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Abstract

Speci�cation of the linear predictor for a generalised linear model requires de-

termining which variables to include. We consider Bayesian strategies for per-

forming this variable selection. In particular we focus on approaches based on

the Gibbs sampler. Such approaches may be implemented using the publically

available software BUGS. We illustrate the methods using a simple example.

BUGS code is provided in an appendix.



1.1 Introduction

In a Bayesian analysis of a generalised linear model, model uncertainty may be

incorporated coherently by specifying prior probabilities for plausible models

and calculating posterior probabilities using

f(mjy) =

f(m)f(yjm)

P
m2M

f(m)f(yjm)
; m 2 M (1.1)

where m denotes the model, M is the set of all models under consideration,

f (m) is the prior probability of model m. The observed data y contribute

to the posterior model probabilities through f(yjm), the marginal likelihood

calculated using f(yjm) =

R
f(yjm;�
m

)f(�
m

jm)d�
m

where f(�
m

jm) is the

conditional prior distribution of �
m

, the model parameters for model m and

f (yjm;�
m

) is the likelihood of the data y under model m.

In particular, the relative probability of two competing models m1 and m2

reduces to
f(m1jy)

f(m2jy)

=

f(m1)

f(m2)

R
f(yjm1;�m1

)f(�
m1

jm1) d�m1R
f(yjm2;�m2

)f(�
m2

jm2) d�m2

(1.2)

which is the familiar expression relating the posterior and prior odds of two

models in terms of the Bayes factor, the second ratio on the right hand side

of (1.2).

The principal attractions of this approach are that (1.1) allows the cal-

culation of posterior probabilities of all competing models, regardless of their

relative size or structure, and this model uncertainty can be incorporated into

any decisions or predictions required (Draper, 1995, gives examples of this).

Generalised linear models are speci�ed by three components, distribution,

link and linear predictor. Model uncertainty may concern any of these, and the

approach outlined above is 
exible enough to deal with this. In this chapter,

we shall restrict attention to variable selection problems, where the models

concerned di�er only in the form of the linear predictor. Suppose that there are

p possible covariates which are candidates for inclusion in the linear predictor.

Then each m 2 M can be naturally represented by a p-vector 
 of binary

indicator variables determining whether or not a covariate is included in the

model, and M � f0; 1gp. The linear predictor for the generalised linear model
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determined by 
 may be written as

� =

pX
i=1


iXi�i (1.3)

where � is the `full' parameter vector with dimension p, and Xi and �i are the

design sub-matrix and parameter vector, corresponding to the ith covariate.

This speci�cation allows for covariates of dimension greater than 1, for example

terms in factorial models.

There has been a great deal of recent interest in Bayesian approaches for iden-

tifying promising sets of predictor variables. See for example Brown et al.(1998)

and Chipman (1996, 1997), Clyde et al.(1996), Clyde and DeSimone-Sasinowska

(1997), George et al.(1996), George and McCulloch (1993, 1996, 1997), Geweke

(1996), Hoeting et al.(1996), Kuo and Mallick (1998), Mitchell and Beauchamp

(1988), Ntzoufras et al.(1997), Smith and Kohn (1996) and Wake�eld and Ben-

net (1996).

Most approaches require some kind of analytic, numerical or Monte Carlo ap-

proximation because the integrals involved in (1.2) are only analytically tractable

in certain restricted examples. A further problem is that the size of the set of

possible models M may be extremely large, so that calculation or approxi-

mation of f(yjm) for all m 2 M is very time consuming. One of the most

promising approaches has been Markov chain Monte Carlo (MCMC). MCMC

methods enable one, in principle, to obtain observations from the joint posterior

distribution of (m;�
m

) and consequently estimate f (mjy) and f (�
m

jm;y).

In this chapter we restrict attention to model determination approaches

which can be implemented by using one particular MCMC method, the Gibbs

sampler. The Gibbs samper is particularly convenient for Bayesian computa-

tion in generalised linear models, due to the fact that posterior distributions are

generally log-concave (Dellaportas and Smith, 1992). Furthermore, the Gibbs

sampler can be implemented in a straightforward manner using the BUGS soft-

ware (Spiegelhalter et al., 1996a). To facilitate this, we provide BUGS code for

various approaches in Appendix A.

The rest of the chapter is organised as follows. Section 2 describes several

variable selection strategies that can be implemented using the Gibbs sampler

Section 3 contains an illustrative example analysed using BUGS code. We con-

clude this chapter with a brief discussion in Section 4.
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1.2 Gibbs Sampler Based Variable Selection Strate-

gies

As we are assuming that model uncertainty is restricted to variable selection, m

is determined by 
. We require a MCMC approach for obtaining observations

from the joint posterior distribution of f(m;�
m

). The Gibbs sampler achieves

this by generating successively from univariate conditional distributions, so, in

principle, the Gibbs sampler is determined by f(m;�
m

). However, 
exibility

in the choice of parameter space, likelihood and prior has led to a number of

di�erent Gibbs sampler variable selection approaches being proposed.

The �rst method we shall discuss is a general Gibbs sampler based model

determination strategy. The others have been developed more speci�cally for

variable selection problems.

1.2.1 Carlin and Chib's Method

This method, introduced by Carlin and Chib (1995) is a 
exible Gibbs sam-

pling strategy for any situation involving model uncertainty. It proceeds by

considering the extended parameter vector (m;�
k

; k 2 M). If a sample can be

generated from the joint posterior density for this extended parameter, a sample

from the required posterior distribution f(m;�
m

) can be extracted easily.

A joint prior distribution for m and (�
k

; k 2 M) is required. Here, (�
k

; k 2

M) contains the model parameters for every model in M. Carlin and Chib

(1995) specify the joint prior distribution through the marginal prior model

probability f(m) and prior density f(�
m

jm) for each model, as above, together

with independent `pseudoprior' or linking densities f(�
m

0 jm 6= m

0) for each

model.
The conditional posterior distributions required for the Gibbs sampler are

f (�
m

0 jm; f�
k

: k 2 M n fm
0
gg;y; ) /
(

f (yjm;�
m

)f (�
m

jm) m

0 = m

f (�
m

0 jm) m

0 6= m
(1.4)

f (mjf�
k

: k 2 Mg;y) =

AmP
k2M

Ak
: (1.5)

where

Am = f (yjm;�
m

)
Y

s2M

[f (�
s

jm)]f (m); 8 m 2M:
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Therefore, when m

0 = m, we generate from the usual conditional posterior for

model m, and when m

0 6= m we generate from the corresponding pseudoprior,

f (�
m0 jm). The model indicator m is generated as a discrete random variable

using (1.5).

The pseudopriors have no in
uence on f(�
m

jm), the marginal posterior

distribution of interest. They act as a linking density, and careful choice of

pseudoprior is essential, if the Gibbs sampler is to be suÆciently mobile. Ideally,

f(�
m0 jm 6= m

0) should resemble the marginal posterior distribution f(�
m0 jm0
;y),

and Carlin and Chib suggest strategies to achieve this.

The 
exibility of this method lies in the facility to specify pseudopriors which

help the sampler run eÆciently. This may also be perceived as a drawback

in problems where there are a large number of models under consideration,

such as variable selection involving a moderate number of potential variables.

Then, speci�cation of eÆcient pseudopriors may become too time-consuming.

A further drawback of the method is the requirement to generate every �
m0

at each stage of the sampler. (This may be avoided by using a `Metropolis-

Hastings' step to generate m, but is outside the scope of the current chapter;

see Dellaportas et al., 1997, for details).

Examples which show how BUGS can be used to perform this method can

be found in Spiegelhalter et al.(1996b).

1.2.2 Stochastic Search Variable Selection

Stochastic Search Variable Selection (SSVS) was introduced by George and

McCulloch (1993) for linear regression models and has been adapted for more

complex models such as pharmacokinetic models (Wake�eld and Bennett, 1996),

construction of stock portfolios in �nance (George and McCulloch, 1996), gen-

eralised linear models (George et al., 1996, George and McCulloch, 1997), log-

linear models (Ntzoufras et al., 1997) and multivariate regression models (Brown

et al., 1998).

The di�erence between SSVS and other variable selection approaches is that

the parameter vector � is speci�ed to be of full dimension p under all models,

so the linear predictor is

� =

pX
i=1

Xi�i: (1.6)

Therefore � = X� for all models, where X contains all the potential explana-
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tory variables. The indicator variables 
i are involved in the modelling process

through the prior

�ij
i � 
iN(0; c2i�i) + (1� 
i)N(0;�i) (1.7)

for speci�ed ci and �i. The prior parameters ci and �i in (1.7) are chosen

so that when 
i = 0 (covariate is `absent' from the linear predictor) the prior

distribution for �i ensures that �i is constrained to be `close to 0'. When 
i = 1

the prior is di�use, assuming that little prior information is available about �i.

The full conditional posterior distributions of �i and 
i are given by

f (�ijy;
;�ni) / f (yj
;�)f (�ij
i)

and

f (
i = 1jy;
ni;�)

f (
i = 0jy;
ni;�)
=

f (�j
i = 1;
ni)

f (�j
i = 0;
ni)
f (
i = 1;
ni)

f (
i = 0;
ni)

(1.8)

where 
ni denotes all terms of 
 except 
i.

If we use the prior distributions for � and 
 de�ned by (1.7) and assume

that f (
i = 0;
ni) = f (
i = 1;
ni) for all i, then

f (
i = 1jy;
ni;�)

f (
i = 0jy;
ni;�)
= c
�di

i exp
�

0:5
c
2

i � 1

c2i

�T
i �
�1

i �i
�

(1.9)

where di is the dimension of �i.

The prior for 
 with each term present or absent independently with proba-

bility 1=2 may be considered non-informative in the sense that it gives the same

weight to all possible models. George and Foster (1997) argue that this prior

can be considered as informative because it puts more weight on models of size

close to p=2. However, posterior model probabilities are most heavily depen-

dent on the choice of the prior parameters c
2

i and �i. One way of specifying

these is by setting c
2

i�i as a di�use prior (for 
i = 1) and then choosing c
2

i by

considering the the value of j�ij at which the densities of the two components

of the prior distribution are equal. This can be considered to be the smallest

value of j�ij at which the term is considered of practical signi�cance. George

and McCulloch (1993) applied this approach. Ntzoufras et al.(1997) considered

log-linear interaction models where �i terms are multidimensional.

1.2.3 Unconditional Priors for Variable Selection

Kuo and Mallick (1998) advocated the use of the linear predictor � =
Pp

i=1 
iXi�i

introduced in (1.3) for variable selection. They considered a prior distribu-
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tion f (�) which is independent of 
 (and therefore M) so that f (�ij�ni;
) =

f (�
i
j�ni)

Therefore, the full conditional posterior distributions are given by

f (�
i
jy;
;�ni) /

(
f (yj
;�)f (�i j;�ni ) 
i = 1

f (�ij�ni) 
i = 0

(1.10)

and

f (
i = 1jy;
ni;�)

f (
i = 0jy;
ni;�)
=

f (yj
i = 1;
ni;�)

f (yj
i = 0;
ni;�)
f (
i = 1;
ni)

f (
i = 0;
ni)
: (1.11)

The advantage of the above approach is that it is extremely straightforward.

It is only required to specify the usual prior on � (for the full model) and the

conditional prior distributions f (�ij�ni) replace the pseudopriors required by

Carlin and Chib's method. However, this simplicity may also be a drawback, as

there is no 
exibility here to alter the method to improve eÆciency. In practice,

if, for any �i, the prior is di�use compared with the posterior, the method may

be ineÆcient.

1.2.4 Gibbs Variable Selection

Dellaportas et al.(1997) considered a natural hybrid of SSVS and the `Uncon-

ditional Priors' approach of Kuo and Mallick (1998). The linear predictor is

assumed to be of the form of (1.3) where , unlike SSVS, variables correspond-

ing to 
i = 0 are genuinely excluded from the model. The prior for (
;�) is

speci�ed as f(
;�) = f(
)f(�j
). Consider the partition of � into (�
 ;�n
 )

corresponding to those components of � which are included (
i = 1) or not

included (
i = 0) in the model, then the prior f(�j
) may be partitioned into

model prior f(�
 j
) and pseudoprior f(�n
 j�
 ;
).

The full conditional posterior distributions are given by

f (�
 j�n
 ;
;y) / f (yj�;
)f (�
 j
)f (�n
 j�
 ;
) (1.12)

f (�n
 j�
 ;
;y) / f(�n
 j�
 ;
) (1.13)

and
f (
i = 1j
ni;�;y)

f (
i = 0j
ni;�;y)
=

f (yj�; 
i = 1;
ni)

f (yj�; 
i = 0;
ni)
f (�j
i = 1;
ni)

f (�j
i = 0;
ni)
f (
i = 1;
ni)

f (
i = 0;
ni)
:

(1.14)
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This approach is simpli�ed if it is assumed that the prior for �
i

depends only

on 
i and is given by
f (�ij
i) = 
iN(0;�i) + (1� 
i)N(~�i; Si): (1.15)

This prior, where f(�ij
) = f(�ij
i) potentially makes the method less eÆcient

and is most appropriate in examples where X is orthogonal. In prediction,

rather than inference about the variables themselves is of primary interest, then

X may always be chosen to be orthogonal (see Clyde et al., 1996).

There is a similarity between this prior and the prior used in SSVS. However,

here the full conditional posterior distribution is given by

f (�
i
j
;�ni;y) /

(
f (yj
;�)N (0 ;�i ) 
i = 1

N(~�i; Si) 
i = 0

and a clear di�erence between this and SSVS is that the pseudoprior f(�
i
j
i =

0) does not a�ect the posterior distribution and may be chosen as a `linking

density' to increase the eÆciency of the sampler, in the same way as the pseu-

dopriors of Carlin and Chib's method. Possible choices of ~�i and Si may be

obtained from a pilot run of the full model; see, for example Dellaportas and

Forster (1999).

1.2.5 Summary of Variable Selection Strategies

The similarities and di�erences between the three Gibbs sampling variable se-

lection methods presented in sections 1.2.2, 1.2.3 and 1.2.4 may easily be sum-

marised by inspecting the conditional probabilities (1.8), (1.11) and, in partic-

ular, (1.14).

In SSVS, f(yj�;
) is independent of 
 and so the �rst ratio on the right

hand side of (1.14) is absent in (1.8). For the `Unconditional Priors' approach

of Kuo and Mallick (1998), the second term on the right hand side of (1.14)

is absent in (1.11) as � and 
 are a priori independent. For Gibbs Variable

Selection, both likelihood and prior appear in the variable selection step. These

di�erences are also evident by looking at the graphical representations of the

three methods in Figure 1.1.

The key di�erences between the methods (including Carlin and Chib's method)

are in their requirements in terms of prior and/or linking densities. Carlin and

Chib's method and GVS both require linking densities whose sole function is

7

to aid the eÆciency of the sampler. GVS is less expensive in requirement of

pseudopriors, but correspondingly less 
exible. The prior parameters in SSVS

all have an impact on the posterior, and therefore the densities cannot really be

thought of linking densities. The simplest method that described by Kuo and

Mallick (1988) does not require one to specify anything other than the usual

priors for the model parameters.

1.3 Illustrative Example: 2 � 2� 2 Contingency

Table

We present an analysis of the data in table 1.1, taken from Healy (1988). This

is a three-way table with factors A,B and C. Factor A denotes the condition of

the patient (more or less severe), factor B denotes if the patient was accepting

antitoxin medication and the (response) factor C denotes whether the patient

survived or not.

Survival(C)

Condition (A) Antitoxin (B) No Yes

More Severe Yes 15 6

No 22 4

Less Severe Yes 5 15

No 7 5

Table 1.1: Example Dataset.

Purely for illustration purposes, and to present the BUGS code in Ap-

pendix A, we model the above data using both log-linear and logistic regression

models.

1.3.1 Log-linear models

We focus attention on hierarchical models including the main e�ects focussing

our interest on associations between model factors and the corresponding in-

teraction terms in the models. Here, i 2 f1; A;B;C;AB;AC; BC;ABCg so

p = 8. The prior speci�cation for model vector 
 is 
i � Bernoulli(�) with

� = 1=9 if i = ABC, � = 1 if i 2 f1; A;B;Cg and 
ij
ABC � Bernoulli(�) with
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SSVS Graphical Model

Kuo and Mallick Graphical Model

Gibbs Variable Selection Graphical Model

Figure 1.1: Graphical Model Representation for Stochastic Search Variable Se-

lection, Kuo and Mallick Sampler and Gibbs Variable Selection [Squares denote

Constants; Circles denote Stochastic Nodes].
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� = 0:5(1� 
ABC) + 
ABC for the two factor interactions (i 2 fAB;AC;BCg).

This speci�cation implies that the prior probability of including a two factor

interaction in the model is 0:5 if the three factor interaction is excluded from

the model and 1 if it is included in the model. Hence the prior probabilities for

all 9 possible hierarchical models are 1=9 and and non-hierarchical models are

not considered.

For the model coeÆcients we used the prior speci�cation suggested by Della-

portas and Forster (1999) for log linear models which results in �i = 2 in (1.15)

when the �i are considered to be the usual `sum-to-zero' constrained model pa-

rameters For SSVS we used c
2

i�i = 2 and ci = 103 in (1.7), as suggested by

Ntzoufras et al.(1997).

SSVS KM GVS

Models A+B + C 0.1 0.2 0.2

AB + C 0.0 0.1 0.1

AC +B 25.1 25.7 25.6

BC +A 0.3 0.6 0.6

AB +AC 7.9 7.5 7.3

AB +BC 0.1 0.2 0.2

AC +BC 58.9 58.4 58.9

AB +BC + CA 6.4 6.6 6.4

ABC 1.0 0.8 0.6

Table 1.2: Posterior model probabilities (%) for log-linear models. SSVS:

Stochastic Search Variable Selection; KM: Kuo and Mallick's Unconditional

Priors approach; GVS: Gibbs Variable Selection.

The results are based on 100,000 iterations for Gibbs variable selection and

Kuo and Mallick's method, and 400,000 iterations for SSVS which seemed to

be less eÆcient. For all methods we discarded 10,000 iterations as a burn-in

period. The pseudoprior densities for Gibbs variable selection were constructed

from the sample moments of a pilot run of the full model of size 1,000 iterations.

All three methods give similar results supporting the same models with very

similar posterior probabilities.
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1.3.2 Logistic regression models

When we consider binomial logistic regression models for response variable C

and explanatory factors A and B, there are 5 possible nested models, 1, A, B,

A+ B and AB. Priors are speci�ed by setting c2
i
�i = 4� 2 in (1.7) and �i =

4� 2 in (1.15) which is equivalent to the prior used above for log-linear model

selection. The pseudoprior parameters were speci�ed as before, through a pilot

chain, and �nally we set 
ABC � Bernoulli(1=5) and 
ij
AB � Bernoulli(�),

with � = 0:5(1�
AB)+
AB for i 2 fA;Bg. The resulting prior probabilities for

all models are 1=5. The results in table (1.3) are based on 500,000 iterations for

SSVS and Kuo and Mallick's method and 100,000 iterations for Gibbs variable

selection, with burn-in period of 10,000 iterations. Again, the results are very

similar, although Gibbs variable selection seemed to be most eÆcient.

The equivalent log-linear models in Table 1.2 are those which include the

AB term, so the results can be seen to be in good agreement.

SSVS KM GVS

Models 1 0.2 0.5 0.5

A 48.0 49.2 49.3

B 1.0 1.2 1.2

A+B 45.3 44.0 43.9

AB 5.5 5.2 5.1

Table 1.3: Posterior model probabilities (%) for logistic regression. SSVS:

Stochastic Search Variable Selection; KM: Kuo and Mallick's Unconditional

Priors approach; GVS: Gibbs Variable Selection.

1.4 Discussion

We have reviewed a number of Bayesian variable selection strategies based on

the Gibbs sampler. Their major practical advantage is that they can be easily

applied with a Gibbs sampling software such as BUGS.

It is impossible to provide a general recommendation for a method of compu-

tation for a class of problems as large as variable selection in generalised linear

models. The methods we have discussed range from the `Unconditional Priors
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approach' which is extremely easy to implement, but may be insuÆciently 
ex-

ible for many practical problems, to the approach of Carlin and Chib, which is

very 
exible, but requires a lot of careful speci�cation.

We have only discussed methods based on the Gibbs sampler. Of course

other extremely 
exible MCMC methods exist, such the reversible jump ap-

proach introduced by Green (1996). All MCMC methods require careful im-

plementation and monitoring, and other approaches should also be considered.

For many model selection problems involving generalised linear models, an al-

ternative approach is through asymptotic approximation. Raftery (1996) has

provided a series of Splus routines for this kind of calculation. Such methods

can be used in conjunction with the Gibbs sampler approaches discussed here.

Any Bayesian model selection requires careful attention to prior speci�ca-

tion. For discussion of elicitation of prior distributions for variable selection, see

Garthwaite and Dickey (1992) and Ibrahim and Chen (1998).
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1.5 Appendix: BUGS CODES

Code and data �les are freely available in the web adress http://www.stat-

athens.aueb.gr/�jbn/ or by electronic mail request.

1.5.1 Code for Log-linear Models for 23 Contingency Table

model loglinear;

#
# 2x2x2 LOG-LINEAR VARIABLE SELECTION WITH BUGS

# (c) OCTOBER 1996 FIRST VERSION

# (c) OCTOBER 1997 FINAL VERSION

# WRITTEN BY IOANNIS NTZOUFRAS

# ATHENS UNIVERSITY OF ECONOMICS AND BUSINESS

#
# SSVS: Stochastic Search Variable Selection

# KM : Kuo and Mallick Gibbs sampler

# GVS : Gibbs Variable Selection

#
const

N = 8; # number of Poisson cells

var

include, # conditional prior probabability for gi

pmdl[9], # model indicator vector

mdl, # code of model

b[N], # model coefficients

mean[N], # mean used in pseudoprior (GVS only)

se[N], # st.dev. used in pseudoprior(GVS only)

bpriorm[N], # prior mean for b depanding on g

tau[N], # model coefficients precision

# c, # precision multiplicator (SSVS only)

x[N,N], # design matrix

z[N,N], # matrix used in likelhood

n[N], # Poisson cells

lambda[N], # Poisson mean for each cell

g[N]; # term indicator vector

data n,x in "ex1log.dat", mean, se in 'prop1ll.dat';

inits in "ex1ll.in";

{
# c<-1000.0 # SSVS only

#
# calculation of the z matrix used in likelihood

for (i in 1:N) { for (j in 1:N) {

z[i,j]<-x[i,j]*b[j]*g[j] # For GVS/KM

# z[i,j]<-x[i,j]*b[j]; # For SSVS

}}

#
# model configuration

for (i in 1:N) {

log(lambda[i])<-sum(z[i,]);

n[i]~dpois(lambda[i]) }
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# defining model code

# 0 for [A][B][C], 1 for [AB][C], 2 for [AC][B],

# 3 for [AB][AC], 4 for [BC][A], 5 for [AB][BC],

# 6 for [AC][BC], 7 for [AB][BC][CA],15 for [ABC].

#

mdl<-g[5]+2*g[6]+4*g[7]+8*g[8];

for (i in 0:7) { pmdl[i+1]<-equals(mdl,i) }

pmdl[9]<-equals(mdl,15)

#
# Prior for b model coefficient

tau[1]<-0.1;

bpriorm[1]<-0.0;

b[1]~dnorm(bpriorm[1],tau[1]);

for (i in 2:N) {

#
# GVS using se,mean from pilot run

# ------------------------------------------

tau[i]<-g[i]/2+(1-g[i])/(se[i]*se[i]);

bpriorm[i]<-mean[i]*(1-g[i]);

#
# Kuo and Mallick (prior indepedent of g[i])

# ------------------------------------------

# tau[i]<-1/2;

# bpriorm[i]<-0.0;

#
#

# SSVS PRIOR SET-UP

# ------------------------------------------

# tau[i]<-pow(c,2-2*g[i])/2;

# bpriorm[i]<-0.0;

#

b[i]~dnorm(bpriorm[i],tau[i]);

}

#
# defining prior information for gi in such way that

# allow only hierarhical models with equal probability.

#

include<-(1-g[8])*0.5+g[8]*1.0;

g[8]~dbern(0.1111111);

g[7]~dbern(include);

g[6]~dbern(include);

g[5]~dbern(include);

for (i in 1:4) { g[i]~dbern(1.0)}}

1.5.2 Code for Logistic Models with 2 Binary Explanatory

Factors

model Binomial;

#
# LOGISTIC REGRESSION VARIABLE SELECTION WITH BUGS

# (c) OCTOBER 1996 FIRST VERSION

# (c) OCTOBER 1997 FINAL VERSION

# WRITTEN BY IOANNIS NTZOUFRAS

# ATHENS UNIVERSITY OF ECONOMICS AND BUSINESS

#
# SSVS: Stochastic Search Variable Selection

# KM : Kuo and Mallick Gibbs sampler

# GVS : Gibbs Variable Selection

#
const

N = 4; # number of binomial experiments

var

include, # conditional prior probabability for gi
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pmdl[5], # model indicator vector

mdl, # code of model

b[N], # model coefficients

mean[N], # mean used in pseudoprior (GVS only)

se[N], # st.dev, used in pseudoprior (GVS only)

bpriorm[N],# prior mean for b depanding on g

tau[N], # model coefficients precision

# c, # precision multiplicator (SSVS only)

x[N,N], # design matrix

z[N,N], # matrix used in likelhood

r[N], # number of successes in binomial

n[N], # total number of observations for binomial

p[N], # probability of success for binomial model

g[N]; # term indicator vector

data r,n,x in "ex1logit.dat", mean, se in 'prop1.dat';

inits in "ex1.in";

{
# c<-1000 # SSVS only

#
# calculation of the z matrix used in likelihood

for (i in 1:N) { for (j in 1:N) {

z[i,j]<-x[i,j]*b[j]*g[j] # for GVS

# z[i,j]<-x[i,j]*b[j]; # for SSVS

}}

#
# model configuration

for (i in 1:N) {

r[i]~dbin(p[i],n[i]);

logit(p[i])<-sum(z[i,]) }

# defining model code

# 0 constant, 1 for [A], 2 for [B],

# 3 for [A][B], and 6 for [AB]

#

mdl<-g[2]+2*g[3]+3*g[4];

pmdl[1]<-equals(mdl,0)

pmdl[2]<-equals(mdl,1)

pmdl[3]<-equals(mdl,2)

pmdl[4]<-equals(mdl,3)

pmdl[5]<-equals(mdl,6)

#
# Prior for b model coefficient

tau[1]<-0.1;

bpriorm[1]<-0.0;

b[1]~dnorm(bpriorm[1],tau[1]);

for (i in 2:N) {

#
# GVS using se,mean from pilot run

# --------------------------------

#

tau[i]<-g[i]/8+(1-g[i])/(se[i]*se[i]);

bpriorm[i]<-mean[i]*(1-g[i]);

#
# Kuo and Mallick proposal is indedent of g[i]

# --------------------------------------------

#
# tau[i]<-1/8;

# bpriorm[i]<-0.0;

#
# SSVS PRIOR SET-UP

# ------------------------------------------
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# tau[i]<-pow(c,2-2*g[i])/8;

# bpriorm[i]<-0.0;

#

b[i]~dnorm(bpriorm[i],tau[i]);

}

#
# defining prior information for gi in such way that

# allow only hierarhical models with 0.2 probability.

#

g[4]~dbern(0.2);

include<-(1-g[4])*0.5+g[4]*1.0

g[2]~dbern(include);

g[3]~dbern(include);

g[1]~dbern(1.0) }
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