,) , with probability .
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4.2.3 Posterior Inference

Once the algorithm is terminated, the results can be used in order to draw inference on the
model with the highest estimated posterior probability. In terms of Bayesian analysis, this is referred
to, as the maximum a posteriori probability (MAP) model. Following Ntzoufras (2009, sec. 11.6), a
common way to estimate a MAP model is to use the indicator variable y, in order to index
existing candidate models. Let m be an indicator variable that is to be used to index all candidate

models. A formula that provides with a one-to-one transformation between y and m 1is given by

m(y) = Z y, 27", (4.5)

where k=1 in case of including the constant in the model and k=0 otherwise. Assuming that
the algorithm has been implemented for T iterations, let B be the number of burn-in iterations and

(1)

denote as m'” the indicator of model m at iteration ¢. Then, the corresponding posterior

probability of each model can estimated in a straightforward manner, by
plnly) = == > 1tn=m) (46).
T_B t=B+1
As described in chapter 3, posterior model probabilities, can also be used to estimate posterior
model odds or Bayes Factors and draw inference through them, by comparing for instance, each
model to the one with the highest estimated model posterior probability.
It is also possible to estimate the marginal inclusion posterior probabilities for every
candidate by
plr=1l) = = > 1= 4.
. T—RB j

1=B+1
Apart from tracing the desired MAP model using (4.6), the MCMC output enables us to estimate
the Median Probability (MP) model via (4.7). The latter, was introduced by Barbieri and Berger
(2004) as an optimal choice of model with better predictive performance under certain conditions.
According to this approach, MP model is defined as the model which consists of those candidates

. I
thatis 7=, ply,=1ly) > 7.

L . S 1
whose marginal inclusion probability is greater than 5
Before proceeding in a more detailed description of the developed algorithms, there is one
estimation issue that should be further pay attention. As described in section 3.2.2, the number of
visits of candidate regressors models differs, according to the target posterior model probabilities.
Consequently, the estimates' accuracy of posterior model probabilities, posterior model odds and

Bayes Factors, increases with the number of times a variable is sampled, during the algorithm. In
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order to ensure that all candidates are sampled in a sufficient number of times, Ntzoufras (2009, p.
413) provides with two alternative strategies. The first approach, requires a proper choice of prior
distribution over y, favoring candidates with lower probabilities of sampling; for details and
illustration in a simple setup see Ntzoufras et al, (2005). The second one, introduced by Fouskakis
et al. (2009), can also be implemented in data sets consisting with large p, compared to the sample
size. When this is the case, he suggests a reduction in the number of candidate models by excluding

from the analysis those ones with low estimated marginal inclusion probabilities.

4.3 Variable Selection Methods

Despite the fact that the general idea when using Gibbs sampler remains the same, there are
differences between the methods mentioned above. Apart from the model scheme, the assumptions
made regarding the relationship between y and S and the prior specification of (y, /) has led
in the development of different methods. Following O Hara and Sillanpaa (2009), Bayesian variable
selection methods can be categorized in four groups :

» Stochastic Search Variable Selection (George and McCullogh, 1993)
* Indicator Model Selection

* Adaptive Shrinkage

* Model Space Search

4.3.1 Stochastic Search Variable Selection (SSVS)

To begin with, SSVS was introduced by George and McCullogh (1993), as a Bayesian
variable selection procedure, used to identify the most promising models between all 27
candidates. As mentioned above, in order to avoid the exhaustive evaluation of models' complete
posterior distribution, they developed a Gibbs based algorithm to sample from models with higher
posterior probabilities. To do so, they considered the hierarchical structure of the regression
equation (4.4), introduced the auxiliary variable y, to indicate whether a variable is included or
excluded from the likelihood and assigned such a prior distribution on model effects £, to keep
the parameter space for all models constant. The latter is the main advantage of the particular

method, since it ensures the convergence of the algorithm.
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4.3.1.1 Prior specification

To complete the full specification of Bayesian variable selection via SSVS, the specification

of the priors 7 (f|y) and =z (y), is required. For the first prior, the method assumes a 'slab and
spike'-type prior on each parameter f;. In brief, the 'slab and spike' prior, which was introduced
by Mitchel and Beauchamp (1988), is a mixture of priors on each #,. which puts mass on zero
with probability /% (spike), while is uniformly distributed over the range (—f o f _,), for some
_ hOj
2f;

Exploiting Mitchel and Beauchamp's (1988) idea, George and McCullogh (1993) proposed

large f;, with density (slab) (Miller, 2002).

the following mixture of Normal distributions

Bily;~(1=p, )N (0,7)+y;N (0,577) (4.8)
which does not set unimportant regressors exactly equal to zero, but forces them to be close to it.
This can be achieved by setting 7;>0 small, so that if y;=0, the effect of the candidate
variable f; to be safely estimated by zero and g;>1 large, so that if 7,=1,/; is non zero and
therefore, the regressor is candidate for inclusion (Dellaportas et al, 2002). The use of such a prior
does not actually drop variables out of the model, but shrinks them toward zero and, by this way,
keeps the size of the equation constant in every step of the algorithm, in order to ensure the
convergence of Gibbs algorithm. (Carlin and Chib, 1995, p. 475)

As far as 7 (y) is concerned, George and McCullogh propose alternatives to depict the
prior knowledge on the indicator y For instance, by assuming each 7; as independent Bernoulli

trials with probability p;, then
(=TT py(1-p,)"" , (4.9)
j

implying that the addition of each variable does not depend on the inclusion of another. A special

case of (4.9), is obtained if each y; is Bernoulli (5) distributed. Then, the corresponding prior

is
1

n(y)=; , (4.10)

implying prior ignorance concerning the inclusion of each variable.
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4.3.1.2 The SSV'S algorithm and derivation of conditional posterior distributions

After defining the priors involved in the model's construction, the conditional posterior
distributions must be calculated, in order to implement the Gibbs sampler in the SSVS approach.

The full conditional posterior of the parameters can be simply derived from

pBly.y. B f (VB y)m(Bly;) 4.11)
Taking into account mixture of Normals as specified in (3.8), then (3.11) can be rewritten as
p(Bily.y. B f(MBIN(0,g57), Jor y=1 @12)
p(Bily.y. B;)cf(¥IB)N(0,7)), for y=0

By considering, now, the full conditional posterior 2 (y,[y.7_;,B). the hierarchical
structure of the model given in (3.4), implies independence between y and y and therefore, the
likelihood f(¥|B,7) does not get involved in the computation (George and McCullogh, 1993).
The corresponding posterior depends only on priors and is again Bernoulli, with success probability

p(y;y,B)~Bernoulli(p,,,), with

a; _ ajlb, O

J J

“a+b, (alb)+1 O+1’ (4.13)

J J

ppost:p(yj:1|ﬂ’ y—_/‘)

_x(Bly =Ly ) =(y,=1y_))

0 =
7w (Bly=0,y_) x(y,=0ly_,)

(Ntzoufras, 2009,p. 411)
Then, the Gibbs sampler can be applied as described in paragraph 4.2.2 by iteratively
producing values from (4.9) and (4.10).

4.3.1.3 Discussion

The effectiveness of the algorithm strongly depends on the parameters of = (f|y) that
must be specified and this, can be considered as the main disadvantage of the method (O' Hara and
Sillanpaa, 2009). It must be noted that in case of linear regression, the method gets further
complicated, since it requires the specification of an additional prior on &>, In that case the Gibbs
algorithm requires an intermediate step of updating from the corresponding posterior

p(a’ly,B.y); for details see George and McCullogh (1993), where it can be found an extensive
discussion on algorithm's convergence issues and suggestions through which the method gets
simplified. They also provide details on how the parameters should be tuned to obtain a sufficiently

well behaved SSVS algorithm.
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However, the algorithm can be considered rather simple and hence, the method has been
adopted in many applications. Extensions of the method have been proposed for GLM models
(George and McCullogh, 1996 ; 1997), Poisson log-linear models (Ntzoufras et al, 2000),
Multivariate regression (Brown et al, 1997), genetics applications (Oh et al, 2003; Yi et al, 2003),
implementions using BUGS; see Ntzoufras (2009, sec. 11.7) and factor analytics models (Mavridis
& Nzoufras, 2014).

4.3.2 Indicator variable selection

As discussed in section 4.2.1, an alternative way to use the indicator variable in Bayesian
variable selection, is to embed y directly in the likelihood equation as in (4.3). The two methods
developed by this approach (KM sampler and GVS), do not only differ from SSVS in model
structure (the likelihood depends on the indicator), but also in prior specification of f,[7;. The
spike part of the prior is centered exactly on zero, while the slab part is Normally distributed around
a pre-specified value B, representing the prior belief on each variable; for discussion on the
choice of priors see for example Ntzoufras (2009). The difference between KM sampler and GVS,

lies in how = (B,y) is specified.
4.3.2.1 Kuo and Mallick sampler

The simplest way to define the prior 7 (f,7), was suggested by Kuo and Mallick (1998)
and assumes independence between S and y. Then it follows that
n(B,y)ca(B)m(y) (4.14).
By also assuming the partition of S in (S ” ﬂ_y) as in Ntzoufras (2009), then, the parameter
vector is divided in two parts: the active part, which consists of those S that are included in the
equation, noted as f, (those for which y=1) and the remaining part of the vector, which
consists of the variables excluded from the model, noted as f_, (those for which y=0). Then,
the prior 7 (f4,7) is defined
z(B,y)ocx(Blp_)x(B_,)x(y) (4.15)
and the corresponding posterior required for the Gibbs algorithm is of the following form

p(Bly.y, B f(yly. Ba(Blp_)),  for y=1
p(ﬂjly’y’ﬂf_j)ccﬂ:(ﬂjlﬂfj)’ fOl" ]/:0.

The presence of the above equation implies that when updating the parameter vector /£ in

(4.16)
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the Gibbs algorithm, in case of the presence of a variable, the produced values depend on the
likelihood and the posterior derives as usual. Conversely, when the effect of a variable is
constrained to zero, the algorithm proposes values from a linking density, which depends only on
the conditional prior 7 (f j| B_ j). As pointed out in Kuo and Mallick (1998), this is reasonable,
because in the absence of the variable, all information needed can be provided only from the prior
and not from the data. This prior can be characterized as a pseudoprior, a term introduced by Carlin
and Chib (1995) and was used for this purpose by Dellaportas et al (2002).

As faras p(y,ly.7_;, B) is concerned, Kuo and Mallick, using similar arguments for the
prior 7(y) specification as in George and McCullogh (1993), derived a Bernoulli full conditional

posterior, with success probability given by

J

0,+1’

Pooa=pry,=1B.7 )=

(4.17).
_ SOk =Ly B E(y =y )
TSl =0y, 8) =(y,=0,y))

As it can be seen, the posterior probability of the indicator, depends on the likelihood, since it is

0

embedded in the model, however it is independent of the parameters' prior due to prior
independence assumption.

KM sampler is simple to apply, avoids the exhaustive evaluation of all candidate models
and, unlike SSVS, requires only the specification of the prior on the parameter vector and the
indicator variable (Kuo and Mallick, 1998). However, as stated in Dellaportas et al (2000, 2002),
the fact that the conditional prior 7 (S j| B j) derives directly from the prior of £, may be
considered as a disadvantage, since this restriction may cause inefficiency of the method, due to

'bad' behaved pseudopriors.
4.3.2.2 Gibbs Variable Selection (GV'S)

GVS is the second method that uses the indicator variable as part of the model equation and
was introduced by Ntzoufras (1999) and Dellaportas et (2000, 2002), extending the idea of Carlin
and Chib (1995). In GVS the prior is formed in the following way

x(B.y)ca(Bly) (BB, v)a(y) , (4.18)
where the intermediate term 7 (/_|f,.7) is a pseudoprior which does not affect the posterior of
p(ﬂy|y, 7). since B_, is independent of the likelihood. This independence allows the user to

specify the pseudoprior 'freely', and unlike KM sampler make the method work more efficiently.
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(Ntzoufras, 2009, sec. 11.5.3)
The full conditional posterior is obtained by

pBly. B, v)c fVB.y)a(Bly)a(B_|B,.7)

4.19
p(ﬁ—y|y’ﬁy’y)cx:n-(ﬂ—}Jﬂy’y) ( )
and the full conditional posterior of the indicator variable is obtained by
O,
Poon=r7 =By )=,
post / 7 0;+1
(4.20).

_ SOk ELy B m(Bly=1y )7 (y,=1y )
Ty =0y, 8) m(Bly=0,y_;) w(y,=0,y_;)

As pointed out in Ntzoufras (2009, p.409), the dependence of the full conditional posterior

0

p(B,

between candidate variables. However, in cases of orthogonal candidates, the dependence between

y,B_,.7) on the pseudoprior 7(A_|B,.7), can be useful when collinearity is detected

B, and B_, is useless. Then, it follows that
z(B_)B,.y)=m(B_ly) (4.21)
and the computation of the full conditional posterior gets simplified in

p(Bly.y. B )ocf(yly, Bm(B,]y)
pBly.y, Becr(p_ly)

Ways to further simplify the method are presented in Dellaportas et al (2000, 2002) and in

(4.22)

Ntzoufras (2009, p. 409, 410), by assuming prior conditional independence for all parameters given
the model y. As stated in Ntzoufras (2009) they are rather restrictive, however might be reasonable,

for instance, when the candidate variables are centered, or standardized, or orthogonal.
4.3.2.3 Discussion

The methods described above, provide smart and efficient Gibbs based algorithms, that are
used as faster alternatives for Bayesian model specification. Their difference among them, lies in
the model formulation as described in section 4.2.1 and the assumptions regarding the relationship
between the parameter vector and the indicator variable. Dellaportas et al., (2002) summarize these
differences by commenting on how the initial assumptions affect the posterior conditional
probability p(y;ly.7_;, B).

SSVS assumes a hierarchical structure for the model equation and therefore,

Py j|y 2V f) does not depend on the likelihood, but only on priors. The method requires the
careful treatment of several tuning parameters, the specification of which strongly affects the

efficiency of the algorithm. On the other hand, GVS and KM sampler, embed the indicator variable
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in the model equation and p(7,y.7_;, #) depends on the likelihood. For the KM sampler, the
independence assumption on priors of the parameter vector and the indicator variable, implies that
in the computation of (7 j| y,7_;»B), only the prior of y gets involved. It is considered to be the
simplest of the Gibbs based methods and the efficiency of the algorithm strongly depends on the
specification of the parameter's prior. Finally, in GVS, the conditional posterior is not only affected
by the likelihood and the prior of y but also by the pseudoprior 7(f_|f,,7). The use of the latter,
despite the fact that improves the efficiency of the algorithm can be also considered as a drawback,
since it requires careful treatment.

As stated in Dellaportas et al (2000), all methods can be easily applied using the Gibbs
sampler algorithm, however they require a careful specification of priors and as pointed out in O'
Hara and Sillanpaa (2009) they should not be used unwisely. Review of the methods, examples and
applications using BUGS on different kinds of data are provided by Dellaportas et al (2000) and
Ntzoufras (2009, chapter 11, 11.5.2, 11.5.3, 11.7)

4.3.3 Model space search

The second group of algorithms are more general and have been developed to cope with the
model determination problem. They use MCMC techniques to sample directly from the joint
posterior distribution p(m,B,|y). Under this notation, m=1,...,M is used to index the
candidate models and each B, represents its corresponding parameter vector. Therefore, the
parameter space consists of all (f,.....8,) vectors. By applying an MCMC algorithm, the
interest lies in sampling directly from models of high posterior probability (Han and Carlin, 2001).
The methods that are mainly used, are the Carlin Chib method (Carlin and Chib, 1995) and the
reversible jump MCMC (Green, 1995).

4.3.3.1 The Carlin Chib method

The introduction of the integer valued parameter m, m=1,2,...,M in Bayesian model
selection, was proposed by Carlin and Chib (1995) in order to overcome convergence problems that
arose in Gibbs algorithm, when sampling from models of different size. Unlike SSVS which forces
the dimension of the model to be fixed throughout the sampling procedure, Carlin and Chib worked
with the product space of all parameter vectors and the model indicator (m, f)€M X Hme u B

Their algorithm samples over the defined product space, which is now constant, independently of
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the size of the parameter vector. (Godsill, 2001 ; Han and Carlin, 2001)
To derive the Carlin Chib method, each model m is associated to the likelihood
S (y|B,.m) and the corresponding prior 7(f,|m). Given a model m, the data vector is
allowed to depend only on its corresponding parameter vector A, and thus, the likelihood is of
the following form
S B m)=f(yIB,.m) (4.23).
By also assuming conditional independence among the data vectors for simplicity, the marginal
likelihood is obtained by
Fm=[ £ (8. m)z(plm)dp=[ f(ylm,m)z(p,|m)dp, (4.24).
To completely specify the model, a pseudoprior 7 (f,|m’'#m) is required (Dellaportas et al,
2002); it can be formed, though, independently from the usual prior, since it does not get involved
in the above computation and works as a linking density to improve the efficiency of the algorithm
(Ntzoufras, 2009). Under the prementioned assumptions, the full conditional posterior of the

parameter vector required for the first step of Gibbs sampler, is given by

p(B B, vy, m (B, mr(p,Im), m'=m 4.25)
p(m'|B,.y, mex(f,|m), m'#m e

To derive the conditional posterior of m, the usual discrete prior 7, on each model and
the joint probability of y and p under the model m is required. Given the independence

assumptions, the latter is obtained over the product space as

Sy, B,m) = f<y|ﬂm,m>|H n(ﬂmlm>}nm (4.26).

meM
Then, the posterior distribution can be generated as a discrete random variable (Dellaportas et al,
2002) using the following formula
F OBy m)| LT (B dm) .

= , VmeM
) f(yl/f,,,,m)[ I1 ﬁ(ﬁm|m)}7rm . @2

meM meM

p(m|p,y)=

Han and Carlin (2001), suggest that the prior probabilities on the models 7,, should be
chosen in such a way that would facilitate the algorithm to sample from each model equally and
consequently obtain more accurate estimators. By also commenting on the use of pseudopriors, they
argue that the efficiency of the method depends on their proper specification and as stated in

Dellaportas et al (2002) they should resemble the scheme of their corresponding posterior

distribution p(f, |y, m'#m). As in the indicator selection algorithms, the use of pseudopriors
can be considered as the main drawback of the method. However, unlike GVS and KM sampler

which require only one prior at each step of the algorithm, for the Carlin-Chib method, in order to
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sample from the full condition posterior p(m|f,y), the specification of all = (f,|m), meM is
needed. In practice, when the number of candidate models is large, the latter can be time consuming

and restricts the performance and the implementation of the method (Ntzoufras, 2009).
4.3.3.2 The Metropolised Carlin Chib

In order to overcome the exhaustive use of too many pseudopriors, the Metropolised Carlin
Chib method, or independence sampler, was introduced by Dellaportas et al (2002). Instead of
updating from the full conditional posterior p(m|fB,y), the second step of the Gibbs algorithm is
substituted by a Metropolised move from model m to m'. Analytically, the steps of the
algorithm are the following
*  Let the current state of the algorithm be (72, B,), where B,~p(B,ly. m).

+  Propose a new model with probability % (m,m’).

« Generate B',~m(p', |y, m#m'), where (B, |y, m#m') a pseudoprior.

* Accept model m' with probability

0 =minl1 SR omNa (B, m ) (B, lm )z (m ") h(m', m)
' © SOl mm (B, lm)a (B, \m)w (m)h(m,m’)

Obviously the method gets simplified since it requires the use of only one pseudoprior at each run

of the algorithm.

4.3.3.3 Reversible Jump MCMC (RIMCMC)

An alternative Metropolis-based algorithm that has been developed in order to generate
values from the joint posterior p(m,f,|y) is the reversible jump MCMC (Green, 1995), which
explores the parameter and model space, by allowing sampling from models of varying dimensions
(Han and Carlin, 2001).

Supposing that the current state of the algorithm is (m, £,,), where f, is the parameter
vector associated to model m, of dimension dim(f,), the algorithm proceeds by proposing a
new value (m',p’',.), where dim(p’',.) can be of different length from JS,. Due to this
change in the length of the chain, the algorithm's convergence is ensured under the condition of

reversibility and dimension matching (Hartman and Hart, 2009). In order to satisfy the above
conditions, an auxiliary random variable ~q(ulB,,m,m’') isintroduced. The latter is associated

to each candidate model m, mE€M , so that the dimension of (f,.%) remains constant for all
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models (dimension matching). In other words, when proposing a move from model m to m'

where dim(f,)#dim(p’,.), the following equality should hold
dim(f,,)+dim(u)=dim(p’',,)+dim(u’) | (4.28)

where u, actually, consists of the random elements that needs to be added in f8,, so as to match

the dimension of S’

!

In addition each (f,.u) is associated to (8',. u") through an invertible function g,

so that
(B0 "= (B t) (4.29)
The latter, satisfies reversibility, which implies that the algorithm can move backwards from the
proposed values to the current state.
Finally, the proposed move is accepted or not, by calculating the acceptance probability. Its

calculation is similar to the usual acceptance probability of Metropolis algorithm, but is adjusted for

og(p, u)
o, u)

The algorithm as described in Han and Carlin (2001) and Dellaportas et al (2002) uses the

the change in dimension by multiplying it with the Jacobian J=

| (Godsill, 2001).

following steps
*  Let the current state be (m, 5,
* Propose a new model m’' with probability A(m,m’)
«  Generate u~q(ulf, m,m’)

Set (B, u')=8, (B, 1)

Accept the proposed move with probability

S OAB ) m (Blm Blm aon hm m) |28 (B, )
ST OB, mx (B ) (B I ) ) |98, u)

RIMCMC provides a useful tool for model determination and has become one of the most

widely applicable algorithms as it allows moves between models of different size in a flexible way
(Dellaportas et al., 2002). More details about the algorithm are provided by Han and Carlin (2001)
and variations of the method can be found in Dellaportas et al. (2002) and Ntzoufras (2009). A
rather comprehensive mathematical derivation with applications on genetics is provided by
Waagepetersen and Sorensen (2001), while Hartman and Hart (2009) offer a nice review with
applications on econometrics. Finally, further details and the relationship between RIMCMC and
Carlin Chib method can be found in Godsill (2001), who also records lots of references of the

algorithm's applications.
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4.3.3.4 Model Composition (MC")

One of the earliest and easiest Metropolis based model search algorithms, is the Markov
Chain Monte Carlo Model Composition (MC’), which requires posterior model probabilitie
p(M|y) (Fernandez et al., 2001). MC’® was introduced by Madigan and York (1995) for
Bayesian analysis of graphical models for discrete data and was then adopted by Raftery et al.
(1997) and Fernandez et al. (2001) for linear regression (Miller, 2002). The algorithm operates over
model space and searches for the most probable a posteriori candidate models by comparing them
through posterior model odds. In its general form, if the current state of the chain is in model M a
new model in the neighborhood of M is proposed with probability A(M ,M'). The
neighborhood of the current model includes the current model A and those candidates that are
formed after adding one more variable or removing one of the existing ones (Raftery et al., 1997).
Then the proposed move is accepted with probability

p(M|y)h(M M)
p(M|y)h(M ', M) |

Ay =mingl,

(4.30)

MC® algorithm, as described in Miller (2002), uses an integer variable j=0,..., p to
index the candidate variables. For a randomly selected model M, anumber ; is sampled. Zero
value corresponds to the existing model and when is picked, the chain remains in the current state.
If number j€(1,..., p) corresponds to an absent candidate, the latter is added in M Otherwise,
if j corresponds to an existing variable, it is removed from the model. In both cases posterior
odds between the produced model M ' and the current one is calculated and is decided weather
the first will be accepted.

Dellaportas et al (2002) proved that AMC® is a special case of Metropolised Carlin & Chib
algorithm, while Miller (2002) characterizes M(C’ as an extension of Efroymson's (1960)
stepwise algorithm. As he states, the results that both methods produce are similar. However,
occasionally, MC® tends to provide with more accurate results due to its stochastic nature. The
main disadvantage of the method is that the posterior distribution on the model space is not always

tractable. When this is the case, Fernandez et al (2001) suggests the use of Green's RIMCMC.
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4.4 Latest Advances

4.4.1 Population-based Reversible Jump MCMC (Pop-RIMCMC)

As described in previous paragraphs, trying to deal with convergence issues that appear in
MCMC algorithms when sampling from models of different dimensions, led to the development of
several alternatives in Bayesian variable selection. RIMCMC (Green, 1995) is one of the most
efficient choices. However, a second issue that arises when applying MCMC methods in variable
selection problems, concerns the nature of the joint posterior distribution p(m, f,|y). As Brooks
et al. (2002) states, in case of multi-modal target distributions, traditional MCMC methods, fail to
explore adequately both within and between distribution's local maxima. Motivated by this
problem, Jasra et al. (2007), adopted population based sampling methods and developed the
population based Reversible Jump Markov chain Monte Carlo algorithm (Pop-RIMCMC). The key
difference between traditional MCMC and population based algorithms, is the ability of the latter to
sample from various number of chains - say for instance N - in parallel (Liu, 2001 chapter 11).

In brief, following Fouskakis et al (2009), the algorithm is constructed to generate

[=1,..., N parallel auxiliary chains, in order to achieve a thorough search over model space.
Practically, apart from sampling over set of parameters (f,y), using traditional RIMCMC steps,
this leads to an additional sampling step over candidate chains. This is carried out by raising each
candidate chain to a power ;>0 referred to us, as the temperature. Assuming that at iteration

(¢), the algorithm's state is in chain /, sampling from chains powered on lower values of 7,
will result in larger jumps over model space and thus in visits over regions of lower probability. On
the other hand, when sampling from chains powered on greater values, the algorithm will be
limited to current state's neighborhood.

The efficiency of Pop - RIMCMC depends mainly on two aspects. The first one concerns
the conditions of reversibility and dimension matching, as described in section 3.3.3.3. Since these
conditions are covered, convergence of the algorithm is ensured and the results are valid (Jasra et
al., 2007). The second one, concerns the ability of the algorithm to explore the whole model space
efficiently. To achieve this, running a large number of candidate chains, is required. One way to deal
with this, is by specifying a sufficiently large number of different ¢, temperatures. However, as
Fouskakis et al. (2009) claims, this could be computationally exhaustive. To avoid the latter, they
propose the use of only two auxiliary chains. The first one is suggested to be raised to a power such

that 0<#,<1, while the other to be raised to a power of #,>1. Then, by assigning a distribution
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over t,, [=1,2 temperatures are considered as random variables and at each step different values

of 7, can be sampled, resulting in an efficient exploration of the model space.

Details on theoretical and practical aspects concerning Pop-RJIMCM and extended
discussion on every aspect of Pop-RIMCM can be found in Jasra et al. (2007), while Fouskakis et al
(2009) apply the method in a health evaluation study indicating its efficiency over original
RIMCMC algorithm.

4.4.2 Shotgun Stochastic Search (SSS)

An MCMC motivated algorithm, which is developed to explore model space more rapidly
and aggressively in contrast to other MCMC algorithms and therefore can be more effective in
problems of higher dimensions, is the Shotgun Stochastic Search (SSS), introduced by Hans et al
(2007).

Model selection based on MCMC methods discussed above, aims to simulate the posterior
distribution of the model space, by seeking for individual models at each step of the algorithm. One
candidate is randomly selected, is evaluated and is accepted if it is of higher posterior probability in
contrast to the model in the current state of the chain. Finally, by estimating the posterior probability
of each model, depending on how many times each candidate was visited, one can trace the
maximum a posteriori model, as described in Ntzoufras (2009, sec. 11.6). Conversely, SSS, is
designed to search for regions with models of higher probability, by running multiple parallel chains
at each iteration. By exploring regions and evaluating more than one models at each step, SSS,
accelerates the models space search and is likely to reach the best model faster.

In brief, let p denote the number of all candidate models and y a pX1 vector
indicating the presence or the absence of the ;” variable if y=1 or y=0 respectively.

Supposing that the current state of the algorithm is in model 7,,1<k<p, a neighborhood

nbd (y,) of proposal models is defined, based on the current candidate. The neighborhood of
proposals consists of three possible model sets : {y; ,y%,y; |, where y, is produced after
adding one more variable in the current model, y; after replacing one of the existing variables

and y, after removing one of the existing ones. Each proposal in this neighborhood is then
evaluated in parallel, using the models' posterior probability p(y|y) or other models' fit criterion.
Depending on the models' score a new candidate is chosen and the algorithm repeats the above
steps. This procedure, actually, results in ranking a large number of candidates, until the algorithm

reaches the one that sufficiently describes the data.
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Hans et al (2007) discus extensively the aspects of the method, describing the steps of the
algorithm, suggesting alternatives on evaluating the proposal models and comparing it with

traditional MCMC methods through examples in linear and binary regression.

4.4.3 Subspace Carlin and Chib (SCC)

The last algorithm that will be briefly discussed, is the Subspace Carlin Chib algorithm
(SCC), which has been developed by Petralias and Dellaportas (2012) as a combination of the
Carlin Chib, the Metropolised Carlin Chib and the Shotgun Stochastic Search algorithm. As
discussed in paragraph 3.3.3.2, in order to avoid the exhaustive calculation of all possible
pseudopriors 7 (f,|lm), mEM , MCC replaces Gibbs sampling over candidate models with a
metropolised step, by proposing a new model with probability % (m,m’). SCC adopts the idea of
SSS's sampling on neighborhoods and the proposed move form model m to model m' is
restricted, in the sense that it allows jumps between models that are formed by deleting, replacing or
adding one of the existing variables in the current model. Analytically, considering that the current

state of the algorithm is in model m, then neighborhood of candidate models for evaluation in the

next step of the algorithm is defined to be S, .={S,. S% ,S, . The algorithm samples at

random a neighborhood of models with probability Q,.={g,.q% .q.| and proceeds by

sampling a model in the sampled neighborhood with probability /% (m,m’).

4.5 Discussion

In this chapter the basic algorithms used for Bayesian model determination have been
presented. The first part describes methods for variable selection, namely SSVS, KM Sampler and
GVS, while the second part discusses algorithms that directly sample from model space. A review
with applications on variable selection strategies using Gibbs sampler is provided by Dellaportas et
al (2000). A comparative review on model selection algorithms is provided by Han and Carlin
(2001) and their relationship is examined in Godsill (2001). Ntzoufras (2009) reviews all discussed
methods, apart from those reviewed in paragraph 3.4, and provides examples using BUGS. Details
on Pop RIMCMC can be found in Jasra et al (2007) and Fouskakis et al (2009). SSS, is extensively
discussed in Hans et al (2007) and a combination of SSS and Carlin Chib method is provided by
Petralias and Dellaportas (2012).
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Chapter 5: Bayesian Adaptive Sampling for Variable Selection and Model Averaging

5.1 Introduction

As discussed in Chapter 3 MCMC techniques provide an important and easy to use
computational tool, especially in complicated statistical problems, i.e in high dimensional problems
or in computations of analytically intractable posterior distributions. In order to efficiently sample
from large model spaces and draw inference regarding higher posterior models, the Gibbs sampler
and the Metropolis Hastings algorithm were adopted, based on which, several algorithms have been
developed.

Despite the fact that MCMC based model selection algorithms resulted in overcoming major
computational problems in Bayesian variable selection, their efficiency is not guaranteed, since it
strongly depends on the careful specification of their related proposal distributions and the
specification of their corresponding tuning parameters. Mistreating them may result in slow mixing
of the chains or worse, failure of algorithms' convergence and hence inefficient estimation of the
desired posterior distributions. Gibbs based algorithms can be highly affected either by careless
specification of the prior distributions or by highly correlated data. In the first case, improper
specification of a prior distribution over candidate models, may prevent the algorithm from
sampling equally from all models. Furthermore, a bad choice of pseudopriors may restrict the
algorithm to 'local' moves, meaning that the algorithm can be 'trapped' in areas of lower dimensions
compared to the proposed ones (Dellaportas et al. 2002). The shape and size of the proposal
distribution of the Metropolis-Hastings algorithm, also plays a key role on the efficiency of such
algorithms. Heavy tailed proposals, decreases the number of the accepted points forcing the
algorithm to stand still in specific areas of the target distribution. On the other hand, using a
proposal that increases the acceptance rate of the algorithm leads in small jumps and hence full
exploration of the target distribution is very slow (Haario et al, 1999, Pasarica and Gelman 2003).

Selecting an efficient proposal distribution within an MCMC method can be proved a hard
and time consuming task for the researcher. During the last decade, adaptive modifications of
traditional Markov Chain Monte Carlo (AMCMC) schemes have been proposed, as a way to
accelerate and improve the efficiency of the Gibbs sampler and the M-H algorithm (Gilks et al.,
1998, Haario et al., 2001, Atchade and Rosenthal, 2003, Pasarica and Gelman, 2003, Andrieu and
Thoms, 2008, Roberts and Rosenthal, 2009). The main idea behind AMCMC alternatives is to take
advantage of the algorithm's history and let the proposal distribution learn from it. In other words,
as the algorithm proceeds, past sampled values are used in order to modify, mainly, the proposal
distribution and hence automatically tune it during the simulation, aiming in faster convergence and

more efficient estimation of posterior quantities (Ji and Schmidler, 2009).
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Applications of adaptive methods have also been presented in Bayesian inference (Tierney
and Mira, 1999), in variable selection and model averaging (Nott and Kohn, 2005, Clyde et al.,
2011, Lamnisos et al., 2012). This chapter focuses on the Bayesian Adaptive Sampling (BAS)
algorithm. The algorithm was recently developed algorithm by Clyde et al (2011) and exploits the
idea of adaptation. It can be applied in linear regression where marginal likelihood is analytically
available or easy to estimate. As described in their paper, BAS algorithm, samples models without

replacement from the model space. In cases of moderate number of candidate models, p~30, BAS

fully explores model space in 2’ iterations, while it provides perfect samples without replacement
when the number of candidate models is large to handle. Sampling is based on marginal inclusion
probabilities which are adaptively calculated as the algorithm proceeds, in order to avoid re-
sampling a model that was visited in a previous step. Clyde et al (2011) focus on variable selection
problems in linear regression, adopting the Normal-Gamma prior family. For its computational
simplicity, they adopt Zellner's g-prior (Zellner, 1986) and their extensions; the Zellner-Siow
Cauchy prior (Zellner and Siow, 1980) and the hyper g-prior (Liang et al., 2008). Hence, before
presenting BAS algorithm, there will be a brief representation regarding main results for the
Normal-Gamma formulation in Bayesian variable selection problem and a more detailed review of

the Zellner's family of priors.
5.2 Conjugate Analysis for Linear Regression models

Recall the linear regression formula, as described in paragraph 3.2.1, equation 3.1,
P
y, = B, + Z Bx; te, eiNNn(O,azl)
PRl

and the p-diamensional vector y€{0,1}” used to index the candidate variables that are included in
the model. In matrix form, the linear regression formula under model M, can be rewritten as
Y|B,,6°,M,~N,(X,B,,0°1,) (5.1).

Under this notation, the likelihood takes the following form:
1 :
f<Y|ﬁy’O-2’My):eXp _z_csz(Xyﬂy) (Xyﬂy) (52)

The maximum likelihood estimators of a model's unknown parameters can be computed as
B=(X, X)Xy,
= (=X, ) (v X, 5, (53).
Cov(f|o®, X ,)=(x X )6’
providing that (X y'X y)f1 exists.
Instead of using o’ , when modeling the error term, (4.1) can be parametrized in terms of
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precision T =’ . By doing so, a more straightforward interpretation of the parameter is

achieved, since 7 quantifies the accuracy of the estimated quantity that is to be used to summarize
Y .

Proper prior formulation for unknown parameters in linear model is of major concern since

it strongly affects the posterior results. There are two main alternatives when choosing a prior

distribution over (8, 7). On the one hand, the need of representing prior ignorance concerning
the parameter vector, is supported by using a non-informative prior. This approach eliminates
subjectivity during the analysis and maximizes data contribution in posterior results.

In brief, there are three basic methods in prior formulation when dealing with objective
Bayesian analysis. Laplace's rule is based on the principle of insufficient reason and states that if
there is no reason to a priori favor specific values of the parameter vector, then each one should be
treated and weighted equally. This can be achieved by assigning a uniform prior over parameter
vector. However, such a selection is sensitive in terms of invariance principle, meaning that any
transformation upon the parameters, affects the prior distribution, making it potentially informative.
Motivated by that, Jeffrey's (1946) proposed a widely accepted prior distribution, proportional to
the square root of Fisher information matrix, which remains invariant, independently of the
parametrization. The third option for constructing a non-informative prior is the reference prior,
introduced by Bernardo (1979). By maximizing Kullback-Liebler divergence a reference prior,
attempts to maximize the distance between the prior and the posterior function and hence maximize
the contribution of the data in posterior estimation (Kass and Wasserman, 1996).

In case of subjective Bayesian analysis, researcher's prior beliefs can be represented by
assigning an informative prior distribution over the parameters. Formulation of an informative prior
for linear regression has been mainly based on conjugate analysis with Normal-Gamma distribution
(Smith and Kohn, 1996; George and McCullagh, 1997; Raftery et al, 1997), since it facilitates
computations regarding the posterior quantity of interest and avoids intractability of models'

marginal likelihood. The Normal-Gamma prior scheme is presented by

Vﬂ'
( y,r)NNG(ﬁM,—,a”,bﬁ) (5.4),
T
with
£~N | By
ﬂyr’y p ﬂn’y’ T (55)’
tly~Gamma(a,,b)

where 7 is used to index the prior distribution parameters.

The resulting posterior is again a multivariate Normal-Gamma distribution,

B, t~NG (By, T,a, Z)) with updated parameters given by
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B=T(X,y+V;' B.,)
=r.'+x,x,)"
~_1
a—2n+a,, (5.6).
- 1
b==—SS+b
2 T

SS=y y=B, T B+B, V. B.,
Considering the marginal posterior of parameter vector 5,. by integrating out the
precision 7 , we obtain the following p-dimensional Student's t distribution with n+2a degrees
of freedom

>~ SS+2b -
By M ~MSt | B, 22T et 2a )| (5.7)

Similarly, by integrating out #, we obtain the marginal posterior of the precision as a Gamma
distribution

tly,M,~G(a,b) (5.8).
A detailed review concerning conjugate analysis for Normal data and Bayesian linear regression can
be found in Ntzoufras (2009, ch 1.5, p 9 — 13), while computational details on posterior derivation
can be found in Bernardo and Smith (1994). Detailed review concerning non-informative prior

formulation can be found in Kass and Wasserman (1996).
5.3 Zellner's g prior
5.3.1 Introduction

Even under the conjugate Normal-Gamma structure, prior formulation is not straightforward
(Zellner, 1983). Specification of prior parameters involved in equation (4.4), has been an area of
extended research in literature, especially focusing on prior covariance matrix formulation. Zellner
(1986), proposed a specific prior scheme based on conjugate Normal-Gamma family. The so called
g prior for amodel M, | assumes a Jeffrey's prior over the precision and a p-dimensional Normal
distribution over coefficient vector /5, , with prior covariance matrix proportional to the inverse of

Fisher information matrix;

T,9~N, (B, g7 (X, X,)7").
f(zly)ec™

In contrast to the scheme presented in (4.5), Zellner's prior simplifies prior covariance set-up

By (5.9)

by reducing the number of unknown parameters to one. The unspecified parameter g , plays a key
role in the analysis, since it controls prior weight and quantifies the prior contribution in posterior

results (Liang et al., 2008). The influence of g can be measured, in terms of additional observational
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units added by the prior, in conditional posterior of /£,1¥.7.7 . A choice of g=1 corresponds to
adding n observations in the analysis; in other words the posterior result, depends on the prior on a
50%. Similarly, a choice of g=10 implies a prior weight equal to 10% contribution. Larger
values of g, reflect prior ignorance regarding /f,. Detailed choices concerning g, will be

discussed in section 5.3.3.
5.3.2 Model comparison via Zellner's g-prior

Apart from simplifying prior set-up, Zellner's prior became popular due to the fact that it

leads to closed form expressions of marginal likelihoods. Consequently, Bayes factors, which can

) . o 2 o
now be expressed as a function of the coefficient of determination R, , facilitates and accelerates
computations in model comparison (Liang et al., 2008).

Since for any base model M,, we can compute the Bayes factor of model M, over

Mb’ by

BFyf%, (5.10)
we can compare any two models M, and M, by
BF. .= BF?”. (5.11)
»'" BF,,

A common strategy for model comparison, is to compare nested models. In such cases

Zellner and Siow (1980), proposed to to assign a flat prior over the parameters that appear in both

models and a g-prior over the remaining parameters of the more complex model. In this context, the

use of the null or the full model as a base model, makes each pair under consideration nested (Liang
et al., 2008, Guo and Speckman, 2009).

If we chose as the base the model null; M,,;. under equation (4.1), ¢’ or 7 is the only

common parameter between all models. A simplification adopted by Fernandez et al., 2001, Liang

et al., 2008, Bottolo and Richardson, 2010 and others, occurs by assuming a centering of the
covariates, so that 1 X ,=0,. Then, the intercept By can be considered as a common parameter

between any model M, and M,, and can be treated in the same way as 7. The above

scheme leads to the following optional form of Zellner's g-prior

B,

t,y~N,(0,, g (X, X,

_ (5.12).
,Bo,Tb’NT :

Under (4.12) and centered covariates the marginal likelihood can be analytically computed

as
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(1 +g)(n—l—py)/2
2N qn—1)2’
[1+g(1-R;)]

r((v=1)/2)
V) Nn)

where Ri is the coefficient of determination of candidate model M.

f Wy, g)= ly=3ll (5.13)

The resulting Bayes factor, used for comparisons between M, and M, can be obtained as a

function of Ri and g

(l+g)(n—p,,—l)/2
2N n—-1)/2
1+g(1-R;)]

BF (5.14)

y, null — [

Using similar arguments, see Liang et al., (2008) for details, if we consider the full model

M s as a base for comparisons, Bayes factors can be obtained, as

2 (n—p,—1)/2
1- R,
1+ g——>-

BF. . =(1+g) " P2
(1+g) —&

yo full—

(5.15)

5.3.3 Selecting g
5.3.3.1 Fixed values

As discussed in section 5.3.1, the choice of g quantifies the amount of subjectivity in the
analysis and in case of uninformative prior over models, it actually controls model selection. In
general, as pointed out in George and Foster (2000), a choice of larger values of g, leads to
models with fewer parameters and large coefficients. On the other hand, smaller values are
associated to a selection of saturated models with small values of coefficients. Moreover, as stated
in Liang et al., (2008), g acts as a dimensionality penalty and specific fixed choices of g, have
been studied and introduced in relation to information criteria, such as BIC.

A popular choice in case of prior ignorance, is setting g=n. Such a selection, retain the
spirit of unit information priors of Kass and Wassermann (1995) and corresponds to prior
distribution that adds information equal to one observation in the posterior analysis (Fernandez et
al., 2001). Besides that, by setting g=n , a strong connection between BIC and the log posterior

f(y|y) is obtained. In Chapter 2 we discussed that BIC derives as a large sample approximation
of the log transformed posterior of model M, and penalizes model complexity by adding in
deviance measure a penalty term equal to  p,log (n)
BIC,=C+nlog(RSS )+ p,log(n) (5.16),
where C is a common constant over all candidate models.
A similar expression of the log transformed posterior of model M, is obtained, under the unit
information prior and a uniform distribution over model space.

—2log f (y|y)=const. +nlog (RSS )+ p, log(n+1) (5.17).
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The penalty term in (5.16) is replaced by pylog(n-i- 1) , depicting the influence of one additional
informational unit added by the prior (Ntzoufras, 2009 p. 96-98).
Other recommendations for a fixed-valued g, include
. g= pi , introduced by Foster and George (1994), connecting the g-prior with the risk
inflation criterion (RIC)
. g=max(n, pi) , namely the benchmark prior, introduced by Fernandez et al., (2001),
combining BIC and RIC (BRICK)

«  g=log(n)’ , which asymptotically mimics the Hanna-Quinn criterion.
5.3.3.2 Empirical Bayes methods

Under the null baseline model approach, Liang et al., (2008) examine the influence of
selecting a fixed value for g, and focus on two undesirable issues that arise. In case of prior
ignorance, selecting large values for g imply an uninformative prior over parameter space. Such
a choice, though, activates the Lindley's paradox. Supposing a fixed value for » and p,. Bayes
factor, as derived in (4.14), always favors the null model, irrespective of the evidence provided by

the data; i.e when g—oo , BF  ,—0 . In addition, in case of a perfectly fitted model, so that
Rf—*l , a fixed choice of & does not allow Bayes factor go to infinity, activating the

. . 2
information paradox. In other words, for a constant value of & , # and P, , as R,—1

Bayes factor converges to a constant BF, ,,— (1+ g)eh

Obviously, a preselected value of g, is related to some undesirable issues and as stated in
Celeux et al., (2010), although they rely on asymptotic properties, they heavily depend on sample
size, involve a degree of arbitrariness and, thus, could be characterized as unsatisfactory choices. In
an attempt to provide with more objective approaches, George and Foster (2000) and Clyde and
George (2000), exploited empirical Bayes methods to develop a common or global data dependent
estimate of g .

The global empirical Bayes approach assumes a common value of g over all models,
which is estimated by maximizing the marginal likelihood p( yly,g), as an average over all
models.

(1+g)(1—p;,—1)/2
2 n—1)2°
[1+g(1-R;)]

~ EB

g G=argn3)ax=z »(7)
g> y

(5.18)

A related approach is the local empirical Bayes estimate, introduced by Hansen and Yu
(2001). It assumes varying data-based estimates of g for each model, obtained by
g '=max{F,—1,0] (5.19),

where F, is the common F statistic for testing the hypothesis H: 5,=0 ;
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Rllp
F = P (5.20).
" (1=R)/(n=1-p,)

The resulting Bayes factor is obtained below

_[+R (n=1=p)p,(=R)" """
P 1 n—1—p )R p (1=R}) """

(5.21).

5.3.3.3 Full Bayes approach

The information paradox is resolved through empirical Bayes methods; see Liang et al.,
(2008). However, model selection consistency, as considered in Fernandez et al., (2001), is not
guaranteed. In other words, the selection of the true model is not asymptotically certain by EB
approaches. Besides that, empirical methods stand in contrast to fully Bayesian approaches and are
often criticized for using data-based estimates for prior quantities. Instead of fixing the unknown
parameter, the most natural alternative to deal with the uncertainty of g, is to assign a weakly
informative hyperprior over g (Zellner, 1986). The most popular choices that have been
developed in literature, as fully Bayesian approaches, are the Zellner-Siow prior (Zellner and Siow,
1980) and the hyper-g family of priors, introduced by Liang et al., (2008).

The Zellner-Siow prior, has been developed, exploiting Jeffreys' (1961) work on hypothesis
testing of univariate normal means. Jeffreys proposed using a Cauchy prior instead of a Normal, to
avoid inconsistency related to Bayes factors. Following Jeffreys, Zellner and Siow (1980), proposed
a hierarchical scheme for comparing nested models in linear regression, based on the multivariate
Cauchy distribution. Utilizing the same strategy described in 4.3.2, they proposed a flat prior on
parameters that appear in both models under comparison and a Cauchy prior on the remaining ones.
Representing the Zellner-Siow priors as a scale mixture of Gaussian random variables, the

recommended prior on S, can be expressed as

z(B o) [ N (B,

with an Inverse Gamma assigned on g, so that

0,gt (X, X) 'n(g)dg) (5.22),

g~IG(%, g) (5.23).
The main drawback of the Zellner-Siow priors is that marginal likelihoods are intractable
and can be evaluated using for instance a Laplace approximation (Liang et al., 2008).
Liang et al., (2008), introduced a broader class of hyper-g priors as an alternative to Zellner-
Siow prior, given by

-2
;r(g):ﬂ"2 (1+g)""? (5.24).
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The prior (5.24) is a proper distribution for f,>2. For f,=2 can be considered both as
a reference and a Jeffreys prior, while a reasonable choice include a range of 2<pf,<4. Further
details and arguments on hyper parameter specification can be found in Liang et al. (2008).

In contrast to Zellner-Siow priors, the hyperprior of Liang et al., allows a closed form
expression for marginal likelthood and posterior quantities of interest, even though it requires
evaluation of the Gaussian hypergeometric function, which is proved to be problematic under
certain circumstances. However, the Zellner-Siow prior results in a consistent model selection
procedure under the null model, as considered in Fernandez et al. (2001). The property does not
hold for the hyper-g family of priors even though Liang et al. (2008) proved that the null model
remains the highest probability model. This occurs due to the fact that Zellener-Siow prior allows to
depend on the sample size n . Motivated by that, Liang et al., proposed a sample-size dependent

modification, namely the hyper-g/n prior

—B/2

1+£
n

ﬁ(g):T

(5.25).

The hyper-g/n prior is model selection consistent, but it does not allow analytical evaluation
of posterior quantities. Computation of these quantities require a Laplace approximation, provided

by Liang et al., (2008).

5.3.3.4 Discussion and Further Extensions of g-priors.

Uncertainty over g has been encountered through the three different ways described in
this section. Liang et al., (2008), either by considering their theoretical properties in terms of
consistency and through simulation studies, showed that fully Bayesian approaches outperform
selecting a fixed value of g or estimating from the data using empirical Bayes approaches.
Choices of a fixed value, are strongly related to the information paradox and are not model selection
consistent, except from those that correspond to the BIC or BRIC approach. Empirical methods,
apart from being partially Bayesian although they do not activate the information paradox, they do
not guarantee model selection consistency. Setting a prior over g resolve both the information
paradox and model selection inconsistency. Besides that they retain prediction consistency, a
property which is occasionally preferred.

Apart from Liang et al., (2008), several authors have presented work based on g-priors,
either proposing modifications of traditional Zellner's prior or studying theoretical aspects on
existing extensions. Some of this work include Marin and Robert (2007), who propose a continuous
improper prior on hyperparameter g, without considering consistency properties, Krishna et al.,
(2009), who provide with a modification of the prior covariance set up in Zellner's g-prior, Guo and

Speckman (2009), who examine consistency issues of several g-prior settings, including improper
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prior of Marin and Robert (2009), Celeux et al., (2010) who compare g-prior modifications to
frequentist approaches in case of p=n , Bottolo and Richardson (2010), Maruyama and George
(2010), Yang and Song (2010) and Baragatti and Pommeret (2012) who adopt g-prior to cope with
'large p small n' problem, and Fouskakis et al (2009, 2015, 2015). As stated in the introduction of
the current chapter, Zellner's g-prior was also adopted by Clyde et al., (2011) to develop their
Bayesian adaptive sampling scheme (BAS), which will be discussed in section 5.4 that follows,

exploiting the computational simplifications that it provides.

5.4 Bayesian Adaptive Sampling

5.4.1 Introduction

BAS was introduced as an alternative to traditional MCMC algorithms, making use of an
innovative model search algorithm which performs sampling without replacement from the
posterior distribution. The key idea is described in Clyde et al., (2009); MCMC algorithms are
designed to sample with replacement from finite model spaces. Then, by counting the visits on
each model; i.e. by counting the MCMC model frequencies, each model is a posteriori ranked or
selected as the highest probability one. In case of conjugate analysis or in general, in cases where
marginal likelihoods are analytically tractable, the latter can replace MCMC model frequencies to
produce marginal likelihoods and provide comparisons through models under consideration. In that
sense, re-sampling over model space, does not actually provide with any additional information and
sampling over model spaces without replacement could provide with a more efficient strategy for
model search.

The algorithm's main features can be summarized in five bullets:

*  BAS samples models without replacement.

It fully enumerates model space, for a moderate number of covariates p~30 .

* It provides perfect samples, under the condition of orthogonality or of limiting

dependence, when the number of covariates is larger and sampling is unavoidable.

* It samples near the the median probability model, providing that the sampling

probabilities are the marginal inclusion probabilities.

* Estimates marginal inclusion probabilities adaptively, as they are not known beforehand.

5.4.2 Sampling strategy

According to Clyde et al., (2011) the simplest way to perform sampling without replacement

over the model space [ , is by assigning equal probabilities to all models and draw a simple
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random sample of size 7 . However, such an approach, does not account for the magnitude of
each model, leading to samples that may exclude models of high posterior probabilities, especially
in cases of carelessly selected sample size 7T .

In contrast to simple random sampling without replacement, they suggest a probability
proportional to size sampling scheme (PPS). The idea behind PPS sampling, is to use an auxiliary
variable as a size measure for each model, in order to improve sampling accuracy and efficiency.
The efficiency of such a sampling scheme, strongly depends on the constructed size variables,
which should be correlated to the variable of interest. In this context, Clyde et al., (2011) propose
that sampling variables should be correlated to the product of the marginal likelihood and the prior
probability of each model. Once a model is sampled, to ensure that the latter will not be re-sampled,
its probability is set to zero and the remaining sampling probabilities are re-caclulated, under the
restricted set of unselected models.

In order to perform PPS sampling, one needs to fully specify the initial sampling
probabilities over all models in advance and at each step re-normalize them under the restricted
sampling frame. Such an exhaustive enumeration is avoided by representing the model space by a

binary tree. The following scheme represents the model space in case of 3 candidate variables.

Each node represents a candidate variable. Beginning from top, the first node represents

7,- followed by the remaining 2 candidates. Each branch corresponds to the inclusion or
exclusion of each candidate. Specifically, the left branch corresponds to the exclusion of a variable
»;=0. while the right one represents the inclusion of a variable y;=1. Each path leads to a
unique model, with 2°=8 endpoints, which represent all candidate models. Under this scheme,
after a model is selected, its contribution is removed and as the algorithm proceeds the sampling

distributions are re-calculated only once a node is sampled. In other words, the update of sampling
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probabilities, is limited to the ones getting involved in the path being sampled at each step. The
sampling probabilities that do not include the sampled model remain the same as in the previous

iteration.
5.4.3 BAS notation and implementation

Following Clyde et al., (2011), assume that under BAS, a model is sampled without
replacement using probabilities proportional to a probability mass function f(y) . Since 7, is
binary, we can consider that the pmf used to sample models, is a product Bernoulli distribution with
probability p; , so that

p
=1 py(=p) (5.26).
j=1
Let, 7., denote the subset of indicators {yk} for k<j and 7., the corresponding subset for

k>j .Then,the pmf f(y) can be expressed as a product of univariate conditional distributions

as above:
)4
=11r0-) (5.27).
Jj=1
Using (4.26), f(y) becomes
1 (o) Hmm py ) (5.28),

where p is the sequence of all {p < j} formed as p;-;=f (7,=1ly_;). The latter corresponds
to the partial conditional distribution of inclusion of variable ;. given the inclusion history of past
sampled variables 1,2,..., j—1.
Then the algorithm consists of the following steps:
« Attime ¢=0 | initialize with starting sampling probabilities p=p""
 For t=1.2,...,T |, consider the partition of model space I’ between I (;S) , the set of all

previously selected models and I” ") the set of the remaining unselected models, so that

+  Sample amodel " with V(jt)|y(i)j~Ber( p(]ﬂllj)) :

e Set IV'=rup")

* For j=12,...,p update the conditional probabilities p(f\;lj) over the path of the binary

tree of model »" with

(1) ). (e=1)y, ()
() _pjt\<j_f(y2]j|y<j:p )y/

Jl<i= -
o 1= (2%, ")

(5.29),
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where

P

FOO o =TT () (1=t ™ (5.30).

k=j

* For all other paths let

pi=pls) (5.31).

Under equation (4.29), BAS ensures two things; either that all models will be sampled in

T=2" iterations and also that at each step, f (y| p(’ )) assigns zero probability to past

sampled models y€l’ (f) while for unselected models I''V'=r (,S_)l—{ym} assigns
probability equal to one. The proof is provided in the supplement of Clyde et al., (2011) in
the Supplemental Materials

5.4.4 Approximation and adaptivity

A main problem in the algorithm described above, is setting the starting values p'” that
initialize model sampling. In practice, the partial conditional posterior distribution
py<;=f(y;=1ly_;) is unknown and evaluating them in advance, is computationally exhaustive.
Clyde et al., (2011) suggest using marginal inclusion probabilities p(V_,:1|y) instead, as an
approximation of the posterior model probabilities. In particular a first order approximation of
posterior model probabilities in terms of Kullback-Leibler divergence can be obtained, using the
current estimates of the marginal inclusion probabilities, at each step of the algorithm, tas
described in equation (4.26); see proof 2 at the Supplemental Material of Clyde et al (2011). So,
ideally, the rationale of the algorithm, is to utilize past sampled models, in an adaptive way, to

update marginal inclusion probabilities of each candidate at each step, through

Z Pyl p(y)y,

/\(t) yEF
)= (5.32),
Piei > pyy)p
yEF[

and decide weather a candidate should be included in the model or not.

Updating the sampling inclusion probabilities at each step of the algorithm, is
computationally expensive, since it also requires re-normalization over the sampling probability
sequence, to avoid duplications over past sampled models. Clyde et al.,, (2011) suggest a
compromise, estimating the marginal inclusion probabilities periodically, every U iterations, so
that there is a significant change and the update is meaningful. They also claim that the update of

0% should not be implemented too early, so that estimates do not receive zero probability. So,
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they propose shrinking p(f|>< ; away from zero or one, so that all models receive a possitive

probability. Taking into account the above, the proposed algorithm, proceeds using the following

steps:

Set ¢ and d=ve .Set T<2" .

Attime ?=0 | initialize with starting sampling probabilities p= p(o)

For t=1,2,...,T | consider the partition of model space I between I’ (f) , the set of all

previously selected models and 7'\ the set of the remaining unselected models, so that
r=(ry, ry

Sample a model "

with y(jt>|y(i)‘,-~Ber( p(f‘;lj)) .
Set I''=r'" ufy"
For j=12,.., p update the conditional probabilities p(f\;lj) over the path of the binary

tree of model ' with

P P AV

P, (5.33),
" l—f(y;j)
where
= (t=1\'~ 7
7>/ :!_[(pkldc) ( k\<k) (5.34).
=J
For all other paths let
Pil<r=pi<) (5.35).
If tmod U=0 | estimate marginal inclusion probabilities
t
(i) (i) (@)
Pl ")y
m_; ") ’ (5.36).

it o= pY 1P p>o
o Set p(ﬁljzmin(max(e,ﬁ(j”),1—6)

o Re-normalize probabilities using equations (4.33) and (4.34) and sample with a new

(0)
Pj<j -
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5.4.5 Estimation of initial values

The last step to complete the algorithm is to set the initial sampling probabilities. As
discussed in Clyde et al., (2011), under the assumption of orthogonality, marginal inclusion
probabilities, can be evaluated prior to sampling. In the general case, these quantities, must be

estimated. The authors provide with three different choices on how this could be achieved. Initially,
they propose using p(]TL ;=1/2 corresponding to simple random sampling without replacement.

The second approach suggests estimating p((‘)L] through p-values, based on the work of
Selke et al., (2001), on p-value calibration for testing precise hypothesis. The methodology
proceeds as above:
* Fit the full model to the data.
e For j=l,...,p test Hy:B,=0 versus H,:$;#0 | given that the remaining
coefficients B, , i=1,....,j—=1,j+L,...p  arenot zero.
e Calculate p ,p-values, namely pfiv)
e Set ﬁ(ﬁlj:ll{l—ep‘(,v)logpy)} ifp(jv)<1/eNO.37
*  Otherwise set |-, =1/2 |
The third option that is highly recommended in case of highly correlated data, is to estimate

initial values of marginal inclusion probabilities through MCMC frequencies. The suggested

estimate is calculated as

P =2y 0" Gly) (5.37),

yEA
where A corresponds to the unique sampled models and p"“(y|y) is estimated as in equation

(3.7), Section 3.2.3.
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Chapter 6: Illustration and examples of the BAS package

6.1 Introduction

In the final chapter of the current dissertation, the performance of the BAS algorithm will be
tested. We will explore the ability of the algorithm to uncover the true model, for the case of linear
regression. The main area of focus will be the effect of the coefficient vector's prior, on posterior
results. Both independent and correlated simulated data sets will be used. At first, we will study the
performance of the BAS algorithm in case of a relatively small model space using 10 candidates.
Recall that, when this is the case, BAS ensures that model space will be fully explored. The second
part will deal with a larger model space of 30 candidates, where sampling is required. Before that,

there will be a brief presentation of the main formulas that are included in the BAS package.

6.1 The BAS package in R

The BAS package version 1.0, has been developed by Clyde and Littman (2005) as a tool
for Bayesian model selection in R and implements the BAS algorithm that has been described in
chapter 4.

The main formula that applies the aforementioned algorithm, is the the bas./m() function. It
performs random or deterministic sampling without replacement in model space using a prior
distribution on coefficients that belong to Zellner's g-prior family for p>15. For p<15 it fully
enumerates the marginal likelihoods of all models under consideration (equal to 2p) Possible
choices include Zellner's g-prior, Zellner-Siow Cauchy prior, hyper-g prior of Liang et al. (2008),
Local and Global empirical Bayes estimates of g and AIC or BIC, as model selection criteria. To
initialize the algorithm BAS provides with two options on the starting marginal inclusion
probabilities. One can assign either equal probabilities on each predictor or can use the p-value
calibration of Selke et al. (2001), as described in section 4.4.5. There is also a possibility of
preselecting the number of models that the algorithm will sample and the frequency of sampling
probabilities updates. Results can be updated using a different prior, without rerunning the
algorithm, through the update.bma() function.

Considering the results, the summary.bma() function, by default, prints the top 5 highest
posterior probability models with their corresponding Bayes factor, posterior probability, R square,
dimension and logarithm of the marginal likelihood. The marginal posterior summaries of
coefficients can be obtained by the coef.bma() function, which prints their posterior means, standard
deviations and marginal inclusion probabilities, under Bayesian Model Averaging. The Posterior

distributions of coefficients can also be graphically displayed using the plot.coef.bma() function.
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The BAS package includes two more plotting functions, namely image.bma() and
plot.bma(). The first function displays a heat map of the model space sampled under BAS, while
plot.bma() returns four plots; the residuals vs fitted values plot, the cumulative model probability
plot, the models' log marginal likelihood vs model complexity and a graph of marginal inclusion
probabilities.

Finally, fitted values and predictions can be calculated through fitted.bma() and
predict.bma() functions. The fitted.bma() function returns fitted values under the highest probability
model, the median probability model and the posterior means of BMA using the top m sampled
models. predict.bma() calculates the predicted values using BMA. The last function which deals
with predictions, is the cv.summary.bma() function. It provides with out of sample predictions,
given the output of predict.bma() function, returning the average prediction error form the highest

probability model and the average prediction error under BMA.

6.2 Examples

6.2.1 Priors used in BAS

Under the data that will be generated and the prior model distribution, we applied the BAS
algorithm under the priors choices that can be implemented using BAS package and have been
discussed in detail, in chapter 4, section 4.3. In specific, we applied the following prior choices:

* AIC: The Akaike Information Criterion,

* BIC: The Bayesian Information Criterion,

» g-prior: The prior of Zellner with g=100 corresponding to the Unit information prior, of
Kass and Wassermann (1995)

e ZS-Null: The prior of Zellner & Siow, utilizing the null model as a base for comparison,
Zellner and Siow (1980)

* ZS-Full: The prior of Zellner & Siow, utilizing the full model as a base for comparison,
Zellner and Siow (1980)

* Hyper-g: The prior of Liang et al. (2008), with a=3 as recommended in Clyde et al
(2011),

* Hyper-g-Laplace: The prior of Liang et al. (2008), using a Laplace approximation to
estimate g,

* EB-Local: The local empirical Bayes estimate of g, of Hansen and Yu (2001)

* EB-Global: The global empirical estimate of g, of George and Foster (2000) and Clyde and
George (2000)
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6.2.2 Full enumeration — Simulated Data

In our first example, we used simulated data with p=10 candidates and n=150.
observations. The data set was split, so that the first 100 observations were used to apply the
algorithm and the last 50 observations were used to perform out of sample predictions. All columns
of the design matrix were generated from independent N (0,1) random variables. The parameters
were, deliberately, chosen to be relatively high, to ensure that will be included in the model,
independently  of the  prior coefficients setup. In  particular, we  chose

a=4, $=(3.2,-1.05,0,0,0,0,0,0,0.5,0) and ¢=1. To complete the prior specification, the

prior distribution over model space was set to be Uniform, using 2 (M,)= ?-

Posterior Results

All methods achieved to detect the true model as the maximum a posteriori model (MAP),
with the inclusion probabilities of the first 2 candidates to be equal to 1. The corresponding
probability of the ninth candidate was estimated to be approximately 0.99. However, as noticed, the
'AIC' and 'ZS-Full' methods, seem less confident in detecting the true model. Their corresponding
model's posterior probability appeared to be significantly low; 0.07 and 0.17, in contrast to all other
methods, the value of which, fluctuated around 0.5. In addition, the above methods assigned
significantly higher marginal inclusion probabilities to the variables excluded from the model. In
contrast, the highest model posterior probabilities, corresponded to the Empirical Bayes methods
(approximately 0.57), which also computed the lowest values of marginal inclusion probabilities for
the excluded candidates.

Regarding the marginal posterior means of each coefficient under BMA, the intercept was
estimated to be 3.97 with a marginal posterior standard deviation around 0.11. The closest estimates
of the effects were provided by the 'g-prior' method, while 'AIC' and 'BIC', provided the most
distant ones. The 'BIC' method, seemed to be related to higher estimates of marginal posterior
standard deviations for each coefficient under BMA.

Finally, concerning the Average Prediction Error (APE), the 'AIC', 'BIC' and 'ZS-Full'
methods, provided with the lowest values of both in sample and out of sample APE under MAP
(1.053645 and 0.9247008). The corresponding highest values were detected under the 'g-prior'.
'AIC' prior, also provided with the smallest in sample APE under BMA (1.046514) but the largest
out of sample APE under BMA (0.9348658). The highest ones were computed under the 'hyper-g'
and 'BIC' prior, respectively. Summary tables of the results are provided in Appendix A.
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Consistency of results

In order to examine the stability of the results, we repeated the experiment by generating
100 samples as described above and applied the algorithm in each sample. The first two candidates,
X, and X, were included in the selected model in all samples with an average marginal
inclusion probability 1. The ninth candidate was selected 99 times, with an average marginal
inclusion probability 0.97, except from the 'AIC' and 'ZS-Full' case where it was also found in the
selected model in all samples.
Under 'AIC' prior, the algorithm failed to detect the true model as the HPM, in 76 samples
As it can be seen in table 1, 'AIC' prior and tends to select overfitted models and is related to higher
rate of selecting candidates with zero effect, as significant ones. The 'ZS-Full' method also seems
inefficient, however the probability of selecting the true model is increased, in contrast to 'AIC'
(57%). The most effective methods are the 'ZS-Null', 'Hyper-g', 'Hyper-g Laplace', 'EB-Local' and
'EB-Global', which succeeded to uncover the true model in 89 samples, with average posterior

probability of the model selected to be on average 0.5.

Table 6.1: Frequencies of candidate spotted as important for 100 simulations

_prior 7S- ZS- Hyper-g | 1YPer-g EB EB
AlC BIC | 5y | N Full 3) LR | Local | Global
Intercept 100 100 100 100 100 100 100 100 100
x1* 100 100 100 100 100 100 100 100 100
X2% 100 100 100 100 100 100 100 100 100
X3 15 3 3 3 5 3 3 3 3
x4 19 4 3 3 10 2 2 2 3
X5 12 2 1 0 4 0 0 0 0
X6 17 4 3 1 9 1 1 1 1
x7 19 5 3 3 9 3 3 3 3
x8 17 4 4 2 1 2 2 2 2
X9* 100 99 99 99 100 99 99 99 99
x10 14 1 0 0 4 0 0 0 0
count 34 78 83 89 57 89 89 89 89
MPP 0,062 0,344 0,358 0,494 0,136 0,501 0,499 0,504 0,51
SD 0,012 0,078 0,076 0,111 0,032 0,111 0,111 0,112 0,116
log
marginal | -230,3 2354 1154 116,5 10,7 115 115 118 118
likelihood
SD log 7,738 7,513 8,684 9,605 0,98 9,571 9,571 9,68 9,682

count: no of times that the true model was detected as the HPM
MPP: average posterior probability of the true model over 100 samples
SD HPM: average standard deviation of true model's posterior probability over 100 samples

log marginal likelihood: average log marginal likelihood of the true model

SD log: average sd of log maginal likelihood of the true model

Regarding the marginal posterior inclusion probabilities of zero effect candidates, most
methods estimate them, on average, at around 0.1. Under 'ZS-Full', their estimates were increased at

0.25, while using the 'AIC' prior the estimates are even higher, reaching 0.4. As it can be seen in
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graph 1, the variability of zero effect candidates is considerably increased for the 'AIC' and 'ZS-Full'
priors, in contrast to other. However, a closer look in the 9" candidate, depicts an opposite attribute.
The distribution of the marginal inclusion probability under the aforementioned priors has less low
extreme values (graph 6.1).

Considering the posterior means of the coefficients X,,X, and X, , 'AIC' prior
provided with the closest estimates, under BMA. Their distribution, though do not seem to alter
considerably (graph 6.2). On the other hand, the distribution of the zero effect candidates is found to
be of greater variance (graph 6.3).

Finally, as far as APE is concerned, 'AIC' and 'ZS-Full' prior are related to smallest in sample
APE and out of sample APE under BMA. However, the corresponding out of sample APE for HPM,

can be seen that is higher, in contrast to other priors.

Figure 6.1: Marginal inclusion probabilities. (100 samples)
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Figure 6.4: In sample & Out of sample Average Prediction Error. (100 samples)
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6.2.3 Adaptive Sampling - Simulated Data

In the second example, we explored the performance of the algorithm using simulated data
with p=30 and n=15, so that all calculated results may be obtained by sampling the model
space. The first 26 columns of the model space were generated using independent N (0,1.) The

last four candidates were generated under the following correlation matrix

Table 6.2: Correlation matrix

x27 x28 x29 x30
x1 0,993 -0,033 -0,007 0,080
x2 -0,061 0,794 0,069 -0,065
x3 0,055 0,059 0,730 -0,191
x4 -0,050 -0,132 -0,205 0,689

The regression parameters were chosen as
a=3.2, p=(2.3,-1.5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,—0.8,0,0,0,0,0,0,0,0,0,0,0,—0.48)"
and ¢=1. We ran the algorithm for 2 iterations and the updating step for sampling inclusion
probabilities was chosen to be 500. At first, the performance of the algorithm was explored under
Uniform initial probabilities and afterwards the p-value calibration was examined.
Similarly to the first example, the true model was successfully identified as the MAP, under

all priors except from the AIC and ZS-Full prior, which tend to select models of considerably higher
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dimensions. In particular, for the top 20 ranked models, independently from the initial sampling
probabilities choice, while all other priors selected models of 5 or 6 candidates, under AIC and ZS-

Full prior, the number of significant candidates, varied between 7 and 11. (Table 6.3)

Table 6.3: Dimension of the top 20 sampled models (constant included)

Model Initial probabilities: Uniform | Initial probailities: p-value calibration |
Rank alc Bic @8 0 gprior hyzer_ Lapiace U gt AIC BIC S L geprior hyzer_ Lapiace U obal
1 8 5 5 8 5 5 5 5 5 8 5 5 8 5 5 5 5 5
2 9 6 5 7 5 5 5 5 5 9 6 5 7 5 5 5 5 5
3 10 6 6 7 6 6 6 6 6 10 6 6 7 6 6 6 6 6
4 9 5 6 9 6 6 6 6 6 9 5 6 9 6 6 6 6 6
5 7 6 6 8 6 6 6 6 6 7 6 6 8 6 6 6 6 6
6 9 7 6 9 6 6 6 6 6 9 7 6 9 6 6 6 6 6
7 10 6 6 8 7 6 6 6 6 10 6 6 8 7 6 6 6 6
8 7 7 6 10 6 6 6 6 7 7 7 6 10 6 6 6 6 7
9 9 6 6 9 7 6 6 6 6 9 6 6 9 7 6 6 6 6
10 8 6 6 8 6 6 6 7 6 8 6 6 8 6 6 6 7 6
11 10 6 7 9 6 7 7 6 6 10 6 7 9 6 7 7 6 6
12 9 6 6 8 6 6 6 6 7 9 6 6 8 6 6 6 6 7
13 10 6 6 9 6 6 6 6 6 10 6 6 9 6 6 6 6 6
14 8 6 7 8 6 7 7 7 6 8 6 7 8 6 7 7 7 6
15 9 6 6 8 6 6 6 6 6 9 6 6 8 6 6 6 6 6
16 8 6 6 8 6 6 6 6 6 8 6 6 8 6 6 6 6 6
17 9 6 6 9 6 6 6 6 6 9 6 6 9 6 6 6 6 6
18 10 6 6 9 6 6 6 6 6 10 6 6 9 6 6 6 6 6
19 11 6 6 6 6 6 6 6 6 11 6 6 6 6 6 6 6 6
20 9 6 6 9 6 6 6 6 6 9 6 6 9 6 6 6 6 6

Graphically, as it can be seen from the top 100 models sampled (see Figure 6.5 -6.6), each
prior's results, does not seem to alter between the two alternatives of initial sampling probabilities.
AIC and ZS-Full, tend to additionally support the selection of the subset of non significant
covariates {x6,xI11,xI4}. Moreover seem more confident concerning the identification of

candidate {x30}, as significant one (selected in all 100 models).
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Top 100 models sampled (Initial Probabilities: Uniform)

Figure 6.5
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As mentioned in the previous paragraph, the results, are not affected by the two alternative

ies in the

choices of initial sampling probabilities. The main difference between the two methods 1

reduction of the number of updates that the p-value calibration needs to reach the final model. In

particular, in most cases, the latter required almost half updates to select the final model.

ired a larger number of updates.

10T requ

d EB-Global pr

, g-prior an

Interestingly, under AIC

73



Table 6.4: Marginal Inclusion Probabilities

Initial probabilities: Uniform Initial probailities: p-value calibration
YAS . Laplac EB- EB- . } EB-
AIC BIC Null ZS-Full g-prior hyper-g e Local  Global AIC BIC  ZS-Null ZS-Full g-prior hyper-g Laplace EB-Local Global

const | 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 | 1,0000 1,0000 1,0000 1,000 1,0000 1,0000 1,0000 1,0000 1,000
xI* | 1,000 0998 0,99 0999 0997 0,99 099 0996 0,99 | 0,9998 009978 09954 0,9995 09961 09955 0,9956 09954  0,9959
x2* | 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 | 1,0000 1,0000 1,0000 1,0000 1,000 1,0000 1,0000 1,0000 1,0000
x3 0,172 0,085 0076 0,180 008 0075 0076 0075 0076 | 0,1815 00906 00752 0,1063 00823 00767 00778 00752 0,0760
x4 0322 0314 0305 0350 0314 0315 0312 0306 0312 | 03308 02735 03041 02284 03323 03122 03098 03203 0,3090
X5 0,105 0,067 0056 0183 0064 0060 0057 0057 0059 | 0,1257 00626 00573 00765 00641 00584 00576 00576 0,0572
X6 0,906 0340 0256 0,793 0288 0253 0256 0256 0256 | 09555 03493 02541 08296 02875 02535 02580 0,258 02590
X7 0,094 0,066 0057 0158 0064 0058 0058 0057 0058 | 0,1085 00647 00572 00967 00639 00579 00583 00577 0,0572
x8 0,083 0,061 0057 0062 0063 0058 0057 0058 0057 | 0,1027 00652 00574 00630 00641 00578 00575 00568 0,0574
X9 0,170 0,093 0084 0165 0,093 0084 0084 0082 0083 | 0,1833 00939 0,830 0,669 00938 00834 00824 00830 0,0832
x10 | 0,151 0071 0060 0081 0068 0061 0060 0061 0062 | 0,1297 00684 00611 0,1479 00680 00625 00614 00619 0,063
x11 0,840 0262 0,198 0,604 0229 0,198 0197 0201 0201 | 08732 02653 0,1988 0,955 02236 02011 02017 0,1969 02017
x12 | 0,101 0068 0060 0113 0069 0062 0060 0061 0061 | 0,043 00653 00587 0,1188 00682 00612 00620 00610 0,0605
x13 | 009 0059 0056 0075 0061 0055 0055 0056 0,056 | 0,0652 00616 00552 0,103 00611 00564 00558 00549 0,0549
x14 | 0,554 0209 0,164 0518 0,185 0,164 0165 0164 0,162 | 0,5542 02202 0,1619 0,5425 01875 0,1612 0,1650 0,1671  0,1638
x15 | 0121 0064 0059 0160 0065 0058 005 005 0,058 | 0,096 00642 00583 0,1306 00643 00591 00590 00571 0,0582
x16 | 0,095 0062 0055 008 0062 0055 0056 0055 0,055 | 0,0727 00604 00546 00768 00609 00550 00557 00553 0,0548
x17 | 0366 008 0072 0239 008 0072 0072 0072 0073 | 03737 00925 00721 03146 00787 00722 00727 00727 00736

x18* | 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 | 1,0000 1,0000 1,0000 1,000 1,0000 1,0000 1,0000 1,0000 1,0000
x19 | 0063 0063 0058 0069 0064 0059 0058 0058 0,058 | 0,0912 00654 00583 00932 00631 00578 00589 00572 0,0579
x20 | 0085 0060 0056 0063 0063 0055 0057 0056 0,056 | 0,1109 00612 00565 00744 00616 00565 00565 0,559 0,0556
x21 | 0501 0,149 0,116 0281 0,139 0,119 0,117 0117 0,120 | 0,5032 01374 01174 03908 01398 0,1200 0,1176 0,1164 0,1191
x22 | 0293 0106 0089 0170 0,104 0,093 0092 0090 0,092 | 02428 0,066 00899 02411 0,1028 00917 0,0904 00936 0,0903
x23 | 0074 0065 0059 0068 0066 0060 0061 0060 0061 | 0,0578 00697 0059 0,1297 00686 00610 00602 00592  0,0607
x24 | 0428 0,108 0092 0207 0,101 0,08 0092 0091 008 | 04507 0,149 00902 03240 0,1015 0,0897 0,0918 00874 0,0923
x25 | 0351 0,100 0083 0231 0095 0084 0085 008 0084 | 03998 01011 00835 002947 00988 0,0839 00848 00829 0,0864
x26 | 0,058 0057 0053 0055 0059 0054 0056 0053 0,054 | 0,095 00590 00531 00535 00594 00536 00543 00536 0,0538
x27 | 0076 0065 0062 0098 0068 0062 0062 0062 0063 | 0,157 00662 00633 00976 00694 00629 00620 00622 0,068
x28 | 0110 0067 0061 0131 0067 0061 0062 0061 0061 | 0,0781 00682 00606 0,1026 00674 00610 00617 00594 0,0607
x29 | 0065 0065 0059 0117 0064 0059 0058 0057 0059 | 00881 00636 00591 00957 00656 00580 0,580 00572 0,0580

x30* | 0,989 0,827 0,798 0981 0,808 0,788 0,792 0,798 0,791 | 09892 0,8655 0,7981 09901 0,7903 0,7913 0,7942 0,7846  0,7939

Dimension| 8 5 5 8 5 5 5 5 5 8 5 5 8 5 5 5 5 5

posterior
probability

R2 0920 0912 0912 0920 0912 0912 0912 0912 0912 | 0920 0912 0912 0920 0912 0912 0912 0912 0912

0,001 0,025 0,057 0,001 0,030 0,056 0,056 0,057 0,049 0,001 0,026 0,057 0,001 0,030 0,056 0,056 0,057 0,049

In sample
APE 0,946 0,990 0,990 0,946 0,990 0,990 0,990 0,990 0,990 0,946 0,990 0,990 0,946 0,990 0,990 0,990 0,990 0,990
(HPM)

In sample
APE 0935 0,974 0,976 0,942 0,975 0,976 0,976 0,976 0,975 0,935 0,974 0,976 0,942 0,975 0,976 0,976 0,976 0,975
(BMA)
Out of
sample
APE
(HPM)
Out of
sample
APE
(BMA)

1,080 1,039 1,040 1,080 1,043 1041 1041 1,040 1041 | 1080 1,039 1,040 1,080 1,043 1,041 1,041 1040 1,041

1058 1,042 1,046 1050 1048 1,046 1046 1,046 1,046 | 1,058 1042 1,046 1,050 1,048 1,046 1,046 1,046 1046

Dimension: Dimension of HPM

posterior probability: Posterior Probability of HPM
R2: R2 of HPM
In sample APE (HPM): In sample average prediction error under HPM

In sample APE (BMA): In sample average prediction error under BMA

Out of sample APE (HPM): Out of sample average prediction error under HPM

Out of sample APE (BMA): Out of sample average prediction error under BMA

Both AIC and ZS-Full method, are related to lower posterior probability of selecting the
HPM and the lowest in sample prediction error; both under MAP and BMA. Considering the out of

74



sample prediction error, the lowest values were calculated under the BIC prior. Finally, regarding
the marginal inclusion probabilities the main difference lies in candidate (X 30}, for which both
AIC and ZS-Full prior supports higher values and equal to 1, while the rest of the methods support
its selection with values approximately 0.8. (Summary results regarding the coefficients estimates

can be found in Appendix B.)
Consistency of results

Similarly to the first example we repeated the algorithm for 100 times for each prior, in
order to examine the stability of results. Due to lack of computational power and restricted memory
capacity, we adopted a different approach regarding the number of sampled models that , however
approaches the one applied above. In particular, we performed the algorithm by reducing the
number of iterations in 2'°, but we increased the number of updates, by choosing a step of
updating every 100 iterations.

Each candidate included in the true model was sampled as a significant one for over than 90
samples, with an average marginal inclusion probability to be approximately equal to one,
independently of the initial sampling probability choice. As in the full enumeration example, AIC
and ZS-Full method, both under Uniform initial sampling probabilities and p-value calibration, tend
to include insignificant candidates more times in the MAP model, tend to select models of
significantly higher dimension and as it can be seen in graph 6 and 7, the distribution of candidates'
marginal posterior probabilities appear to be of greater variance. Regarding the subset of true
candidates, all methods, independently from the prior set up, select {xzyx 13}, with marginal
inclusion probability equal to one and with zero variance. On the other hand, the marginal inclusion
probability distribution of the subset {xl,xw}, displays a significant number of low extreme
values, indicating a slight instability in selecting candidates of higher correlations or lower effects.
Especially for the subset {x 1,x27}, which is constructed to be highly correlated, the estimates of
their posterior means appear to be of considerably greater variance (approximately 0.5), something

that is also depicted in graph 6.9 and 6.10. (Summary posterior tables are provided in Appendix C)
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Table 6.5: Number of inclusion for each variable

Initial probabilities: Uniform Initial probailities: p-value calibration
e 7S-  7S- hyper- Lapla EB- LD ‘ EB-  EB-
AIC  BIC prior  Null  Full o ce Local Globa | AIC  BIC g-prior ZS-Null ZS-Full hyper-g Laplace Local Global
x1* 97 95 98 94 97 96 93 94 93 98 95 93 95 96 96 96 95 95
x2%* 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
x3 28 4 3 2 20 1 0 1 1 25 5 3 1 22 2 2 2 1
x4 15 8 5 3 15 4 5 3 4 19 8 6 5 15 4 4 4 5
x5 16 4 2 2 12 3 3 3 4 15 5 4 4 12 4 4 3 4
X6 21 6 3 4 18 4 4 3 4 18 6 5 5 15 4 5 5 5
x7 20 7 6 5 17 6 6 6 7 20 9 6 5 17 5 6 7 5
x8 24 7 6 6 19 4 6 4 4 24 9 6 5 17 6 4 4 4
X9 21 3 2 1 14 1 1 2 1 19 5 1 1 15 1 1 1 1
x10 18 3 2 2 17 2 2 1 2 17 5 2 2 12 3 2 3 2
x11 23 4 1 2 14 2 2 2 3 22 6 3 2 16 2 2 3 4
x12 22 5 4 3 18 3 4 3 3 22 6 4 3 17 3 3 3 3
x13 | 25 2 0 0 21 1 2 1 1 25 3 3 0 18 1 2 1 0
x14 21 7 5 5 15 4 4 3 4 19 8 7 7 16 5 5 5 6
x15 24 7 5 3 23 4 4 5 4 24 9 5 5 17 5 5 4 5
x16 15 6 4 5 14 4 4 4 5 16 6 5 5 9 5 4 4 5
x17 30 6 3 3 29 3 4 3 3 30 8 3 3 26 3 3 3 3
x18%* 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
x19 20 2 1 1 16 1 1 2 1 20 4 1 1 14 1 1 1 1
x20 | 24 4 1 1 13 2 1 1 2 19 7 3 2 13 2 3 2 2
x21 29 2 2 2 23 2 2 2 2 27 3 2 2 20 2 2 2 2
x22 21 5 5 2 14 3 5 4 3 18 6 5 4 12 3 4 4 5
x23 17 2 1 2 11 1 2 1 2 16 2 2 1 12 2 2 2 2
x24 29 3 2 1 20 2 1 2 1 27 3 2 2 23 3 2 2 2
x25 23 3 3 3 19 2 3 4 2 26 5 4 3 17 2 4 3 2
x26 24 3 0 0 16 0 1 1 1 17 4 0 1 19 1 1 0 1
x27 19 10 8 8 17 5 9 8 9 22 9 9 7 15 7 8 9 8
x28 25 5 2 2 14 2 2 2 3 21 4 3 2 17 3 3 3 3
x29 21 3 3 3 16 3 3 3 3 16 3 3 3 14 3 3 3 3
x30%* 98 95 94 96 96 95 95 96 95 98 95 95 95 97 95 96 95 96
mpp | 0016 0060 0067 0091 0016 0089 0088 0089 0084 | 0,010 0055 0061 0084 0009 0083 0082 0085 0,079
mppsd| 0,049 0021 0,023 0037 0006 0036 0035 0035 0030 | 0002 0019 0021 0033 0002 0034 0034 0035 0033
mgidr;a“ 10 6 5 5 9 5 5 5 5 10 6 5 5 9 5 5 5 5
dimsd| 2,275 1,338 1,140 0,925 1,977 1,018 1,065 1,029 1,092 | 2,273 1,361 1,136 1,037 2,014 1,009 1,056 1,046 1,041
mpp: Average Model's Poterior Probability
mpp sd: Std Deviation of Average Model's Posterior Probability

median dim: HPM Median Dimension

dim sd:

Std Deviation of HPM Average Dimension
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Figure 6.9: BMA Posterior Means of coefficients (Initial Probabilities: Uniform)
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Finally, in Table 6.6 and 6.7 we present the in sample and out of sample average prediction
error, both under HPM and BMA. A first remark is that there is no obvious difference in APE
between the initial sampling probability choice. As it can be noticed, BMA provides lower average
APE, both in sample and out of sample. Looking deeper in differences between prior set up, AIC
prior and ZS-Full method, provides with the lowest average in sample APE (<0.9), while under all
other priors the latter fluctuates around 0.95.

Table 6.6: In sample APE

HPM BMA
Uniform P-value Calibration Uniform P-value Calibration
Average Std Deviation Average Std Deviation Average Std Deviation Average Std Deviation
AIC 0,881 0,075 0,881 0,076 0,875 0,074 0,874 0,075
BIC 0,938 0,080 0,938 0,080 0,923 0,077 0,923 0,077
g-prior 0,946 0,079 0,946 0,079 0,930 0,074 0,929 0,075
ZS-Null 0,951 0,078 0,950 0,078 0,934 0,074 0,933 0,074
ZS-Full 0,894 0,076 0,890 0,075 0,886 0,075 0,883 0,074
hyper-g 0,950 0,078 0,951 0,078 0,934 0,074 0,934 0,074
Laplace 0,950 0,078 0,950 0,078 0,934 0,074 0,933 0,074
EB-L 0,951 0,078 0,950 0,078 0,934 0,074 0,933 0,074
EB-G 0,948 0,078 0,949 0,078 0,932 0,074 0,932 0,074

On the other hand, average out of sample APE seems to follow a completely opposite
pattern. AIC and ZS-Full priors are associated to higher out of sample APE (around 1.13). The
corresponding average for all other priors does not exceed the value of 1.075, the lowest value of

which is provided by Local Empirical Bayes method.

Table 6.7: Out of sample APE

HPM BMA

Uniform P-value Calibreation Uniform P-value Calibreation

Average Std Deviation Average Std Deviation Average Std Deviation Average Std Deviation
AIC 1,145 0,131 1,144 0,133 1,138 0,131 1,139 0,130
BIC 1,075 0,134 1,077 0,135 1,071 0,129 1,072 0,131
g-prior 1,067 0,131 1,067 0,130 1,062 0,128 1,063 0,128
ZS-Null 1,061 0,129 1,062 0,130 1,058 0,128 1,059 0,127
ZS-Full 1,130 0,128 1,138 0,128 1,123 0,131 1,128 0,128
hyper-g 1,063 0,129 1,063 0,131 1,059 0,128 1,059 0,128
Laplace 1,064 0,130 1,063 0,130 1,061 0,129 1,059 0,128
EB-L 1,063 0,128 1,063 0,129 1,060 0,128 1,060 0,128
EB-G 1,064 0,132 1,064 0,130 1,061 0,128 1,060 0,128
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Chapter 7: Discussion-Further Research

7.1 Conclusion

In the current thesis we attempted a review of basic concepts and tools for Bayesian model
selection, focusing on the Bayesian adaptive sampling algorithm of Clyde et al (2011). Differences
between classical and Bayesian approaches were presented, while more focus is given in the
Bayesian variable selection methods. Bayesian adaptive sampling (BAS) of Clyde et al. (2011) was
fully reviewed explaining the key difference between the sampling strategies of traditional MCMC
algorithms and its performance under different kinds of priors was explored.

For the small sample case, where full enumeration is allowed, Bayesian model selection
using several priors was applied both in one sample of 100 observations and 100 samples in order to
explore the stability of results for each prior. The general picture obtained is that under AIC and ZS-
Full prior, the models selected are overfitted. Under AIC, the true model was selected only on 30%
of cases, while for ZS-Full the corresponding rate was increased at 60%. The rest of the methods
using other prior schemes, identified the true model in 90% of cases. Naturally, AIC and ZS-Full
priors are related to higher marginal inclusion probabilities for zero coefficients. For AIC, the
average inclusion probability for non zero coefficients was 40%, for ZS-Full prior was 20%, while
for other priors was 10%. Following this result, AIC and ZS-Full methods are more confident in
selecting non-zero coefficients of lower values. Finally, on average, AIC and ZS-Full prior was
related to lower in-sample APE and out-of-sample APE under BMA, but greater out-of-sample APE
under MAP

For the large sample case, were sampling is required, we performed the algorithm in a
similar way as above. By controlling for the number of iterations and the updating step, the
performance of each prior was explored, using both initial sampling probabilities and p-value
calibration. A first conclusion reached, is that the algorithm performed almost identically
irrespective from the initial probabilities set up. Naturally, the only difference lied in the fact that
under p-value calibration, the algorithm converged faster. Regarding the performance of each prior,
the results did not differentiate much in comparison to the small sample case. The main difference
observed was the incapability of the AIC and ZS-Full method to detect the true model in all cases.
The latter consistently selected models of higher dimension as the Highest probability model.
Finally, a last remark that observed is related to the APE. In particular, while for AIC and ZS-Full

prior in-sample APE was lower, out-of-sample APE for both methods, was greater.

81



7.2 Further Research

Apart from the cases described in the current dissertation, the performance of BAS needs to
be explored further, especially in case of large samples, where sampling is required. The optimal
number of iterations that provides with trustworthy results is a field that could easily be identified,
while the effect of the updating step could be examined in detail for each prior set up. A second
point that worth examining in detail, is the ability of the algorithm to detect non zero coefficient
candidates of different values for small effects, for instance below 0.6. In the current thesis we
observed that for a value of 0.5 the candidate was supported in the highest probability model as
significant one under AIC and ZS-Full prior, however more detailed simulation studies for such
cases could provide a deeper insight and a more detailed review for each prior. Similarly, detailed
simulation studies could provide with results for the performance of the algorithm in cases of
different values in correlated data. By doing so, for each prior, it could be explored under which
cases the algorithm is able to distinguish a true candidate from a correlated one. Moreover, the
algorithm should be tested in different kinds and of varying complexity real data.

Apart from deepening in its performance, BAS should be examined in comparison to existing
Bayesian algorithms that are already widely applicable. Its extension in generalized linear models
should be deeply explored both in simulated and real data. Variants of g-priors for GLM that have
been introduced lately in the literature (Fouskakis et al., 2009, Gupta and Ibrahim, 2009, Bove &
Held, 2009, Hanson et al., 2014) might be explored in conjuction with BAS. The large p small n
problem, could also be an area, in which BAS could be examined, adopting for instance the
proposed generalization of Zellner's g-prior of Maruyama and George (2011), that allows for p>n.
Finally, non-local priors, introduced by Johnson & Rossell (2010) and adopted for Bayesian
variable selection in high dimensional problems (Johnson and Rossell, 2012) could be an alternative

to the current used family of priors and could be used to extend BAS.
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Appendix A: Full Enumeration (One Sample)

Table Al: marginal posterior inclusion probabilities
AIC BIC ZS-Null ZS-Full  gprior (g=n) hyper-g (a=3) = YPeI'8 EB Local  EB Global
Laplace (a=3)
Intercept 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000
x1* 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000
x2% 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000
x3 0,323 0,118 0,085 0,224 0,114 0,084 0,085 0,083 0,079
x4 0,284 0,097 0,070 0,194 0,096 0,070 0,070 0,069 0,065
x5 0,403 0,158 0,113 0,283 0,150 0,112 0,113 0,111 0,106
x6 0,358 0,135 0,096 0,249 0,129 0,096 0,097 0,095 0,091
x7 0,270 0,091 0,066 0,185 0,091 0,066 0,066 0,065 0,061
x8 0,270 0,091 0,066 0,185 0,091 0,066 0,066 0,065 0,061
X9* 1,000 0,998 0,996 0,998 0,996 0,996 0,996 0,996 0,996
x10 0,280 0,096 0,069 0,191 0,095 0,069 0,069 0,068 0,064
model's
posterior 0,070 0,431 0,559 0,167 0,441 0,561 0,559 0,566 0,573
probability
ﬁ;ﬁf}gﬂgal 239484 244,694 101,092 11,716 101,426 99,676 99,634 102,471 102,450
in sample HPM 1,054 1,054 1,054 1,054 1,054 1,054 1,054 1,054 1,054
APE  BMA 1,047 1,051 1,051 1,049 1,051 1,052 1,051 1,051 1,055
out of sample HPM 0,925 0,925 0,927 0,925 0,930 0,927 0,927 0,927 0,927
APE  BMA 0,935 0,928 0,930 0,930 0,934 0,930 0,930 0,929 0,929
Table A2: marginal posterior means of coefficients under BMA
AIC BIC ZS-Null ZS-Full  g-prior (g=n) hyper-g(a=3) = YPer8 EBLocal  EB Global
Laplace (a=3) true value
Intercept 3,972 3,972 3,972 3,972 3,972 3,972 3,972 3,972 3,972 4,000
x1* 3,310 3,312 3,296 3,311 3,280 3,294 3,294 3,299 3,299 3,200
x2* -1,093 -1,090 -1,084 -1,092 -1,079 -1,084 -1,084 -1,085 -1,085 -1,050
x3 -0,025 -0,010 -0,007 -0,018 -0,009 -0,007 -0,007 -0,007 -0,006 0,000
x4 0,013 0,004 0,003 0,009 0,004 0,003 0,003 0,003 0,003 0,000
X5 -0,044 0,017 20,012 -0,031 20,016 0,012 20,012 0,012 20,012 0,000
x6 0,035 0,014 0,010 0,025 0,013 0,010 0,010 0,010 0,009 0,000
X7 0,001 -0,001 -0,001 0,000 -0,001 -0,001 -0,001 -0,001 -0,001 0,000
x8 0,001 0,001 0,000 0,001 0,001 0,000 0,000 0,000 0,000 0,000
X9* 0,541 0,530 0,524 0,535 0,523 0,523 0,523 0,524 0,524 0,500
x10 -0,011 -0,004 -0,003 -0,007 -0,004 -0,003 -0,003 -0,003 -0,002 0,000
. marginal posterior standard deviations of coefficients
Table A3: under BMA
hyper-g hyper-g
AIC BIC ZS-Null ZS-Full g-prior (g=n) (a=3) Laplace  EB Local EB Global
(a=3)
Intercept 0,108 0,108 0,108 0,108 0,108 0,108 0,108 0,108 0,108
x1* 0,122 0,124 0,123 0,122 0,123 0,122 0,122 0,122 0,122
X2* 0,112 0,114 0,113 0,112 0,113 0,112 0,112 0,112 0,112
X3 0,038 0,073 0,046 0,039 0,062 0,045 0,039 0,039 0,039
x4 0,033 0,069 0,040 0,034 0,056 0,039 0,034 0,034 0,033
X5 0,047 0,084 0,057 0,048 0,073 0,055 0,048 0,048 0,048
X6 0,044 0,082 0,054 0,046 0,071 0,052 0,045 0,046 0,045
X7 0,027 0,057 0,033 0,028 0,047 0,032 0,028 0,028 0,027
x8 0,025 0,054 0,031 0,026 0,044 0,031 0,026 0,026 0,026
XO* 0,128 0,127 0,126 0,128 0,127 0,128 0,128 0,128 0,128
x10 0,032 0,066 0,039 0,033 0,055 0,038 0,033 0,033 0,033
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Appendix B: Posterior Tables — Adaptive Sampling (One Sample)

Initial probabilities: Uniform

Table B1: Marginal Posterior means

Initial probailities: p-value calibration

TRUE AIC BIC ZS-Null ZS-Full g-prior hyper-g Laplace EB-L. EB-G_AIC BIC ZS-Null ZS-Full g-prior hyper-g Laplace EB-L_EB-G
const 3.2 36 3,6 3,6 3,6 3,6 3,6 3,6 36 3,6 36 3,6 3,6 3,6 3,6 3,6 3,6 36 3,6
x1* 23 22 22 22 2,2 2,2 2,2 2,2 22 22 22 22 22 2,2 2,2 2,2 2,2 22 22
x2*  -1,5 -1,6 -1,6 -1,6 -1,6 -1,6 -1,6 -1,6 -1,6 -1,6 |-1,6 -1,6 -1,6 -1,6 -1,6 -1,6 -1,6 -1,6 -1,6
x3 0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 00 00 00 0,0 0,0 0,0 0,0 0,0 0,0
x4 0 -0,1 -0,1 -0,1 -0,1 -0,1 -0,1 -0,1 -0,1 -0,1 |-0,1 -0,1 -0,1 0,0 -0,1 -0,1 -0,1 -0,1 -0,1
x5 0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 00 00 00 00 0,0 0,0 0,0 0,0 0,0 0,0
x6 0 -0,2-0,1 -0,1 -0,2 -0,1 -0,1 -0,1 -0,1 -0,1 |-0,2 -0,1 -0,1 -0,2 -0,1 -0,1 -0,1 -0,1 -0,1
x7 0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 00 0,0 00 00 0,0 0,0 0,0 0,0 0,0 0,0
x8 0 0,0 0,0 00 0,0 0,0 0,0 0,0 0,0 0,0 00 00 00 0,0 0,0 0,0 0,0 0,0 0,0
x9 0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 00 00 00 0,0 0,0 0,0 0,0 0,0 0,0
x10 0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 00 00 00 0,0 0,0 0,0 0,0 0,0 0,0
x11 0 0,2 0,1 0,0 0,1 0,0 0,0 0,0 0,0 00 02 0,1 0,0 0,1 0,0 0,0 0,0 0,0 0,0
x12 0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 00 0,0 00 00 0,0 0,0 0,0 0,0 0,0 0,0
x13 0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 00 0,0 00 00 0,0 0,0 0,0 0,0 0,0 0,0
x14 0 0,1 0,0 0,0 0,1 0,0 0,0 0,0 0,0 0,0 0,1 00 0,0 0,1 0,0 0,0 0,0 0,0 0,0
x15 0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 00 00 00 0,0 0,0 0,0 0,0 0,0 0,0
x16 0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 00 00 00 0,0 0,0 0,0 0,0 0,0 0,0
x17 0 0,1 0,0 0,0 0,0 0,0 0,0 0,0 0,0 00 0,1 00 00 0,0 0,0 0,0 0,0 0,0 0,0
xI18* -08 | -09-0,8 -08 -0,9 -0,8 -0,8 -0,8 -0,8 -08 |-09 -0,8 -08 -0,9 -0,8 -0,8 -0,8 -0,8 -0,8
x19 0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 00 0,0 00 00 0,0 0,0 0,0 0,0 0,0 0,0
x20 0 0,0 0,0 00 0,0 0,0 0,0 0,0 0,0 0,0 00 00 00 0,0 0,0 0,0 0,0 0,0 0,0
x21 0 0,1 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,1 00 00 0,1 0,0 0,0 0,0 0,0 0,0
x22 0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 00 00 0,0 0,0 0,0 0,0 0,0 0,0 0,0
x23 0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 00 0,0 00 00 0,0 0,0 0,0 0,0 0,0 0,0
x24 0 0,1 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,1 00 00 0,0 0,0 0,0 0,0 0,0 0,0
x25 0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 00 0,1 00 00 0,0 0,0 0,0 0,0 0,0 0,0
x26 0 0,0 0,0 00 0,0 0,0 0,0 0,0 0,0 0,0 00 00 00 0,0 0,0 0,0 0,0 0,0 0,0
x27 0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 00 00 00 0,0 0,0 0,0 0,0 0,0 0,0
x28 0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 00 00 00 0,0 0,0 0,0 0,0 0,0 0,0
x29 0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 00 0,0 00 00 0,0 0,0 0,0 0,0 0,0 0,0
x30* -0,48 | -0,3-03 -03 -0,3 -0,3 -0,3 -0,3 -0,3 -03 |-03 -03 -03 -0,4 -0,3 -0,3 -0,3 -0,3 -0,3

Table B2:Standard Deviation of Marginal Posterior means
Initial probabilities: Uniform Initial probailities: p-value calibration

AIC BIC ZS-Null ZS-Full g-prior hyper-g Laplace EB-L EB-G AIC BIC ZS-Null ZS-Full g-prior hyper-g Laplace EB-L EB-G
const 0,10 0,10 0,10 0,10 0,10 0,10 0,10 0,10 0,10 0,10 0,100 0,10 0,10 0,10 0,10 0,10 0,10 0,10
x1* 0,28 026 028 030 0,28 0,28 0,28 0,27 0,28 033 027 028 031 0,28 0,28 0,28 028 0,28
x2* 0,11 0,11 0,11 0,12 0,11 0,11 0,11 0,11 0,11 0,11 0,11 0,11 0,11 0,11 0,11 0,11 0,1 0,11
x3 0,05 0,04 004 0,05 0,04 0,04 0,04 0,04 0,04 0,05 004 004 0,04 0,04 0,04 0,04 0,04 0,04
x4 0,12 0,17 0,17 0,13 0,17 0,17 0,17 0,17 0,17 0,12 0,16 017 0,11 0,17 0,17 0,17 0,18 0,17
x5 0,04 0,03 003 0,05 0,03 0,03 0,03 0,03 0,03 0,04 003 003 0,03 0,03 0,03 0,03 0,03 0,03
x6 0,13 0,12 0,11 0,14 0,11 0,11 0,11 0,11 0,11 0,12 0,12 0,11 0,14 0,11 0,11 0,11 0,11 0,11
x7 0,04 0,03 003 005 0,03 0,03 0,03 0,03 0,03 0,04 0,03 0,03 004 0,03 0,03 0,03 0,03 0,03
x8 0,03 0,03 003 003 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 003 0,03 0,03 0,03 0,03 0,03
x9 0,05 0,04 004 0,05 0,04 0,04 0,04 0,04 0,04 0,05 004 004 005 0,04 0,04 0,04 0,04 0,04
x10 0,05 0,04 003 0,04 0,04 0,03 0,03 0,03 0,03 0,05 004 003 0,05 0,04 0,03 0,03 0,03 0,03
x11 0,13 0,10 0,09 0,13 0,09 0,09 0,09 0,09 0,09 0,12 0,10 0,09 0,13 0,09 0,09 0,09 0,09 0,09
x12 0,04 0,03 003 0,04 0,03 0,03 0,03 0,03 0,03 0,04 003 003 0,04 0,03 0,03 0,03 0,03 0,03
x13 0,04 0,03 003 003 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 004 0,03 0,03 0,03 0,03 0,03
x14 0,10 0,07 0,07 0,10 0,07 0,07 0,07 0,07 0,07 0,10 0,08 0,07 0,11 0,07 0,07 0,07 0,07 0,07
x15 0,04 003 003 0,05 0,03 0,03 0,03 0,03 0,03 0,03 003 003 0,04 0,03 0,03 0,03 0,03 0,03
x16 0,03 0,03 003 0,03 0,03 0,03 0,03 0,03 0,03 0,03 003 003 0,03 0,03 0,03 0,03 0,03 0,03
x17 0,10 0,04 0,04 0,08 0,04 0,04 0,04 0,04 0,04 0,10 0,05 0,04 0,09 0,04 0,04 0,04 0,04 0,04
x18% 0,12 0,11 0,11 0,12 0,11 0,11 0,11 0,11 0,11 0,11 0,11 0,11 0,12 0,11 0,11 0,11 0,11 0,11
x19 0,03 0,03 003 003 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 003 0,03 0,03 0,03 0,03 0,03
x20 0,03 0,03 003 003 0,03 0,03 0,03 0,03 0,03 0,04 0,03 0,03 003 0,03 0,03 0,03 0,03 0,03
x21 0,11 0,07 0,06 0,09 0,07 0,06 0,06 0,06 0,06 0,11 0,07 0,06 0,10 0,07 0,06 0,06 0,06 0,06
x22 0,08 0,05 005 0,06 0,05 0,05 0,05 0,05 0,05 0,07 0,05 005 0,07 0,05 0,05 0,05 0,05 0,05
x23 0,03 0,03 003 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 003 0,04 0,03 0,03 0,03 0,03 0,03
x24 0,10 0,05 005 0,07 0,05 0,05 0,05 0,05 0,05 0,10 0,05 005 0,09 0,05 0,05 0,05 0,05 0,05
x25 0,08 0,04 004 0,07 0,04 0,04 0,04 0,04 0,04 0,09 0,04 0,04 0,08 0,04 0,04 0,04 0,04 0,04
x26 0,03 0,03 003 003 0,03 0,03 0,03 0,03 0,03 0,04 0,03 0,03 003 0,03 0,03 0,03 0,03 0,03
x27 026 024 026 0,28 0,26 0,26 0,26 0,25 0,26 032 025 026 029 0,26 0,26 0,26 0,26 0,25
x28 0,06 0,05 005 0,07 0,05 0,05 0,05 0,05 0,05 0,05 005 005 0,06 0,05 0,05 0,05 0,05 0,05
x29 0,03 0,03 003 0,04 0,03 0,03 0,03 0,03 0,03 0,03 0,03 003 0,03 0,03 0,03 0,03 0,03 0,03
x30% | 0,13 0,17 0,18 0,13 0,18 0,18 0,18 0,18 0,18 0,13 0,06 0,18 0,12 0,18 0,18 0,18 0,18 0,18
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Appendix C: Posterior Tables — Adaptive Sampling (100 Samples)

Table C1: Average Marginal inclusion Probabilities (100 samples)
Initial Probabilities: Uniform Initial Probabilities: P-value Calibration

AICBIC g-prior ZS-Null ZS-Full hyper-g Laplace EB-Local EB-Global |AIC BIC g-prior ZS-Null ZS-Full hyper-g Laplace EB-Local EB-Global
x1* 10,97095 096 094 097 095 093 0,94 0,94 097095 094 095 095 09 096 0,94 0,95

x2* [1,001,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,001,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00
x3 [0,350,10 0,00 008 025 008 007 008 0,08 033011 0,09 008 029 008 008 008 008
x4 [0230,12 0,11 009 022 009 0,10 0,09 0,10 026011 0,11 010 022 0,10 0,10 010 0,10

x5 [0,240,00 0,08 007 019 007 007 007 0,07 021009 0,08 008 0,19 008 008 008 008
x6 [0,260,10 0,09 009 025 008 008 0,08 0,09 025010 0,09 009 021 009 008 009 0,09

x7 [0260,12 0,10 0410 021 011 011 0,11 0,11 0280,13 0,11 0,11 023 0,10 0,11 0,11 0,11
x8 [0,300,12 0,11 0,0 024 010 0,11 0,10 0,11 0310,13 0,12 0,11 024 011 011 0,11 0,11
x9 (0,270,090 0,08 007 022 007 007 007 0,07 026010 0,08 007 023 007 008 007 007
x10 [0,240,08 0,07 007 022 007 007 007 0,07 025009 0,08 007 0,19 007 008 007 008

x11 0,260,10 0,08 0,08 022 009 008 0,09 0,08 027011 0,10 009 024 009 009 009 0,09
x12 (028011 0,09 009 023 009 009 0,09 0,08 028011 0,10 009 023 009 009 009 0,09
x13 [0,300,00 0,08 007 025 007 008 007 0,08 0,300,10 0,09 008 025 008 008 008 008
x14 [0,260,12 0,09 009 021 009 0,09 0,09 0,10 027012 0,11 010 023 0,10 0,10 010 0,10

x15 [0,280,12 0,10 009 027 010 0,09 0,10 0,10 030013 0,11 010 027 0,10 0,10 010 0,0
x16 [0,220,10 0,09 008 021 008 008 008 0,08 023009 0,09 009 0,18 009 008 009 0,09
x17 [0,330,12 0,09 009 030 009 0,10 0,09 0,10 035013 0,11 0,10 029 0,0 0,10 010 0,10
x18* [1,001,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,001,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00

x19 [0,250,08 0,07 006 021 006 006 007 0,06 026009 0,08 007 022 007 007 007 007
x20 [0,270,00 0,08 007 020 007 007 007 0,07 024009 0,09 008 021 007 008 007 008
x21 [0,340,00 0,09 008 027 008 008 007 0,08 031010 0,09 008 025 008 009 008 008
x22 [0,270,10 0,09 008 020 008 008 008 0,08 024010 0,09 008 020 008 009 008 008
x23 [0,230,07 0,06 006 0,17 006 0,06 006 0,06 022008 0,07 006 0,19 007 007 007 007
x24 [0,310,11 0,09 009 028 009 008 008 0,08 033011 0,10 009 029 009 009 009 0,09
x25 [0,290,10 0,09 009 024 009 008 0,09 0,09 029011 0,10 009 024 009 009 009 0,09
x26 [0,290,08 0,07 006 021 006 0,06 006 0,06 0,250,09 0,08 007 022 007 006 007 007
x27 [0270,14 0,13 013 026 0,12 0,14 0,3 0,13 027013 0,13 012 025 0,1 011 013 0,12
x28 [0,300,10 0,08 008 020 008 008 008 0,09 027010 0,09 009 023 008 008 008 0,09
x29 0,280,090 0,08 008 024 008 008 008 0,08 025009 0,09 008 022 008 008 009 008
x30% |0,980,95 095 096 096 095 095 096 0,95 098096 0,95 095 097 095 095 095 095

Table C2 : Std Deviation of Average Marginal inclusion Probabilities (100 samples)
Initial Probabilities: Uniform Initial Probabilities: P-value Calibration

AICBIC g-prior ZS-Null ZS-Full hyper-g Laplace EB-L EB-Gl AICBIC g-prior ZS-Null ZS-Full hyper-g Laplace EB-L EB-G

x1* [0,140,17 0,14 020 0,14 019 022 019 020 [0,13020 020 0,18 017 016 0,17 020 0,19
x2* [0,000,00 0,00 000 000 000 000 000 000 [0,00000 000 000 000 000 000 000 0,00
x3 [0380,14 0,02 o011 032 o0l 009 009 011 [0360,15 0,12 0,10 033 011 0,11 011 0,11
x4 (029022 0,19 015 029 017 0,19 016 018 032020 0,19 0,19 029 018 0,18 0,19 0,19
x5 [0310,17 0,014 013 025 014 0,13 013 014 [0,290,17 0,15 0,14 027 014 0,14 015 0,14
x6 [0350,18 0,14 014 031 014 0,13 012 015 [0330,17 0,15 0,15 030 014 0,14 0,15 0,15
x7 035022 020 020 032 020 021 020 020 035023 021 020 032 020 021 021 0,20
x8 (035021 0,19 0,17 033 017 0,18 017 0,18 036023 020 0,19 033 018 0,19 0,18 0,18
x9 [0330,15 0,13 011 030 o012 011 012 012 [0310,16 0,12 0,12 028 012 0,12 012 0,12
x10 [0310,15 0,12 013 029 012 0,13 012 013 |0320,16 0,14 0,13 028 013 0,13 013 0,14
x11 0,350,17 0,11 0,12 029 013 0,11 0,11 0,13 [0340,17 0,14 013 031 012 0,13 012 013
x12 [0,340,19 0,16 015 030 014 0,15 014 015 |0340,19 0,17 0,15 031 015 0,15 0,15 0,15
x13 [0,330,13 0,09 009 030 009 0,10 009 010 ]0,350,15 0,1 0,10 030 010 0,1 0,11 0,09
x14 035021 0,06 016 029 015 0,15 015 017 |0,34021 0,18 0,17 031 016 0,16 0,16 0,17
x15 (034021 0,17 016 034 016 0,16 018 016 |034021 018 0,17 031 017 0,17 016 0,17
x16 (031020 0,16 017 028 016 0,15 015 017 [0,290,19 0,18 0,18 025 017 0,16 017 0,17
x17 [0370,17 0,13 014 034 013 0,14 013 014 |0370,18 0,15 0,14 035 014 0,14 014 0,14
x18* 10,000,00 0,00 0,00 000 000 000 000 000 [0,00000 000 000 000 000 000 000 000
x19 [0,320,12 0,11 009 030 0,10 0,10 0,11 0,09 [0310,16 0,11 0,09 028 010 009 0,10 0,09
x20 [0,320,15 0,11 0,10 025 0,1 0,11 0,11 0,12 [0300,17 0,13 012 028 0,10 0,12 0,11 0,12
x21 [0360,15 0,13 012 032 013 0,12 012 012 |0330,16 0,14 0,13 031 012 0,13 013 0,13
x22 [0330,18 0,17 015 027 015 0,15 015 015 [0310,19 0,16 0,16 027 015 0,16 015 0,16
x23 [0,300,12 0,10 0,11 025 009 011 009 009 [0300,13 0,11 009 026 010 0,10 010 0,11
x24 [0,360,16 0,12 011 032 012 009 010 010 |0,340,15 0,12 0,12 030 012 0,12 012 0,12
x25 [0,330,16 0,014 013 031 012 0,13 013 014 |0340,18 0,15 0,14 029 013 0,14 013 0,14
x26 [0,350,12 0,09 007 029 007 008 009 009 [0330,15 0,11 009 029 009 009 008 0,09
x27 (033023 020 022 029 021 024 023 023 033025 024 021 031 019 020 023 021
x28 [0,340,18 0,14 014 029 013 0,14 013 016 |0350,16 0,16 0,15 031 014 0,14 014 0,16
x29 [0,330,17 0,16 016 029 016 0,15 016 016 [0310,17 0,17 0,16 027 016 0,16 017 0,16
x30% 0,140,19 0,19 0,18 017 019 020 018 019 [012019 0,19 019 014 019 019 020 0,19
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Table C3: Average Posterior Means (100 samples)

Initial Probabilities: Uniform Initial Probabilities: P-value Calibration

TRUE AIC BIC g-prior ZS-Null ZS-Full hyper-g Laplace EB-L EB-G AIC BIC g-prior ZS-Null ZS-Full hyper-g Laplace EB-L EB-G

xI* 23| 22 22 22 22 22 22 201 22 22 |23 22 22 22 22 22 22 22 22
x2* 15| -1,5 -1,5 15 -5 -1,5 -15 -1,5 -15 -15 [-1,5 <15 -1,5 -15 -1,5 -15 -1S -1,5 -1,5
X3 0 00 00 00 00 00 00 00 00 00 |00 00 00 00 00 00 00 00 00
x4 0 00 00 00 00 00 00 00 00 00 |00 00 00 00 00 00 00 00 00
X5 0 00 00 00 00 00 00 00 00 00 |00 00 00 00 00 00 00 00 00
X6 0 00 00 00 00 00 00 00 00 00 |00 00 00 00 00 00 00 00 00
x7 0 00 00 00 00 00 00 00 00 00 |00 00 00 00 00 00 00 00 00
X8 0 00 00 00 00 00 00 00 00 00 |00 00 00 00 00 00 00 00 00
X9 0 00 00 00 00 00 00 00 00 00 |00 00 00 00 00 00 00 00 00
x10 0 00 00 00 00 00 00 00 00 00 |00 00 00 00 00 00 00 00 00
xIl 0 00 00 00 00 00 00 00 00 00 |00 00 00 00 00 00 00 00 00
x12 0 00 00 00 00 00 00 00 00 00 |00 00 00 00 00 00 00 00 00
xI13 0 00 00 00 00 00 00 00 00 00 |00 00 00 00 00 00 00 00 00
xl4 0 00 00 00 00 00 00 00 00 00 |00 00 00 00 00 00 00 00 00
xI5 0 00 00 00 00 00 00 00 00 00 |00 00 00 00 00 00 00 00 00
x16 0 00 00 00 00 00 00 00 00 00 |00 00 00 00 00 00 00 00 00
x17 0 00 00 00 00 00 00 00 00 00 |00 00 00 00 00 00 00 00 00
x18* 08| 08 08 -08 -08 -08 -08 -08 -08 -08 [-08 08 -08 -08 -08 -08 -08 -08 -0.8
x19 0 00 00 00 00 00 00 00 00 00 |00 00 00 00 00 00 00 00 00
x20 0 00 00 00 00 00 00 00 00 00 |00 00 00 00 00 00 00 00 00
x21 0 00 00 00 00 00 00 00 00 00 |00 00 00 00 00 00 00 00 00
X220 00 00 00 00 00 00 00 00 00 |00 00 00 00 00 00 00 00 00
X230 00 00 00 00 00 00 00 00 00 |00 00 00 00 00 00 00 00 00
x24 0 00 00 00 00 00 00 00 00 00 |00 00 00 00 00 00 00 00 00
X250 00 00 00 00 00 00 00 00 00 |00 00 00 00 00 00 00 00 00
X260 00 00 00 00 00 00 00 00 00 |00 00 00 00 00 00 00 00 00
x27 0 o1 o1 o1 o1 o1 o1 o1 o1 ol [o1 o1 o1 o1 01 01 01 01 0l
x28 0 00 00 00 00 00 00 00 00 00 |00 00 00 00 00 00 00 00 00
X29 0 00 00 00 00 00 00 00 00 00 |00 00 00 00 00 00 00 00 00
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Table C4: Std Deviation of Average Posterior Means (100 samples)

Initial Probabilities: Uniform

Initial Probabilities: P-value Calibration

AIC  BIC g-prior ZS-NullZS-Full hyper-gLaplace EB-L EB-G | AIC  BIC g-prior ZS-NullZS-Full hyper-gLaplace EB-L EB-G
0,63 0,52 044 0,552 058 049 057 052 052 | 065 056 054 048 065 045 046 0,54 05
0,17 0,13 0,12 0,13 0,15 0,12 0,12 0,12 0,13 | 0,17 0,13 0,13 0,13 0,16 0,12 0,12 0,12 0,13
0,12 0,04 0,03 0,03 009 003 0,02 003 003 |0,12 004 0,03 003 0,1 003 003 0,03 0,03
0,09 0,08 0,07 006 0,1 007 0,07 006 0,07 0,1 0,07 007 0,07 0,1 007 007 007 007
0,08 0,05 0,04 0,04 006 004 0,04 003 004 | 007 004 0,04 004 007 0,04 004 0,04 0,04
0,08 0,05 0,04 0,04 0,08 004 0,04 003 0,04 | 0,08 005 004 004 008 004 0,04 0,04 0,04
0,1 0,07 0,06 006 0,09 007 007 0,07 007 0,1 0,07 0,07 0,06 009 006 0,07 007 007
0,1 0,06 005 0,05 009 005 005 0,05 0,05 0,1 0,07 006 005 01 005 005 005 005
0,08 0,04 0,04 0,04 0,07 0,04 0,04 004 0,04 |0,08 004 004 0,04 0,07 004 0,04 0,04 0,04
0,08 0,04 0,04 0,04 0,07 004 0,04 004 0,04 | 0,08 005 004 004 0,07 004 0,04 0,04 0,04
0,09 0,04 0,03 003 0,07 003 0,03 003 0,03 |0,09 004 004 003 008 003 0,03 003 0,03
0,09 0,05 0,04 0,04 0,07 004 0,04 004 0,04 | 0,09 005 004 004 0,08 004 0,04 0,04 0,04
0,08 0,03 002 0,02 007 002 002 002 0,03 |009 004 003 002 008 003 003 003 0,02
0,09 0,06 0,05 0,05 0,08 005 005 005 0,05 | 0,09 006 006 005 009 005 005 005 0,05
0,09 0,06 0,04 0,04 0,08 004 0,04 005 0,04 | 0,09 006 005 004 0,08 005 0,04 004 0,05
0,09 0,07 0,06 0,06 0,08 005 005 005 0,06 | 0,09 006 006 006 008 006 005 005 0,06
0,1 0,05 0,04 004 0,09 004 004 0,04 004 0,1 0,05 004 0,04 009 0,04 0,04 004 0,04
0,12 0,1 0,11 011 0,12 011 011 011 0,11 |o0,12 0,12 0,11 0,11 0,12 011 011 0,11 0,11
0,07 0,03 0,03 0,02 006 002 0,02 003 0,02 |O007 004 003 002 006 003 002 003 0,02
0,07 0,04 0,03 0,03 006 003 0,03 003 003 |007 004 0,03 003 007 003 003 0,03 0,03
0,09 0,04 0,04 0,03 0,08 004 003 003 0,03 | 0,09 004 004 004 008 004 004 004 0,04
0,08 0,06 0,05 0,05 007 005 0,05 005 005 |008 006 005 005 007 005 005 0,05 0,05
0,07 0,03 0,02 003 006 002 003 002 002 |0,07 003 003 002 006 002 003 003 0,03
0,09 0,04 0,03 003 0,07 003 0,02 003 0,02 |08 0,04 003 003 0,08 003 0,03 003 0,03
0,08 0,04 0,04 0,03 0,08 003 003 004 0,04 | 0,09 005 0,04 004 008 004 004 004 0,04
0,08 0,03 0,02 0,02 007 0,02 0,02 002 002 |008 003 002 0,02 0,07 002 0,02 0,02 0,02
061 05 042 05 057 048 0,56 051 051 |063 055 052 046 063 043 045 0,53 048
0,15 0,09 0,07 0,08 0,13 0,07 0,07 006 0,08 | 0,15 0,08 008 008 0,14 007 0,07 0,07 0,08
0,11 0,06 0,06 0,06 0,09 005 0,05 005 005 |0,12 006 0,06 005 0,1 006 006 0,06 0,05
0,14 0,14 0,14 0,13 0,14 0,14 0,14 0,13 0,14 | 0,13 0,14 0,14 0,14 0,14 0,14 0,14 0,14 0,14
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