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6... AlIAOI EAEMXOIl YNOGEZEQN
6.1. Eicaywyn: Ek-Twv-Yorepwv Aoyo¢
Mmeéavornrwyv rwv MovréAwv

=avayupiloupe oTo Mapadeiypa Tne EoTpioAng

Green & Touchston (1963, Am.Jour. Of Obsterics]
& Gynecology)
MeAETN oXEONC

Y : Bapog yevvnong (birthweight) evog naidiov

X : Eningdo eaTpIOANnG (estriol) Twv eykKUWV yuvaikwv
Y; ~ Normal(y;, 02)
Hi=n=a+BX;
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6... AlIAOI EAEMXOIl YNOGEZEQN
6.1. Eicaywyn: Ek-Twv-Yorepwv Aoyo¢
rMmeéavorntwy rwv MovréAwv

=avayupiloupe oTo Mapadeiypa Tne EoTpioAng

Mag evOIlaPEPEl va EAEYEOUUE TNV UNOBEDN
Ho: B=0vs. H, B =0
To onoio €ival 1I000UvVapo e T GUYKPION TWV
HOVTEAWV
m,: Y~N(a, 0?)
m,: Y~N(a+pX, 02)

6... AlIAOI EAEMXOIl YNOGEZEQN
6.1. Eicaywyn: Ek-Twv-Yorepwv Aoyo¢
rMmeéavorntwy rwv MovréAwyv

Ek-Twv-YoTEpwv Aoyog MibavotnTwyv (Posterior
Model Odds) Tou pJovTeAou m, EvavTi TOU
HOVTEAOU M;:

po L0 1Y) _ fImy)  fm)

T fmly)  fGylm)  f(m)
T Y

By:: Bayes Factor
(Mapayovrag Bayes) Prior Model Odds ‘

(Ek-TwV-TNpoTépmv Adyoq

MOavoTATOV TV MovTéEA®V)
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6... AlIAOI EAEMXOIl YNOGEZEQN
6.1. Eicaywyn: Ek-Twv-Yorepwv Aoyo¢
rMmeéavorntwy rwv MovréAwv

fim):  Ek-Twv-NpoTtepwv MBavoTnTa Tou
pnovteAou m (Prior model probability)

Aml|y): Ek-Twv-YoTépwv MBavoTnTa Tou
pnovteAou m (Posterior model probability)

fly|m): MepiBwpiakn MOavopaveia Twv
Aedopevwv aTo povreAo m (marginal
likelihood of model m)

6... AlIAOI EAEMXOIl YNOGEZEQN
6.1. Eicaywyn: Ek-Twv-Yorepwv Aoyo¢
rMmeéavorntwy rwv MovréAwyv

M : EK-TwV-NpoTEPWV AOYOC
S (my) MmeavoTnTWV Tou JOVTEAOU M,
£vVaVTI TOU JOVTEAOU M,
(Prior model odds of m; vs. m;)
_M . I-IC] . -
0 = : MapayovTac Bayes Tou pJovTeAOU
Sy Im)  my évav Tou povréhou m,
(Bayes Factor of model m, vs. m,)
_S(my|y) . ° '

: EK-TwV-uoTEPWV AOYOC

S(m|y) I'IIGCIVOTI’]T(DV TOU MOVTEAOU M
EVAVTI TOU JOVTEAOU M,

(Posterior model odds of m; vs. m,)

01 —

Bayesian Biostatistics Using BUGS (4) 4.3
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6... AlIAOI EAEMXOIl YNOGEZEQN
6.2. Ek-Twv-Yorepwyv MOavorntes Twv
MovréAwy oro BUGS

>10 BUGS pumopodpe vo EKTIUNGOVE TN EK-TWV-
votepwv mbovotnto f(m|y) elcdyovtac tnv
AavBdavovca (latent) ditiun petafint v:

Y~Normal( o+ BX,6?).

6... AlIAOI EAEMXOIl YNOGEZEQN
6.2. Ek-Twv-Yorepwyv MOavorntes Twv
MovréAwy oro BUGS

>10 BUGS pumopodpe vo EKTIUNGOVE TN EK-TWV-
votepwv mbovotnto f(m|y) elcdyovtac tnv
AavBavovaca (latent) ditiun petafint v:

Y~Normal( o @BX ,6%).

Bayesian Biostatistics Using BUGS (4)

1/23/2006

4.4



Ioannis Ntzoufras 1/23/2006

6... AlIAOI EAEMXOIl YNOGEZEQN
6.2. Ek-Twv-Yorepwyv MOavorntes Twv
MovréAwy oro BUGS

['o Aemtopépeleg TOPATEUTOVE GTO AKOAOVOL
Katsis, A. and Ntzoufras, 1. (2003). Testing Hypotheses for the
Distribution of Insurance Claim Counts Using the Gibbs Sampler.
Ntzoufras, I. (2002). Gibbs Variable Selection Using BUGS. Journal of|
Statistical Software, Volume 7, Issue 7,1 — 19 .
Dellaportas, Forster and Ntzoufras (2002). On Bayesian Model and
Variable Selection Using MCMC. Statistics and Computing, 12, 27-36.
Dellaportas, Forster and Ntzoufras (2000). On Bayesian Model and
Variable Selection Using MCMC. In Generalized Linear Models: A
Bayesian Perspective, 271-286.

MY BUGS TUTORIAL PAGE:
http://stat-athens.aueb.gr/~jbn/bugs_tutorial/home.html

Ntzoufras (2002). Tutorial on Bayesian Model Selection (Msc Hand
outs)

6... AlIAOI EAEMXOIl YNOGEZEQN
6.2. Ek-Twv-Yorepwyv MOavorntes Twv
MovréAwy oro BUGS

H katavoun f(B| y=0) ovopaleTal kal weudo-prior (pseudo-
prior) | or karavouri nporaonc (proposal distribution).

Aev ennpedlel TNV EK-TWV-UOTEPWY KaTtavoun dnA. Tnv

Ao, B, v y)=Ao, Bl v, YAV Y).
Ennpealel Tnv ouykAion tn¢ alvoidac

Ma va OoUAEWel anoTeAeEOATIKA NPENEN va €ival KovTd
OTNV €K-TWV-UCOTEPWV KAaTavoun: ff|y, y=1) .

Ma AOyoug anAouoTeuonG UNOBETOUE
Sl v=0)=fB[v=1)

[AouAeUEl KAAG OTO GUYKEKPIPEVO Napdadelyual

Bayesian Biostatistics Using BUGS (4) 4.5
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6... AlIAOI EAEMXOIl YNOGEZEQN
6.2. Ek-Twv-Yorepwyv MOavorntes Twv
MovréAwy oro BUGS

for (1 in 1:n) {
Birth[i]~dnorm(mu[i], tau)
} x[i]<-estriol[i]-mean(estriol[])

(1) Birth, ~ Normal(p,, 02
2)ni=a+  PxEstridl,
(3) B=n;=a+pxEstrOl,
fori=1,...,3
PRIORS
f(a)=NormaI ( 0’ 104 ) a~dnorm(0.0,1.0E-04)
F(B)=Normal (0, 10%) 00t aoe 1. om-0)
f(1?)=Gamma(10+,10%)
0-2=1/ T s2<-1/tau

mu[i] <-a+ b*x[i]

}

6... AlIAOI EAEMXOIl YNOGEZEQN
6.2. Ek-Twv-Yorepwyv MOavorntes Twv
MovréAwy oro BUGS

for (1 in 1:n) {
Birth[i]~dnorm(mu[i], tau)
x[i]<-estriol[i]-mean (estriol[])
} mu[i] <-a+ gamma*b*x[i]

(1) Birth, ~ Normal(p,, 02
(2) n; = a + y x BxEstyiol,
(3) B=n;=a+pxEstrOl,
fori=1,...,3
PRIORS
f(a)=NormaI ( 0, 104 ) a~dnorm(0.0,1.0E-04)
F(By=Normal (0, 10%) & ea om0
f(1?)=Gamma(10+,10%)
0-2=1/ T s2<-1/tau
v ~ Bernoulli (0.5)

}

gamma~dbern (0.5)

Bayesian Biostatistics Using BUGS (4)
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6... AlIAOI EAEMXOIl YNOGEZEQN
6.2. Ek-Twv-Yorepwyv MOavorntes Twv
MovréAwy oro BUGS

(1) Birth, ~ al(y,, 02
(2)n,=a xEstpiol, }

(3) Hi=n;=a+PxEstyOl,
fori=1,...,3

PRIORS
f(a)=Normal ( 0, 10%)
f(B)=Normal ( 0, 10%)

for (1 in 1:n) {
Birth[i]~dnorm(mu[i], tau)

x[i]<-estriol[i]-mean(estriol[])
mu [i] <—a+b*x[i]
}

a~dnorm(0.0,1.0E-04)
b~dnorm(0.0,1.0E-04)

tau~dgamma (1.0E-04,1.0E-04)
f(19)=Gamma(104,104)
0‘2=]_/ T s2<-1/tau

| v ~ Bernoulli (0.5) |-
gamma~dbern (0.5)

6... AlIAOI EAEMXOIl YNOGEZEQN
6.2. Ek-Twv-Yorepwyv MOavorntes Twv
MovréAwy oro BUGS

MeTa ano Burn-in 1000 enavaAnyewv Kal
20,000 enavaAnyeic wg dsiyua

fly=1ly)= 0.6268

PO,,=BF,, = 1. 68

Bayesian Biostatistics Using BUGS (4)

1/23/2006

4.7



Ioannis Ntzoufras

6... AlIAOI EAEMXOIl YNOGEZEQN
6.2. Ek-Twv-Yorepwyv MOavorntes Twv
MovréAwy oro BUGS

Aev oulnTNOAUE YIA TIG EK-TWV-TTPOTEPWYV KATAVOUEG TWV
MOVTEAWV OTav KAvoupe eTTIAOYAR/CUYKPION JOVTEAWV
[To Bépa gival TTOAU peydAo kal oUvBETO yia auTtd TO pdabnual,
MeyAAEG TINEG TNG EK-TWV-TTPOTEPWY dlakUuavong Tou B Ba
evepyoTroinoel To mapddoto Twv Bartlett - Lindley =>
f(y=1|y)— 0.0
Mia AUon: H ek-twv-trpoTtépwyv (ETI) katavour g
povadiaiag TAnpogopiag (Unit information prior, BIC):

ETM AlokUpavon Tou B =

MéyeBog Aciyuatog X ETY AlakUuavon Tou B TTou TTaipvoupue
otav xpnoiyotrolouue eTTitredn ETIM katavoun

6... AlIAOI EAEMXOIl YNOGEZEQN
6.2. Ek-Twv-Yorepwyv MOavorntes Twv
MovréAwy oro BUGS

Ac ZavaTpeEoupe To Napadelypa pe tnv ETM
povadiaiac nAnpogopiac.
TpExoupe To napadelyua Pe peyain ETM
dlakUpavon kai Bpiokoupe

ETY AlakUpavon= (0.1431)2

Maipvoupe Twpa oTn oUYKPION TWV 2 HOVTEAWV HE
ETN AiakUpaveon Tou B = 31 X (0.1431)2 = 0.6348
ETIN AkpiBeia Tou B = 1/0.6348 = 1.575

Bayesian Biostatistics Using BUGS (4)
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6... AlIAOI EAEMXOIl YNOGEZEQN
6.2. Ek-Twv-Yorepwyv MOavorntes Twv
MovréAwy oro BUGS

MeTa and Burn-in 1000 enavaAnyewv kai 20,000
NMPOCOMOIWUEVEC TIMEC EXOUHE WC AMNOTEAECHA

fly=1]y)= 0.9922
PO,,=BF,, = 127.20

6... AlIAOI EAEMXOIl YNOGEZEQN
6.2. Ek-Twv-Yorepwyv MOavorntes Twv
MovréAwy oro BUGS

AuTO TO Mapadeiypa ival povo yia Enideign

Mnv npoonadnosTe va TPEEETE GUYKPION HOVTEAWV
oTo BUGS av dev €xeTe NpwTA KATAvonoel MoAU KaAd
TNV NPOCOMOIWON TWV ANAWV HOVTEAWV Kal TO TPOMO
AeIToupyiac Twv PEBOdWV GUYKPIONG HOVTEAWV.

Na €ioTe noAu nNpooekTIKoi 0Tav eniAeyeTe ETM (prior)
kal peudo-ETM (pseudo-prior) KATavouEC

Bayesian Biostatistics Using BUGS (4)
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6... AlIAOI EAEMXOIl YNOGEZEQN
6.3. AAAol Tportrolr YroAoyiouou Tou
lNapayovra Bayes

MCMC vyia 20ykpion MovTéAwv

Reversible Jump MCMC (RIMCMC, Green, 1995) [Agv ptropei va
epappooTei oto WINBUGS akéua]

AsiyuaroAnmrng rwv Carlin kai Chib (1995). MNapddeiyua 13
(Pines dataset) oto Bugs 0.5 Examples vol.2, oeA. 47-50 .
Tpétrol YroAoyiopou tng MepiBwpiakng MBavogdveiag

EKTIUNTAG Tou Appovikou puéoou Tng Mbavoedveiag

O EkmiuntAg Twv Newton kai Raftery (1994).

O EkTiunTAG Twv Gelfand kair Dey (1994).

O EkTiuntAG Tou Chib (1995, JASA).

O Ekmiuntig Laplace-Metropolis (Lewis kai Raftery, 1997)

K.a. I'a AeTTTOPEPEIEG TTPOTEIVW va OEiTE TO KAAS review Tou Lopes
(2002).

7... AANOI TPOINOI ZYTKPIZHZ MONTEAQN
7.1. Kpirnpia lAnpogopiac (Information
Criteria)

Ta KpITApIa TTANPOPOPIAG YEVIKA OpifovTal WG TNV PEYIOTN
molavo@paveia aTn oTroia eTTIBAAAETAI YIa TTOIVA VIO KABE
ETTITTAEOV TTAPAUETPO TTOU EKTIJOUE

Deviance = -2 max{ log - likelihood }

IC = -2 max{ log - likelihood } + parameters x penalty

AIC= -2 max{ log - likelihood } + parameters x 2

BIC= -2 max{ log - likelihood } + parameters x log(n)

Bayesian Biostatistics Using BUGS (4)

1/23/2006
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7... AANOI TPOINOI ZYTKPIZHZ MONTEAQN
7.1. Kpirnpia lAnpogopiac (Information
Criteria)

MTtropoupe va opicoupe TiG Bayesian versions Twv AIC/BIC kai

va Bpoupe Tig posterior kal va TIG ouykpivouue (Brooks 2002)
B.Deviance(m) = -2 log{f(y|8,m)} = -2 log - likelihood
B.AIC(m) = -2 log{f(y|®, m)} + parameters x 2

B.BIC(m) = -2 log{f(y|®, m)} + parameters x log(n)

7... AAANOI TPOINOI ZYTKPIZHZ MONTEAQN
7.2. Bayesian AIC/BIC oro WINBUGS
(Estriol Example)

MMNOPOYME NA TPE=ZOYME KAI TA AYO MONTEAA ZE
ENA NMPOIrPAMMA WINBUGS.

1... OpiCoupe 10 AoydapiBuo TnG MiBavoaveiag yia Kae
Taparrpnon (Péoa oto for).

2... YtroAoyiCoupe Tn cuvoAikA AoyapiBuo - Mbavogaveia

3... YmoAoyiCoupue 10 AIC/BIC yia kGBe povtéAo

4... YtrohoyiCoupe diagopég Twv AIC/BIC 1ToU pag
evOlaQEPOUV.(MoVo o€ TTaPAAANAN delyuatoAnyia)

Bayesian Biostatistics Using BUGS (4)

1/23/2006
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(1)

(1)- pi<-3.14

- loglikel[i]<- -0.5*log(2*pi)+0.5*1log(tau)

7... AAANOI TPOINOI ZYTKPIZHZ MONTEAQN
7.2. Bayesian AIC/BIC oro WINBUGS
(Estriol Example)

MONTEAO 1: BIRTHWEIGHT=0+8 ESTRIOL

model estriol AIC BIC;
{

for (i in 1:n) {
birth[i]~dnorm( mu[i], tau );
mu[i]<-a.star+b* (estriol[i] -mean(estriol[])):;

-0.5*pow( birth[i]-mu[i],2 )*tau

7... AAANOI TPOINOI ZYTKPIZHZ MONTEAQN
7.2. Bayesian AIC/BIC oro WINBUGS
(Estriol Example)

MONTEAO 1: BIRTHWEIGHT=a+8 ESTRIOL
# prior distributions for model ml
a.star~dnorm( 0, 1.0E-04 )
b~dnorm( 0, 1.0E-04 ); # normal prior for b
tau~dgamma ( 1.0E-04 , 1.0E-04 )
s2<-1/tau;
a<-a.star-b*mean(estriol[]) ;
# Bayesian versions of LogLikelihood
Li<-sum( loglikel[] ) @E= (2)
# Bayesian versions of BIC
BIC1<- -2*L1 + 3*log(n)
# Bayesian versions of AIC _ ()
AIC1<- -2*L1 + 3*2

Bayesian Biostatistics Using BUGS (4)

1/23/2006
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7... AAANOI TPOINOI ZYTKPIZHZ MONTEAQN
7.2. Bayesian AIC/BIC oro WINBUGS
(Estriol Example)

MONTEAO 0: BIRTHWEIGHT=a
model estriol AIC BIC{
pi<-3.14
for (i in 1:n) {

# definition of model ml
# definition of model mO

birthO[i]<-birth[i]
birthO[i]~dnorm( muO[i], taul );
mu0[i]<-a0;
(1)- loglikeO[i]<- -0.5*log(2*pi)+0.5*1log(taul)
-0.5*pow( birthO[i]-muO[i], 2) *taul

}

7... AAANOI TPOINOI ZYTKPIZHZ MONTEAQN
7.2. Bayesian AIC/BIC oro WINBUGS
(Estriol Example)

MONTEAO 0: BIRTHWEIGHT=a
# prior distributions for model ml
# O
# prior distributions for model mO
a0~dnorm( 0, 1.0E-04 );
tauO~dgamma( 1.0E-04 , 1.0E-04 );
# Bayesian versions of LogLikelihood
Ll<-sum( loglikel[] )
LO<-sum( loglikeO[] ) _(2)
# "Bayesian versions or BIC
BICl<- -2*L1 + 3*log(n)
BICO<- -2*L0 + 2*log(n) _ (3)
(4) ==) DBicio<- BICO-BIC1

# Bayesian versions of AIC
AICl<- -2*L1 + 3*2 — 3
AICO<- -2*L0 + 2*2 ( )
(4) ==) Daicio<- arco-arci }

Bayesian Biostatistics Using BUGS (4) 4.13
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MC error 2.5%

(Estriol Example)
1
AnoTteleoparta

node mean sd
AICO 189.4 2.003 0.032
AlC1 178.2 2.533 0.03684
BICO 192.3 2.003 0.032
BIC1 182.5 2.533 0.03684
DAIC10 11.23 3.212 0.05295
DBIC10 9.798 3.212 0.05295

187.5
175.3
190.3
179.6
4.246
2.812

median
188.8
1775
191.6
181.8
11.48
10.04

97.5%
194.8
184.7
197.7
189.0
17.65
16.22

start
1001
1001
1001
1001
1001
1001

Yrnoompileton o povtéro pe B #0 kot pe to
AIC xou pe 1o BIC

7... AAAOI TPOMNOI ZYTKPIZHZ MONTEAQN
7.2. Bayesian AIC/BIC oro WINBUGS

sample
5000
5000
5000
5000
5000
5000

DIC(m)=2D(8,m)-D(8,m)

DIC(m)= D(8,m)+ pp(m)

To DIC civai evikeuon Tou AIC
Spiegelhalter et al. (2002, RSSB)

_D(B,m) = posterior mean of deviance for model m
pp(m) = effective number of parameters of model m

7... AANOI TPOINOI ZYTKPIZHZ MONTEAQN
7.3. [1Anpo@opiako Kpirnpio ATTokAiong
(Deviance Information Criterion)

D(8,m): Deviance evaluated at the posterior mean of 8 (1
GAAOU eKTIUNTA)

Bayesian Biostatistics Using BUGS (4)

1/23/2006
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7... AANOI TPOINOI ZYTKPIZHZ MONTEAQN
7.3. [1Anpo@opiako Kpirnpio ATTokAiong
(Deviance Information Criterion)

MEPIKA 2XOAIA T'IA TO DIC

1) I'evikevon tov AIC. I'a Ta p1 wepapyika povtéia p,, eivar
TEPITOV 160 UE TOV TPUYUUTIKO aplOpd TOV TapapiTPOV.

2) Mkpég arrayéc Tng ektipnong tov 0 (wov
YPNOYLOTOLELTAL Y10, TOV VTOLOYIGUO TOV Pp) NTOPEL VO
oonynosl o€ arho DIC (apa emnpealetor kon amd prior, Tnv
TOPOUETPOTOINGT] TOV HOVTEAOL KOl OTO TNV AGVUUETPLa TNG
posterior Tov 0).

7... AANOI TPOINOI ZYTKPIZHZ MONTEAQN
7.3. [1Anpo@opiako Kpirnpio ATTokAiong
(Deviance Information Criterion)

MEPIKA 2XOAIA T'IA TO DIC

3) Xto WINBUGS o¢v oidetar o Movre Kapio coaipo
(MC error).

To o@dipo Tov Deviance pmopodpe va o fpodvpe evkoia
empArénovrac (monitor) Tnv posterior Tov Deviance
(oprlovpe D1<- -2L1 kor DO<- -2LO0 0TO mTOPAOELYpQ
™S Eotproing). Avté 10 6@aAipa yeViKa givar pikpo.

Avnovyia vwapyet Yo 10 p;, (kow D(6,m) ) kan yevika 0o,
TPETEL VO KOITALOVUE TN 6TOOEPOTNTO QVTOV TOV
TOGOTNTMV HETA OO UPKETES ETUVUAIM|YELGS,

Bayesian Biostatistics Using BUGS (4)

1/23/2006
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7... AANOI TPOINOI ZYTKPIZHZ MONTEAQN
7.3. [1Anpo@opiako Kpirnpio ATTokAiong
(Deviance Information Criterion)

MEPIKA 2XOAIA T'IA TO DIC

4) Av n LoyaprOpo - mOavo@avela gival Koidn g Tpog Tig

TOPOpPETPOVS TG (0TO0YaOoTIKOVG KOpPovg) TdTe DIC>0.
HMapoéra ovtd propovpe va tdpoope apvntiké DIC o1ig
aKOLOVOES TEPITTAOOELS
i) pe pn koireg AoyaprOpo-mOavopaverog (m.y. Student-t
KOTOVOUT) 0710V VTAPYEL PEYAAN OLOPOPE RETALD prior Kol
ogoopévov.
ii) 6Tav 1 posterior piog TOPApPETPOV Eivarl GUUETPIKN KoL
OIKOPLON KOl YEVIKA 0TAV 0 EK-TOV-VETEPMV PEGOG ElvarL
PTOYOS TEPLYPUPIKOG OEIKTNG NE NEYAA) EK-TOV-VETEPMV
owkvpavon.

7... AANOI TPOINOI ZYTKPIZHZ MONTEAQN
7.3. [1Anpo@opiako Kpirnpio ATTokAiong
(Deviance Information Criterion)

MEPIKA 2XOAIA T'IA TO DIC

5) To ehayroto DIC gkTipder mord povrero 0o dmoeL TIg
KaAVTEPES oOvTopes (short-term) mpofréyers otny idra
Aoyucn] pe to AIC.

Hapdéro avtd v 1 dSre@opd tov DIC givar pikpotepn omod S
Y10 povTELA TOV HivOuV TEAEIMG OLAPOPETIKA cVPUTEPAGNRATO
T0TE Eival AaO0g amAhd vo. avaEPOVIE TO HOVTELD NE TO
pwkpotepo DIC.

6) To DIC (6nm¢ kot Ta. AIC/BIC) givan ovykpiocpa yio
povtéda pe to iora dgdopéva. Ta povréha dg yperaleton va
gival «poAMaopévay to £vo péca 6to dilo (nested).

Bayesian Biostatistics Using BUGS (4)

1/23/2006
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7... AAAOI TPOMNOI ZYTKPIZHZ MONTEAQN

7.3. [1Anpo@opiako Kpirnpio ATTokAiong
(Deviance Information Criterion)

MEPIKA 2XOAIA T'IA TO DIC

7) To DIC dwpéper o€ 610005 Ko popen} a6 1o BIC kor Tov
MMopdayovra Bayes.

8) Oa mpémer va ypnoponoreite pe mpocsoyn 1o DIC péypr va
vdp&ov o TOALE EPELVNTIKG OTOTEAEGNATO. XE NEPLKA
povtédha to WINBUGS ogv pmopet va vroroyiotei to DIC. INa
Aentopépereg mapanépmovpe otny loto-cehioa Ttov WINBUGS
http://www.mrc-bsu.cam.ac.uk/bugs/winbugs/contents.shtml

9) O vroroyiopog Tmv Bayesian BIC/AIC gival o €dkohog kot
apecog (ko propovpe va £xovpe kot MC error).

7... AAAOI TPOMNOI ZYTKPIZHZ MONTEAQN

7.4. YmroAoyioudcg rou DIC oro WINBUGS
(Estriol Example)

Aev xpelddeTal va opIocOUE KATI ETTITTAEOV OTO JOVTENO
Tou WINBUGS.

MTtropouue va TpéEouue TTapAAANAa OAa Ta PovTéEAQ TTou
BéAoupe va cuykpivouue padi.

A@oU TTPOCOUOIWCOUNE TIG TTPWTEG TTAPATNPACEIC OTNV
TTePiodo Burn-in emAéyoupe INFERENCE>DIC

ESWinBUGS14 - [estrioll]
@ File Tools Edit Attibutes  Info  Model | |nference Options Doodle Map Test Window Help

BHUpdale Tool Samples...

LCompare. ..
updates I‘IEIEID refresh I‘IEIEI

Carrelations

update | thin I‘I iteration I‘IDDD Summary...

Bank. ..

™ over relax ™ adapting

DIC...

AT = 2L+ 532
LIC0= 24 0+ D0
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7... AAAOI TPOMNOI ZYTKPIZHZ MONTEAQN

7.4. YmroAoyioudcg rou DIC oro WINBUGS
(Estriol Example)

EmiAéyoupe To KouTi SET .
E2DIC Tool

(o[ | (e |

Mpooopolwvouue 10 deiypa atmd Tnv posterior KATavoun
(MODEL>UPDATE, cupttAnpwvouue oT1o updates Tov
APIBUO TWV ETTAVAANYEWV).

EmAéyoupue o DIC TOOL (INFERENCE>DIC) kai T0
kourTi DIC.

o |

7... AAAOI TPOINOI ZYTKPIZHZ MONTEAQN
7.4. YmroAoyioudcg rou DIC oro WINBUGS

(Estriol Example)
AMNOTEAEZMATA
Dbar = post.mean of -2logL; Dhat =-2LogL at post.mean of stochastic nodes
Dbar Dhat pD DIC
birth 172.201 169.086 3.115 175.316
birthO 185.433 183.447 1.985 187.418
total 357.633 352.533 5.100 362.734

Alagopa = 13.23
MovTéAo 1 TTAAI KOAUTEPO

Pp Eival TTEPITToU ioco e 3 Kal 2 (apIiBuog TTapapETpwyV
oTa OUO POVTEAQ).
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8...NMNPOBAENTIKOI AIAFNQ2TIKOI
EAEIMXOI TQN MONTEAQN
NNEPIEXOMENA

[BUGS manual: page 40]

KataAoina (Residuals)

Ex-Twv-uoTépwv Eninedo ZnuavTtikdTnTag (Posterior
P-values)

MpoBAenTIkA METpa ZUyKpIONG MOVTEAWY
(Predictive Model Comparison Measures)
MpoPAenTika MeETpa MapaAAnAng AciypaToAsipiag
(Parallel Sampling Predictive Measures)

8...NMNPOBAENTIKOI AIAFNQ2TIKOI
EAEIMXOI TQN MONTEAQN
ENA ATINO IMAPAAEIC'MA (LINE.BUG)

model {
# Likel1hood
for(iinl : N ) {
y[i] ~ dnorm(mu[i], tau)
mul[i]<- alpha+ beta*( x[i]-mean(x[]) )
}
# Prior distributions
tau ~ dgamma (0.001,0.001)
sigma <- 1 / sqrt(tau)
alpha ~ dnorm(0.0,1.0E-6)
beta ~ dnorm(0.0,1.0E-6)

Bayesian Biostatistics Using BUGS (4)
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8...NMNPOBAENTIKOI AIAFNQ2TIKOI
EAEIMXOI TQN MONTEAQN
ENA ATINO IMAPAAEIIC'MA (LINE.BUG)

Data (XQPIX OUTLIER) :
list(x = c(1, 2, 3, 4, 5),

y= c(1, 3, 3, 3, 5), N = 5)
Data(2) (ME OUTLIER) :
list(x = c(1, 2, 3, 4, 5),

y= c(1, 7, 3, 3, 5), N = 5)

Inits:
list(alpha = 0, beta = 0, tau

1)

8...NMNPOBAENTIKOI AIAFNQ2TIKOI
EAEIMXOI TQN MONTEAQN
8.1. EAE'’X02 KATAAOIINQN

E€eTaloupe TNV EK-TWV-UCTEPWV KATAVOUN TWV
kaTaloinwv (y,=data)
Katahomna (Residual): r, =y, - E(y,)
resid[i]<-y[i]-mu[i]
Tunonoinueva Kataloina (Standardized
Residual): sr; = r/\W(y;)= {y; - E(y)}/\V(y))

sresid[i]<-r[i] *sqgrt (tau)

Bayesian Biostatistics Using BUGS (4) 4.20
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8...NMNPOBAENTIKOI AIAFNQ2TIKOI
EAEIMXOI TQN MONTEAQN
8.1. EAE'’X02 KATAAOIINQN

AMNOTEAEZMATA (DATA XQPIX OUTLIER)

node mean sd MC error 2.5% median 97.5%
resid[1] -0.38 1.1 0.023 -2.3 -0.4 1.6
resid[2] 0.82 0.71 0.017 -0.42 0.81 2.1
resid[3] 0.027 0.65 0.016 -1.0 0.013 1.1
resid[4] -0.77 1.0 0.022 -2.0 -0.79 0.51
resid[5] 0.43 15 0.031 -1.4 0.42 2.3
node mean sd MC error 2.5% median 97.5%
sresid[1] -0.49 0.83 0.018 -2.1 -0.49 1.1
sresid[2] 1.0 0.69 0.017 -0.3 1.0 2.4
sresid[3] 0.013 0.45 0.0086 -0.9 0.017 0.9
sresid[4] -1.0 0.7 0.018 24 -0.98 0.32
sresid[5] 0.52 0.8 0.016 -1.1 0.52 2.1

8...NMNPOBAENTIKOI AIAFNQ2TIKOI
EAEIMXOI TQN MONTEAQN
8.1. EAE'’X02 KATAAOIINQN

AMNOTEAEZMATA (DATA ME OUTLIER)

node mean sd MC error 2.5% median 97.5%
resid[1] -2.0 3.7 0.066 -8.3 -2.0 4.5
resid[2] 3.6 2.4 0.046 -0.69 3.6 8.0
resid[3] -0.72 2.1 0.04 -4.3 -0.75 2.9
resid[4] -1.1 3.2 0.051 -5.3 -1.1 3.3
resid[5] 0.53 4.7 0.072 -5.6 0.48 6.8
node mean sd MC error 2.5% median 97.5%
sresid[1] -0.73 0.85 0.017 -2.4 -0.74 0.86
sresid[2] 1.3 0.78 0.021 -0.13 1.3 2.9
sresid[3] -0.28 0.47 0.0067 -1.2 -0.28 0.63
sresid[4] -0.42 0.58 0.009 -1.6 -0.42 0.72
sresid[5] 0.17 0.77 0.014 -1.4 0.17 1.7

Bayesian Biostatistics Using BUGS (4)
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8...NMNPOBAENTIKOI AIAFNQ2TIKOI
EAEIMXOI TQN MONTEAQN
8.2. [IPOBAETIOMENEZ TIMEZ KALKATAAOIINA

E€eTAloUPE TIC TIMEC MOU AVAUEVOUUE
(npoPA&noupe) pe Baon To povTelo (yPred)
y.pred[i]~dnorm( mu[i], tau)
Enionc e€eTaloupe kal TIC anooTACEIG TWV
NPOPBAENOPEVWV TIHWV ANO TIC
napaTnPNPOUMEVEC
Tunonoinuéva Kataloina (Predicted
Standardized Residual):
srpred = (y;-yPred/NV(y;)
sr.pred[i]<-(y[i]-y.pred[i]) *sqgrt(tau)

8...NMNPOBAENTIKOI AIAFNQ2TIKOI
EAEIMXOI TQN MONTEAQN
8.2. [IPOBAEIIOMENEZ TIMEZ2 KAl KATAAOITA

AMNOTEAEZMATA (DATA XQPIX OUTLIER)

node mean sd MC error 2.5% median 97.5%
y.pred[1] 1.4 1.6 0.03 -1.5 14 4.3
y.pred[2] 2.2 1.4 0.022 -0.33 2.2 4.8
y.pred[3] 3.0 1.3 0.022 0.31 3.0 5.5
y.pred[4] 3.9 1.4 0.025 1.3 3.8 6.7
y.pred[5] 4.6 1.6 0.026 1.8 4.6 7.6
node mean sd MC error 2.5% median 97.5%
sr.pred[1] -0.5 1.3 0.024 -3.1 -0.48 2.1
sr.pred[2] 0.98 1.2 0.02 -1.3 0.97 3.3
sr.pred[3] 0.02 1.1 0.019 -2.1 0.014 2.0
sr.pred[4] -1.0 1.2 0.022 -3.5 -1.0 1.3
sr.pred[5] 0.49 1.3 0.024 -2.0 0.49 3.0
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8...NMNPOBAENTIKOI AIAFNQ2TIKOI
EAEIMXOI TQN MONTEAQN
8.2. [IPOBAEIIOMENEZ TIMEZ2 KAl KATAAOITA

AMNOTEAEZMATA (DATA ME OUTLIER)

node mean sd MC error 2.5% median 97.5%
y.pred[1] 2.9 5.6 0.1 -71 2.9 13.0
y.pred[2] 3.5 4.8 0.077 -5.3 3.5 12.0
y.pred[3] 3.7 4.6 0.075 -5.5 3.8 12.0
y.pred[4] 4.4 5.0 0.088 -4.3 4.3 14.0
y.pred[5] 4.7 54 0.09 -5.1 4.6 15.0
node mean sd MC error 2.5% median 97.5%
sr.pred[1] -0.72 14 0.025 -3.4 -0.71 1.9
sr.pred[2] 1.3 1.2 0.022 -1.1 1.3 3.7
sr.pred[3] -0.27 1.1 0.019 -2.4 -0.27 1.8
sr.pred[4] -0.47 1.2 0.02 -2.8 -0.45 1.8
sr.pred[5] 0.13 1.3 0.023 -2.3 0.14 2.6

8...NMNPOBAENTIKOI AIAFNQ2TIKOI

EAEIMXOI TQON MONTEAQN
8.3. AIAITNQZTIKA METPA ITPOBAEINTIKQN TIMON

a) MeavoTnTa Nio aKkpaiac Naparnenong

(Chance of more extreme observation):
min{P(Y;<y;), P(Y;>y;)}
Y.rep[i]<-dnorm(mu[i], tau)
p-.-smaller[i]<-step(y[i]-Y.rep[i])
YT1ToAOYi(OUME TOV EK-TWV-UOTEPWYV PECO TOU p.smaller
{E(p.smaller|y)} kai JETA TTAIPVOUNE TO
PMEO= min { E(p.smallerly), 1-E(p.smaller|y) }.
Av auTO gival JIKPO TOTE onuaivel 0TI Ta dedouéva cival
OuUOTNMATIKA HOKPIA aTTO TIC TIPOPRAETTONEVEG TIMEG
TOU POVTEAOU.
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8...NMNPOBAENTIKOI AIAFNQ2TIKOI

EAEIMXOI TQON MONTEAQN
8.3. AIAITNQZTIKA METPA ITPOBAEINTIKQN TIMON

a) MeavoTnTa Nio aKkpaiac Naparnenong

AMOTEAEZMATA

DATA XQPIZ OUTLIER DATA ME OUTLIER
node mean PMEO mean PMEO
p.smaller[1] 0.36 0.36 0.30 0.30
p.smaller[2] 0.8 0.20 0.85 0.15
p.smaller[3] 0.5 0.50 0.40 0.40
p.smaller[4] 0.2 0.20 0.35 0.35
p.smaller[5] 0.65 0.35 0.54 0.44

8...NMNPOBAENTIKOI AIAFNQ2TIKOI

EAEIMXOI TQON MONTEAQN
8.3. AIAITNQZTIKA METPA ITPOBAEINTIKQN TIMON

B) EK-TwVv-uoTépwv ETTireda ZnUAVTIKOTNTAG

(Posterior p-values)

H Aoyikn givai n

values dnAadn

€gNG:

Pmidyxvoupe pia ouvapTnon Twy dedouévwy T(y) TTou
EAEYXEI YIa UTTOBEON.
Me ToV idI0 TPOTTO UTTOPOUNE VO BPOUNE KOl TV
katavoun Tou T(y) av 1oxUel To JovTéAo pag (dnAadn va
BaoloTei OTIC TIPOBAETTOUEVEG TIWEG yPred).

H ouykpion Twv T(y) kai T(yP®d) yag divel Ta posterior p-

Posterior P-value = P( T(y) < T(yrr9) )

Bayesian Biostatistics Using BUGS (4)
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8...NMNPOBAENTIKOI AIAFNQ2TIKOI

EAEIMXOI TQON MONTEAQN
8.3. AIAITNQZTIKA METPA ITPOBAEINTIKQN TIMON

B) EK-Twv-uoTépwyv ETTireda ZnPAVTIKOTNTAG
(Posterior p-values)
O1 ouvapTAoEIG EAEYXOU UTTOPOUV VA YEVIKEUTOUV KAl VO
TTEPIAAUPBAVOUV Kal TTOPAPETPOUG dNAADA
Posterior P-value = P( T(y, 8) < T(y*r¢d, 8) )

8...NMNPOBAENTIKOI AIAFNQ2TIKOI

EAEIMXOI TQON MONTEAQN
8.3. AIAITNQZTIKA METPA ITPOBAEINTIKQN TIMON

B) EK-TwVv-uoTépwv ETTireda ZnUAVTIKOTNTAG
(Posterior p-values)

NMAPAAEIrMA: EAEIMXOz 2YMMETPIAX

T(y, 8) = Z(y;-m)°
sresid.pred[i]<-(y.pred[i]-mu[i]) *sqgrt (tau)
sresid3[i]<-pow( sresid[i] , 3 )
sresid3.pred[i]<-pow( sresid.pred[i] , 3 )
skew.obs<-mean (sresid3[])
skew.pred<-mean (sresid3.pred[])

pval.pred<-step (skew.pred-skew.obs)

Bayesian Biostatistics Using BUGS (4)
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8...NMNPOBAENTIKOI AIAFNQ2TIKOI

EAEIMXOI TQON MONTEAQN
8.3. AIAITNQZTIKA METPA ITPOBAEINTIKQN TIMON

B) EK-Twv-uoTépwyv ETTireda ZnPAVTIKOTNTAG

(Posterior p-values)

AMNMOTEAEZMATA

node mean

Y.=2 pval.pred 0.5018
2 skew.obs -0.01484
skew.pred -0.01527

node mean

Y.=7 pval.pred 0.4222

2 skew.obs 0.4449
skew.pred -0.01527

node mean

v2=10000[ pval.pred 0.1577

skew.obs 2.089
skew.pred -0.01527

sd MC error
0.5 0.005355
1.543 0.01706
1.768 0.01759
sd MC error
0.4939 0.005451
1.834 0.02173
1.768 0.01759
sd MC error
0.3645 0.003941
2.119 0.01967
1.768 0.01759

2.5% median
0.0 1.0
-3.252 -0.011
-3.918 -0.01252
2.5% median
0.0 0.0
-2.883 0.2151
-3.918 -0.01252
2.5% median
0.0 0.0
0.09692 1.439
-3.918 -0.01252

97.5%
1.0
3.296
3.728

97.5%
1.0
4.781
3.728

97.5%
1.0
7.821
3.728

node

p.smaller[31]
p.smaller[29]
p.smaller[27]
p.smaller[22]
p.smaller[28]

p.smaller[13]
p.smaller[6]
p.smaller[18]
p.smaller[7]
p.smaller[14]

Mean
p.smaller
0.9509
0.9030
0.8720
0.8623
0.8576

0.1416
0.1388
0.1250
0.0358
0.0267

PMOE

0.0491
0.0970
0.1280
0.1377
0.1424

0.1416
0.1388
0.1250
0.0358
0.0267

8...NMNPOBAENTIKOI AIAFNQ2TIKOI

EAEIMXOI TQON MONTEAQN
8.3. AIAITNQZTIKA METPA ITPOBAEINTIKQN TIMON

AMNOTEAEZMATA AIO TO estriol.dat

Mean
st.res.
1.792
1.327
1.177
1.130
1.122

-1.115
-1.107
-1.226
-1.887
-2.108
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8...NMNPOBAENTIKOI AIAFNQ2TIKOI

EAEIMXOI TQON MONTEAQN
8.3. AIAITNQZTIKA METPA ITPOBAEINTIKQN TIMON

50
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o
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0 10 20 30

ESTRIOL mg/24hr

8...NMNPOBAENTIKOI AIAFNQ2TIKOI

EAEIMXOI TQON MONTEAQN
8.3. AIAITNQZTIKA METPA ITPOBAEINTIKQN TIMON

50

BIRTHWEIGHT g/100

ESTRIOL mg/24hr
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8...NMNPOBAENTIKOI AIAFNQ2TIKOI

EAEIMXOI TQON MONTEAQN
8.3. AIAITNQZTIKA METPA ITPOBAEINTIKQN TIMON

AMNOTEAEZMATA AIO TO estriol.dat

node mean sd MC error 2.5% median 97.5%
pval.pred 0.6041 0.489 0.004522 0.0 1.0 1.0
skew.obs -0.2509 0.6361 0.006642 -1.59 -0.2214 0.9583
skew.pred -0.003227 0.6939 0.007235 -1.428 -0.005572 1.413

8...NMNPOBAENTIKOI AIAFNQ2TIKOI

EAEIMXOI TQON MONTEAQN
8.3. AIAITNQZTIKA METPA ITPOBAEINTIKQN TIMON

y) AIATNQZTIKA TQN IBRAHIM + LAUD
Lm2=z (yipred_ yi)2
M, = f(yPe9y,0) ek-Twv-uoTépwV TIOAVOTNTA
EMQAVIONG TWYV yPred
E(M,_ly) = Posterior Bayes Factor (Aitkin, 1991)
M " = peTpiéTal o€ iSieg povadeg pe Ta y
MEIONEKTHMATA
M., dev ptropei va utToAoyioTEi EUKOAO Adyw
MEYAAWV | HIKPWV TINWV
Agv Aappaver utTrTéYn Tou TOV APIBUO TWV
TTOPAMETPWY TOU KAOE pOVTEAOU.
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8...NMNPOBAENTIKOI AIAFNQ2TIKOI
EAEIMXOI TQON MONTEAQN

8.3. AIAITNQZTIKA METPA ITPOBAEINTIKQN TIMON

y) AIATNQZTIKA TQN IBRAHIM + LAUD
# model 1
birth.pred[i]~dnorm( mu[i], tau )
loglikel.pred[i]<- -0.5*log(2*pi)+0.5*1log(tau) -
0.5*pow( birth.pred[i]-mu[i],2 )*tau
likel[i]<- exp( loglikel[i] )
# model O
birth0.pred[i]~dnorm( muO[i], taul )
loglikeO.pred[i]<- -0.5*log(2*pi)+0.5*1log(taul) -
0.5*pow( birthO.pred[i]-muO[i],2 )*taul
likeO[i]<- exp( loglikeO[i] )
# Lm criterion
Lml<- sum( ssl[] ); LmO<- sum( ssO[] )

Mm criterion
Mml<-exp( Lml ); MmO<-exp( Lm0 )

H = =

Mml.star<-exp( -Lml/n ); MmO.star<-exp( -LmO/n )

8...NMNPOBAENTIKOI AIAFNQ2TIKOI
EAEIMXOI TQON MONTEAQN

8.3. AIAITNQZTIKA METPA ITPOBAEINTIKQN TIMON

ANOTEAEZMATA(estriol.dat)

node mean sd MC error 2.5% median
LmoO 1451.0 396.0 5.536 832.1 1401.0
Lm1 942.9 264.2 3.793 535.5 905.9
MmO 1.035E-36 1.0E-10 1.414E-12 0.0 7.254E-41
MmO.star 20.28 3.906 0.05565 14.35 19.72
Mm1 1.185E-33 1.0E-10 1.414E-12 2.382E-43 4.773E-38
Mm1.star 16.39 3.128 0.04665 11.44 15.99

97.5%
2371.0
1576.0
1.415E-36
29.53
1.606E-33
23.71
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8...NMNPOBAENTIKOI AIAFNQ2TIKOI

EAEIMX0OI TQON MONTEAQN
8.4. lNMpoBAsmrrika Mérpa llapaAAnAng.AsiyuaroAsiyiac

(Parallel Sampling Predictive Measures)

2TO TTAPATTAVW METPA TPEXOUME TH aAucida Tou
KABe HOVTEAOU KOl CUYKPiIVOUME OTO TEAOUG TOUG
Héooug Twv pETpwy Toug (AIC , BIC , L., M )
>Tn oUyKpIion HE NapAANAEC aAUGIOEC TPEXOUUE
OAa Ta povTeAa padi kal OUYPKIVOURE Ta PETPA HE
diapopeg (n.x. AAIC=AIC,-AIC,) kaI mBavoTnTeg
enikpatnong (n.x. P(AIC,>AIC,) ).

8...NMNPOBAENTIKOI AIAFNQ2TIKOI

EAEIMX0OI TQON MONTEAQN
8.4. lNpoBAsmrrika Mérpa [lapaAAnAng.AsiyuaroAsiyiag

(Parallel Sampling Predictive Measures) pa rallel

differences
DBIC10<- BICO-BIC1
DAIC10<- AICO-AIC1
diff[1]<-DAIC10
diff[2]<-DBIC10
diff[3]<- LmO-ILml
diff[4]<-Mm1l-MmO
diff[5]<-MmO0.star-Mml.star
PBF<-Mm1l /MmO
PBFn<-Mm0O.star/Mml.star

# parallel probabilities
for (i in 1:5){ prob[i]<-step(diff[i]) }
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8...NMNPOBAENTIKOI AIAFNQ2TIKOI
EAEIMXOI TQON MONTEAQN

8.4. lNMpoBAsmrrika Mérpa llapaAAnAng.AsiyuaroAsiyiac

(Parallel Sampling Predictive Measures)

AMNOTEAEZMATA (estriol.dat)

node mean sd MC error 2.5% median 97.5%
PBF Post.BF 1.067E+12 4.445E+13 6.202E+11 1.062E-4 772.0 5.358E+9
PBFn 1.28 0.3432 0.005331 0.7444 1.239 2.06
diff[1] AIC 11.29 3.277 0.04846 4.078 11.47 17.95
diff[2] BIC 9.854 3.277 0.04846 2.644 10.03 16.52
diff[3] Lm 508.0 a77.7 6.617 -364.8 483.3 1528.0
diff{4] Mm 1.184E-33 1.0E-10 1.414E-12 -8.809E-37 3.394E-38 1.606E-33
diff[5] Mm.star 3.886 5.025 0.07427 -5.609 3.785 14.31
prob[1] AlC 0.9964 0.05989 8.406E-4 1.0 1.0 1.0
prob[2] BIC 0.9922 0.08797 0.001298 1.0 1.0 1.0
probl[3] Lm 0.8694 0.337 0.005005 0.0 1.0 1.0
prob[4] Mm 0.794 0.4044 0.006368 0.0 1.0 1.0
prob[5] Mm.star 0.794 0.4044 0.006368 0.0 1.0 1.0

9...MMEYZIANH EMIAOIFH METABAHTQN

ME TO WINBUGS
9.1. TAPAAEIrMA ZE 2X2X2 [TINAKA.ZYNAPEIAS

Aedopéva anod 1o PBiBAio Tou Healy (1988).

MeTaBAnT) A = Kataotaon AoBevn (NepIogoTEPO 1 AlyOTEPO
goBapn),

MeTaBAnTh B = O¢gpaneia AvTiTogivng (Nai/Ox1)

MeTtaBAnT) C (peTaBAnTh anokpioncg) = EmBiwon AcBevi
(Nai/'Ox).

Xpnoiponolioupe AoyioTikn MaAivopopion

AenToEPEIEC UNopeiTE va BpeiTe oTic dnuooicuoelg Dellaportas
et al. (2000, BGLM).

EninAéov napadeiypata pe emidoyn peTaBAnTwv oto BUGS
MnopeiTe va Bpeite oTn dnuooicuon Ntzoufras (2002, JSS).
Ma €va anAo €Aeyxo unoBeoswv kal GUYKPION KATAVOUWY
MnopeiTe va Ogite Tn dnuooicuon Katsis and Ntzoufras (2004,
TR).

Bayesian Biostatistics Using BUGS (4)

1/23/2006
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9...MMEYZIANH EMIAOIFH METABAHTQN
ME TO WINBUGS
9.1. TAPAAEIrMA ZE 2X2X2 [TINAKA.ZYNA®EIAS

ENIBIQZH(C)
KataoTtaon (A) | Avritoivn(B) | 'Oxi Nai
ZoBapn Nai 15 6
[0)"( 22 4
Aiy.ZoBapn Nai 5 15
[0)"( 7 5

9...MMEYZIANH EMIAOIFH METABAHTQN
ME TO WINBUGS
9.1. TAPAAEIrMA ZE 2X2X2 [TINAKA.ZYNA®EIAS

MeTaBAntn Anokpiong: C = Enmifinon
AveEdpTnTeg MeTaBANTEC
MeTtaBAnT A = KatdoTtaon AoBevr)
MeTaBANnT B = O¢paneia AvTiTogivn
AMnNAenidpaon AB (interaction term)=
Condition*Antitoxin
MovTéAa Uno diepeuvnon
Movteho 1: AB = 1+A+B+AB
MovTeho 2: A+B = 1+A+B
Movteédo 3: A = 1+A
MovTédo 4: B = 1+B
MovTéAo 5: undevikd n o1abepo (null/ constant)= 1

Bayesian Biostatistics Using BUGS (4) 4.32



Ioannis Ntzoufras 1/23/2006

9...MMEYZIANH EMIAOIFH METABAHTQN

ME TO WINBUGS
9.1. TAPAAEIrMA ZE 2X2X2 [TINAKA.ZYNA®EIAS

Ex-tov-IIpotépmv Katavouéc
Ex-tov-npotépuv dtakdpavon=4 X 2

Ex-tov-npotépav mbavotrta kdbe povtélov
f( YAa ’YBo YAB):I/S:

f(Ya> Yo YaB)™ T(Vag) f(¥a | Yan) (Y5 | YAB)

9...MMEYZIANH EMIAOIFH METABAHTQN

ME TO WINBUGS
9.1. TAPAAEIrMA ZE 2X2X2 [TINAKA.ZYNA®EIAS

Ex-tov-IIpotépov Kotavousc
f(Ya> B> YaB)= f(YaB) (¥ | YaB) f(V5 | YaB)
Yap ~ Bernoulli(1/5)

Ya | Yap ~ Bernoulli(p,)
Pa=0.5(1- Yop) * Vs
IMAadn po=1 av y,p=1 ka1 p,=0.5 av y,5=0

Opow yro v f(yg | Yap)
Yg | Yap ~ Bernoulli(pg)
Pp=0.5(1- Yap) + Yag

Bayesian Biostatistics Using BUGS (4) 4.33
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9...MMEYZIANH EMIAOIFH METABAHTQN

ME TO WINBUGS
9.1. TAPAAEIrMA ZE 2X2X2 [TINAKA.ZYNA®EIAS

DATA IN WINBUGS

r[] n[] x[,1] x[,2] x[,3] x[,4]
5121 -1 -1 1
4 261 1 -1 -1
15 201 -1 1 -1
6 211 1 1 1

9...MMEYZIANH EMIAOIFH METABAHTQN

ME TO WINBUGS
9.1. TAPAAEIrMA ZE 2X2X2 [TINAKA.ZYNA®EIAS

Kwdika WINBUGS yia Tnv Enihoyn MetaBAnTwv
he Tov AsiypatoAeinTn Gibbs (Gibbs Variable

Selection - GVS)
To povTéAo

for (i in 1:N) {
r[i]~dbin(p[i] ,n[i]);
logit(p[i])<-b[1] + x[i,2]* g[2]* b[2]
+ x[i,3]* g[3]* b[3]
+ x[i,4]* g[4]* b[4];

Bayesian Biostatistics Using BUGS (4)

1/23/2006
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9...MMEYZIANH EMIAOIFH METABAHTQN

ME TO WINBUGS
9.1. TAPAAEIrMA ZE 2X2X2 [TINAKA.ZYNA®EIAS

H eK-TOV-NPOTEPWV KATAVOUEG
b[1l]~dnorm(0.0,0.0001); }
for (i in 2:N) {

tau[i]<-g[i]/8+(1-g[i])/(se[i]l*se[i]);

bpriorm[i]<-mean[i]*(1-g[i])
b[i]~dnorm(bpriorm[i] , tau[i]); }

PROPOSAL/ PSEUDOPRIOR PRIOR

g[i]=0 gli]l=1
bpriorm[i] mean[i] 0.0
tauli] 1/se[i]? 1/8

9...MMEYZIANH EMIAOIFH METABAHTQN

ME TO WINBUGS
9.1. TAPAAEIrMA ZE 2X2X2 [TINAKA.ZYNA®EIAS

H EK-TOV-NPOTEPWV KATAVOUEG

PROPOSAL/ PSEUDOPRIOR PRIOR

gl[i]=0 gl[i]=1
bpriorm[i] mean[i] 0.0
tau[i] 1/se[i]? 1/8

mean[i] kot se[i] vmodoyiloviaL amd TV
posterior tou nAfpeg¢ poviéAou AB.

Bayesian Biostatistics Using BUGS (4)

1/23/2006

4.35



Ioannis Ntzoufras 1/23/2006

9...MMEYZIANH EMIAOIFH METABAHTQN

ME TO WINBUGS
9.1. TAPAAEIrMA ZE 2X2X2 [TINAKA.ZYNA®EIAS

H ek-TOV-NPOTEPWV MIOAVOTNTEG TWV
OVTEAWV

gl[]: diLavuopa pe 4 ctoilxeia (doa KaL oL
napapetpot/époL TOU poOvTEAOU

KQAIKAX

for (i in 1:4){ g[i]~dbern(pi[i]) }
pi[l]<- 1.0

pi[2]<- 0.5%(1-g[4])+g[4]

pi[3]<- 0.5%(1-g[4])+g[4]

pi[4]<- 0.20

9...MMEYZIANH EMIAOIFH METABAHTQN

ME TO WINBUGS
9.1. TAPAAEIrMA ZE 2X2X2 [TINAKA.ZYNA®EIAS

EKTIUNON TOV EK-TOV-UOTEPWV MNIOAVOTATWV
TWV HovTEAwV oTo WINBUGS

# defining model code

# 0 for constant, 1 for [A], 2 for [B], 3 for [A][B],

# 6 for[AB]

#

mdi<-g[2]+2*g[3]+3*g[4];
pmdi[1]<-equals(mdl,0)
pmdi[2]<-equals(mdl,1)
pmdi[3]<-equals(mdl,2)
pmdi[4]<-equals(mdl,3)
pmdl[5]<-equals(mdl,6)

Bayesian Biostatistics Using BUGS (4) 4.36
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9...MMEYZIANH EMIAOIFH METABAHTQN

ME TO WINBUGS
9.1. TAPAAEIrMA ZE 2X2X2 [TINAKA.ZYNA®EIAS

1... TpEXoupls TO NANPEG HOVTEAO BETOVTAG

node mean sd MC error 2.5% median 97.5%
b[1] -0.4889 0.2823 0.008722 -1.039 -0.4786 0.07779
b[2] -0.8919 0.2798 0.009499 -1.446 -0.8926 -0.3501
b[3] 0.5866 0.2824 0.009441  0.06599 0.5809 1.15
b[4] -0.1773 0.272 0.008021 -0.6896 -0.1754 0.3716

Oetoupe mean[i] koL se[i] Ti¢ mapamdve TLpéQ.

9...MMEYZIANH EMIAOIFH METABAHTQN

ME TO WINBUGS
9.1. TAPAAEIrMA ZE 2X2X2 [TINAKA.ZYNA®EIAS

2... TpEYoupe 1o GVS (5000410000 iterations

node mean sd MC error 2.5% median 97.5%
b[1] -0.4526  0.2656  0.002836 -0.9756  -0.4486  0.05737
b[2] 0.9166  0.263 0.002535 -1.44 09135  -0.4159
b[3] 05823 02759  0.002749 0.05192  0.5811 1.128
b[4] -0.1748 02736  0.00251 -0.7112  -0.1759  0.369
al1] 1.0 0.0 1.0E-12 1.0 1.0 1.0
g2 A Q98370 0.1266  0.001383 1.0 1.0 1.0

93] B 0501 0.5 0.004707 0.0 1.0 1.0

9l4] 0.0496 02171  0.002251 0.0 0.0 1.0
pmdi[1] 0.0045  0.06693 7.437E-4 0.0 0.0 0.0
pmdi[2] 05 0.004804 0.0 0.0 1.0
pmdi[3] 0.0118 \ 0.108 0.00114 0.0 0.0 0.0
pmdi[4] 0.4963  0.004209 0.0 0.0 1.0
pmdi[5] 00496  \0.2171  0.002251 0.0 0.0 1.0

Model A+B

Model A

Bayesian Biostatistics Using BUGS (4)
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10...EMIAOI'H MONTEAQN

Avokto O¢pa

H Mnevlravn) Tpocyyion divel AOGELS aAla £xEl
(axopo) wpopfinnata

Yrapyovv apKeTéES AALES TPOGEYYIGELS TIS OTTOLES OEV
KOAOWYOpE.

Bayesian Biostatistics
Using BUGS

TEAOZ TETAPTOY
MAOHMATOZ MAOHMATOZ

Department of Statistics,
Athens University of

Economics & Business

E-mail: ntzoufras@aueb.gr
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IMMAPAPTHMA Al (4" MAGHMATOY): ITAPAAEITMATA EAETXON
YHOOEXEQN, EINTAOI'HY MONTEAQN KATI METABAHTON

1 HAPAAEII'MA WINBUGS 1: 'Evag AmAog Eleyyog Yao0eong (ESTRIOL
DATASET)

model estriol;

# definition of likelihood function

#
for (i in 1:n) {
birth[i]~dnorm( mu([i], tau ); # random component
mul[i]<-a.star+gamma*b*(estriol[i]-mean(estriol[])); # systematic component
#  &link function
# prior distributions
#

a.star~dnorm( 0, 1.0E-04 ); # normal prior for a
b~dnorm( 0, 1.575); # normal prior for b
gamma-~dbern(0.5);
tau~dgamma( 1.0E-04 , 1.0E-04 ); # gamma prior for precision
s2<-1/tau;
a<-a.star-b*mean(estriol[]);

}
list(a.star=0.0, b=0.0, tau=1.0,gamma=1)

list(n=31)
estriol[] birth[]
7 25
9 25
9 25
12 27
14 27
16 27
16 24
14 30
16 30
16 31
17 30
19 31
21 30
24 28
15 32
16 32
17 32
25 32
27 34
15 34
15 34
15 35
16 35
19 34
18 35
17 36
18 37
20 38
22 40
25 39
24 43
END
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name: a.star type: stochastic density: dnorm
mean 0.0 precision 1.0E-6 lower bound upper bound

\
A
< mui]
estriol[i] v
birthfi]
for(i(IN1:n)
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ITAPAAEII'MA WINBUGS 2: Aweyvooetikd Té€ot kor Zoykpioeig poviéimv
(ESTRIOL DATASET)

model estriol_AIC_BIC;

{
#
#

H*

H* H#

#

definition of likelihood function

pi<-3.14
for (i in 1:n) {
birth[i]~dnorm( mu([i], tau ); # random component
muli]<-a.star+b*(estriol[i]-mean(estriol[])); # systematic component

}

# & link function
birth.pred[i]~dnorm( mu([i], tau )
loglikel[i]<- -0.5*log(2*pi)+0.5*log(tau)-0.5*pow( birth[i]-muli],2 )*tau
loglikel.pred]i]<- -0.5*log(2*pi)+0.5*log(tau)-0.5*pow( birth.pred[i]-mul[i],2 )*tau
likel[il<- exp( loglikel[i] )

model m_0
birthO[i]<-birth[i]
birthO[i]~dnorm( muOli], tau0 ); # random component
muOli]<-a0; # systematic component
#  &link function
birth0.pred[i]~dnorm( mu0li], tau0 )
loglikeO[i]<- -0.5*log(2*pi)+0.5*log(tau0)-0.5*pow( birthO[i]-muO[i],2 )*tau0
loglike0.pred[i]<- -0.5*log(2*pi)+0.5*log(tau0)-0.5*pow( birth0.pred][i]-mu0[i],2 )*tau0
likeO[i]<- exp( loglikeO[i] )

ss1[i] <- pow( birth.pred[i]-birth[i], 2 )
ssO[i] <- pow( birthO.pred][i]-birthQ[i], 2)

prior distributions for model m1

a.star~dnorm( 0, 1.0E-04 ); # normal prior for a

b~dnorm( 0, 1.0E-04 ); # normal prior for b

tau~dgamma( 1.0E-04 , 1.0E-04 ); # gamma prior for precision
s2<-1/tau;

a<-a.star-b*mean(estriol[]);

prior distributions for model mO

a0~dnorm( 0, 1.0E-04 ); # normal prior for a
tau0~dgamma( 1.0E-04 , 1.0E-04 ); # gamma prior for precision

Bayesian versions of LogLikelihood
L1<-sum( loglikel[] )
LO<-sum( loglikeO[] )

Bayesian versions of BIC
BIC1<- -2*L1 + 3*log(n)
BICO<- -2*L0 + 2*log(n)

Bayesian versions of AIC
AIC1<- -2*L1 + 3*2
AICO<- -2*L0 + 2*2

Lm criterion
Lmi<- sum(ssl[])
LmO<- sum( ss0[] )

Mm criterion
Mm1<-exp( sum(loglikel.pred[]) )
MmO<-exp( sum(loglikeO.pred[]) )

Mm1.star<-exp( -sum(loglikel.pred[])/n)
MmaO.star<-exp( -sum(loglike0.pred[])/n )

# parallel differences

DBIC10<- BIC0O-BIC1
DAIC10<- AICO-AIC1
diff[1]<-DAIC10
diff[2]<-DBIC10
diff[3]<- LmO-Lm1
diff[4]<-Mm1-MmO
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diff(5]<-Mm0O.star-Mm1.star
PBF<-Mm1/MmO
PBFn<-MmO.star/Mm1.star

#
# parallel probabilities
for (i in 1:5){
prob[il<-step(diff[i])
}

3 TTAPAAEITI'MA WINBUGS 3: Aweyvootika Téot ko Zuykpicels povréimv

(LINE DATASET)
model{
pi<-3.14
#
# Likelihood
for(iin1:N){
y[i] ~ dnorm(muli],tau)
mul[i] <- alpha + beta * (x[i] - mean(x[]))
#
# residuals
resid[i]<-y[i]-muli]
sresid[i]<-resid[i]*sqrt(tau)
#
# predicted values
y.pred[i]~dnorm(muli],tau)
#
# predicted standardised residuals
sr.pred[i]<-(y[i]-y.pred[i])*sqrt(tau)
#
# p.smaller
p.smaller[il<-step(y[i]-y.pred[i])
#
sresid.pred]i]<-(y.pred[i]-muli])*sqgrt(tau)
sresid3[i]<-pow( sresid[i] , 3)
sresid3.pred[i]<-pow( sresid.pred][i] , 3)
#
# Prior distributions
tau ~ dgamma(0.001,0.001)
sigma <- 1/ sqrt(tau)
alpha ~ dnorm(0.0,1.0E-6)
beta ~ dnorm(0.0,1.0E-6)
#
#
skew.obs<-mean(sresid3[])
skew.pred<-mean(sresid3.pred[])
pval.pred<-step(skew.pred-skew.obs)
}

Data(WITHOUT OUTLIER): list(x =c(1, 2, 3, 4, 5),y=c¢(4, 3, 3, 3,5), N=5)
Data(WITH OUTLIER): list(x = c(1, 2, 3, 4, 5), y= c(1, 10000, 3, 3, 5), N =5)

Inits: list(alpha = 0, beta = 0, tau = 1)
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4 TTAPAAEII'MA WINBUGS 4: ITApeg Movtého Yo To Antitoxin dataset

model {
#
# model likelihood
for (i in 1:4) {
rli]~dbin(p[i].n[i1);
logit(p[i])<-b[1] + x[i,2]* b[2]
+ x[i,3]* b[3]
+ x[i,41* b[4]; }
# priors and pseudopriors

b[1]~dnorm(0.0, 0.0001)

for (i in 2:4) { Db[i]~dnorm( 0.0 , 0.0001) ;

}

DATA

ri1 nll x[,11 x[,21 x[,3]1 x[,4]
5121 -1 -1 1

4261 1 -1-1

15201 -1 1-1
6211 1 11
END

INITS
list( b=c(1,0,0,0))
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S IAPAAEII'MA WINBUGS 5: Gibbs Variable Selection ywa To Antitoxin
dataset

model {
#
# model likelihood
for (i in 1:4) {
rfi]~dbin(p[i],n[i]);
logit(p[il)<-b[1] + Xx[i,2]* g[2]* b[2]
+ x[1,3]* g[3]* b[3]
+ XL[i,41* g[41* b[41: }
# priors and pseudopriors
b[1]~dnorm( 0.0, 0.0001 )
for (i in 2:4) {
tauli]<-g[i1/8+(1-g[i])/(se[il*se[i]);
bpriorm[i]<-mean[i]*(1-g[i]);
b[i]~dnorm(bpriorm[i],tau[i]); }

mdl<-g[2]+2*g[3]+3*g[4];
pmdl[1]<-equals(mdl,0)
pmdl[2]<-equals(mdl,1)
pmdI[3]<-equals(mdl,2)
pmdI[4]<-equals(mdl,3)
pmdl[5]<-equals(mdl,6)

for (iin 1:4) { g[i]~dbern( pi[i] ) }
pi[1]<-1.0
pi[2]<-0.5*(1-g[4])+g[4]
pi[3]<-0.5%(1-g[4])+g[4]
pi[4]

<-0.20
}
DATA
r[1 n1 x[,11 x[.21 x[,31 x[.4]
5121 -1 -1 1
4261 1 -1-1
1520 1 -1 1 -1
6211 1 1 1
END
PROPOSAL/PSEUDOPRIOR VALUES
mean[] se[]
-0.4889 0.2823
-0.8919 0.2798
0.5866 0.2824
-0.1773 0.272
END
INITS

list( g=c(1,1,1,1), b=c(1,0,0,0))
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IHTAPAPTHMA A2: BIBAIOTPA®IA KAI AHMOXIEYXEIY YXETIKEY ME
BAYESIAN MODEL AND VARIABLE SELECTION

1. Bifroypaopio

2. Ntzoufras, 1. (2002). Gibbs Variable Selection Using BUGS. Journal of
Statistical Software, Volume 7, Issue 7,1 — 19 .

3. Dellaportas, P., Forster, J.J. and Ntzoufras, 1. (2000). Bayesian Variable
Selection Using the Gibbs Sampler. Generalized Linear Models: A Bayesian
Perspective (D.K.Dey, S.Ghosh and B. Mallick, eds.). New York: Marcel
Dekker, 271 — 286.

4. Katsis, A. and Ntzoufras, 1. (2003). Testing Hypotheses for the Distribution of
Insurance Claim Counts Using the Gibbs Sampler. Technical Report.

5. Spiegelhalter, D.J., Best, N.G., Carlin, B.P. and van der Linde, A. (2002).
Bayesian Measures of Model Complexity and Fit (with discussion). Journal of
the Royal Statistical Society, 64, 583 — 639.
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Abstract

In this paper we discuss and present in detail the implementation of
Gibbs variable selection as defined by Dellaportas et al. (2000, 2002)
using the BUGS software (Spiegelhalter et al. , 1996a,b,c). The spec-
ification of the likelihood, prior and pseudo-prior distributions of the
parameters as well as the prior term and model probabilities are de-
scribed in detail. Guidance is also provided for the calculation of the
posterior probabilities within BUGS environment when the number of
models is limited. We illustrate the application of this methodology in a
variety of problems including linear regression, log-linear and binomial
response models.

Keywords: Logistic regression; Linear regression; MCMC; Model selec-
tion.

1 Introduction

In Bayesian model averaging or model selection we focus on the calculation of
posterior model probabilities which involve integrals analytically tractable only in
certain restricted cases. This obstacle has been overcomed via the construction of
efficient MCMC algorithms for model and variable selection problems.

A variety of MCMC methods have been proposed for variable selection including
the Stochastic Search Variable Selection (SSVS) of George and McCulloch (1993),
the reversible jump Metropolis by Green (1995), the model selection approach of
Carlin and Chib (1995) the variable selection sampler of Kuo and Mallick (1998)
and the Gibbs variable selection (GVS) by Dellaportas et al. (2000, 2002).

The primary aim of this paper is to clearly illustrate how we can utilize BUGS
(Spiegelhalter et al. , 1996a, see also www.mrc-bsu.cam.ac.uk/bugs/welcome.shtml)
for the implementation of variable selection methods. We concentrate on Gibbs
variable selection introduced by Dellaportas et al. (2000, 2002) with independent
prior distributions. Extension to other Gibbs samplers such as George and Mc-
Cullogh (1993) SSVS and Kuo and Mallick (1998) sampler is straightforward; see
for example in Dellaportas et al. (2000). Finally, application of Carlin and Chib
(1995) algorithm is also illustrated using BUGS by Spiegelhalter et al. (1996c¢).

* Journal of Statistical Software, Volume 7, Issue 7, available from www.jstatsoft.org

The paper is organised into three sections additional to this introductory one. Sec-
tion 2 briefly describes the general Gibbs variable selection algorithm as introduced
by Dellaportas et al. (2002), Section 3 provides detailed guidance for implementa-
tion in BUGS and finally Section 4 presents three illustrated examples.

2 Gibbs Variable Selection

Many statistical models may be represented naturally as (s,v) € S x {0,1}?, where
the indicator vector « identifies which of the p possible sets of covariates are present
in the model and s denotes other structural properties of the model. For example,
for a generalised linear model, s may describe the distribution, link function and
variance function, and the linear predictor may be written as

P
n=> 1X;B M
j=1

where X ; is the design matrix and 3; the parameter vector related to the jth term.
In the following, we restrict attention to variable selection aspects assuming that s
is known and we concentrate on the estimation of the posterior distribution of ~.

We denote the likelihood of each model by f(y|3,~) and the prior by f(83,v) =
F(BIY)f(), where f(B|7) is the prior of the parameter vector 8 conditional on the
model structure 4 and f(v) is the prior of the corresponding model. Moreover, 3
can be partitioned into two vectors ,G,y and 'G\’Y corresponding to parameters of
variables included or excluded from the model. Under this approach the prior can
be rewritten as

F(B7) = f(B V) (B\y|By: 1) f(7)

while, since we are using the linear predictor (1), the likelihood can be simplified to

fWIB,7) = f(ylBy.7)-

From the above it is clear that the components of the vector ,8\7 do not affect the
model likelihood and hence the posterior distribution within each model + is given
by

B, y) = F(Bylv.y) x f(B\y]B~.7)

where f(,@7|'y, y) is the actual posterior of the parameters of model v and
f(B\y1B~:7,y) is the conditional prior distribution of the parameters not included
in the model 4. We may now interpret f (ﬁ,y\'y) as the actual prior of the model
while the distribution f (ﬂ\,y\ ﬂ,y, ~) may be called as ‘pseudoprior’ since the param-
eter vector B\~ does not gain any information from the data and does not influence
the actual posterior of the parameters of each model, f(,@.y\'y,y). Although this
pseudoprior does not influence the posterior distributions of interest, it influences
the performance of the MCMC algorithm and hence it should be specified with
caution.

The sampling procedure is summarised by the following steps:

1. We sample the parameters included in the model by the posterior

f(:@'ylﬁ\'y»'Ys y) < f(ylB, 'Y)f(ﬂ'yh)f(ﬁ\'yl,@'yv v) 2




2. Sample the parameters excluded from the model from the pseudoprior
(BB, 7, y) < f(B\y]By,7) ®3)

3. Sample each variable indicator ; from a Bernoulli distribution with success
probability O;/(1 + O;); where O; is given by

0,

_JWIBy =1 vy) FBly =17y) fi=17) 4
7 . (4)

~ fWIB =0,my) Bl =0,7y) F( =0,m;)

The selection of priors and pseudopriors is a very important aspect in model selec-
tion. Here we briefly present the simplest approach where f(3|v) is given a product
of independent prior and pseudoprior densities: f(8|y) = Hé’:l f(B,17;). In such
case, a usual and simple choice of f(B3;]7;) is given by

FBjlv;) = (L= f(Bylv; = 0) + 7 f(Bjlv; = 1) (5)

resulting to actual prior distribution f(ﬂ’y\’)’) = H%:l f(B;lv;) and pseudoprior
f(/@\'y‘ﬁ'y:’)’) = Hw:() f(le‘Yj)'

Note that the above prior can be efficiently used in any model selection problem
if we orthogonalize the data matrix and then perform model choice using the new
transformed data (see Clyde et al. , 1996). If orthogonalization is undesirable
then we may need to construct more sophisticated and flexible algorithms such as
reversible jump MCMC; see Green (1995) and Dellaportas et al. (2002).

The simplified prior (5) and model formulation such as (1), result in the following
full conditional posterior

o - S BB = 1) %=1
$18,7:8,09) < S8 TL st o { TV EHETL =0 70 2 0

(6)
indicating that the pseudoprior, f(83;]v; = 0) does not affect the posterior distri-
bution of each model coefficient.

Similarly to George and McCulloch (1993), we use a mixture of Normal distribution
for model parameters.

f(Bjl; =1) = N(0,%;) and f(Bjl; = 0) = N(i;,5;)- (7)

The hyperparameters fi; and S; are parameters of the pseudoprior distribution;
therefore their choice is only relevant to the behaviour of the MCMC chain and
do not affect the posterior distribution. Ideal choices of these parameters are the
maximum likelihood or pilot run estimators of the full model (as, for example, in
Dellaportas and Forster, 1999). However, in the experimental process, we noted
that an automatic selection of fi; = 0 and S; = ;/k? with k = 10 has also been
proven an adequate choice; for more details see Ntzoufras (1999). This ‘automatic
selection’ uses the properties of the prior distributions with ‘large’ and ‘small’ vari-
ance introduced in SSVS by George and McCulloch (1993). The parameter k is
now only a pseudoprior parameter and therefore it does not affect the posterior
distribution. Suitable calibration of this parameter assists the chain to move better
(or worse) between different models.

The prior proposed by Dellaportas and Forster (1999) for contingency tables, is also
adopted here for logistic regression models with categorical explanatory variables
(see Dellaportas et al. , 2000). Alternatively, for generalized linear models, Raftery
(1996) has proposed to select the prior covariance matrix using elements from the
data matrix multiplied by a hyperparameter. The latter was selected in such way
that the effect of the prior distribution on the posterior odds becomes minimal.

‘When no restrictions on the model space are imposed then a common prior for the
term indicators -y, is f(v;) = Bernoulli (1/2), whereas in other cases (for example,
hierarchical or graphical log-linear models) it is required that f(v; '7\]) depends on
7\;; for more details see Chipman (1996) and Section 3.4.

Other Gibbs samplers for model selection have also been proposed by George and
McCulloch (1993), Carlin and Chib (1995) and Kuo and Mallick (1998). Detailed
comparison and discussion of the above methods is given by Dellaportas et al. (2000,
2002). Implementation of Carlin and Chib methodology in BUGS is illustrated by
Spiegelhater et al. (1996¢, page 47) while an additional simple example of Gibbs
variable selection methods is provided by Dellaportas et al. (2000).

3 Applying Gibbs Variable Selection Using
BUGS

In this section we provide detailed guidance for implementing Gibbs variable selec-
tion using BUGS software. It is divided into four sub-sections involving the defi-
nition of the model likelihood f(y|3, ), the specification of the prior distributions
f(Blv) and f(v), and, finally, the direct calculation of posterior model probabilities
using BUGS.

3.1 Definition of likelihood

The linear predictor of type (1) used in Gibbs variable selection and Kuo and Mallick
sampler can be easily incorporated in BUGS using the following code

for (i in 1:N) { for(j in 1:p) {z[i,jl<-x[i,jl*b[jl*gl[jl}}
for (i in 1:N) {

etali] <-sum(z[i,]) ;

y[il~distribution [ parameterl, parameter2 ] }

where

e N denotes the sample size,

e p the number of total variables under consideration,

e x[i,j] is the i, j component of the data or design matrix X,
e y[i] is i element of the response vector y,

e b[j] is the j element of the parameter vector 3,




glj] is the inclusion indicator for j element of ~,

e z[i,j] is a matrix used to simplify calculations,

etali] is the ¢ element of linear predictor vector n and should be substituted
by the corresponding link function, for example logit(p[i]) in binomial
logistic regression,

distribution should be substituted by appropriate BUGS command for the
distribution that the user prefers (for example dnorm for normal distribution),

parameterl,parameter2 should be substituted according to distribution cho-
sen, for example for the normal distribution with mean j; and variance 771

we may use mu[i], tau.

For the usual normal, binomial and Poisson models the model formulations are
given by the following lines of BUGS code

Normal: for (i in 1:N) { muli] <- sum(z[i,]) ;
y[il~“dnorm (mulil, tau) }
where mu[i] is the expected value for the ith observation and tau is the
precision of the regression model.

Poisson: for (i in 1:N) { log(lambdalil]) <- sum(z[i,]);
y[i] ~ dpois(lambdal[il)}

where lambda[i] is the Poisson mean for the ith observation.

Binomial: for (i in 1:N) { logit(p[i]) <- sum(z[i,]);

y[i] ~ dbin(pl[il, nl[il)}

where p[i] is the probability of success and n[i] is the total number of
Bernoulli trials for the ith binomial experiment. Alternative link functions
maybe used by substituting logit (p[il) by probit (p[il) or cloglog(p[il)
for ®~1(p) and log(—log(1 — p)); where @ is the standardised normal cumu-
lative distribution function.

3.2 Definition of Prior Distribution of Parameter Vector

When we use independent priors as given by (5) and each covariate parameter vector
is univariate, the definition of the prior is straightforward. Our prior is a mixture
of independent normal distributions

Bi ~ N0, %)) + (L= )N (i, 85)s 5 =1,2,....p ®)

where fij, S; are the mean and variance respectively used in the corresponding
pseudoprior distributions and X; is the prior variance, when the j term is included
in the model. In order to use (8) in BUGS we write

® b[jl~dnorm( bpriorm[j], tprior[j]) denoting 3; ~ N(m;, 'rj’l),

e bpriorm[j] < — (1-gl[jl)*mean(j] denoting m; = (1 —~;)fi;,

e tprior[j] < — gljl*t[jl+(1-g[jl)*pow(sel[jl,-2) denoting 7; = (1 —
WS+

for j =1,2,...,p; where m; and 7; are the prior mean and precision for 3; depend-
ing on 1; and t[j], selj], mean[j], bpriorm[j], tprior[j] are the BUGS
variables for E;l, \/Sj, Iij, m; and 7;, respectively.

When we consider a categorical explanatory variable j with J > 2 categories then
the corresponding parameter vector ,@j will be multivariate with dimension d; =
J — 1. In such cases we denote by p and d(> p) the dimensions of 4 and the full
parameter vector 3, respectively. Therefore, we need one variable to facilitate the
association between these two vectors. This vector is denoted by the BUGS variable
pos. The pos vector, which has dimension equal to the dimension of 3, takes values
from 1,2, ..., p and denotes that kth element of the parameter vector 3 is associated
with the 7,,s, binary indicator for all k =1,2,...,d.

For illustration, let us consider an ANOVA model with two categorical variables X;
and Xo with 3 and 4 categories respectively. Then, the terms under consideration
are Xg, X1, Xs and Xyo; where X denotes the constant term and X, the inter-
action between the terms X; and X,. The corresponding dimensions are dx, = 1,
dx, =2,dx, =3 and dx,, = dx, X dx, = 6. Then, we set the pos vector equal to
pos <- ¢ (1, 2,2, 3,3,3, 4,4,4,4,4,4)
to state that the first parameter corresponds to the first term (Xj), parameters 2-3
correspond to the second term (Xi), parameters 4-6 correspond to the third term
(X») and parameters 7-12 correspond to the fourth term (Xj5). Finally, we use
another vector called gtemp of dimension d which is given by
gtemp[i] <- gl pos[i] 1]

for all i = 1,...,d. The vector gtemp is used in the likelihood instead of the g
vector. For details see example 1 and the associated BUGS code in the Appendix.

Moreover, the definition of the prior distribution when factors or terms with many
parameters are considered is more complicated. For example a mixture of multi-
variate normal prior distributions as given by (5) can be expressed as a multivariate
normal distribution on the ‘full’ parameter vector 3. Therefore we may write in
BUGS

e b[ ] ~ dmnorm( bpriorm[ 1, Taul,]) denoting B ~ Ny(m, T~ %),
e bpriorm[k]< —(1-glpos[k]1)*mean[k] denoting mi = (1 — Ypos, )ik

e Taulk,1] < — glpos[k]]l*glpos[1]]*t[k,1]+
+(1-glpos[k]]*gl[pos[1]])*equals(k,1)*pow(se[k],-2) denoting that

(7w when Ypos, = Ypos, = 1

Ty = se,;2 when k =1 & vpos, =0 for k,1=1,2,...,4d;
0 otherwise
where N, is the d-dimensional normal distribution; m” = (my,ma,...,my) and T

are the prior mean vector and precision matrix depending on ~; fiy, is the corre-
sponding pilot run estimate for k element of model parameter vector @; X is the
constructed prior covariance matrix for the whole parameter vector 3 when we use
for each B; the multivariate extension of prior distribution (8); 7, and (=Y is




the k row and I column elements of T and ™! matrices respectively; and Tau[,],
t[,] are the BUGS matrices for T and £, respectively. An illustration of usage
of such prior distribution is given in example 1.

3.3 Implementation of Other Gibbs Samplers for Variable
Selection

SSVS and Kuo and Mallick sampler can easily be applied with minor modifications
in the above code. In SSVS the prior (8) is used with fi; = 0 and S; = %;/k?,
where ka should be large enough in order that 3; will be close to zero when ; = 0.
For selection of the prior parameters in SSVS see semiautomatic prior selection of
George and McCulloch (1993). The above restriction can easily be applied in BUGS
by

bpriorm[j] <- 0

tprior[j1 <- t[jl*gl[jl+(1-g[31)*t [j]1*pow(k[3j],2)

Moreover, the likelihood in SSVS should be slightly modified by substituting the
first line of the code in Section 3.1 with

for (i in 1:N) { for (j in 1:p) { z[i,jl<-x[i,jI*b[jI1}}.

Kuo and Mallick sampler uses prior on 3 that does not depend on model indicator
7. Therefore the specification of the prior is the same as in simple modelling using
BUGS. Moreover, the likelihood definition is the same as in Gibbs variable selection
described in Section 3.1.

3.4 Definition of Prior Term Probabilities

In order to apply any variable selection method in BUGS we need to define the prior
probabilities f(v). When we are vague about models we may set f(v) = 1/M, where
M is the number of all models under consideration. When the explanatory variables
do not involve interactions (for example in linear regression) then the number of
models under consideration is 2P. In these situations the latent variables v; can be
treated as a — priori independent and therefore set in BUGS

e g[jl ~ dbern(0.5) denoting that v; ~ Bernoulli(0.5).

for all j = 1,2,...,p. This prior results to f(v) = 277 for all v € {0,1}?. When
we are dealing with models using categorical explanatory variables with interaction
terms, such as ANOV A or log-linear models, we usually want to restrict attention to
hierarchical models. The conditional distributions of f('y]\'y\j) need to be specified
in such way that f(v) = 1/M when = is referring to hierarchical model and f(v) = 0
otherwise.

For example, in a two way ANOV A we have three terms under consideration; the
main effects A,B and the interaction AB. All possible models are eight, while the
hierarchical ones are only five (constant, [A], [B], [A][B] and [AB]). Therefore, we
wish to specify f(v) = 0.20 for the above five models and f(y) = 0 for the rest.
This can be applied by setting in BUGS

e g[3] ~ dbern(0.2) denoting that yap ~ Bernoulli(0.2).
e pi < — g[3]1+0.5(1-g[3]) denoting that 7 = yap + 0.5% (1 — yap),
e for (i in 1:2) { g[j] ~ dbern(pi) } denoting that for all i € {A, B},

Yilvap ~ Bernoulli(r).

From the above it is evident that

F(AB)) = f(yap=1f(va=1vap=1)f(ys =1llyap =1)
02x1x1=02,

F([AI[B]) f(vaB =0)f(ya = llvap = 0)f(y8 = 1|yaB = 0)

0.8x05x05=02.

Using similar calculations we find that f(vy) = 0.2 for all five models under consid-
eration. For further relevant discussion and application see Chipman (1996). For
implementation in BUGS see examples 1 and 3.

3.5 Calculating Model Probabilities in Bugs

In order to directly calculate the posterior model probabilities in BUGS and avoid
saving large MCMC output we may use matrix type variables with dimension equal
to the number of models. Using a simple coding such as 1+ Xp: 77271 we transform
=1

the vector v in a unique, for each model index (noted by rndlg for which pmdl [md1]=1
and pmd1 [j]1=0 for all j # md1l. The above statements can be written in BUGS with
the code

for (j in 1:p) { index[j] < — pow(2,j-1) }

mdl < — 1+inprod(gl ], index[ 1)

for (m in 1:mdl) { pmdl[m] < — equals(m,mdl) }
Then using the command stats(pmdl) in BUGS environment (or cmd file) we can
monitor the posterior model probabilities. This is feasible only if the number of
models is limited and therefore applicable only in some simple problems.

4 Examples

The implementation of three illustrated examples are briefly presented. The first
example is a 3 x 2 x 4 contingency table used to illustrate how to handle factors
with more than two levels. Example 2 provides model selection details in a regres-
sion type problem involving many different error distributions while example 3 is
a simple logistic regression problem with random effects. In all examples posterior
probabilities are presented while the associated BUGS codes are provided in the
appendix. Additional details (for example, convergence plots) are omitted since our
aim is just to illustrate how to use BUGS for variable selection.




4.1 Example 1: 3 x 2 x 4 Contingency Table

This example is a 3 x 2 x 4 contingency table presented by Knuiman and Speed
(1988) where 491 individuals are classified by three categorical variables: obesity
(O: low,average,high), hypertension (H: yes,no) and alcohol consumption (A: 1,1
2,3-5,6+ drinks per day); see Table 1.

Alcohol Intake

Obesity | High BP | 0 12 35 6+
Low Yes 5 9 8 10
No 40 36 33 24

Average Yes 6 9 1 14
No 33 23 35 30

High Yes 9 12 19 19
No 24 25 28 29

Table 1: 3 x 2 x 4 Contingency Table: Knuiman and Speed (1988) Dataset.

The full model is given by
nag ~ Poisson(Ni), log(Auk) = m~+ o0; + hy + ap + ohy + oar, + hag, + ohaiy,

for ¢ = 1,23, 1 = 1,2, k = 1,2,3,4. The above model can be rewritten
with likelihood given by (1) where 8 can be divided to ,@j sub-vectors with j &
{0,0,H,0H, A,0A, HA,OHA}; where By = m, B4 = [02,03), Bu = ha, 85y =
[ohaa, 0hs2], Bh = [az,a3,a4], Bha = [0az2, 0a23,0a32,0033), Bl = [haze, hass)
and ,BgHA = [ohagaz, 0hases, ohagas, ohasss]. Each ,@] is a multivariate vector and
therefore each prior distribution involves mixture multivariate normal distributions.
We use sum-to-zero constraints and prior variance X; as in Dellaportas and Forster
(1999). We restrict attention in hierarchical models including always the main ef-
fects since we are mainly interested for relationships between the categorical factors.
Under these restrictions, the models under consideration are nine (9). In order to
forbid moves to non hierarchical models we use the following BUGS code to define
the prior model probabilities:

e g[8] ~ dbern(0.1111) for yopa ~ Bernoulli(1/9).

e pi < — gl[8]+0.5%(1-g[8]) for m = yomua + 0.5 % (1 —yoma),

e for (i in 5:7) { gljl~dbern(pi) } for v;lvoma ~ Bernoulli(r) for all
i {OH,0A, HA},

e for (j in 1:4) { gl[jl ~ dbern(1) } for v; ~ Bernoulli(1l) for all i €
{constant, O, H, A}.

These priors result to prior probability for all hierarchical models equal to 1/9 and
zero otherwise.

Results using both pilot run pseudoprior and automatic pseudoprior with k& = 10
are summarised in Table 2. The data give ‘strong’ evidence in favour of the model

Posterior Model Probabilities (%)
Pseudopriors k=10 Pilot Run
Burn-in 1,000 10,000 | 1,000 10,000
Tterations 1,000 10 x 10,000 | 1,000 10 x 10,000
Models
[O][H][A] 62.80 68.87 | 65.20 67.80
[OH][4] 36.90 30.53 | 34.40 31.63
[O][HA] 0.20 0.40 | 0.10 0.43
[OH|[HA] 0.10 0.20 | 0.30 0.14
Terms
You =1 37.00 30.63 | 34.70 31.77
YHa =1 0.30 0.20 | 0.40 0.57

Table 2: 3 x 2 x 4 Contingency Table: Posterior Model Probabilities Using BUGS.

of independence. Model [OH][A], in which obesity and hypertension are depending
on each other given the level of alcohol consumption, is the model with the second
highest posterior probability. All the other models have probability lower than 1%.

4.2 Example 2: Stacks Dataset

This example involves stack-loss data analysed by Spiegelhalter et al. (1996b, page
27) using the Gibbs sampling. The dataset features 21 daily responses of stack loss
(y) which measures the amount of ammonia escaping with covariates the air flow
(z1), temperature (x2) and acid concentration (z3). Spiegelhalter et al. (1996b)
consider regression models with four different error structures (normal, double ex-
ponential, logistic and Student’s ¢4 distributions). They also consider the cases of
ridge and simple independent regression models. We extend their work by applying
Gibbs variable selection on all these eight cases.

The full model will be
Yi ~ D(Hu")v i = Bo + Bizin + Bazio + P32z, 1 =1,...,21

where D;(p;, 7) is the distribution of the errors with mean p; and variance 7=1 which
here is assumed to be normal, or double exponential, or logistic or t4; where z;; =
(xij — x;)/sd(x;) are the standardised covariates. The ridge regression approach
assumes a further restriction that the j3; for j = 1,2,3 are exchangable (Lindley
and Smith, 1972) and therefore we have 3; ~ N(0,¢~1). We use ‘non-informative’
priors with prior precision equal to 10~3 for the independent regression and for ¢
in ridge regression we use gamma prior with parameters equal to 10~3. Since we do
not wish to apply any restriction on the model space we use the prior probabilities
v; ~ Bernoulli(1/2) for j = 1,2,3 which results to prior probability of 1/8 for
all possible models. For the pilot run pseudoprior parameters we use the posterior
values as given Spiegelhalter et al. (1996D).

Tables 3 and 4 provide the results from all eight distinct cases using pilot run
pseudopriors. In all cases flow of air (z;) has posterior probability of inclusion
higher than 99%. The temperature (22) seems to be also an important term with
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posterior probability of inclusion varying from 39% to 96%. The last term (z3) which
measures the acid concentration in air has low posterior probabilities of inclusion
which are less than 5% for simple independence models and less than 20% for ‘ridge’
regression models.

Independence Regression

Models Normal | D.Exp. | Logistic ty
Constant 0.00 0.00 0.00 0.00
21 14.12 58.48 41.19 | 56.46
22 0.56 0.01 0.02 0.00
21+ 22 81.25 38.64 55.25 | 40.46
z3 0.00 0.00 0.00 0.00
21+ 23 0.63 1.75 1.35 1.82
22+ 23 0.05 0.00 0.00 0.00
21+ 22+ 23 3.39 1.11 2.18 1.26
Terms

Yoy =1 99.30 99.98 99.97 | 100.00
Vap =1 84.90 39.76 57.45 | 41.72
Vag =1 4.30 2.86 3.53 3.08

Table 3: Stacks Dataset: Posterior Model Probabilities in Independence Regression
(burn-in 10,000, samples of 10 x 10, 000, with pilot run pseudopriors).
Ridge Regression

Models Normal | D.Exp. | Logistic ty
Constant 0.00 0.00 0.00 0.00
21 3.26 22.54 14.42 13.30
) 0.05 0.00 0.00 0.00
21+ 22 79.79 65.00 73.32 70.92
23 0.00 0.00 0.00 0.00
z1+ 23 0.44 1.74 1.32 1.86
2o+ 23 0.00 0.00 0.00 0.00
21+ 20+ 23 16.46 10.72 11.01 13.92
Terms

Yz =1 100.00 | 100.00 100.00 | 100.00
Vay =1 96.50 75.72 84.33 | 84.84
Vaz =1 16.10 12.46 12.33 15.78

Table 4: Stacks Dataset: Posterior Model Probabilities in Ridge Regression (burn-in
10,000, samples of 10 x 10,000, with pilot run pseudopriors).

4.3 Example 3: Seeds Dataset, Logistic Regression with Ran-
dom Effects

This example involves the examination of a proportion of seeds that germinated
on 21 plates. For these 21 plates we have recorded the seed (bean or cucumber)
and the type of root extract. This data set is analysed by Spiegelhalter et al.
(1996b, page 10) using BUGS; for more details see references there in. The model
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is a logistic regression with 2 categorical explanatory variables and random effects.
The full model will be written

Yitk ~ Bin(na, puk), log (117#;) =m+a; + b + aby + wy,
= Pilk
fori,l =1,2and k = 1,...,21; where y;;x and n;, is the number of seeds germinated

and total number of seeds respectively for i seed, I type of root extract and k plate;
wy, is the random effect for the k plate.

We use sum-to-zero constraints for both fixed and random effects. Following Della-
portas and Forster (1999) we use prior variance for the fixed effects ¥ = 4 x 2. The
prior for the precision of the random effects is considered to be a gamma distribu-
tion with parameters equal to 1073, The pseudoprior parameters were taken from
a pilot chain of the saturated model. The models under consideration are ten. The
prior term probabilities for the fixed effects are assigned similarly as in the example
for two-way ANOVA models. For the random effects term indicator we have that
Yw ~ Bernoulli(0.5).

Fixed Effects || Random Effects
Models k=10 | Pilot || k=10 Pilot
Constant | 0.00 | 0.00 1.21 0.99
[A] 0.00 | 0.00 0.22 0.07
[B) 32.34 | 32.07 || 50.61 50.75
[4][B] 378 | 384 | 7.24 7.60
[AB] 280 | 2.83 || 1.80 1.85
Total 38.92 | 38.74 || 61.08 61.26

Table 5: Seeds Dataset: Posterior Model Probabilities Using BUGS (burn-in 10,000,
samples of 10 x 10,000).

Table 5 provides the calculated posterior model probabilities. We used both pilot
run proposals and automatic pseudoprior with k& = 10. Both chains gave the same
results as expected and the type of root extract (B) is the only factor that influences
the proportion of germinated gems. The corresponding models with random and
fixed effects have posterior probability equal to 51% and 32%, respectively. The
marginal posterior probability of random effects is 61% which is about 56% higher
than the posterior probability of fixed effects models.
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5 Appendix: BUGS Codes

Bugs code and all associated data files are freely available in electronic form at
the Journal of Statistical Software web site www.jstatsoft.org/v07/i07/ or by

electronic mail request.

5.1 Example 1

model log-linear;
#

#
#
#
#

const
terms=8, # number of terms
N = 24; # number of Poisson cells

var

3x2x4 LOG-LINEAR MODEL SELECTION WITH BUGS (GVS)
(c) OCTOBER 1996
(c) REVISED OCTOBER 1997

include, # conditional prior probability for gi

pmd1[9], # model indicator vector

mdl, # code of model

b[N], # model coefficients

mean [N], # proposal mean used in pseudoprior

se[N], # proposal standard deviation used in
# pseudoprior

bpriorm[N], # prior mean for b depending on g
Tau[N,N], # model coefficients precision
tprior[N,N],# prior value for Tau when all terms

# are included in model

x[N,N], # design matrix

z[N,N], # matrix with z_ij=x_ij b_j g_j, used in
# likelihood

n[N], # Poisson cells

pos[N], # position of each parameter

lambda[N], # Poisson mean for each cell

gtemp[N], # temporary term indicator vector

glterms]; # term indicator vector

data pos,n in "ex2.dat", x in ’ex2des.dat’,

mean, se in ’prop2.dat’, tprior in ’cov.dat’;

inits in "ex2.in";

{
#
#
#

H o

associate g[i] with coefficients.

for (i in 1:N) {
§temp [i]1<-glpos[ill;

calculation of the z matrix used in likelihood

for (i in 1:N) {
for (j in 1:N) {
s z[i,j1<-x[i,j1*b[jl*gtemp[j]

}

model configuration

for (i in 1:N) {
log(lambda[i])<-sum(z[i,])
g[i]”dpois(lambda[i]);

defining model code
0 for independence model [A][B][C], 1 for [AB][C],

13
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HHHH H HHEHTHFEHERRERHER

HHEHFEHRH

2 for [AC][B], 3 for [AB][AC], 4 for [BC][A],
5 for [AB][BC], 6 for [AC][BC], 7 for [AB][BCI],
15 for [ABC].

md1<-g[5]+2*g[6]+4*g[7]+8*g[8];
for (i in 0:7) {

pmdl [i+1]<-equals(mdl,i)
pmd1[9]<-equals(mdl,15)

Prior for b model coefficient
Mixture normal depending on current status of g[i]

for (i in 1:N) { for (j in 1:N) {

GVS using se,mean from pilot run
*okk

Tauli, j]<-O+tprior[i,jl*(gtemp[i]*gtemp[j])+
(1-gtemp[i]l*gtemp[j]1) *equals(i,j)/(se[il*sel[il);

Automatic proposal using prior similar to SSVS
with k=10

Tauli, jl<-tprior[i,jl*pow(100,1-gtemp[i]*gtemp[j]);

Kuo and Mallick proposal is independent of g[i]
[tau[i]l=1/2 and bpriorm[i]=0]

*okok

Tauli, jl<-tpriorl[i,jl;

GVS PRIOR M FROM PILOT RUN

bpriorm[i]<-mean[i]*(1-gtemp[il);

PRIOR M FOR THAT DOES NOT DEPEND ON G.

N bpriorm[i]<-0.0;
b[]~dmnorm(bpriorm[],Taul,]);

defining prior information for gi to

allow only hierarchical models with equal probability.
We also ignore models nested to the model of
independence [A][B][C] since we are interested in
associations between factors.
g[8]~dbern(0.1111111);
include<-(1-g[8])*0.5+g[8]*1.0;
gl[7]~dbern(include);

g[6] “dbern(include) ;

g[5]~dbern(include);

for (i in 1:4) {

N gli]l~dbern(1.0);
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5.2 Example 2

model stacks;

# LINEAR REGRESSION VARIABLE SELECTION WITH BUGS (GVS)
# BUGS EXAMPLE: STACKS, see BUGS examples vol.1l
#
# (c) OCTOBER 1997
const
p =3, # number of covariates
N =21, # number of observations
models=8, # number of models under consideration 278
PI = 3. 141593;
var
x[N,pl, # raw covariates
z[N,p] , # standardised covariates
Y([N],mu[N], # data and expectations
stres[N], # standardised residuals
outlier[N], # indicator if |stan res| > 2.5
betal,betalp], # standardised intercept, coefficients
b0,blp], # unstandardised intercept, coefficients
phi, # prior precision of standardised coef.
tau,sigma,d, # precision, sd and d.f. of t distribution
glpl, # variable indicators
mdl, # Model index
pmdl [models], # Vector with model indicators
mean[p] ,selp], # pseudoprior mean and se error
bprior[p], # Conditional to model Prior prior mean
tprior[p]; # Conditional to model Prior prior precision

data Y,x in "STACKS.DAT",

# files with proposed values

mean,se in ’pnorm.dat’; # Normal distribution

#mean,se in ’pdexp.dat’; # Double exponential distribution
#mean,se in ’plogist.dat’;# Logistic distribution

#mean,se in ’ptd.dat’; # Student(4) distribution

%nits in "STACKS.IN";

# Standardise x’s and coefficients
for (j in 1:p) {
blj] <- betaljl/sd(x[,j1) ;
for (i in 1:N) {
z[i,j] <= (x[i,j] - mean(x[,j1))/sd(x[,jl) ;

}
b0<-betalO-b[1]*mean(x[,1])-b[2] *mean(x[,2])-b[3]*mean(x[,3]);

# Model
d <- 4; # degrees of freedom for t
for (i in 1:N) {

Normal Distribution

H HH

Double Exponential Distribution

Y[i]l ~ ddexp(mulil,tau);

Logistic Distribution

Y[i] ~ dlogis(mulil,tau);

Student t4 Distribution

HHEHTEHHEHEH R
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HHEHEHFEHERR
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e HHEHHHHR

Y[i] ~ dt(mu[i],tau,d);

mu[i] <- betal + gl[i]xbetal[1]*z[i,1]+g[2]*betal2]*z[i,2]
+ gl[3]*betal[3]*z[1i,3];
stres[i] <- (Y[i] - mu[i])/sigma;

if standardised residual is greater than 2.5 then outlier
outlier[i]<-step(stres[i] -2.5) + step(-(stres[i]+2.5) );

Defining Model Code
mdl<- 1+g[1]*1+g[2]*2+g[3]*4

defining vector with model indicators
for (j in 1:models){
pmdl[j]l<-equals(mdl,j);}

Priors

beta0 ~ dnorm(0,.00001);

for (j in 1:p) {

sxkkxkkx GVS PRIORS FOR INDEPENDENCE REGRESSION sk
GVS priors with proposals from pilot run
bprior[j1<-(1-gl[jl)*mean(jl;
tprior[j1 <-gl[j1*0.001+(1-g[j1)/(seljI*se[jl);
GVS priors w1th proposals a mixture of Normals(0,c”2t"2)
bprior[j]<-0.0
tprior[j] <- pow(loo 1-g[j1)*0.001;
soxkkkokkk GVS PRIORS FOR RIDGE REGRESSION sokkskskoksks
GVS priors with proposals from pilot run
bprior[jl<-(1-g[jl)*mean[j]l;
tprior[j] <-gljl*phi+(1- g[J])/(se[J]*se[J])
GVS priors with proposals a mixture of Normals(0,c"2t"2)
bprior[j]<-0.0;
tprior[j] <- pow(loo 1-g[j1) *phi;
betalj] ~ dnorm(bprior[j],tprior[j]l); # coefs independent
}

tau ~ dgamma(1l.0E-3,1.0E-3);
phi ~ dgamma(1.0E-3,1.0E-3);
when we use pilot run based pseudopriors bugs was unable
to select update method. Therefore we use an upper limit

which makes bugs work with Metropolis instead Gibbs

phi ~ dgamma(1.0E-3,1.0E-3)I(0,10000);
standard deviation of error distribution

sigma <- sqrt(1/tau); # normal errors

sigma <- sqrt(2)/tau; # double exponential errors
sigma <- sqrt(pow(PI,2)/3)/tau ; # logistic errors

sigma <- sqrt(d/(tau*(d-2))); # errors of t with d d.f.

Priors for variable indicators
for (j in 1:p) { gl[jl~ dbern(0.5);}
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5.3 Example 3

model seedszrogvs;

LOGISTIC REGRESSION VARIABLE AND
RANDOM EFFECTS SELECTION WITH BUGS (GVS)

BUGS EXAMPLE: SEEDS, see BUGS examples vol.1l

terms=4, # Number of terms under consideration
models=16,# number of models under consideration 274

#
#
#
#
#
#
# (c) OCTOBER 1997
#
const
N = 21; # number of samples
var

alphaO, alphal, alpha2, alphal2, # model coefficients

tau, sigma,
x1[N], x2[N],

p(N],
n[N],

include,

glterms],

mdl,

pmdl [models],
mean[terms-1],
se[terms-1],
bprior [terms-1] ,#
tprior [terms-1] ;#

o

—_

=

=
HHEAHAHEEH AR HERR

variance of random effects (tau=1/sigma)
Design Column for factor al and a2
here we used the STZ constraints
Success probability for Binomial

Total number of trials for Binomial
Binomial data

Random effects (standardised)

Random effects c[i] (unstandardised)
conditional model probability for
main effects

terms indicator vector

model index

model indicator

proposal mean

proposal se

prior mean for model coefficients
prior precision for model coefficients

data r,n,x1,x2 in "seeds.dat", mean,se in ’prop6.dat’;

inits in "seeds.in";

alphaO ~ dnorm(0.0,1.0E-6); # intercept

for (j in 1:(terms-1)) {

H

bprior[j]l<-(1-

sxkkkkkk GUS PRIORS sskkkskkskskkskk

GVS priors with proposals from pilot run

gl[j1)*mean(j];

tprior[j] <-gljl/8+(1- g[J])/(se[J]*se[J])

bprior[j]<-0.0

H* 3 HoHH

GVS priors w1th proposals a mixture of Normals(0,c"2t"2)

tprior[j] <- pow(lOO 1-g[j1)/8;
}

alphal ~ dnorm(bprior([1],tprior[1]); # seed coeff
alpha2 ~ dnorm(bprior[2],tprior[2]); # extract coeff
alphal2 ~ dnorm(bprior[3],tprior([3]);

for (i in 1:N) {

c[i]l ~ dnorm(O0.

tau ~ dgamma(1l.0E-3,1.0E-3); # 1/sigma”2
0,tau);
mean(c[]); # make sure b’s add to zero

bli] <- c[i] -

logit(p[i]) <-alphaO+g[1]*alphal#*x1[i]+g[2]*alpha2*x2[i]

+g[3]*alphal2*x1[i]*x2[i]l+g[4]1*b[i];

r[i] ~ dbin(p[il,n[il);
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sigma <- 1.0/sqrt(tau);

Defining Model Code
mdl<- 1+g[1]*1+g[2]*x2+g[3] *x4+g[4]*8

H H =

defining vector with model indicators
for (j in 1:models){
pmdl[jl<-equals(mdl,j);}

# Priors for variable indicators

gl[4]~ dbern(0.50);

g[3]~ dbern(0.20);
include<-g[3]+(1-g[31)*0.5

gl[2]~ dbern(include);

gl1l~ dbern(%nclude);
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Bayesian Variable Selection

Using the Gibbs Sampler

Petros Dellaportas
Jonathan J. Forster
Ioannis Ntzoufras

ABSTRACT Specification of the linear predictor for a generalised lin-
ear model requires determining which variables to include. We consider
Bayesian strategies for performing this variable selection. In particular we
focus on approaches based on the Gibbs sampler. Such approaches may
be implemented using the publically available software BUGS. We illus-
trate the methods using a simple example. BUGS code is provided in an

appendix.

1 Introduction

In a Bayesian analysis of a generalised linear model, model uncertainty may
be incorporated coherently by specifying prior probabilities for plausible

models and calculating posterior probabilities using

f(m)f(ylm)

Fimly) = =) flalmy’
memM

me M (1.1)

where m denotes the model, M is the set of all models under consideration,
f(m) is the prior probability of model m. The observed data y contribute to
the posterior model probabilities through f(y|m), the marginal likelihood
calculated using f(y|lm) = [ f(yim, B,,)f(B,,|m)dB,, where f(B,,|m) is

the conditional prior distribution of 8, ,. the model parameters for model

m:
m and f(ylm, B,,) is the likelihood of the data y under model m.

In particular, the relative probability of two competing models 1y and

This is page 1
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ms reduces to

fmly) flma) [Tl B ) (B, Im1) dBr,

flmaly) = fma) [ [(ylma, B,,) (B, Imz) dB,,,

which is the familiar expression relating the posterior and prior odds of two

(1:2)

models in teris of the Bayes factor, the second ratio ou the right hand side
of (1.2).

The principal attractions of this approach are that (1.1) allows the calcu-
lation of posterior probabilities of all competing models, regardless of their
relative size or structure, and this model uncertainty can bhe incorporated
into any decisions or predictions required (Draper, 1995, gives examples of
this).

Generalised linear models are specified by three components, distrib-
ution, link and linear predictor. Model uncertainty may concern any of
these, and the approach outlined above is flexible enough to deal with this.
In this chapter, we shall restrict attention to variable selection problems,
where the models concerned differ only in the form of the linear predictor.
Suppose that there are p possible covariates which are candidates for inclu-
sion in the linear predictor. Then each m € M can be naturally represented
by a p-vector 4 of binary indicator variables determining whether or not a
covariate is included in the model, and M C {0,1}?. The linear predictor
for the generalised linear model determined by 4 may be written as

P
n=> %uXp (1.3)

i=1

where B is the ‘full’ parameter vector with dimension p, and X; and 3;
are the design sub-matrix and parameter vector, corresponding to the ith
covariate. This specification allows for covariates of dimension greater than
1, for example terms in factorial models.

I'here has been a great deal of recent interest in Bayesian approaches for
identifying promising scts of predictor variables. See for example Brown
et al.(1998) and Chipman (1996, 1997), Clyde et al.(1996), Clyde and
DeSimone-Sasinowska (1997), George et al.(1996), George and McCulloch
(1993, 1996, 1997), Geweke (1996), Hoeting et al.(1996), Kuo and Mallick
(1998), Mitchell and Beauchamp (1988), Ntzoulras el al.(1997), Smith and
Kohn (1996) and Wakefield and Bennet (1996).
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Most approaches require some kind of analytic, numerical or Monte Carlo
approximation because the integrals involved in (1.2) are only analytically
tractable in certain restricted examples. A further problem is that the size
of the set of possible models M may be extremely large, so that calculation
or approxitation of f(y|m) for all mm € M is very time consuming. Oue
of the most promising approaches has been Markov chain Monte Carlo
(MCMC). MCMC methods enable one, in principle, to obtain observations
from the joint posterior distribution of (mn, 3,,) and consequently estimate
Fmly) and £(B,uIm. u).

In this chapter we restrict attention to model determination approaches
which can be implemented by using one particular MCMC method, the
Gibbs sampler. The Gibbs samper is particularly convenient for Bayesian
computation in generalised linear models, due to the fact that posterior
distributions are generally log-concave (Dellaportas and Smith, 1992). Fur-
thermore, the Gibbs sampler can be implemented in a straightforward man-
ner using the BUGS software (Spiegelhalter et al., 1996a). To facilitate this,
we provide BUGS code for various approaches in Appendix A.

The rest of the chapter is organised as follows. Section 2 describes sev-
eral variable selection strategies that can bhe implemented using the Gibhs
sampler Section 3 contains an illustrative example analysed using BUGS

code. We conclude this chapter with a brief discussion in Section 4.

2 Gibbs Sampler Based Variable Selection

Strategies

As we are assuming that model uncertainty is restricted to variable selec-
tion, mm is determined by ~. We require a MCMC approach for obtain-
ing observations from the joint posterior distribution of f(m,@3,,). The
Gibbs sampler achieves this by generating successively from univariate con-
ditional distributions, so, in principle, the Gibbs sampler is determined by
f(m,B,,). However, flexibility in the choice of parameter space, likelihood
and prior has led to a number of different Gibbs sampler variable selection
approaches being proposed.

The first method we shall discuss is a general Gibbs sampler based model
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determination strategy. The others have been developed more specifically

for variable selection problems.

2.1 Carlin and Chib’s Method

This method, introduced by Carlin and Chib (1995) is a flexible Gibbs sam-
pling strategy for any situation involving model uncertainty. It proceeds by
considering the extended parameter vector (mn, 3;,; k € M). If a sample can
be generated from the joint posterior density for this extended parameter, a
sample from the required posterior distribution f(m,3,,) can be extracted
casily.

A joint prior distribution for m and (B, k € M) is required. Here,
(By:k € M) contains the model parameters for every model in M. Car-
lin and Chib (1995) specify the joint prior distribution through the mar-
ginal prior model probability f(m) and prior dewsity f(8,,|n) for each
model, as above, together with independent ‘pseudoprior’ or linking densi-
ties f(B,,:|m # m’) for each model.

The conditional posterior distributions required for the Gibbs sampler

are

flylm.B)f(Bplm) m'=m

. o ,
(B, lmke/w\{m}}:m{ e

(1.4)
A
Fm{By ke M} y) = =" (1.5)

where
A = f(ylm, B,) [T FBImIf(m), ¥ meM.
SEM

Therefore, when m’ = m, we generate from the usual conditional poste-
rior for model m, and when m’ # m we generate from the corresponding
pseudoprior, f(8,,:|m). The model indicator m is generated as a discrete
random variable using (1.5).

The pseudopriors have no influence on f(8,,|m), the marginal posterior
distribution of interest. They act as a linking density, and careful choice of

pseudoprior is essential, if the Gibbs sampler is to be sufficiently mobile.
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Ideally, f(B,, |m # m’) should resemble the marginal posterior distribution
S8, Im',y), and Carlin and Chib suggest strategies to achieve this.

The flexibility of this method lies in the facility to specify pseudopri-
ors which help the sampler run efficiently. This may also be perceived as
a drawback in problems where there are a large number of models under
consideration, such as variable selection involving a moderate number of po-
tential variables. Then, specification of efficient pseudopriors may become
too time-consuming. A further drawback of the method is the requirement

to generate every f3,,,, at each stage of the sampler. ('I'his may be avoided

m

by using a ‘Metropolis-Hastings’ step to generate m, but is outside the

scope of the current chapter; see Dellaportas et al., 1997, for details).
Examples which show how BUGS can be used to perform this method

can be found in Spiegelhalter et al.(1996b).

2.2 Stochastic Search Variable Selection

Stochastic Search Variable Selection (SSVS) was introduced by George and
McCulloch (1993) for linear regression models and has been adapted for
more complex models such as pharmacokinetic models (Wakefield and Ben-
nett, 1996), construction of stock portfolios in finance (George and McCul-
loch, 1996), generalised linear models (George et al., 1996, George and Mc-
Culloch, 1997), log-linear models (Ntzoufras et al., 1997) and multivariate
regression models (Brown ef al., 1998).

The difference between SSVS and other variable selection approaches is
that the parameter vector 8 is specified to be of full dimension p under all

models, so the linear predictor is
»
n=>_ XiB, (1.6)
i=1

Therefore n = X3 for all models, where X contains all the potential ex-
planatory variables. T'he indicator variables ; are involved in the modelling

process through the prior
Bilyi ~ %N (0,6/%) + (1= 7)N (0, %) (L7

for specified ¢; and ;. The prior parameters ¢; and X; in (1.7) are chosen

so that when 7 = 0 (covariate is ‘absent’ from the linear predictor) the
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prior distribution for B; ensures that @3; is constrained to be ‘close to 0°.
When v; = 1 the prior is diffuse, assuming that little prior information is
available about 3,.

The full conditional posterior distributions of @, and +; are given by
F(Bily,~, By) o f(yly, B (B:lv)

and

f(:l’i =1y 1. B)  [Blyi =1 [l =17) (1)
»

i =0ly.ni B)  FBlv =0.my) Flvi = 0,7y)
where ~y; denotes all terms of v except 7;.

If we use the prior distributions for 8 and 4 defined by (1.7) and assume

that f(vi = 0,v;) = f(vi = ],-y\i) for all 4, then

vi=Uy.niB) (
—————— =¢; “exp | 0.5
i =0y, 8)

(1.9)

where d; is the dimension of 3;.

The prior for 4 with each term present or absent independently with
probability 1/2 may be considered non-informative in the sense that it gives
the same weight to all possible models. George and Foster (1997) argue that
this prior can be considered as informative because it puts more weight on
models of size close to p/2. However, posterior model probabilities are most
heavily dependent on the choice of the prior parameters ¢ and X;. One
way of specifying these is by setting c?%; as a diffuse prior (for 7; = 1) and
then choosing ¢? by considering the the value of |3;] at which the densities
of the two components of the prior distribution are equal. This can be
considered to be the smallest value of |3;] at which the term is considered of
practical significance. George and McCulloch (1993) applied this approach.
Ntzoufras et al.(1997) considered log-linear interaction models where 3;

terms are multidimensional.

2.3 Unconditional Priors for Variable Selection

Kuo and Mallick (1998) advocated the use of the linear predictor n =
?_ | %X:fB; introduced in (1.3) for variable selection. They considered
a prior distribution f(3) which is independent of v (and therefore M) so

that f(B;18\:,v) = [(B;|B:)
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Therefore, the full conditional posterior distributions are given by

) ; Sylv B (Bl By) vi=1
F(Bily, v, By 1.10
(Bily, v, By;) o { 18,18, 5= 0 (1.10)
and
foi=UNyneB) _ Sk = 1m0 0) Fi =1 1v) (L.11)

fli =0ly,1i, B8)  flyly = 0,mi,B) fli = 0,m;)

The advantage of the above approach is that it is extremely straightforward.
It is only required to specify the usual prior on 8 (for the full model)
and the conditional prior distributions )‘(ﬁl\ﬁ\@) replace the pseudopriors
required by Carlin and Chib’s method. However, this simplicity may also
be a drawback, as there is no flexibility here to alter the method to improve
efficiency. In practice, if, for any 3;, the prior is diffuse compared with the

posterior, the method may be inefficient.

2.4 Gibbs Variable Selection

Dellaportas et al.(1997) considered a natural hybrid of SSVS and the ‘Un-
conditional Priors” approach of Kuo and Mallick (1998). The linear predic-
tor is assumed to be of the form of (1.3) where , unlike SSVS, variables
corresponding to 4; = 0 are genuinely excluded from the model. 'I'he prior
for (v,B) is specified as f(~,8) = f(v)f(B|v). Consider the partition of 3
into (,67,[3\7) corresponding to those components of @ which are included
(yi = 1) or not included (v; = 0) in the model, then the prior f(3|y) may
be partitioned into model prior f(/ﬁ,y\’y) and pseudoprior f(ﬁ\,ﬂ/ﬁ,y, v).

The full conditional posterior distributions are given by

FBylByr ) = FWIBA By (BiylByr)  (112)
f(ﬁ\"y‘ﬁ'ya'?’yy) x f(ﬁ\"y‘ﬁ’ya'?’) (1.13)

and

fOi = Ui, B.y) _ FlB =Ly FBlv = L) fly =Ly
FOi =0lmi, Boy) — TWlB,y = 0,7) FBly =0,7:) S =0,7)"
(1.14)
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This approach is simplified if it is assumed that the prior for 8; depends
only on 7; and is given by
FBilv:) = mN(0,55) + (L — %) N (i, S:)- (1.15)
This prior, where f(3,|v) = f(B;]vi) potentially makes the method less
efficient and is most appropriate in examples where X is orthogonal. In
prediction, rather than inference about the variables themselves is of pri-
mary interest, then X may always be chosen to be orthogonal (see Clyde
et al., 1996).
There is a similarity between this prior and the prior used in SSVS.

However, here the full conditional posterior distribution is given by

FBib o) { fluly. AN, 5) 5 =1
N(fi, 53) % =0

and a clear difference between this and SSVS is that the pseudoprior
F(Bilvi = 0) does not affect the posterior distribution and may be cho-
sen as a ‘linking density’ to increase the efficiency of the sampler, in the
same way as the pseudopriors of Carlin and Chib’s method. Possible choices
of fi; and .S; may be obtained from a pilot run of the full model; see, for
exammple Dellaportas and Forster (1999).

5

2.5  Summary of Variable Selection Stralegies

The similarities and differences between the three Gibbs sampling vari-
able selection methods presented in sections 2.2, 2.3 and 2.4 may casily be
summarised by inspecting the conditional probabilities (1.8), (1.11) and, in
particular, (1.14).

In SSVS. f(y|B,~) is independent of 4 and so the first ratio on the
right hand side of (1.14) is absent in (1.8). For the ‘Unconditional Priors’
approach of Kuo and Mallick (1998), the second term on the right hand
side of (1.14) is absent in (1.11) as @ and ~ are a priori independent. For
Gibbs Variable Selection, both likelihood and prior appear in the variable
selection step. These differences are also evident by looking at the graphical
representations of the three methods in Figure 1.

The key differences between the methods (including Carlin and Chib’s

method) are iu their requirements in terms of prior and for linking densities.




1. Bayesian Variable Selection Using the Gibbs Sampler 9

Carlin and Chib’s method and GVS both require linking densities whose
sole function is to aid the efficiency of the sampler. GVS is less expensive
in requirement of pseudopriors, but correspondingly less flexible. The prior
parameters in SSVS all have an impact on the posterior, and therefore the
densities cannot really be thought of linking densities. The simplest method
that described by Kuo and Mallick (1988) does not require one to specify

anything other than the usual priors for the model parameters.

3 Tlustrative Example: 2 x 2 x 2 Contingency
Table

We present an analysis of the data in table 1.1, taken from Healy (1988).
This is a three-way table with factors A B and C. Factor A denotes the
condition of the patient (more or less severe), factor B denotes if the patient
was accepting antitoxin medication and the (response) factor C denotes

whether the patient survived or not.

Survival(C)
Condition (A) || Antitoxin (B) || No  Yes
More Severe Yes 15 6
No 22 1
Less Severe Yes 5 15
No 7 )

TABLE 1.1. Example Dataset.

Purely for illustration purposes, and to present the BUGS code in Appen-
dix A, we model the above data using both log-linear and logistic regression

models.

3.1 Log-linear models

We focus attention on hierarchical models including the main effects fo-
cussing our interest on associations between model factors and the corre-

sponding interaction terms in the models. Here, i € {1, A, B,C, AB, AC,

10 Petros Dellaportas , Jonathan J. I'orster, loannis Ntzoufras

B
— .
l {m =
- e ~ -
X
SSVS Graphical Model
L,
— h o~ —
| | e T} -
SN ."'__ S

Kuo and Mallick Graphical Model

Gibbs Variable Selection Graphical Model

FIGURE 1. Graphical Model Representation for Stochastic Search Variable Se-
lection, Kuo and Mallick Sampler and Gibbs Variable Selection [Squares denote
Constants; Circles denote Stochastic Nodes].




1. Bayesian Variable Selection Using the Gibbs Sampler 11

BC,ABCY} so p = 8. The prior specification for model vector ~ is v ~
Bernoulli(r) with # = 1/9 if i = ABC, = = 11if ¢ € {1,A,B,C} and
vilyape ~ Bernoulli(m) with 7 = 0.5(1 —vapc)+7vapc for the two factor
interactions (¢ € {AB, AC, BC}). This specification implies that the prior
probability of includiug a two factor interaction in the model is 0.5 if the
three factor interaction is excluded from the model and 1 if it is included
in the model. Hence the prior probabilities for all 9 possible hierarchical
models are 1/9 and and non-hierarchical models are not considered.

For the model coefficients we used the prior specification suggested by
Dellaportas and Forster (1999) for log linear models which results in ; = 2
in (1.15) when the 8; are considered to be the usual ‘sum-to-zero’ con-
strained model parameters For SSVS we used ¢/¥; = 2 and ¢; = 10* in
(1.7). as suggested by Ntzoufras et al.(1997).

SSVS KM GVS

Models A+ B+ C 0.1 02 0.2
AB+C 0.0 01 0.1

AC+ B 25.1 257 256

BC+ A 03 06 0.6

AB + AC 79 75 7.3

AB+ BC 0.1 0.2 0.2

AC + BC 58.9 584 589

AB+ BC+CA 64 6.6 6.4

ABC 1.0 08 0.6

TABLE 1.2. Posterior model probabilities (%) for log-linear models. SSVS: Sto-
chastic Search Variable Selection; KM: Kuo and Mallick’s Unconditional Priors

approach; GVS: Gibbs Variable Selection.

The results are based on 100,000 iterations for Gibbs variable selection
and Kuo and Mallick’s method, and 400,000 iterations for SSVS which
seemed to be less efficient. For all methods we discarded 10,000 iterations
as a burn-in period. The pseudoprior densities for Gibbs variable selection
were constructed from the sample moments of a pilot run of the full model
of size 1,000 iterations. All three methods give similar results supporting

the same models with very similar posterior probabilities.
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3.2 Logistic regression models

When we consider binomial logistic regression models for response variable
C' and explanatory factors A and B, there are 5 possible nested models,
1, A, B, A+ B and AB. Priors are specified by setting ¢7¥; = 4 x 2 in
(1.7) and X; =4 x 2 in (1.15) which is equivalent to the prior used above
for log-linear model selection. 'I'he pseudoprior parameters were specified
as before, through a pilot chain, and finally we set yape ~ Bernoulli(1/5)
and 7;|yap ~ Bernoulli(r), with # = 0.5(1 — yap) + vap for i € {4, B}.
The resulting prior probabilities for all models are 1/5. The results in ta-
ble (1.3) are based on 500,000 iterations for SSVS and Kuo and Mallick’s
method and 100,000 iterations for Gibbs variable selection, with burn-in
period of 10,000 iterations. Again, the results are very similar, although
Gibbs variable selection seemed to be most efficient.

The equivalent log-linear models in Table 1.2 are those which include the

AR term, so the results can be seen to be in good agreement.

SSVS KM  GVS

Models 1 02 05 0.5
A 48.0 492 493
B 1.0 1.2 1.2
A+ B 453 44.0 439
AB 55 b2 5.1

TABLE 1.3. Posterior model probabilities (%) for logistic regression. SSVS: Sto-
chastic Search Variable Selection; KM: Kuo and Mallick’s Unconditional Priors
approach; GVS: Gibbs Variable Selection.

4 Discussion

We have reviewed a number of Bayesian variable selection strategies based
on the Gibhs sampler. Their major practical advantage is that they can be
casily applied with a Gibbs sampling software such as BUGS.

It is impossible to provide a general recommendation for a method of

computation for a class of problems as large as variable selection in gener-
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alised linear models. The methods we have discussed range from the ‘Un-
conditional Priors approach’ which is extremely easy to implement, but
may be insufficiently flexible for many practical problems, to the approach
of Carlin and Chib, which is very flexible, but requires a lot of careful
specification.

We have only discussed methods based on the Gibbs sampler. Of course
other extremely flexible MCMC methods exist, such the reversible jump
approach introduced by Green (1996). All MCMC methods require care-
ful implementation and monitoring, and other approaches should also be
considered. For many model selection problems involving generalised lin-
ear models, an alternative approach is through asymptotic approximation.
Raftery (1996) has provided a series of Splus routines for this kind of cal-
culation. Such methods can be used in conjunction with the Gibbs sampler
approaches discussed here.

Any Bayesian model selection requires careful attention to prior specifica-
tion. For discussion of elicitation of prior distributions for variable selection,

see Garthwaite and Dickey (1992) and Ibrahim and Chen (1998).
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include, # conditional prior probabability for gi
pmd1[9], # model indicator vector
mdl, # code of model
b[N], # model coefficients
mean[N], # mean used in pseudoprior  (GVS only)
se[N], # st.dev. used in pseudoprior(GVS only)
bpriorm[N], # prior mean for b depanding on g
taulN], # model coefficients precision
c, # precision multiplicator (SSVS only)
x[N,N], # design matrix
z[N,N], # matrix used in likelhood
n[N], # Poisson cells
lambda[N], # Poisson mean for each cell

# term indicator vector

vl ;
in "exllog.dat", mean, se in ’proplll.dat’;
"ex1ll.in";

¢c<-1000.0 # SSVS only

calculatlon of the z matrix used in likelihood

for (i in 1:N) { for (j in
z[i,j1<-x[i,jI*b[jl*g[j] # For GVS/KM
z[i,jl<-x[i, jI*b[j1; # For SSVS
}r

model configuration
for (i in 1:N) {
log(lambdalil)<-sum(z[i,]);
n[il~dpois(lambdalil) T
defining model code
0 for [AI[BI[C], 1 for [AB]LC], 2 for [AC][BI,
3 for [AB]J[AC], 4 for [BC][A], 5 for [AB][BC],
6 for [ACI[BC], 7 for [ABI[BCI[CA],15 for [ABCT.

md1<-g[5]+2*g[6]+4*g[7]1+8xg[8];

for (i in 0:7) { pmdl[i+1]<-equals(mdl,i) }
pmdl[9]<-equals(mdl, 15)

Prior_for b model coefficient

tau[1]1<-0.1;

bpriorm[1]<-0.0;

b[1] dnorm(bpriorm[1],taul1]);

for (i in 2:N) {

GVS using se,mean from pilot run

taulil<-gl[il/2+(1-g[i]1)/(se[il*se[il);
bpriorm[il<-mean[il*(1-g[il);

Kuo and Mallick (prior indepedent of g[il)

taulil<-1/2;
bpriorm[il<-0.0;

SSVS PRIOR SET-UP
taul[il<-pow(c,2-2%g[i])/2;
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# bpriorm[i]<-0.0;
#
b[i]“dnorm(bpriorm[i],tauli]);
# - L . -
# defining prior information for gi in such way that
# allow only hierarhical models with equal probability.
#

include<-(1-g[8])*0.5+g[8]*1.0;
g[8] dbern(0.1111111);
g[7]“dbern(include);
gl[6]“dbern(include);
g[5]"dbern(include);

for (i in 1:4) { glil~dbern(1.0)}}

6.2 Code for Logistic Models with 2 Binary Explanatory
Factors
model Binomial;

#

# LOGISTIC REGRESSION VARIABLE SELECTION WITH BUGS

# (c) OCTOBER 1996 FIRST VERSION

# (c) OCTOBER 1997 FINAL VERSION

# WRITTEN BY TOANNIS NTZOUFRAS

g ATHENS UNIVERSITY OF ECONOMICS AND BUSINESS

# SSVS: Stochastic_Search Variable_ Selection

# KM : Kuo and Mallick Gibbs sampler

ﬁ GVS : Gibbs Variable Selection

const ) ) X

N = 4; # number of binomial experiments

var
include, # conditional prior probabability for gi
pmd1[5], # model indicator vector
mdl, # code of model
b[N], # model coefficients
mean[N], # mean used in pseudoprior (GVS only)
se[N], # st.dev, used in pseudoprior (GVS only)
bpriorm[N],# prior mean for b depanding on g
tau[N], # model coefficients precision

# c, # precision multiplicator (SSVS only)
x[N,N], # design matrix
z[N,N], # matrix used in likelhood
r[n], # number of successes in binomial
n[N], # total number of observations for binomial
plNI, # probability of success for binomial model

gnd; # term indicator vector
data r,n,x in "exllogit.dat", mean, se in ’propl.dat’;
inits in "exl1.in";

{

# c<-1000 # SSVS only

#

# calculation of the z matrix used in likelihood

for (i in 1:N) { for (j in 1:N) {

z[i,jl<-x[i,jl*b[jl*glj]l # for GVS

# z[i,j1<-x[i,jI1*b[j]; # for SSVS

N 3}

# model configuration
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for (i in 1:N) {
rlil"dbin(plil,n[il);
logit(plil)<-sum(z[i,]) }

defining model code

0 constant, 1 for [A]l, 2 for [B],

3 for [A][B], and 6 for [AB]

md1<-g[2]+2xg[3]+3*g[4];
pmdl[1]<-equals(mdl,0)
pmdl[2]<-equals(mdl,1)
pmdl[3]<-equals(mdl,2)
pmdl [4]<-equals(mdl,3)
pmdl[5]<-equals(mdl,6)

Prior_for b model coefficient
taul1]<-0.1;

bpriorm[1]<-0.0;
b[1]"dnorm(bpriorm[1],taul1]);
for (i in 2:N) {

GVS using se,mean from pilot run

taulil<-gl[il/8+(1-glil)/(se[il*selil);
bpriorm[il<-mean[il*(1-g[il);

Kuo and Mallick proposal is indedent of gl[il

taulil<-1/8;
bpriorm[il<-0.0;

SSVS PRIOR SET-UP

taul[il<-pow(c,2-2%g[i])/8;
bpriorm[i]<-0.0;

bl[i]l~“dnorm(bpriorm[i],taulil);
¥

defining prior information for gi in such way that
allow only hierarhical models with 0.2 probability.

gl4]~dbern(0.2);
include<-(1-g[4])*0.5+g[4]*1.0
gl2]~dbern(include);
g[3]"dbern(include);
gl1]~dbern(1.0) 3
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We construct and present a Markov Chain Monte Carlo (MCMC) algorithm for the
estimation of posterior odds and probabilities of alternative models used to evaluate
competing hypotheses regarding three common discrete distributions involved in the
modeling of the outstanding claim counts in actuarial science. The proposed method-
ology involves advanced statistical techniques of Bayesian modeling which make use of
the Gibbs sampling variable selection algorithm. One of the main advantages of this ap-
proach over the popular reversible jump algorithm (Green, 1995) is its straightforward
implementation using the MCMC language tool of WINBUGS software (Spiegelhalter
et al. 2003). The methodology is applied to a real data set. Directions regarding the
implementation in WINBUGS are provided at the Appendix. It is worth noting that
although the context of the problem is actuarial, the methodology can be applied to
any field of science where the aim is the comparison or selection of discrete distributions
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1 Introduction

Modeling random events has always generated a great deal of research interest in Science,
Economics and Engineering. Relevant topics range from the level of rainfall and car traf-
fic to market penetration of a certain commodity and the pricing of an option. However,
the researcher is often uncertain about the appropriate statistical representation of the phe-

nomenon under study. Initially, the most pressing statistical question she/he faces is
Which is the best statistical distribution to use?
which usually leads to the more specific one:
How do we evaluate the available ‘candidate’ distributions and choose the best one(s)?

To this end, Bayesian Statistics seems like a natural approach since any prior beliefs
about the unknown parameters may affect the final decision. Therefore, the researcher must
incorporate these beliefs while conducting the analysis of the experiment. However, most of
the Bayesian algorithms on the topic of Bayesian model comparison are so computationally
intensive that effectively forbid most practitioners from applying them to their work. Hence,
the need for a simpler and software-friendlier approach is apparent.

In actuarial science particularly, the choice of the distribution for the modeling and predic-
tion of outstanding claims incurred in an insurance company has been extremely important
to both practitioners and academics. It is common practice for these companies not to pay
the outstanding claims immediately but with some delay. Hence, an accurate representation
of the number of outstanding claims is of important practical significance. In addition to
that, the Bayesian paradigm has become an integral research tool in the actuarial discipline
(see Makov, 2001 for a review). However, in the outstanding claims problem, the Bayesian
approach has been mostly confined to parameter estimation (see Verrall 1990, de Alba 2002,
Ntzoufras and Dellaportas 2002) rather than to testing hypotheses about distributions.

The contribution of this paper is twofold. Firstly, we develop a new algorithm for the
estimation of posterior model odds based on the idea of Gibbs variable selection algorithm
of Dellaportas et al. (2002). The algorithm is used to evaluate and compare three discrete

statistical distributions for the modeling of the outstanding claim counts in actuarial science
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using the Bayesian approach. The proposed methodology is computationally simpler and
can be generalized to a larger number of candidate distributions as well as to any other
similar research problem in another field (e.g. compare the distributions of arrivals in a
queue). Secondly, we implement our algorithm on the popular, freely available, software
WINBUGS (Spiegelhalter et al. , 2003). Competing methods such as RIMCMC can not be
implemented via WINBUGS. This is an important advantage since many researchers favoring
the Bayesian approach are familiar with WINBUGS. Hence, they can now implement our
proposed methodology directly following the detailed description provided at the Appendix
of this paper.

The paper is organized into five further sections. Section 2 reviews the basic formulation
of Bayesian model comparison. A description of the distributions for the modeling of the
outstanding claims is provided in Section 3. In Section 4 we describe in detail the Gibbs
sampling algorithm constructed for our hypothesis tests and its advantages over the existing
techniques. Section 5 analyzes the implementation of the method in a specific example
of insurance claims data using WINBUGS. Finally, conclusions and closing remarks are

presented in Section 6.

2 Bayesian Inference

Generally, Bayesian inference is based on constructing a model m, its likelihood f(y|0,,,m)
and the corresponding prior distribution f(6,,|m), where 6,, is a parameter vector and y
is the data vector. Although, inference is primarily based on the posterior distribution
f(0,]y,m), we may also be interested in quantifying model uncertainty by estimating the
posterior model probability f(m|y).

Let us consider two competing models my and my. If f(m) is the prior probability of
model m, then, using the Bayes theorem, the posterior odds POy, of model mg versus model

my are given by

= X = By X

(maly)  fylma) — fma)

POy, = ;(m0|y) f(y\mo) f(mo) (1)

(
f(ma)
Llmo) are the ‘Bayes factor’ and the ‘prior model odds’ of model m, against

where By, and Fom)

model my, respectively. The quantity f(y|m) involved in the Bayes Factor is defined as the
marginal likelihood of model m and is given by f(y|m) = [ f(y|@m,m)f(0,,|m)dO,,. The
Bayes factor Bjg, of model m; against my, evaluates the evidence against the null hypothesis
which is a familiar concept to classical significance tests. Thus, large values of, say, By
(usually greater than 12) indicate strong posterior support of model mq against model m;
For more details on Bayes factors see Kass and Raftery (1995). Alternatively, when we
consider a set of competing models M = {my,ma, -+, mjrq}, then we focus our interest on

the posterior probability of model m € M, defined as

1
__ fym)fm)
Jmly) = m’%M f(ylma) f(my) (WEE:M POmhm)

where M and | M| denote the set and the number of models under consideration respectively.

The integrals involved in the computation of the posterior model probabilities are mostly
analytically intractable. Therefore asymptotic approximations or alternative computational
methods must be frequently employed. One of the most popular techniques for calculation of
these quantities is the Markov Chain Monte Carlo (MCMC) methodology (see Gilks et al. ,
1996) and its recent extensions (reversible jump MCMC algorithm or RIMCMC) in varying
dimension models (Green, 1995). Moreover, RIMCMC methodology helps us to account for
model uncertainty using Bayesian model averaging techniques (see Draper, 1995, Chatfield,
1995, Kass and Raftery, 1995, Cairns, 2000). However, this methodology is demanding in
both the design stage and the implementation.

3 Distributions for claim counts

In this section we focus on three popular distributions for modeling the marginal claim
counts, more specifically the simple Poisson distribution (Ter Berg, 1980), the negative
binomial (Verrall, 2000) and the Generalized Poisson distribution (see Consul, 1989) denoted
by my, my and mgy respectively. The Generalized Poisson distribution is also known as
Lagrangian Poisson distribution. Consequently, the simple Poisson model can be regarded

as a special case of either the negative binomial or the Generalized Poisson distribution.




Let us assume data y;, ¢ = 1,...,n. Consequently, the simple Poisson model is given by

i) = B,
It is well known that for the Poison distribution the mean equals the variance. This property
is not common in real data sets where the sample variance usually exceeds the sample mean.
For this reason alternative models that allow for over-dispersion relative to the simple Poisson
model have been considered. The variance to the mean ratio, called Dispersion Index (DI),
is usually calculated as a measure for data dispersion; see for example Douglas (1980). For
the Poisson random variable the Dispersion Index is equal to one.

An alternative model for this type of data is the negative binomial distribution given by

Pl 0,ma) = r(l;,-(?: I)lrgzv) (A i 19)% <>\ i 19>19 @

where ¥ > 0. Although the mean of the negative binomial model is the same as in the
Poisson model, E(y;) = A, the variance now also depends on the parameter 9 since V (y;) =
A+ A%/9. The Poisson model is a limiting distribution of (2) for ¥ — co. We may adopt
the parameterization ¥ = A/¢. For the negative binomial distribution, the Dispersion Index
is equal to DI = 1+ ¢. For ¢ — 0 the above distribution reduces to the simple Poisson
distribution.

Finally, the Generalized Poisson model with parameters A and w, is defined in the fol-

lowing way:

1=+ w1 e
f(yi,‘A7w,m3) _ (1 7&))A1{( ) y.‘ y} e {(1—w)Xi+ ym}_ (3)

According to Ter Berg (1996), valid values for w are within the interval [0, 1). Typically, the
distribution can be defined for |w| < 1 but negative values lead to under-dispersion which is
not a common property of claim count data. For this reason we will not consider this case
in the present paper. For w = 0, the above distribution reduces also to the simple Poisson
model with mean X\. The mean of y; is given by E(y;) = A while the variance and the
dispersion index are obtained by V (y;) = A(1 —w)~2? and DI = (1 — w)~2 respectively. This
parameterization is beneficial for the interpretation of the parameters of the three models

and also simplifies the implementation of the MCMC algorithm described below.
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4 Gibbs Sampling for Testing Hypotheses.

Gibbs sampling has been widely used for Bayesian model, variable selection and hypothesis
tests; see George and McCullogh (1993), Carlin and Chib (1995), Kuo and Mallick (1998)
and Dellaportas et al. (2002). The Gibbs sampling approach presented here is mainly based
on the approach of Gibbs variable selection of Dellaportas et al. (2002) and although some
concepts are common with the algorithm of Carlin and Chib (1995), it is more flexible since
it allows common parameters among different models avoiding over-parameterization and
generation of nuisance parameters.

Without loss of generality, we describe the methodology for a general setup of comparing
two nested models m; and my. We wish to test that a parameter sub-vector of the super-
model m; is constrained to a sub-model mg. Incorporation of more models (or even non-
nested models) is possible in a similar manner.

Let us denote the parameter vectors of models mgy and m; by 8,,, and 0,,, respectively.

Then we have the parameter vector 87 = (67 67

o O\mo )i Where 0y, denotes the parameters

of model m; that do not appear in the sub-model mg. We should further note that com-
mon parameters should have similar interpretation otherwise posterior distributions will be
different and the algorithm will fail (for example in our distributions the parameter A\ has
exactly the same interpretation since it is the mean of y; in all models).

The hypothesis we wish to test takes the form Hy : O\, = po (model myg) versus
Hy : 6\, # o (model my). Model my is exactly the same (in terms of likelihood) with
model m; with parameter vector (67, O{mO = pul).

In order to construct our algorithm we employ a latent binary indicator 7 taking values
zero and one when supporting the null or the alternative hypothesis. The posterior distri-
bution of this indicator will give us the posterior probability of each model (or hypothesis)
and/or the posterior odds for each model (or hypothesis) comparison. When no prior infor-
mation concerning the prior model weights f(m;) is provided then we use f(y) = 1/2 for
v=0,1.

For v = 0,1 the model likelihood is now rewritten as

f(y|9m~, s mw) = f(ylemm "770)17"/.)¢‘(?J|0ml77711)’Y




while the prior distributions are given by f(0,,,,m,,~) for i = 0,1. If v = ¢ then we have

the usual prior distributions

f(emwmw"/) = f(0m7|m'y)f(7)~

If v # 4, the resulting distributions are called pseudo-prior distributions since they do not
affect the posterior distributions; for details see Carlin and Chib (1995) and Dellaportas
et al. (2002). More specifically,

SOy, mo,y=0) = f(Bn,|mo)f(y=0) (4)
= f(emm e\mn ‘7”0)f(7 = 0)
f(emo|m0)f(0\mo|0mov mO).f(7 = 0)

Thus, the pseudo-prior distribution in (4) can be rewritten as a product of an actual prior
distribution of simpler model mq given by f(6,,,|m0) and an additional pseudo-prior distri-
bution f(6\mg|6@me, mo) for the non-common parameters. This distribution is specified via a

pilot run of model m;. Similarly, the pseudo-prior

f(gmuﬂnlr’y = 1) = f(gmo|m1)f(7 = 1)

is the prior of model m; for the common parameters 6,,,. Using this setup, the resulting

Gibbs Sampler is given by
1. Sample model parameters:

o If v =0 then

(a) Sample B,,, from the conditional posterior distribution

F(Brg|mo, y) o< f (Y18, mo, ) f (B lmo)-

(b) Sample B,,,, from the pseudo-prior distribution f(B\,,,|Bm, m1)-

mo?
e If v =1 then sample 3,, = (,BZ;O, ﬁ{mO) from the conditional posterior distribu-
tion f(3,,,Im1,y) o< f(Y|B,,. m1, )f By, Im1)-

2. Sample v from the posterior distribution f (|0, O\mo,y) = Bernoulli (1%2) where
Q) is given by

f (ml)
f(mo)

where LR, PRy and PR,y denote the likelihood ratio, and the prior ratios given by

_ f(ywmnml) f(emro|m1) f(0\7n0|6m077n1)_
f(ywmm 7n0)7 f(emo|mo) f(e\muwmov mO)

Note that common parameters are assumed to have the same interpretation hence the

Q = LRxPRyx PRy x

LR PR, = and PRy =

prior distributions for the two models can be set equal resulting to PRy = 1.

The approach described above can be easily extended for non-nested models say, m;
and my much like our comparison between the negative binomial and generalized Poisson
models. Let us assume a model mg with parameter vector 6,,, including all parameters
common in both model m; and msy (if no common parameters can be identified, then my
can be set to the null model with no parameters). Then we may rewrite the parameters
01, = (Omg, Om,\m,) for i = 1,2 and follow the same approach as in the previous section. In
limiting cases, we may identify links between parameters and use suitable transformations in
order to automatically specify the pseudo-priors and avoid having to use pilot-run estimates
(the approach is analogous to setting suitable transformations in reversible jump MCMC
algorithm). Such a case is here where 8,,, = (\,?) and 0,,, = (A\,w). The non-common
parameters ¥ and w can be efficiently linked by equating the dispersion indexes of the two
models.

Unlike reversible jump MCMC, the proposed algorithm is simpler because it is based
on Gibbs sampler rather than Metropolis Hastings algorithm. Since it is a Gibbs sampling
based algorithm it can be implemented in a straightforward manner using the freely available
MCMC software of WINBUGS. It is flexible enough to handle nested models or models
with common and non-common parameters. For this reason, it can be used in a wide
variety of similar problems and can be easily extended to accommodate a larger number of

distributions. An application of the aforementioned methodology is presented in Section 5.




5 Implementation in Insurance Claims Data

In this section we demonstrate the proposed model formulation in the insurance claim data
of Belgium for the year 1993 (Denuit, 1997). The determination of the prior distributions,
algorithm specifications and the results are presented below. Details for the implementation
on the WINBUGS software are given at the Appendix. The full code is available from the

authors upon request.

5.1 Prior Distributions

The specification of the prior distributions is very important in Bayesian model comparison.
As we have already mentioned, we examine three models: m; (Poisson), my (negative bino-
mial) and mjy (generalized Poisson) with parameter vectors 6, = ()), 0., = (A, 9¥)7 and
0., = (A, w)T respectively.

In order to be consistent across models we must specify the same prior distributions over

the common parameter A\. Hence, we consider a Gamma distribution, that is,
f(Alm;) = Gamma(0.01, 0.01) for i = 1,2, 3.

The effect of this choice on the model comparisons will be minimal since A is a common
parameter in all models.

The prior distributions f (9|, m2) and f(w|A, ms) will be determined in a way such that
the Dispersion Index will induce the same a priori information for both models. Hence, for
the prior of w we use the Uniform non-informative prior distribution which gives the equal

probability to any interval of the same range, that is,
f(w|mg) = Uniform(0, 1)

while the prior f(J|ms) is constructed by setting the dispersion indexes equal for the two

distributions resulting to
(1-w)?
Y= A—. 5
w(2—w) (5)

Assuming uniform prior for w, the resulting distribution for 1 is a scaled Beta type II prior

distribution given by
1
FOOIN, mg) = 5,\19*2’(1 + A/0) 32

5.2 Algorithm specifications: the pseudo-prior distributions

The pseudo-prior distributions are defined by pilot runs estimates. Hence for model mg we

use a Beta distribution, that is,
f(wlmy) = Beta(a,b)

where the parameters @, b of the Beta distribution are matched with the posterior mean and

variance of a pilot run of model my. Hence @ and b are obtained by

L@ L, ab
Ta+b Y (a+b)2(a+b+1)
which leads to
—1—c ) e
a:@(%iﬂq), b—al=®.
02 w

where @ and &2 are the posterior mean and variance of w estimated by a pilot run. The
efficiency of the chain can be improved by suitably increasing or decreasing the variance of
the pseudo-prior distribution in order to achieve high acceptance rates. In our example the
pseudo-priors where estimated from a pilot run of 1000 iterations and were found w = 0.039
and & = 0.0036 resulting to f(w|mq) = Beta(112.7,2778.1).

The pseudo-prior f(¢|my) is defined indirectly by specifying a pseudo-prior for w and
using equation (5). When comparing negative binomial and generalized Poisson models
then pseudo-priors are indirectly defined using (5). This results to pseudo-priors which take
values directly from the posterior distribution of the competing model and transforming it
appropriately.

Finally, if we wish to estimate the log-Bayes posterior odds or the Bayes factor with
increased precision, we may use initial model probabilities f(O)(mi) which will result to
posterior weights in the interval (0.40 - 0.60) and then recalculate the desired posterior

model odds using the following equation:

(0) (11, “(my;
log PO;; = log POZ(?) —log <%) +log <;57:Z))> ©)

where f((m;) are the initial model probabilities only used to estimate posterior odds with

precision, POE?) are the posterior model odds estimated using the initial model probabili-

ties while f(m;) and log PO;; are the desired prior probabilities and posterior model odds
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respectively. When there is no prior information concerning the model space, the log Bayes
factor is estimated by the above equation eliminating the log-ratio of the actual prior model
probabilities which is equal zero. In our example we have used log f© (my)/f©(m,) = 81,
log fO(mg)/fO(my) = 82 and log f©(m3)/f©@(my) = 0. TInitial values of f©(m) can
be obtained using simple estimators of the marginal likelihood (for example using Laplace

approximation; for details see Kass and Raftery, 1995).

5.3 Results

Results for the Belgium 1993 dataset are provided in Table 1. Trace, density and probability
plots of the dispersion index and the model indicator for each pairwise comparison are also
provided in Figures 1-3. All results have been generated using 1,000 iterations as an initial
burn-in period while keeping additional 10,000 iterations for the estimation of the posterior
distribution.

Regarding Table 1, the first two columns provide details of the compared models. In the
third column we present the initial model odds used to make the chain mobile (i.e. ‘jump’
from one model to the other) while the next two columns display the MCMC results directly
from the WINBUGS output. The last column presents the final estimate of the logarithm
of the Bayes Factor for each model comparison using equation (6), the initial model odds
(third column) and the MCMC results. For example, the second line of the Table depicts
the comparison of the Generalised Poisson versus the Poisson model (model m3 vs. model
mg). The initial model odds was set equal to 82 in favor of the Poisson model while the
Gibbs sampling algorithm yielded the posterior model probability for the Generalised Poisson
model equal to 0.533. Furthermore, the logarithm of the posterior model odds, log PO;(;?), is
equal 0.134. Using (6), we derive the final estimate for the logarithm of the posterior model
odds equal to 82.134 which strongly supports the Generalised Poisson model.

Figures 1-3 are produced directly from WINBUGS software and are provided to give some
insight for the results and the convergence of the algorithm. In all figures, plot (a) depicts
the marginal posterior distribution of the Dispersion index for each comparison using the
corresponding initial model odds. In Figures 1 and 2 we clearly see a spike at the value of

one. This is natural since the Poisson distribution is compared with the Negative Binomial
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Figure 1: Plots from MCMC Output for Comparison of Negative Binomial vs. Poisson model:

(a) Histrogram of the Margingal Posterior Distribution of DI; (b) Posterior Model Weights
(0=Poisson, 1=Neg.Binomial); (c¢) Trace Plot of DI; (d) Trace Plot of Model Indicator .
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Figure 2: Plots from MCMC Output for Comparison of Generalized Poisson vs. Poisson

model: (a) Histrogram of the Margingal Posterior Distribution of DI; (b) Posterior Model

Weights (0=Poisson, 1=Gen.Poisson); (c) Trace Plot of DI; (d) Trace Plot of Model Indicator
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Figure 3: Plots from MCMC Output for Comparison of Generalized Poisson vs. Negative

Binomial model: (a) Histogram of the Margingal Posterior Distribution of DI; (b) Posterior

Model Weights (0=Neg.Binomial, 1=Gen.Poisson); (¢) Trace Plot of DI; (d) Trace Plot of

Model Indicator ~.
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and Generalised Poisson, respectively. When the chain supports the Poisson model (in both
cases) then the produced DI is equal to one. In most cases, when two models are compared
using MCMC, the marginal posterior distribution of a parameter of interest will produce
two modes (one for each model) unless the parameters have similar behavior in both models
(this is the case in Figure 3a) or one model is not supported at all (i.e. has low posterior
probability). Figures 1b-3b present a graph of the posterior distribution of v, f(v|y), that
is the posterior model weights for each comparison (also provided in the fourth column of
Table 1). Figures 1c-3¢ are Trace plots of the DI for each comparison. In common MCMC
(when only parameter estimation in a single model is considered) we use such graphs to
monitor the convergence of the chain. Plots similar to 3¢ indicate convergence. In MCMC
constructed for model comparison, it is natural to expect violent jumps from the posterior
distribution of one model to the other as in plots lc and 2c. Such jumps are not observed
in the comparison of Generalised Poisson and Negative Binomial model because in both
models the distributions of the dispersion index are quite close (as plot 3a also indicated).
Finally, Figures 1d-3d are also trace plots of the model indicator y. These plots are used
to monitor the convergence of y. A large number of jumps (changes from one model to the
other) indicates that the algorithm works efficiently. When the chain remains in one model
for many iterations then the graph presents a gap of white area. In all comparisons, the
chains were highly mobile and this is also depicted in the corresponding graphs with few
short white sequences.

As a conclusion, we observe that the data strongly support the negative binomial and
the generalized Poisson models in favor of the simple Poisson model (log-Bayes factors equal
to 81.45 and 82.13 respectively). For the comparison between generalized Poisson and neg-
ative binomial models we may calculate the corresponding log-Bayes factor directly by the
difference of the above log-Bayes factors (equal to 0.69 in favor of the generalized Poisson
model) or by generating results from an MCMC directly sampling from these two models
(log Bayes factor equal to 0.71). This leads to a slight advantage of the Generalized Poisson
Model over the Negative binomial one (Bsy ~ 2 and posterior probability f(ms|y) = 0.671).

15

Compared Models MCMC Results Estimates
i,j | log PT]\/[](?) FO(myly) log POZ(;]) log B;;
Neg.Bin. vs. Poisson 2,1 81 0.610 0.447 81.447
Gen.Poisson vs. Poisson 3,1 82 0.533 0.134 82.134
Gen.Poisson vs. Neg.Bin. 3,2 0 0.671 0.714 0.714

Table 1: Posterior Odds and Probabilities for the Belgium 1993 dataset; 1=Poisson, 2=Neg-
ative Binomial, 3=Generalized Poisson Model; [PT]VI](?) = fO(my)/FO>m;), FO(m,|y) pos-
terior weights obtained from MCMC using PTZWJ(? )].

6 Conclusions

In this paper, we have developed an advanced MCMC algorithm based on the idea of Gibbs
variable selection in order to compare three statistical distributions that model the marginal
claim counts in actuarial science. The proposed algorithm is simpler than the existing
ones such as RIMCMC and can be implemented in the software-friendly environment of
WINBUGS. Furthermore, it can be extended to a wide variety of applications that include
model comparisons. A larger number of distributions may be examined as well.

The results from our case study demonstrate the superiority of the Negative Binomial and
the Generalized Lagrangian Poisson distributions over the simpler Poisson. Between the first
two distributions, the Generalized Langrangian distribution seems to be slightly supported a-
posteriori. Further research may include covariates on A in order to treat more sophisticated
cases such as the prediction of outstanding claim reserves. Another important issue is the
possible extension of our proposed methodology to a larger variety of claim distributions.
Using this approach, we may compare different models involved in the claim counts and
amounts literature. Implementing Gibbs sampling in a wider variety of actuarial models
and problems will enable us to use Bayesian model averaging techniques which increase the

predictive ability of any quantity of interest.
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A  Appendix: Implementation Using WINBUGS

Data: Data are in the form of two vectors: y[ ] for the values of y and w[ ] the frequency

of each value of y.

Likelihood: The likelihood is defined using the method of zeros and ones (see Spiegelhalter
et al. 2003, in section: Tricks: Advanced Use of the BUGS Language). This allows us to use
any form likelihood and does not restrict us in the limited number of distributions available

in WINBUGS. If K is the number of observed values of y then the likelihood is defined as:

for (i in 1:K) {

ones[i]<-w[i];

ones[i]~dbin( p[il, w([il );
plil<-gammaxexp(loglikel[i])+(1-gamma)*exp(loglikeO[i])
}

where likelihood1[i] and likelihoodO[i] are the densities of the distribution models
my and my, respectively, evaluated at y;. In our examples 1likelihoodO[i] is set equal
to the Poisson log-density while likelihood1[i] is set equal to the negative binomial or
generalized Poisson log-density depending on the comparison we wish to implement. The

WINBUGS code for setting the distribution used in this paper follows:

# likelihood of poisson

loglikeO[i] <- -lambda + y[i] * log( lambda ) - logfact( y[i] );

#likelihood of negative binomial

loglikel[i] <- loggam( y[i] + theta ) - loggam( y[il+1 ) - loggam( theta )
+ y[il*log( lambda ) + theta* log( theta )
-(y[il+theta)*log(lambda+theta) ;

#likelihood of generalized poisson

loglike1[i] <- log(l-omega)+log(lambda)
+(y[i]-1)*log( (1-omega)*lambda+omega*y[i] )

-( (1-omega)*lambda+omegaxy[i] ) -logfact(yl[i]) ;

17

Prior Distribution of A: The prior distribution on A is common for all models. Since no

information is available we use a Gamma(0.01,0.01) prior distribution defined in WINBUGS

by

lambda~dgamma(0.01,0.01);

Prior and Pseudo-prior Distributions on 9 : Here we set 9 indirectly as a function of
w which follows Uniform(0,1) - or equivalently Beta(1,1) - prior distribution when v = 1.
When v = 0 then we have the pseudo-prior for w which is set as a beta distribution with
parameters specified by a pilot run. The WINBUGS variables wmean and s2 are the posterior
mean and variance of w when we run the negative binomial model. Then the parameters
abar and bbar of the beta pseudo-prior are matched using the moments estimates. The
parameter c2 is used to adjust the variance of the pseudo-prior. The relevant code for the

Belgium 1993 example is the following:

theta<-lambda*(1-omega)*(1-omega)/ (omega* (2-omega))
omega~dbeta(a,b);

a<-gamma*1 +(1-gamma)*abar;

b<-gamma*1 +(1-gamma)*bbar;

abar<-wmean*( wmean* (1l-wmean)/(c2*s2)-1);
bbar<-abar*(1-wmean) /wmean;

wmean<-0.039;

s2<-pow(0.0036,2) ;

c2<-0.20;

Prior and Pseudo-prior Distributions on w: The approach similar as above with the

difference now we directly estimate w. The WINBUGS code for example one is given by

omega~dbeta(a,b);
a<-gamma*1l +(1-gamma)*abar;
b<-gamma*1 +(1-gamma)*bbar;

abar<-wmean*( wmean*(1-wmean)/(c2%s2)-1);
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bbar<-abar*(1-wmean) /wmean;
wmean<-0.039;
52<-pow(0.036,2) ;

c2<-1.0;

Prior on Model Indicator v: When no prior information is available and we wish to
roughly estimate the posterior model probabilities then we simply set that 7 to follow a

Bernoulli distribution with probability 1/2 defined by
gamma~dbern( 0.5 );

When we wish to estimate the posterior model odds with higher precision then we may use a
prior such that the posterior model weights are close to 0.5 (this can be achieved by repeated
pilot runs) and then calculate backwards the Bayes factor using equation (6). In such case

we use the code for example one are given by

gamma~dbern( pmp );

# values for the comparison Poisson vs. Negative Binomial
pmp2<- -81;

pmp<-exp (pmp2) / (1+exp (pmp2) )

# values for the comparison Poisson vs. Generalized Poisson
pmp2<- -82;

pmp<-exp (pmp2) / (1+exp (pmp2)) ;

Comparison of Negative Binomial and Generalized Poisson: The approach is sim-
ilar as above but no pseudo-prior is needed since we link the parameters by equating the
dispersion indexes of the two models. Hence the WINBUGS code for ¥ and w is simply given
by

theta<-lambda*(1-omega)* (1-omega)/ (omegax (2-omega))
omega~dbeta(1l,1);

19

References

(1] Cairns, A.J.G. (2000). “A discussion of parameter and model uncertainty in insurance.”

Insurance: Mathematics and Economics, 27, 313-350.

[2] Carlin, B.P. and Chib, S. (1995). “Bayesian Model Choice via Markov Chain Monte
Carlo Methods.” Journal of the Royal Statistical Society, B, 157, 473-484.

[3] Chatfield, C. (1995). “Model uncertainty, data mining and statistical inference.” (with
discussion) Journal of the Royal Statistical Society, A, 158, 419-466

[4] Consul, P.C. (1989). “ Generalized Poisson Distribution: Properties and applications®.
New York, Decker.

[5] de Alba, E. (2002). “Bayesian estimation of outstanding claim reserves.” North Ameri-
can Actuarial Journal, 6(4).

[6] Dellaportas, P., Forster, J.J. and Ntzoufras, I. (2002). “On Bayesian Model and Variable
Selection Using MCMC.” Statistics and Computing, 12, 27-36.

[7] Denuit, M. (1997). “A new distribution of Poisson-type for the number of claims.” Astin
Bulletin, 27, 229-242

[8] Douglas, J.B. (1980). Analysis of Standard Contagious Distributions. Statistical Distri-
butions in Science Work Series 4, International Cooperative Publishing House, Fairland,
Maryland, USA.

[9] Draper, D. (1995). “Assessment and propagation of model uncertainty (with discus-

sion).” Journal of the Royal Statistical Society, B, 57, 47-97

[10] George, E.I. and McCulloch, R.E. (1993). “Variable Selection via Gibbs Sampling.”
Journal of the American Statistical Association, 88, 881-889.

[11] Gilks, W.R., Richardson S. and Spiegelhalter, D.J. (1996). Markov Chain Monte Carlo
in Practice, Chapman and Hall, UK.

20




[12] Green, P. (1995). “Reversible Jump Markov Chain Monte Carlo computation and

Bayesian model determination,” Biometrika, 82, 711-732

[13] Kass, R.E. and Raftery, A.E. (1995). “Bayes factors.” Journal of the American Statistical
Association, 90, 773-795.

[14] Kuo, L. and Mallick, B. (1998). Variable Selection for Regression Models. Sankhya B, 60,
65-81.

15

Makov, U.E. (2001), “Principal applications of Bayesian methods in Actuarial science:

A perspective”, North American Actuarial Journal, 5(4), 53-73

=
=2

Ntzoufras, I. and Dellaportas, P. (2002). “Bayesian Modelling of Outstanding Liabilities
Incorporating Claim Count Uncertainty.” (with discussion) North American Actuarial

Journal, 6, 113-128.

7

Spiegelhalter, D., Thomas, A., Best, N. and Lunn, D. (2003). “WinBUGS User Man-
ual, Version 1.4”, MRC Biostatistics Unit, Institute of Public Health and Department
of Epidemiology & Public Health, Imperial College School of Medicine, available at

http://www.mrc-bsu.cam.ac.uk/bugs.

18

Ter Berg, P. (1980). “On the loglinear Poisson and Gamma model.” ASTIN Bulletin,
11, 35-40.

[19] Ter Berg, P.(1996). “A loglinear Lagrangian Poisson model.” ASTIN Bulletin, 26, 123-
129.

20

Verrall, R. (1990). “Bayes and Empirical Bayes estimation of the chain-ladder model.”
ASTIN Bulletin, 20(2), 217-243.

21

Verrall, R. (2000). “An investigation into stochastic claims reserving models and the

chain-ladder technique.” Insurance: Mathematics and Economics, 26, 91-99.

21




J. R. Statist. Soc. B (2002)
64, Part 4, pp. 583-639

Bayesian measures of model complexity and fit

David J. Spiegelhalter,

Medical Research Council Biostatistics Unit, Cambridge, UK

Nicola G. Best,
Imperial College School of Medicine, London, UK

Bradley P. Carlin
University of Minnesota, Minneapolis, USA

and Angelika van der Linde

University of Bremen, Germany

[Read before The Royal Statistical Society at a meeting organized by the Research
Section on Wednesday, March 13th, 2002, Professor D. Firth in the Chair]

Summary. We consider the problem of comparing complex hierarchical models in which the
number of parameters is not clearly defined. Using an information theoretic argument we derive
a measure pp for the effective number of parameters in a model as the difference between
the posterior mean of the deviance and the deviance at the posterior means of the parameters
of interest. In general pp approximately corresponds to the trace of the product of Fisher’'s
information and the posterior covariance, which in normal models is the trace of the ‘hat’ matrix
projecting observations onto fitted values. Its properties in exponential families are explored.
The posterior mean deviance is suggested as a Bayesian measure of fit or adequacy, and the
contributions of individual observations to the fit and complexity can give rise to a diagnostic
plot of deviance residuals against leverages. Adding pp to the posterior mean deviance gives
a deviance information criterion for comparing models, which is related to other information
criteria and has an approximate decision theoretic justification. The procedure is illustrated in
some examples, and comparisons are drawn with alternative Bayesian and classical proposals.
Throughout it is emphasized that the quantities required are trivial to compute in a Markov chain
Monte Carlo analysis.

Keywords: Bayesian model comparison; Decision theory; Deviance information criterion;
Effective number of parameters; Hierarchical models; Information theory; Leverage; Markov
chain Monte Carlo methods; Model dimension

1. Introduction

The development of Markov chain Monte Carlo (MCMC) methods has made it possible to
fit increasingly large classes of models with the aim of exploring real world complexities of
data (Gilks et al., 1996). This ability naturally leads us to wish to compare alternative model
formulations with the aim of identifying a class of succinct models which appear to describe the
information in the data adequately: for example, we might ask whether we need to incorporate
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a random effect to allow for overdispersion, what distributional forms to assume for responses
and random effects, and so on.

Within the classical modelling framework, model comparison generally takes place by defin-
ing a measure of fiz, typically a deviance statistic, and complexity, the number of free parameters
in the model. Since increasing complexity is accompanied by a better fit, models are compared
by trading off these two quantities and, following early work of Akaike (1973), proposals are
often formally based on minimizing a measure of expected loss on a future replicate data set:
see, for example, Efron (1986), Ripley (1996) and Burnham and Anderson (1998). A model
comparison using the Bayesian information criterion also requires the specification of the num-
ber of parameters in each model (Kass and Raftery, 1995), but in complex hierarchical models
parameters may outnumber observations and these methods clearly cannot be directly applied
(Gelfand and Dey, 1994). The most ambitious attempts to tackle this problem appear in the
smoothing and neural network literature (Wahba, 1990; Moody, 1992; MacKay, 1995; Ripley,
1996). This paper suggests Bayesian measures of complexity and fit that can be combined to
compare models of arbitrary structure.

In the next section we use an information theoretic argument to motivate a complexity mea-
sure pp for the effective number of parameters in a model, as the difference between the posterior
mean of the deviance and the deviance at the posterior estimates of the parameters of inter-
est. This quantity can be trivially obtained from an MCMC analysis and algebraic forms and
approximations are unnecessary for its use. We nevertheless investigate some of its formal prop-
erties in the following three sections: Section 3 shows that pp is approximately the trace of the
product of Fisher’s information and the posterior covariance matrix, whereas in Section 4 we
show that for normal models pp corresponds to the trace of the ‘hat’ matrix projecting observa-
tions onto fitted values and we illustrate its form for various hierarchical models. Its properties
in exponential families are explored in Section 5.

The posterior mean deviance D can be taken as a Bayesian measure of fit or ‘adequacy’,
and Section 6 shows how in exponential family models an observation’s contributions to D and
pp can be used as residual and leverage diagnostics respectively. In Section 7 we tentatively
suggest that the adequacy D and complexity pp may be added to form a deviance information
criterion DIC which may be used for comparing models. We describe how this parallels the
development of non-Bayesian information criteria and provide a somewhat heuristic decision
theoretic justification. In Section 8 we illustrate the use of this technique on some reason-
ably complex examples. Finally, Section 9 draws some conclusions concerning these proposed
techniques.

2. The complexity of a Bayesian model

2.1. ‘Focused’ full probability models

Parametric statistical modelling of data y involves the specification of a probability model
p(y|6), 0 € ©. For a Bayesian ‘full’ probability model, we also specify a prior distribution
p(#) which may give rise to a marginal distribution

() = A p(216) p(6) do. )

Particular choices of p(y|6) and p(6) will be termed a model ‘focused’ on ©. Note that we
might further parameterize our prior with unknown ‘hyperparameters’ ¢ to create a hierarchical
model, so that the full probability model factorizes as
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p(y,0,¢) = p(y,0) p@lY) p(¥).

Then, depending on the parameters in focus, the model may compose the likelihood p(y|0) and
prior

() = /W PO1%) p() o,

or the likelihood

PO = /O p(316) pOl)) do

and prior p(¢)). Both these models lead to the same marginal distribution (1) but can be consid-
ered as having different numbers of parameters. A consequence is that in hierarchical modelling
we cannot uniquely define a ‘likelihood’ or ‘model complexity’ without specifying the level of
the hierarchy that is the focus of the modelling exercise (Gelfand and Trevisani, 2002). In fact,
by focusing our models on a particular set of parameters ©, we essentially reduce all models to
non-hierarchical structures.

For example, consider an unbalanced random-effects one-way analysis of variance (ANOVA)
focused on the group means:

yil; ~ N@i, 77, 0~ N@w,A7h, i=1,....p. )
This model could also be focused on the overall mean « to give
yily ~ N@p, 77+ 471,

in which case it could reasonably be considered as having a different complexity.

It is natural to wish to measure the complexity of a focused model, both in its own right,
say to assess the degrees of freedom of estimators, and as a contribution to model choice: for
example, criteria such as BIC (Schwarz, 1978), AIC (Akaike, 1973), TIC (Takeuchi, 1976) and
NIC (Murata et al., 1994) all trade off model fit against a measure of the effective number of
parameters in the model. However, the foregoing discussion suggests that such measures of com-
plexity may not be unique and will depend on the number of parameters in focus. Furthermore,
the inclusion of a prior distribution induces a dependence between parameters that is likely
to reduce the effective dimensionality, although the degree of reduction may depend on the
data that are available. Heuristically, complexity reflects the ‘difficulty in estimation’ and hence
it seems reasonable that a measure of complexity may depend on both the prior information
concerning the parameters in focus and the specific data that are observed.

2.2. Isthere atrue model?

We follow Box (1976) in believing that ‘all models are wrong, but some are useful’. However,
it can be useful to posit a ‘true’ distribution p'(Y) of unobserved future data Y since, for any
focused model, this defines a ‘pseudotrue’ parameter value #' (Sawa, 1978) which specifies a
likelihood p(Y|0") that minimizes the Kullback—Leibler distance E'[log{p'(Y)}/p(Y|6")] from
pt(Y). Having observed data y, under reasonably broad conditions (Berk, 1966; Bunke and
Milhaud, 1998) p(f|y) converges to §' as information on the components of ¢ increases. Thus
Bayesian analysis implicitly relies on p(Y|6') being a reasonable approximation to p'(¥), and
we shall indicate where we make use of this ‘good model’ assumption.
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2.3. True and estimated residual information

The residual information in data y conditional on 6 may be defined (up to a multiplicative
constant) as —2log{ p(y|#)} (Kullback and Leibler, 1951; Burnham and Anderson, 1998) and
can be interpreted as a measure of ‘surprise’ (Good, 1956), logarithmic penalty (Bernardo, 1979)
or uncertainty. Suppose that we have an estimator 6(y) of the pseudotrue parameter 6'. Then
the excess of the true over the estimated residual information will be denoted

do{y. 0", 0(»)} = —2log{ p(y|6")} + 2log[p{y10(») }. ©)

This can be thought of as the reduction in surprise or uncertainty due to estimation, or alter-
natively the degree of ‘overfitting” due to 6(y) adapting to the data y. We now argue that dg
may form the basis for both classical and Bayesian measures of model dimensionality, with each
approach differing in how it deals with the unknown true parameters in dg.

2.4. Classical measures of model dimensionality B

In a non-Bayesian likelihood-based context, we may take 6(y) to be the maximum likelihood
estimator 6(y), expand 2log{ p(y|6")} around 2log[p{y|0(y)}], take expectations with respect
to the unknown true sampling distribution p'(¥) and hence show (Ripley, 1996) (page 34) that

E'[do{Y. 0. 0()}] ~ p* = tr(KJ "), )
where
P [62 log{pww‘)}}
202 )
t
K = vart H’)log{géﬂﬂ )}}

This is the measure of complexity that is used in TIC (Takeuchi, 1976). Burnham and Anderson
(1998) (page 244) pointed out that

p* =tr(JY), (6)

where X = J~1 K J~!is the familiar ‘sandwich’ approximation to the variance-covariance matrix
of the (y) (Huber, 1967). If p'(y) = p(y|6Y), i.e. one of the models is true, then K = J and
p* = p, the number of independent parameters in ©.

For example, in a fixed effect ANOVA model

Yilb; ~ N0, 771, i=1...p

with 7',715 known,
de{y.6".0(} = Xy — )7,
1

whose expectation under pt(Y) is p* = ¥;7; EY(Y; —0%)2. If the model is true, E*(Y; — 012 = Ti’l
and so p* = p.

Ripley (1996) (page 140) showed how this procedure may be extended to ‘regularized’ models
in which a specified prior term p(6) is introduced to form a penalized log-likelihood. Replacing
log(p) by log{p(y|0)} + log{p(0)} in equations (5) yields a more general definition of p* that




Model Complexity and Fit 587

was derived by Moody (1992) and termed the ‘effective number of parameters’. This is the
measure of dimensionality that is used in NIC (Murata ef al., 1994): the estimation of p* is
generally not straightforward (Ripley, 1996).

In the random-effects ANOVA example with 6; ~ N(¥, A1), ¢ and X known, let pi=
7i/(1i + A) be the intraclass correlation coefficient in the ith group. We then obtain

P = pimi E'(Yi — 02, (7
i
which becomes
p*= Z; pi ®)
if the likelihood is true.

2.5. A Bayesian measure of model complexity
From a Bayesian perspective, the unknown #' may be replaced by a random variable §. Then
de{y, 0, 0(y)} can be estimated by its posterior expectation with respect to p(6]y), denoted

Pp{y. 0,000} = Egldef{y, 0,0(»}]
= Eg,[—2 log{p(y10)}] + 2 log[ p{y10(»)}]. ©)

ro{y, O, ] ()} is our proposal as the effective number of parameters with respect to a model with
focus ©: we shall usually drop the arguments {y, ©, 6(y)} from the notation. In our examples
we shall generally take 0(y) = E(A|y) = 0, the posterior mean of the parameters. However, we
note that it is not strictly necessary to use the posterior mean as an estimator of either dg or 6,
and the mode or median could be justified (Section 2.6).

Taking f(y) to be some fully specified standardizing term that is a function of the data alone,
pp may be written as

pp = D(0) — D(0) (10)
where

D(®) = -2 log{p(yI0)} + 2 log{ f("}.

We shall term D(6) the ‘Bayesian deviance’ in general and, more specifically, for members of
the exponential family with E(Y) = p(0) we shall use the saturated deviance D(6) obtained by
setting f(y) = p{ylu(@) = y}: see Section 8.1.

Equation (10) shows that pp can be considered as a ‘mean deviance minus the deviance of the
means’. A referee has pointed out the related argument used by Meng and Rubin (1992), who
showed that such a difference, between the average of log-likelihood ratios and the likelihood
ratio evaluated at the average (over multiple imputations) of the parameters, is the key quantity
in estimating the degrees of freedom of a test.

For example, in the random-effects ANOVA (2) with ¢ and A known,

DO) = > 7y — 6%
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which is —2 log(likelihood) standardized by the term —2 log{ f(y)} = X;log(27/7;) obtained
from setting 0; = y;. Now 0;|y ~ N{piyi + (1 — p)¢, p,-rfl} and hence it can be shown that the
posterior distribution of D(6) has the form

D) ~ 3 pi x> {1 (i — 9> (1 = p) A},

where x2(a, b) is a non-central y2-distribution with mean a + b. Thus, since pix = (1 — pp)mi,
we have

DO) =X pi+ Xl — p)* (i — )2,
DO) = X m(1 — p)*(vi — ¥)%,
and so

Ti

pD:,Zpi:,ZTi+X

(1
The effective number of parameters is therefore the sum of the intraclass correlation coefficients,
which essentially measures the sum of the ratios of the precision in the likelihood to the precision
in the posterior. This exactly matches Moody’s approach (8) when the model is true.

If 4 is unknown and given a uniform hyperprior we obtain a posterior distribution ¢ ~
N{y, (A i)t }, where y = X p;yi/2 p;. It is straightforward to show that

DO) =X pi + XY pil = p) (i = ) + X pi(1 = pi)/ Y pis
D@) =AY pill = p) (i — )7,
and so pp = X p; + X p;i(1 — p;) /X pi. If the groups are independent, A = 0, p; = 1 and pp = p.

If the groups all have the same mean, A — oo, p; — 0 and pp — 1. If all group precisions are
equal, pp =1+ (p — 1)p, as obtained by Hodges and Sargent (2001).

2.6. Some observations on pp

(a) Equation (10) may be rewritten as
D) = D®) + pp, (12)

which can be interpreted as a classical ‘plug-in’ measure of fit plus a measure of complexity.
Thus our Bayesian measure of fit, D(6), could perhaps be better considered as a measure
of ‘adequacy’, and we shall use these terms interchangeably. However, in Section 7.3 we
shall suggest that an additional penalty for complexity may be reasonable when making
model comparisons.

(b) Simple use of the Bayes theorem reveals the expression

pw\y)H {p(ém}
= Egy|—2logd 24| +21 28,
Pp 9|{ Og{ 0 og 20

which can be interpreted as (minus twice) the posterior estimate of the gain in information
provided by the data about #, minus the plug-in estimate of the gain in information.
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(c) It is reasonable that the effective number of parameters in a model might depend on
the data, the choice of focus © and the prior information (Section 2.1). Less attractive,
perhaps, is that pp may also depend on the choice of estimator (y), since this can
produce a lack of invariance of pp to apparently innocuous transformations, such as
making inferences on logits instead of probabilities in Bernoulli trials. Our usual choice
of the posterior mean is largely based on the subsequent ability to investigate approximate
forms for pp (Section 3), and the positivity properties described below. A choice of, say,
posterior medians would produce a measure of model complexity that was invariant to
univariate 1-1 transformations, and we explore this possibility in Section 5.

(d) Itfollows from equation (10) and Jensen’s inequality that, when using the posterior mean
as an estimator 6(y), pp > 0 for any likelihood that is log-concave in 4, with 0 being
approached for a degenerate prior on 6. Non-log-concave likelihoods can, however, give
rise to a negative pp in certain circumstances. For example, consider a single observation
from a Cauchy distribution with deviance D(f) = 2 log{l + (y — 9)2}, with a discrete
prior assigning probability 1/11 to § = 0 and 10/11 to § = 3. If we observe y = 0,
then the posterior probabilities are changed to 0.5 and 0.5, and so 6 = 1.5. Thus pp =
D(0) — D) = log(10) —2 log(13/4) = log(160/169) < 0. Our experience has been that
negative pps indicate substantial conflict between the prior and data, or where the pos-
terior mean is a poor estimator (such as a symmetric bimodal distribution).

(e) The posterior distribution that is used in obtaining pp conditions on the truth of the
model, and hence pp may only be considered an appropriate measure of the complexity
of a model that reasonably describes the data. This is reflected in the finding that pp in
the simple ANOVA example (11) will not necessarily be approximately equivalent to the
classical p* (7) if the assumptions of the model are substantially inaccurate. This good
model assumption (Section 2.2) is further considered when we come to comparisons of
models (Section 7.3).

(f) Provided that D(0) is available in closed form, pp may be easily calculated afteran MCMC
run by taking the sample mean of the simulated values of D(¢), minus the plug-in estimate
of the deviance using the sample means of the simulated values of 6. No ‘small sample’
adjustment is necessary. This ease of computation should be contrasted with the frequent
difficulty within the classical framework with deriving the functional form of the measure
of dimensionality and its subsequent estimation.

(g) Since the complexity depends on the focus, a decision must be made whether nuisance
parameters, e.g. variances, are to be included in © or integrated out before specifying the
model p(y|6). However, such a removal of nuisance parameters may create computational
difficulties.

pp has been defined and is trivially computable by using MCMC methods, and so strictly
speaking there is no need to explore exact forms or approximations. However, to provide insight
into the behaviour of pp, the following three sections consider the form of pp in different
situations and draw parallels with alternative suggestions: note that we are primarily concerned
with the ‘preasymptotic’ situation in which prior opinion is still influential and the likelihood
has not overwhelmed the prior.

3. Forms for pp based on normal approximations

In Section 2.1 we argued that focused models are essentially non-hierarchical with a likelihood
p(y]0) and prior p(0). Before considering particular assumptions for these we examine the form
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of pp under two general conditions: approximately normal likelihoods and negligible prior
information.

3.1. pp assuming a normal approximation to the likelihood
We may expand D(6) around Eg|,(f) = 0 to give, to second order,

@+ 0—2 Lol 4_g
DE) ~ DE) + @ =B 55| +56 =07 @), (13)
=D(0) =20 —-0)"L;—©—0)"Ly©O - 0) (14)

where L = log{p(y|0)} and L’ and L"” represent first and second derivatives with respect to 6.
This corresponds to a normal approximation to the likelihood.
Taking expectations of equation (14) with respect to the posterior distribution of 6 gives

Egy{D®)} ~ DO) — E[tr{(® — 6)"L; (6 — 0)}]
= D(6) — E[tr{L;(0 — 6)(6 —H)"}]
= D) —ulLj E{(0—6)0 - 0)'}]
= D() + tr(~L}V)

where V = E{(0 — )6 — é)T} is the posterior covariance matrix of 6, and 7Lg is the observed
Fisher information evaluated at the posterior mean of 6. Thus

pp & tr(=L5V), (15)

which can be thought of as a measure of the ratio of the information in the likelihood about
the parameters as a fraction of the total information in the likelihood and the prior. We note
the parallel with the classical p* in equation (6).
We also note that
" __ " _ 1/
Ly=05-F

where Q" = 8% log{ p(0y)}/86* and P" = 8% log{ p(0)}/86>, and hence approximation (15) can
be written

pp ~ tr(—Q4V) — tr(—PL V).
Under approximate posterior normality V! ~ ng and hence
pp A p—tr(=PLV) (16)

where p is the cardinality of ©.
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3.2. pp for approximately normal likelihoods and negligible prior information
Consider a focused model in which p(6) is assumed to be dominated by the likelihood, either
because of assuminga ‘flat’ prior or by increasing the sample size. Assume that the approximation

fly ~ N@, —L}) (17

holds, where § = 6 are the maximum likelihood estimates such that L’ = 0 (Bernardo and
Smith (1994), section 5.3). From equation (14)

D(®) ~ D) — (6 — é)TLg(a -0
~ D) + X3, (18)

since, by approximation (17), —(6 — Q)TL” (8 — ) has an approximate x2-distribution with p
degrees of freedom.

Rearranging approximation (18) and taking expectations with respect to the posterior
distribution of 6 reveals that

pp = Egy{D@®)} — D) ~ p

i.e. pp will be approximately the true number of parameters: this approximation could also be
derived by letting Pé’ — 0 in approximation (16). This approximate identity is illustrated in
Section 8.1.

We note in passing that we might use MCMC output to estimate the classical deviance D(0)
of any likelihood-based model by

D) = Eg,{D®)} — p. (19)

Although the maximum likelihood deviance is theoretically the minimum of D over all feasible
values of 6, D(9) will generally be very badly estimated by the sample minimum over an MCMC
run, and so the estimator given by equation (19) may be preferable.

4. pp for normal likelihoods

In this section we illustrate the formal behaviour of pp for normal likelihoods by using exact and
approximate identities. However, it is important to keep in mind that in practice such forms are
unnecessary for computation and that pp should automatically allow for fixed effects, random
effects and unknown precisions.

4.1. The normal linear model
We consider the general hierarchical normal model described by Lindley and Smith (1972).
Suppose that

¥y~ N(A16, Cy),

(20)

0 ~ N(Ax¢, C2)
where all matrices and vectors are of appropriate dimension, and Cj and C; are assumed known
and 0 is the focus: unknown precisions are considered in Section 4.5. Then the standardized
devianceis D(0) = (y— A10)TC 1_1 (y—A16), and the posterior distribution for 6 is normal with
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mean § = Vb and covariance V: V and b will be left unspecified for the moment. Expressing
y—Afasy— A6+ A0 — A0 reveals that

D) = D) —2(y — MO TC A0 - 0) + @ —HTATC A0 - ).
Taking expectations with respect to the posterior distribution of # eliminates the middle term
and gives

D =D +tr(ATcy AW,

and thus pp = tr(AlTCI’l A1V). We note that AITCflAl is the Fisher information —L”, V is the
posterior covariance matrix and hence

pp = tr(=L"V): @21

an exact version of approximation (15). It is also clear that in this context pp is invariant to
affine transformations of 6.

If 4 is assumed known, then Lindley and Smith (1972) showed that V! ATC 1_1A| + C2
and hence from equation (21)

pp=p—tr(C;'V) (22)

as an exact version of approximation (16); then 0 < pp < p, and p — pp is the measure of the
‘shrinkage’ of the posterior estimates towards the prior means. If (Cz_1 vl= AlTCI_IAl Co+1,
has eigenvalues \; + 1,i =1, ..., p, then

DY
St

pp = (23)

and hence the upper bound for pp is approached as the eigenvalues of C, become large, i.e.
the prior becomes flat. It can further be shown, in the case A; = I,,, that pp is the sum of the
squared canonical correlations between data Y and the ‘signal’ 6.

4.2. The ‘hat’ matrix and leverages
A revealing identity is found by noting that b= ATCl y and the fitted values for the data are
givenby y = A1 = A\ Vb= Al VATC | ». Thus the hat matrix that projects the data onto the
fitted values is H = A;VATCy !, and

pp = tr(ATCT A V) = tr(a VAT O = te(HD. (24)

This identity also holds assuming that +) is unknown with a uniform prior, in which case Lindley
and Smith (1972) showed that V! = ATcl A + ¢5! — ¢yt ayAT ey tan—alcy .

The identification of the effective number of parameters with the trace of the hat matrix
is a standard result in linear modelling and has been applied to smoothing (Wahba, 1990)
(page 63) and generalized additive models (Hastie and Tibshirani (1990), section 3.5), and is
also the conclusion of Hodges and Sargent (2001) in the context of general linear models. The
advantage of using the deviance formulation for specifying pp is that all matrix manipulation
and asymptotic approximation is avoided: see Section 4.4 for further discussion. Note that tr(H)
is the sum of terms which in regression diagnostics are identified as the individual leverages, the
influence of each observation on its fitted value: we shall return to this identity in Section 6.3.
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Ye (1998) considered the independent normal model
yi ~ N, 7"
and suggested that the effective number of parameters should be ¥; i;, where

AE o0y

hi(0) =
© 90;

(25
the average sensitivity of an unspecified estimate §; to a small change in y;. This is a generalization
of the trace of the hat matrix discussed above. In the context of the normal linear models, it is
straightforward to show that Eyjg(f) = H6, and hence pp = tr(H) matches Ye’s suggestion for
model complexity. Further connections with Ye (1998) are described in Section 7.2.

4.3. Example: Laird—-Ware mixed models
Laird and Ware (1982) specified the mixed normal model as

y~ NXa+ Z3,Cy),
B~ N(, D),

where the covariance matrices C; and D are currently assumed known. The random effects are
3, and the fixed effects are «, and placing a uniform prior on o we can write this model within
the general Lindley—Smith formulation (20) by setting 6 = («a, 3), A} = (X, Z),¢ = 0 and C;
as a block diagonal matrix with oo in the top left-hand block, D in the bottom right and 0
elsewhere.

We have already shown that in these circumstances pp = tr{AlTCl_' A (AITCI_' A+ Cz_l)’l},
and substituting in the appropriate entries for the Laird-Ware model gives pp = tr(V*V~1),
where

. <XTC1_1X XTCI_IZ>
VE=1{ 1 Tl )
Z'er'x  Z'cr'z
_ (XTC;lx xTcr'z )
“\ZTci'x Z'cy'z + D!

which is the precision of the parameter estimates assuming that D~! = 0, relative to the precision
assuming informative D.

4.4. Frequentist approaches to model complexity: smoothing and normal non-linear
models
A common model in semiparametric regression is

y~ NXa+8,771Cy),
B~ NO,\"1D),

where (3 is a vector of length n of function values of the nonparametric part of an interpolation
spline (Wahba, 1990; van der Linde, 1995) and C; and D are assumed known. Motivated
by the need to estimate the unknown scale factors 7—! and A~!, for many years the effective
number of parameters has been taken to be the trace of the hat matrix (Wahba (1990), page
63) and so, for example, 7~1 is the residual sum of squares divided by the ‘effective degrees

594 D. J. Spiegelhalter, N. G. Best, B. P. Carlin and A. van der Linde

of freedom’ n — tr(H). In this class of models this measure of complexity coincides with pp.
Interest in regression diagnostics (Eubank, 1985; Eubank and Gunst, 1986) and cross-validation
to determine the smoothing parameter /A (Wahba (1990), section 4.2) also drew attention to
the diagonal entries of the hat matrix as leverage values.

Links to partially Bayesian interpolation models have been provided by Kimeldorf and Wahba
(1970) and Wahba (1978, 1983) and further work built on these ideas. For example, another
large class of models can be formulated by using the following extension to the Lindley—Smith
model:

y~ N{g®), 77'C},
6 ~ N(Ayp, A1 D)

where ¢ is a non-linear expression as found, for example, in pharmacokinetics or neural net-
works: in many situations A% will be 0 and Cy and D will be identity matrices. Define

q0) = (y — g (v — g(9)),
@) = (0 — Axp)TD7H(O — Ar)

as the likelihood and prior residual variation. MacKay (1992) suggested estimating 7 and A by
maximizing the ‘type II’ likelihood p(y|A, 7) derived from integrating out the unknown 6 from
the likelihood. Setting derivatives equal to 0 eventually reveals that

1 _ 49
T =
n—=pp
s1=10,
PD
which are the fitted likelihood and prior residual variation, divided by the appropriate effective
degrees of freedom: pp = tr(H) is the key quantity.

These results were derived by MacKay (1992) in the context of ‘regularization’ in complex
interpolation models such as neural networks, in which the parameters 6 are standardized and
assumed to have independent normal priors with mean 0 and precision \. Then expression (16)
may be written

pp X p—Atr(V). (26)

However, MacKay’s use of approximation (26) requires the evaluation of tr(V), whereas our
pp arises without any additional computation. We would also recommend including A and 7 in
the general MCMC estimation procedure, rather than relying on type II maximum likelihood
estimates (Ripley (1996), page 167). In this and the smoothing context a fully Bayesian analysis
requires prior distributions for 7—! and A~! to be specified (van der Linde, 2000), and this will
both change the complexity of the model and require a choice of estimator of the precisions.
We shall now illustrate the form of pp in the restricted situation of unknown 7!

4.5. Normal models with unknown sampling precision

Introducing unknown variances as part of the focus confronts us with the need to choose a
form for the plug-in posterior estimates. We may illustrate this issue by extending the general
hierarchical normal model (20) to the conjugate normal-gamma model with an unknown scale
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parameter 7 in both the likelihood and the prior (Bernardo and Smith (1994), section 5.2.1).
Suppose that

y~ N, 771C),

1 @7)
0~ N(Axyp, 77 C2),
and we focus on (0, 7). The standardized deviance is D(, 7) = 7 q(0) — n log(7), where
a®) =y = A1) ¢y (v — A16)
is the residual variation. Then, for a currently unspecified estimator 7,
pp = Eg71y(D|6,7) — D6, 7)
= Ery[Eory{7q(0)} — n log(m)] — {7 q(0) — nlog(H}
= tr(H) + q(0)(7 — 7) — n{log(r) — log($)} (28)

where H = AITCflAl (AITCflAl + C;l)_1 is the hat matrix which does not depend on 7. Thus
the additional uncertain scale parameter adds the second two terms to the complexity of the
model.

A conjugate prior 7 ~ gammal(a, b) leads to a posterior distribution 7|y ~ gamma(a + n/2,
b+ S/2), where

S=(—A1A)T(C +ATCAD o — A1 42).

It remains to choose the estimator 7 to place in equation (28), and we shall consider two options.
Suppose that we parameterize in terms of 7 and use

a+n/2

b+58/2°

F=F=

making the second term in equation (28) 0. Now if X ~ gamma(a, b), then E{log(X)}
= 1 (a) — log(b) where v is the digamma function, and so log(7) = ¥ (a +n/2) — log(b + S/2).
Hence the term contributing to pp due to the unknown precision is

o fso) (e 3)

1
2a— 3

" 2a+n

2

using the approximation ¢ (x) & log(x) — 1/2x — 1/12x%. This term will tend to 1+ 1/3n as prior
information becomes negligible and hence will be close to the ‘correct’ value of 1 for moderate
sample sizes.

If we were to parameterize in terms of log(7) and to use 7 = exp{log(7)}, the third term in
equation (28) is 0 and the second term can be shown to be 1 — O(n~!). Thus for reasonable
sample sizes the choice of parameterization of the unknown precision will make little difference
to the measure of complexity. However, in Section 7 we shall argue that the log-scale may be
more appropriate owing to the better approximation to likelihood normality.
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5. Exponential family likelihoods

We assume that we have p groups of observations, where each of the n; observations in group i
has the same distribution. Following McCullagh and Nelder (1989), we define a one-parameter
exponential family for the jth observation in the ith group as

log{ p(yij16;, )} = wi{yijti — b))}/ D + c(yij, @), (29)
where
wi = E(Y16:, @) = b'(6)),
V(Yi10;, ) = b" (0 d/wi,
and w; is a constant. If the canonical parameterization © is the focus of the model, then writing

bi = Eg,y{b(#;)} we easily obtain that the contribution of the ith group to the effective number
of parameters is

P9 = 2niwi{bi — b(0)} /6. (30)
These likelihoods highlight the issue of the lack of invariance of pp to reparameterization, since
the mean parameterization  will give a different complexity p/p;. This is first explored within

simple binomial and Poisson models with conjugate priors, and then exact and approximate
forms of pp are examined for generalized linear and generalized linear mixed models.

5.1. Binomial likelihood with conjugate prior
In the notation of equation (29), ¢ = 1, w; = 1 and 6 = logit(u) = log{p/(1 — p)}, and the
(unstandardized) deviance is

D(pi) = =2y;log(pi) — 2(n; — yi) log(1 — p;)
where y; = X;y;;. A conjugate prior p; = {1 + exp(—6;)}~! ~ beta(a, b) provides a posterior
ui ~ beta(a + y;, b+ n; — y;) with mean (a + y;)/(a + b + n;). Now, if X ~ beta(a, b), then
E{log(X)} = ¢(a) — (a+ b) and E{log(1 — X)} = ¢(b) — ¢(a + b) where ¢ is the digamma
function, and hence it can be shown that

D(u) = D(6;) = =2y; (a+ yi) = 2(n; — y) (b + ni — yi) + 2n; (@ + b+ ny)
D(jz;) = —=2y;log(a + y;) — 2(n; — yi) log(b + n; — yi) + 2n; log(a + b + n;)
D) = =2y Y(a+yi) + 2y (b +ni — yi)
+2n;log[l +exp{y(a + yi) — (b +n; — y)}l,
D(u"®) = DY) = —2y; log (") — 2(n; — yp) log(1 — ™)
where ,u?“ed denotes the posterior median of ;.
Exact pp,s are obtainable by subtraction, and Fig. 1 shows how the value of pp, depends on

the parameterization, the data and the prior. We may also gain further insight into the behaviour

of pp, by considering approximate formulae for the mean and canonical parameterizations by
using ¥(x) ~ log(x) — 1/2x ~ log(x — %)4 This leads to

1 i ni — i ni
A + - 7
Pp; a+yi b+ni—yi a+b+n;
o i
29~ . @31
bi a+b+ni—%

We make the following observations.
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Fig. 1. Binomial likelihood—contribution of the |th group to the effective number of parameters under
various parameterizations (canonical Pp,, Mean p and median p'"e ) as a function of the data (sample
size n; and observed proportion y;/n;) and prior (effectlve prior sample size a+b and prior mean a/(a+b)):
we are seeking agreement between alternative parameterizations with little dependence on data
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5.1.1.  Behaviour of pp
For all three parameterizations, as the sample size in each group increases relative to the effective
prior sample size, its contribution to pp, tends towards 1.

5.1.2.  Agreement between parameterizations

The agreement between parameterizations is generally reasonable except in the situations in
which the prior sample size is 10 times that of the data. While the canonical parameterization
has pp, ~ 1/11, the mean and median give increased pp, for extreme prior means.

5.1.3.  Dependence on data

With the exception of the sparse data and weak prior scenario for which the approximate formu-
lae do not hold, the canonical p$ does not depend on the data observed and is approximately
the ratio of the sample size to the effective posterior sample size. When the mean and median
forms depend on data (say whenn; = 1and a + b = 10), pp, is higher in situations of prior-data
conflict.

5.2. Poisson likelihood with conjugate prior

In the notation of equation (29), ¢ = 1,w; = 1 and 6 = log(u), and the (unstandardized)
deviance is D(p;) = —2y; log(i;) + 2n;u;. A conjugate prior p; = exp(;) ~ gamma(a, b) gives
a posterior y; ~ gamma(a + y;, b + n;) with mean (a + y;)/(b + n;). If X ~ gamma(a, b), then
E{log(X)} = ¥(a) — log(b) and hence we can show that

a—+yi
D) = D) = ~2yi{ib(a+ )~ log(b +n)} + 2nif — Z ,
_ +yi
D(i) = —2yi{log(a + y;) — log(b + n)} + 2n; 2"
b+ n;
_ ex a—+y;
D) = ~2x{wta + ) ~ logtb + np} + 2 ST L),
1

D(u?) = DOF) = ~2y; log(u™*) + 2n;p"*

Exact pp,s are obtainable by subtraction. Fig. 2 shows how the value of pp, relates to the param-
eterization, the data and the prior. Using the same approximation as previously, approximate
pp;s for the mean and canonical parameterizations are

P, & il @+ yi),
P, ~ni/(b+ny).

5.2.1.  Behaviour of pp;
For all three parameterizations, as the sample size in each group increases relative to the effective
prior sample size, its contribution to pp, tends towards 1.

5.2.2.  Agreement between parameterizations
The agreement between parameterizations is best when there is no conflict between the prior
expectation and the data, but it can be substantial when such conflict is extreme. The median
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Fig. 2. Poisson I|ke||hood—contr|but|on of the ith group to the effective number of parameters under various
parameterizations (canonical p mean p and median p’“ed) as a function of the data (sample size n;
and observed total y;) and prior (mean n a/b and ‘sample size’ b)
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estimator leads to a pp, that is intermediate between those derived from the canonical and mean
parameterizations.

5.2.3.  Dependence on data

Except in the situation of a single y; = 0 with weak prior information, the approximation for
the canonical p¢ D, 18 very accurate and so p ) does not depend on the ddtd observed. There can
be a substantial dependence for the mean parameterlzatlon with p . being higher when the
prior mean underestimates the data.

5.2.4.  Conclusion

In conclusion, for both binomial and Poisson data there is reasonable agreement between the
different pp,s provided that the model provides a reasonable fit to the data, i.e. there is not
strong conflict between the prior and data. The canonical parameterization appears preferable,
both for its lack of dependence on the data and for its generally close approximation to the
invariant pp, based on a median estimator. Thus we would not normally expect the choice of
parameterization to have a strong effect, although in Section 8.3 we present an example of a
Bernoulli model where this choice does prove to be important.

5.3. Generalized linear models with canonical link functions

Here we shall focus on the canonical parameterization in terms of 6;, both for the reasons
outlined above and because its likelihood should better fulfil a normal approximation (Slate,
1994): related identities are available for the mean parameterization in terms of p; = p(6;). We
emphasize again that the approximate identities that are derived in this and the following section
are only for understanding the behaviour of pp in idealized circumstances (i.e. known precision
parameters) and are not required for computation in practical situations.

Following McCullagh and Nelder (1989) we assume that the mean y; of y;; is related to a set
of covariates x; through a link function g(u;) = x;roc, and that g is the canonical link 6(x). The
second-order Taylor series expansion of D(6;) around D(6;) yields an approximate normal distri-
bution for working observations and hence derivations of Section 3 apply. We eventually obtain

pp ~ tr{XTWX V(aly)}

where W is diagonal with entries

Wi = %ni b (0)).
the generalized linear model iterated weights (McCullagh and Nelder (1989), page 40): ¢ is
assumed known.
Under an N(ayg, C») prior on a, the prior contribution to the negative Hessian matrix at the
mode is just C; ! so under the canonical link the approximate normal posterior has variance

Vialy) = (G + XTwx) ™!,
again producing pp as a measure of the ratio of the ‘working’ likelihood to posterior information.
5.4. Generalized linear mixed models

We now consider the class of generalized linear mixed models with canonical link, in which
g(ui) = x;ra + ziTﬁ, where 5 ~ N(0, D) (Breslow and Clayton, 1993) and D is assumed known.
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Using the same argument as for generalized linear models (Section 5.3), we find that
pp = (X, 2)TW(X, 2)V{(a. By = tr(V¥V™,

where
ve_ (XTwolx o XTwolz
“\zZ'wlx  ZTw-lz)
xTw-1x xTw-1z
V=1 1y Tyl -1)-

ZW'X Z'W'Z+D
This matches the proposal of Lee and Nelder (1996) except their D~! is a diagonal matrix of
the second derivatives of the prior likelihood for each random effect.

6. Diagnostics for fit and influence

6.1. Posterior expected deviance as a Bayesian measure of fit or ‘adequacy’

The posterior mean of the deviance Eg,{D(6)} = 'D(0) has often been used to compare models
informally: see, for example, Dempster (1974) (reprinted as Dempster (1997a)), Raghunathan
(1988), Zeger and Karim (1991), Gilks et al. (1993) and Richardson and Green (1997). These
researchers have, however, not been explicit about whether, or how much, such a measure might
be traded off against increasing complexity of a model: Dempster (1997b) suggested plotting
log-likelihoods from MCMC runs but hesitated to dictate a model choice procedure. We shall
discuss this further in Section 7.3. In Section 2.6 we argued that D(f) already incorporates some
penalty for complexity and hence we use the term ‘adequacy’ and ‘Bayesian fit’ interchangeably.

6.2. Sampling theory diagnostics for lack of Bayesian fit
Suppose that all aspects of the model were assumed true. Then before observing data Y our
expectation of the posterior expected deviance is

Ey(D) = Ey[Eg,{D(}] (32)
= Eg(Eyjg[—2log{p(Y|0)} + 2log{ f(N)}]

by reversing the conditioning between Y and 6. If f(Y¥) = p{Y|9(Y)} where A(Y) is the standard
maximum likelihood estimate, then

Eym(‘ 2log [%D

is simply the expected likelihood ratio statistic for the fitted values (Y) with respect to the true
null model # and hence under standard conditions is approximately E( X%) = p, the dimension-
ality of . From equation (32) we therefore expect, if the model is true, the posterior expected
deviance (standardized by the maximized log-likelihood) to be Ey(D) ~ Ey(p) = p, the number
of free parameters in 6. This might be appropriate for checking the overall goodness of fit of the
model.

In particular, consider the one-parameter exponential family where p = n, the total sample
size. The likelihood is maximized by substituting y; for the mean of y;, and the posterior mean of
the standardized deviance has approximate sampling expectation n if the model is true. This will
be exact for normal models with known variance, but in general it will only be reliable if each
observation provides considerable information about its mean (McCullagh and Nelder (1989),
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page 36). Note that comparing D with n is precisely the same as comparing the ‘classical’ fit
D(0) with n — pp, the effective degrees of freedom.

It is then natural to consider the contribution D; of each observation i to the overall mean
deviance, so that

D=Y"Di=Ydr?
i i

where dr; = &./D; (with the sign given by the sign of y; — E(y;|0)) termed the Bayesian deviance
residual, defined analogously to McCullagh and Nelder (1989), page 39. See Section 8.1 for an
application of this procedure.

6.3. Leverage diagnostics

In Section 4.1 we noted that in normal linear models the contribution pp; of each observation
i to pp turned out to be its leverage, defined as the relative influence that each observation has
on its own fitted value. For y; conditionally independent given 6, it can be shown that

pOly) p@ly)
i = —2( Egy| 1 -1 -
b < ‘”’{Og{ p®) H Og{ () }>

which reflects its interpretation as the difficulty in estimating 6 with y;.

It may be possible to exploit this interpretation in general model fitting, and as a by-product
of MCMC estimation to obtain estimates of leverage for each observation. Such diagnostics are
illustrated in Section 8.1.

7. A model comparison criterion

7.1. Model ‘selection’

There has been a long and continuing debate about whether the issue of selecting a model as a
basis for inferences is amenable to a strict mathematical analysis using, for example, a decision
theoretic paradigm: see, for example, Key ez al. (1999). Our approach here can be considered
to be semiformal. Although we believe that it is useful to have measures of fit and complexity,
and to combine them into overall criteria that have some theoretical justification, we also feel
that an overformal approach to model ‘selection’ is inappropriate since so many other features
of a model should be taken into account before using it as a basis for reporting inferences, e.g.
the robustness of its conclusions and its inherent plausibility. In addition, in many contexts it
may not be appropriate to ‘choose’ a single model. Our development closely follows that of
Section 2.

A characteristic that is common to both Bayesian and classical approaches is the concept of
an independent replicate data set Yyep, derived from the same data-generating mechanism as
gave rise to the observed data. Suppose that the loss in assigning to a set of data Y a probability
p(Y|§) is £(Y, 6). We assume that we shall favour models p(Y|§) for which £(Y,~9~) is expected
to be small, and thus a criterion can be based on an estimate of E ympwl{ﬁ(Yrep, N}. 3

A natural, but optimistic, estimate of this quantity is the ‘apparent’ loss £{y, 6(y)} that
is suffered on repredicting the observed y that gave rise to 6(y). We follow Efron (1986) in
defining the ‘optimism’ that is associated with this estimator as cg, where

Ey, o [L{Yrep, 600} = £{y, 00} + co{y. 0,00 }. (33)
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Both classical and Bayesian approaches to estimating the optimism cg will now be examined
when assuming a logarithmic loss function £(Y,0) = —2log{p(Y|0)}: as in Section 2, the
classical approach attempts to estimate the sampling expectation of cg, whereas the Bayesian
approach is based on a direct calculation of the posterior expectation of cg.

7.2. Classical criteria for model comparison
From the previous discussion, approximate forms for the expected optimism

m(0") = Eyjplce{Y, 6", 6(N}]

will, from equation (33), yield criteria for a comparison of models that are based on minimizing

Ey, 0124 Yrep, 00} = L{y, (1)} + #(6Y). (34)

Efron (1986) derived the expression for m(8') for exponential families and for general loss
functions. In particular, for the logarithmic loss function, Efron showed that

mE(0Y) = 2Zcov‘(f/,-, ), (35)

where ; is the fitted value arising from the estimator : if § corresponds to maximum likelihood
estimation based on a linear predictor with p parameters, then 7g(f') ~ 2p. Hence Efron’s
result can be thought of as generalizing Akaike (1973), who sought to minimize the expected
Kullback-Leibler distance between the true and estimated predictive distribution and showed
under broad conditions that 7(#%) ~ 2p.

This in turn suggests that 7g/2, derived from equation (35), may be adopted as a measure
of complexity in more complex modelling situations. Ye and Wong (1998) extended the work
mentioned in Section 4.2 to show that 7g /2 for exponential families can be expressed as a sum
of the average sensitivity of the fitted values ; to a small change in y;: this quantity is termed by
Ye and Wong the ‘generalized degrees of freedom’ when using a general estimation procedure.
In normal models with linear estimators y; = 0;(y) = X h;;yj, and so 7(0Y) = 2 tr(H). Finally,
Ripley (1996) extended the analysis described in Section 2.4 to show that if the model assumed
is not true then 7(6') ~ 2p*, where p* is defined in equation (4). See Burnham and Anderson
(1998) for a full and detailed review of all aspects of estimation of 7(6%).

These classical criteria for general model comparison are thus all based on equation (34)
and can all be considered as corresponding to a plug-in estimate of fit, plus twice the effective
number of parameters in the model. We shall now adapt this structure to a Bayesian context.

7.3. Bayesian criteria for model comparison

Gelfand and Ghosh (1998) and Laud and Ibrahim (1995) both attempted strict decision theoretic
approaches to model choice based on expected losses on replicate data sets. Our approach is
more informal, in aiming to identify models that best explain the observed data, but with the
expectation that they are likely to minimize uncertainty about observations generated in the
same way. Thus, by analogy with the classical results described above, we propose a deviance
information criterion DIC, defined as a classical estimate of fit, plus twice the effective number
of parameters, to give

DIC = D) + 2pp (36)
=D+pp (37
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by definition of pp (10): equation (37) shows that DIC can also be considered as a Bayesian
measure of fit or adequacy, penalized by an additional complexity term pp. From the results
in Section 3.2, we immediately see that in models with negligible prior information DIC will be
approximately equivalent to Akaike’s criterion.

An approximate decision theoretic justification for DIC can be obtained by mimicking the
development of Ripley (1996) (page 33) and Burnham and Anderson (1998) (chapter 6). Using
the logarithmic loss function in equation (33), we obtain

co{y, 0,600} = Ey 0 { Drep()} — D()

where —210g[p{Yrep|§(y)}] is denoted Drep(é) and so on: note in this section that D is an
unstandardized deviance (f(-) = 1). It is convenient to expand cg into the three terms

co = Ey,10{ Drep(0) — Drep(0)} + Ey,, o { Drep(6") — DO} + {D(6") — DB)};  (38)

we shall denote the first two terms by £ and £; respectively and, since we are taking a Bayesian
perspective, replace the true #' by a random quantity 6.
Expanding the first term to second order gives
L£1(8,0) = Eyio{ =200 — )" Ligy g — @ — ) Ly, o6 — )}

where Liep, g = log{ p(Yrepl6)}. Since Ey,l0(L

! ep ¢) = Ofrom standard results for score statistics,
we obtain after some rearrangement

T

L£1(0,0) = tr{Ip(d — 0)( — )T}

where Iy = Eympw(—L;’ep o) is the assumed Fisher information in Yrep, and hence also in y.

Making the good model assumption (Section 2.2), this might reasonably be approximated by
the observed information at the estimated parameters, so

L£1(0,0) ~ tr{—L;@—6)@—0)"}. (39)

Suppose that under a particular model assumption we obtain a posterior distribution p(8|y).
Then from approximations (38) and (39) our posterior expected optimism when adopting this
model and the estimator 6 is

Egjy(ce) ~ t[—L} Egy{ (0 — 0)(0 — )"} + Egp {L2(y, )} + Eg,{D©) — DO)}.
Using the posterior mean 0 as our estimator makes the expected optimism
Egly(co) & tr(—=LyV) + Egy{L2(y, )} + pp, (40)
where V again is defined as the posterior covariance of 8, and pp = D — D(0). Now
L2(y,0) = Ey,ol—21log{p(Yrep|®) }] + 2log{ p(y10)},

andso Ey[Egy{L2(Y,0)}] = Eg[Eyj9{L2(Y, 0)}] = 0. We have already shown in approximation
(15) that pp ~ tr(—L%V), and hence from expressions (33) and (40) the expected posterior loss
when adopting a particular model is

D) + Egjy(co) ~ D(B) + 2pp = DIC,

neglecting a term Eg|,{L£>(y, 0)} which is expected to be 0. This derivation has assumed that
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D is an unstandardized deviance: common standardization across models will leave unchanged
the property that differences in DIC are estimates of differences in expected loss in prediction.

We make the following observations concerning this admittedly heuristic justification of DIC.
First, for the general normal linear model (20), it is straightforward to show that £»(y,0) =
p—(y—4A Q)TCI_1 (y—A10) where p is the dimensionality of 6, and hence for true § has sampling
distribution p — X% with mean 0 and variance 2p. This parallels the classical development in
which Ripley (1996) (page 34) pointed out that the equivalent term is O(y/n): we would hope
that this factor will tend to cancel when assessing differences in DIC, but this requires further
investigation.

Second, this development draws heavily on the approximations in Section 3 and hence
encourages parameterizations in which likelihood normality is more plausible.

Third, we are attempting to evaluate the consequences of assuming a particular model, using
an analysis that is based on that very assumption. This use of the good model assumption
(Section 2.2) argues for the use of DIC in comparing models that have already been shown to
be adequate candidates for explaining the observations.

8. Examples

pp and DIC have already been applied by other researchers in a variety of contexts, such
as alternative models for diagnostic probabilities in screening studies (Erkanli et al., 1999),
longitudinal binary data using Markov regression models (Erkanli ez al., 2001), spline models
with Bernoulli responses (Biller and Fahrmeir, 2001), multistage models for treatment usage
which combine to form a total DIC (Gelfand et al., 2000), complex spatial models for Poisson
counts (Green and Richardson, 2000), pharmacokinetic modelling (Rahman et al., 1999) and
structures of Bayesian neural networks (Vehtari and Lampinen, 1999). The following examples
illustrate the use of pp and DIC to compare alternative prior and likelihood structures.

8.1. The spatial distribution of lip cancer in Scotland

We consider data on the rates of lip cancer in 56 districts in Scotland (Clayton and Kaldor,
1987; Breslow and Clayton, 1993). The data include observed (y;) and expected (E;) numbers of
cases for each county i (where the expected counts are based on the age- and sex-standardized
national rate applied to the population at risk in each county) plus the ‘location’ of each county
expressed as a list (A;) of its n; adjacent counties. We assume that the cancer counts within
each county y; follow a Poisson distribution with mean exp(6;) E; where exp(6;) denotes the
underlying true area-specific relative risk of lip cancer. We then consider the following set of
candidate models for 6;, reflecting different assumptions about the between-county variation in
(log-) relative risk of lip cancer: model 1,

0; = a;

model 2,

0i = ao + i3
model 3,

0;i = ap + 6i;
model 4,

0 = ap + i + 0is

model 5,

0; = q;.
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An improper uniform prior is placed on «y, independent (proper) normal priors with large
variance are specified for each a; (i = 1, ..., 56), 7; are exchangeable random effects with a
normal prior distribution having zero mean and precision )., and §; are spatial random effects
with a conditional autoregressive prior (Besag, 1974) given by

1 1
biloni ~ normal(— éj, —)
| nj jgﬁli ! niAs

A sum-to-zero constraint is imposed on the {6;} for identifiability, and weakly informative
gamma(0.5,0.0005) priors are assumed for the random effects precision parameters A, and As.
These five models cover the spectrum between the pooled model 1 that makes no allowance for
variation between the true risk ratios in each county and the saturated model 5 that assumes inde-
pendence between the county-specific risk ratios (essentially yielding the maximum likelihood
estimates §; = log(yi/E;)). The random-effects models 2—4 allow the county-specific relative
risks to be similar but not identical, with the autoregressive term allowing for the possibility of
spatially correlated variation.
We use the saturated deviance (McCullagh and Nelder (1989), page 34)

D(®) =23 [vilog{yi/ exp(6:)Ei} — {yi — exp(6:) E; }]

obtained by taking —2log{ f(y)} = —2%; log{ p(vi|f;)} = 208.0 as the standardizing factor (see
Section 2.5). This allows calculation of absolute measures of fit (see Section 6.2). For model
comparisons, however, it is sufficient to take the standardizing factor as f(y) = 1. For each
model we ran two independent chains of an MCMC sampler in WinBUGS (Spiegelhalter et al.,
2000) for 15000 iterations each, following a burn-in period of 5000 iterations. As suggested
by Dempster (1997b), Fig. 3 shows a kernel density smoothed plot of the resulting posterior
distributions of the deviance under each competing model. Apart from revealing the obvious
unacceptability of model 1, this clearly illustrates the difficulty of formally comparing posterior
deviances on the basis of such plots alone.

0.06
L

0.0

, J/
T T T T T T T T
20 40 60 80 100 360 380 400

Deviance

Fig. 3. Posterior distributions of the deviance for each model considered in the lip cancer example:
model 1; -+ -, , model 2; ------- , model 3; - — —, model 4, — —, model 5
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Table 1. Deviance summaries for the lip cancer data using three alternative parameterizations (mean,
canonical and median) for the plug-in deviance}

Model D D(m) py pIct D) pY DIC’ D(med) pped Dic™ed
1, pooled 3817 380.7 1.0 3827 3807 1.0 3827 3807 1.0 3827
2, exchangeable 61.1 182 429 1040 177 434 1045 17.6 435  104.6
3, spatial 583 266 317 89.9 271 312 895 272 311 89.3
4, exchangeable + spatial ~ 57.9  26.1 31.8 89.7 265 314 893 266 313 89.2
5, saturated 559 0.0 559 1117 3.1 528 108.6 14 545 1104

TExchangeable means an exchangeable random effect; spatial is a spatially correlated random effect.

The deviance summaries proposed in this paper are shown for the lip cancer data in Table 1:
D is simply the mean of the posterior samples of the saturated deviance; D(ji) is calculated by
plugging the posterior mean of i; = exp(6;) E; into the saturated deviance; D(#) is calculated
by plugging the posterior means of the relevant parameters («y, o, 7; and/or 6;) into the linear
predictor #; and then evaluating the saturated deviance; D(med) is calculated by plugging the
posterior median of 6; (or, equivalently, of ;) into the saturated deviance. The results are
remarkably similar for the three alternative parameterizations of the plug-in deviance. For fixed
effects models we would expect from Section 3.2 that pp should be approximately the true
number of independent parameters. For the pooled model 1, pp = 1.0 as expected, whereas,
for the saturated model 5, pp ranges from 52.8 to 55.9 depending on the parameterization
that is used, which is close to the true value of 56 parameters. The models containing spatial
random effects (either with or without additional exchangeable effects) both have around 31
effective parameters, whereas the model with only exchangeable random effects has about 12
additional effective parameters. On the basis of the results of Section 5.2 comparing pp for
Poisson likelihoods with different priors, this suggests that the spatial model provides stronger
prior information than does the exchangeable model for these data.

Turning to the comparison of DIC for each model, we first note that DIC is subject to Monte
Carlo sampling error, since it is a function of stochastic quantities generated under an MCMC
sampling scheme. Whereas computing the precise standard errors for our DIC values is a subject
of on-going research, the standard errors for the D-values are readily obtained and provide a
good indication of the accuracy of DIC and pp. In any case, in several runs using different initial
values and random-number seeds for this example, the DIC and pp-estimates obtained never
varied by more than 0.5. As such, we are confident that, even allowing for Monte Carlo error,
either of models 3 or 4 is superior (in terms of DIC performance) to models 2 or 5, which are in
turn superior to model 1. A comparison of DIC for models 3 and 4 suggests that the two spatial
models are virtually indistinguishable in terms of the overall fit: pragmatically, we might prefer
reporting model 3 since its DIC is only marginally greater than the more complex model 4.

Considering now the absolute measure of fit suggested in Section 6.2, we compare the values
of D in Table 1 with the sample size n = 56. This suggests that all models except the pooled
model 1 provide an adequate overall fit to the data, and that the comparison is essentially based
on their complexity alone.

Following the discussion in Section 6, Fig. 4 shows a plot of deviance residuals dr; against
leverages pp; for each of the five models considered. The broken curves marked on each plot are
of the form x> + y = ¢ and points lying along such a parabola will each contribute an amount
DIC; = c¢ to the overall DIC for that model. For models 25, parabolas are marked at values
of ¢ = 1, 2, 5, and any data point whose contribution DIC; is greater than 2 is labelled by its
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Fig. 4. Diagnostics for the lip cancer example—residuals versus leverages (the parabolas indicate contri-
butions of 1, 2 or 5 to the total DIC (apart from model 1): (a) model 1; (b) model 2; (c) model 3; (d) model 4;
(e) model 5

observation number. For model 1, parabolas are marked at ¢ = 1, 10, 50, since the size of the
deviance residuals and individual contributions to DIC are much larger and, for clarity, only
points for which DIC; is greater than 10 are marked by their observation number. Observations
55 and 56, the only districts with y; = 0, are clearly identified as potential outliers under each
of the random-effects models 24, as is observation 1 (the district with the highest observed
risk ratio y;/E;). A few other observations (2, 3, 4, 53 and 54) have contributions DIC; that
are just larger than 2 under model 2: with the exception of the three districts already discussed,
these five districts have the most extreme observed risk ratios and so their estimates tend to be
shrunk furthest under the exchangeable model. Observations 14, 15, 45 and 50 appear to be
outliers in models 3 and 4 which have a spatial effect, but not in the remaining models. A further
investigation reveals that the observed risk ratios in these districts are extreme compared with
those in each of their neighbouring districts. For example district 50 has only six cases compared
with 19.6 expected, whereas each of its three neighbouring districts have high observed counts
(17, 16 and 16) relative to those expected (7.8, 10.5 and 14.4). The spatial prior in models 3 and 4
causes the estimated rate in district 50 to be smoothed towards the mean of its neighbours’ rates,
thus leading to the discrepancy between observed and fitted values, and since the observation still
exercises considerable weight on its fitted value the leverage is high as well. However, overall we
might not consider that there is sufficient evidence to cast doubt on any particular observations.

8.2. Robust regression using the stack loss data
Spiegelhalter et al. (1996) (pages 27-29) considered a variety of error structures for the oft-
analysed stack loss data of Brownlee (1965). Here the response variable y, the amount of stack
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loss (escaping ammonia in an industrial application), is regresssed on three predictor variables:
air flow x|, temperature x, and acid concentration x3. Assuming the usual linear regression
structure

wi = Bo + Przi1 + Baziz + B32i3

where z;; = (x;; — X j)/sd(x ), the standardized covariates, the presence of a few prominent
outliersamongthen = 21 cases motivates a comparison of the following four error distributions:
model 1,

vi ~ normal(u;, b,

model 2,
yi ~ DE(ui, 771
model 3,
yi ~ logistic(u;, 771);
model 4,

yi ~ ta(ui 1)

(where DE denotes the double-exponential (Laplace) distribution and 74 denotes Student’s z-
distribution with d degrees of freedom).

A well-known alternative to the direct fitting of many symmetric but non-normal error dis-
tributions is through scale mixtures of normals (Andrews and Mallows, 1974). From page 210
of Carlin and Louis (2000), we have the alternate z;-formulation model 5,

1
y; ~ normal (m, —),
wiT

i ! 2 _ amma dd
Wi dXd—g 32/

Unlike our other examples the form of the likelihood changes with each model, so we must use
the full normalizing constants when computing —2 log{ p(y|u, 7)}.

Following Spiegelhalter et al. (1996) we set d = 4, and for each model we placed essentially
flat priors on the 3; (actually normal with mean 0 and precision 0.00001) and log(7) (actually
gamma(0.001,0.001) on 7) and ran the Gibbs sampler in BUGS for 5000 iterations following a
burn-in period of 1000 iterations.

Replacing 7 and w; by their posterior means where necessary for the D(#)-calculation, the
resulting deviance summaries are shown in Table 2 (note that the mean parameterization and
the canonical parameterization are equivalent here, since the mean y; is a linear function of the
canonical S-parameters). Beginning with a comparison of the first four models, the estimates of
pp are all just over 5, the correct number of parameters for this example. The DIC-values imply
that model 2 (double exponential) is best, followed by the #4-, the logistic and finally the normal
models. Clearly this order is consistent with the models’ respective abilities to accommodate
outliers.

Turning to the normal scale mixture representation for the #4-likelihood (model 5), the
pp-value is 7.6, suggesting that the w; random effects contribute only an extra 2-2.5 param-
eters. However, the model’s smaller DIC-value implies that the extra mixing parameters are
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Table 2. Deviance results for the stack loss data

Model D D) pp DIC
1, normal 110.1  105.0 51 1152
2, double exponential  107.9 102.3 56 113.5
3, logistic 109.5 1042 53 1148
4,14 108.7 103.2 55 1142
S, t4 as scale mixture 102.1 945 7.6 109.7

worthwhile in an overall quality-of-fit sense. We emphasize that the results from models 4 and
5 need not be equal since, although they lead to the same marginal likelihood for the y;, they
correspond to different prediction problems.

Finally, plots of deviance residuals versus leverages (which are not shown) clearly identify the
observations determined to be ‘outlying’ by several previous researchers who analysed this data
set.

8.3. Longitudinal binary observations: the six-cities study

To illustrate how the mean and canonical parameterizations (introduced in Section 5 and further
discussed in Section 9) can sometimes lead to different conclusions, our next example considers a
subset of data from the six-cities study, a longitudinal study of the health effects of air pollution:
see Fitzmaurice and Laird (1993) for the data and a likelihood-based analysis. The data consist
of repeated binary measurements y;; of the wheezing status (1, yes; 0, no) of child i at time j,
i=1,...,1,j=1,...,J, for each of I = 537 children living in Stuebenville, Ohio, at J = 4
time points. We are given two predictor variables: a;;, the age of child 7 in years at measurement
point j (7, 8,9 or 10 years), and s;, the smoking status of child i’s mother (1, yes; 0, no). Following
the Bayesian analysis of Chib and Greenberg (1998), we adopt the conditional response model

Y;; ~ Bernoulli(p;),
pij = Pr(Y,} = 1) = g_l(ﬂ:j)s
Wij = ﬁo + ﬁlzijl + ﬂzZijZ + ﬁ32ij3 + bj,

where zj = xjr — X1,k = 1,2,3, and x;;1 = ajj, x;p = s; and x;;3 = ayjsi, a smoking-age
interaction term. The b; are individual-specific random effects, initially given an exchangeable
N(0, \~1) specification, which allow for dependence between the longitudinal responses for
child i. The model choice issue here is to determine the most appropriate link function g(-)
among three candidates, namely the logit, the probit and the complementary log—log-links.
More formally, our three models are model 1,

9(pi) = logit(py) = log{p;/(1 — pi)},
model 2,
g(pi) = probit(p;) = o~ (py),
and model 3,

g(pij) = cloglog(p;j) = log{—log(l — pi)}.
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Table 3. Results for both parameterizations of the Bernoulli panel data

Model D Results for the canonical Results for the mean
parameterization parameterization

D) pp  DIC D@B) pp  DIC

1, logit 1166.4 917.7 2487 1415.1 997.5 1689 13353
2, probit 1148.6 8859 262.7 1411.3 989.9 158.7 1307.3
3, complementary log-log  1180.9 956.5 2244 14053 1013.7 167.2 1348.1

Since the Bernoulli likelihood is unaffected by this choice, in all cases the deviance takes the
simple form

D = =23 {yjlog(pi) + (1 — yi) log(1 — pyj)}.
i

Placing flat priors on the 5, and a gamma(0.001,0.001) prior on A, and running the Gibbs sam-
pler for 5000 iterations following a burn-in period of 1000 iterations produces the deviance sum-
maries in Table 3 for the canonical and mean parameterizations: the canonical parameterization
constructs 0 as the mean of the linear predictors 8 and b;, and then uses the appropriate linking
transformation (logit, probit or complementary log-log) to obtain the imputed means for the p;;.
The mean parameterization simply uses the means of the p;; themselves when computing D(6).
Natarajan and Kass (2000) have pointed out potential problems with the gamma(0.001,0.001)
prior on A, but in this context the 537 random effects ensure that these findings are robust to
the choice of prior for A.

The posterior standard deviation \/A~! of the random effects is estimated to be 2.2 (standard
deviation 0.2), which indicates extremely high unexplained overdispersion and hence consider-
able prior—data conflict: this should warn us of a potential lack of robustness in our procedure.
We have a sample size of n; = 4 for each of / = 537 individuals, and an average pp, for the
canonical parameterization of around 0.4-0.5. From approximation (31), this indicates a prior
sample size a + b of around 4-6. Referring to the evidence in Fig. 1 concerning low prior and
observation sample sizes (n; = 1;a + b = 1), we might expect the mean parameterization to
display decreased complexity compared with the canonical, and this is borne out in the results.
DIC prefers the complementary log-log-link under the canonical parameterization, but the
probit link under the mean parameterization. We repeat that we prefer the canonical results
because of the improved normality of the likelihoods and their lack of dependence on observed
data: however, none of the models explain the data very well, and the lack of consensus suggests
caution in using any of the models.

9. Discussion

Here we briefly discuss relationships to other suggestions and give some guidance on the practical
use of the techniques described in this paper.

9.1. Relationship of pp and DIC to other suggestions
9.1.1.  Cross-validation
Stone (1977) showed the asymptotic equivalence of model comparison based on cross-validation
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and AIC, whereas Wahba (1990) (page 52) showed how a generalized cross-validation criterion
leads to the use of n — tr(H) as a denominator in the estimation of residual mean-squared error.
We would expect our measure of model complexity pp to be strongly related to cross-validatory
assessment, but this requires further investigation.

9.1.2.  Other predictive loss functions

Kass and Raftery (1995) criticized Akaike (1973) for using a plug-in predictive distribution as
we have done in Section 7.3, rather than the full predictive distribution obtained by integrating
out the unknown parameters. A criterion based on this predictive distribution is also invariant
to reparameterizations. Laud and Ibrahim (1995) and Gelfand and Ghosh (1998) suggested
minimizing a predictive ‘discrepancy measure’ E{d(Ynew, )|y}, where Ynew is a draw from
the posterior predictive distribution p(Ypew|y), and we might for instance take d(Ypew,y) =
(Ynew — y)T(Ynew — ). They showed that their measures also have attractive interpretations as
weighted sums of ‘goodness of fit” and ‘predictive variability penalty’ terms. However, a proper
choice of the criterion requires fairly involved analytic work, as well as several subjective choices
about the utility function that is appropriate for the problem at hand. Furthermore, the one-
way ANOVA model in Section 2.5 gives rise to a fit term equivalent to D(f), and a predictive
variability term equal to pp + p. Thus their suggestion is equivalent in this context to the
comparison by our Bayesian measure of fit D which, although invariant to parameterization,
does not seem to penalize complexity sufficiently.

In general the use of a plug-in estimate appears to ‘cost’ an extra penalty of pp.

9.1.3.  Bayes factors

Bayes factors are criteria based on a comparison of the marginal likelihoods (1) (Kass and
Raftery, 1995), and a common approximation is the Bayesian (or Schwarz) information criterion
(Schwarz, 1978), which for a model with p parameters and n observations is given by

BIC = —2log{p(y/0)} + plog(n).

Bernardo and Smith (1994) (chapter 6) argued that this formulation may only be appropriate
in circumstances where it was really believed that one and only one of the competing models
was in fact true, and the crucial issue was to choose this correct model, and that in other
circumstances criteria based on short-term prediction, such as cross-validation, may be more
appropriate. We support this view and refer to Han and Carlin (2001) for a review of some
of the computational and conceptual difficulties in using Bayes factors to compare complex
hierarchical models. Whether DIC can be justified as a basis for model averaging remains open
for investigation.

9.2. Practical issues in using DIC

9.2.1.  Invariance

pp may be only approximately invariant to the chosen parameterization, since different fitted
deviances D(A) may arise from substituting posterior means of alternative choices of . The
example in Section 8.3 shows that this choice could be important with Bernoulli data.

In Section 5 we explored the use of the posterior median as an estimator leading to an invariant
pp- This has two possible disadvantages: we do not have a proof that pp will be positive and some
additional computational difficulty in that the full sample needs to be retained. In addition the
approximate properties based on Taylor series expansions in Section 3 may not hold, although
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this may be only of theoretical interest. Currently we recommend calculation of DIC on the basis
of several different estimators, with a preference for posterior means based on parameterizations
obeying approximate likelihood normality.

9.2.2.  Focus of analysis

As we saw in the stack loss example of Section 8.2, there may be sensitivity to apparently
innocuous restructuring of the model: this is to be expected since by making such changes we
are altering the definition of a replicate data set, and hence one would expect DIC to change.
For example, consider a model comprising a mixture of normal distributions. If this assumption
was solely to obtain a flexible functional form, then the appropriate likelihood would comprise
the mixture. If, however, we were interested in the membership of individual observations,
then the likelihoods would be normal and the membership variables would contribute to the
complexity of the model. Thus the parameters in the focus of a model should ideally depend on
the purpose of the investigation, although in practice it is likely that the focus may be chosen
on computational grounds as providing likelihoods that are available in closed form.

9.2.3.  Nuisance parameters

Strictly speaking, nuisance parameters should first be integrated out to leave a likelihood
depending solely on parameters in focus. In practice, however, parameters such as variances
are likely to be included in the focus and add to the estimated complexity: we would recommend
posterior means of log-variances as estimators.

9.2.4. What is an important difference in DIC?

Burnham and Anderson (1998) suggested models receiving AIC within 1-2 of the ‘best’ deserve
consideration, and 3-7 have considerably less support: these rules of thumb appear to work
reasonably well for DIC. Certainly we would like to ensure that differences are not due to
Monte Carlo error: although this is straightforward for D, Zhu and Carlin (2000) have explored
the difficulty of assessing the Monte Carlo error on DIC.

9.2.5. Asymptotic consistency

As with AIC, DIC will not consistently select the true model from a fixed set with increasing
sample sizes. We are not greatly concerned about this: we neither believe in a true model nor
would expect the list of models being considered to remain static as the sample size increased.

9.3. Conclusion

In conclusion, our suggestions have a similar ‘information theoretic’ background to frequentist
measures of model complexity and criteria for model comparison but are based on expectations
with respect to parameters in place of sampling expectations. DIC can thus be viewed as a
Bayesian analogue of AIC, with a similar justification but wider applicability. It is also applicable
to any class of model, involves negligible additional analytic work or Monte Carlo sampling
and appears to perform reasonably across a range of examples. We feel that pp and DIC deserve
further investigation as tools for model assessment and comparison.
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Discussion on the paper by Spiegelhalter, Best, Carlin and van der Linde

S. P. Brooks (University of Cambridge)

This is a wonderful paper containing a wide array of interesting ideas. It seems to me very much like a first
step (and in the right direction) and I am sure that it will be seen as both a focus and a source of inspiration
for future developments in this area.

As the authors point out, their pp and the deviance information criterion (DIC) statistics have al-
ready been widely used within the Bayesian literature. Given this history and in the previous absence of
a published source for these ideas, it is easy to misunderstand what pp actually does. Certainly, before
reading this paper, but having read several others which use the DIC, I thought that the p-statistic was
a clever way of avoiding the problem that Bayesians have when it comes to calculating the number of
parameters in any hierarchical model. Essentially the problem is one of deciding which variables in the
posterior are model parameters and which are hyperparameters arising from the prior. However, pp does
not help us here and that is why we have Section 2.1 explaining that this choice is up to the reader. The
authors refer to this as choosing the ‘focus’ for the analysis. Sadly, in many cases the calculation of pp will
be impossible for the focus of primary interest since the deviance will not be available in closed from (this
includes random effects and state space models, for example), so this remains an open problem.

What pp does do is to tell you, once you have chosen your focus, how many parameters you lose (or
even gain?) by being Bayesian. The number of degrees of freedom (or parameters) in a model is clear from
the (focused) likelihood. However, by combining the likelihood with the prior we almost always impose
additional restrictions on the parameter space, effectively reducing the degrees of freedom of our model.
Take the authors’ saturated model of Section 8.1, in which parameters «, ..., asq are given a prior with
some unknown mean 4 and fixed variance o2. Clearly, in the limit as o> goes to 0, we essentially remove
the 56 individual parameters «; and effectively replace them with a single parameter p. I guess that this is
fairly obvious with hindsight as is the case with many great ideas. None-the-less it is a credit to the authors
firstly for seeing it and, more importantly, for actually deriving a procedure for dealing with it.

This prior-induced parameter reduction can be clearly observed in Fig. 5 in which we plot the value
of p% against log(c?) both for a hyperprior ;. ~ N(0, 1000) and for ; = 0 (the authors are unclear about
which, if either, they actually use in Section 8.1). We can see that, as o2 decreases, the effective number of
parameters decreases to either 1 or 0 depending on whether or not y itself is a parameter, i.e. which prior
is chosen. It is interesting to note the rapid decline in pp for variances between 1 and 0.01, but what is
particularly interesting about this plot is that, as o increases, pp converges to a fixed maximum well
below 56, the number of parameters in the likelihood. As an experiment, if we take o> = 10% or even
the Jeffreys prior for the y;, a value for p exceeding 53.1 is never obtained (modulo Monte Carlo error).
This suggests that we automatically lose three parameters just by being Bayesian, even if we are as vague
as we could possibly be with our prior. Quoting Bernardo and Smith (1994), page 298, ‘every prior spe-
cification has some informative posterior or predictive implications . ... There is no “objective” prior that
represents ignorance.” Of course, the authors’ Table 1 suggests that if we took the median as the basis for
the calculation of pp then we might obtain different results; indeed we seem to regain several parameters
this way! Unfortunately, analytic investigation of the pp-statistic is essentially limited to the case where
we take 6(y) to be the posterior mean, so we have little idea of the extent and nature of the variability
across parameterizations. This choice is likely to have a significant effect on any inference based on the
corresponding pp-statistic and further (no doubt simulation-based) investigation along these lines would
certainly be very helpful.

As well as the construction of the pp-statistic, the paper also derives a new criterion for model com-
parison labelled the DIC. The authors provide a heuristic justification for the DIC, but there are clearly
several alternatives. One obvious extension of the usual Akaike information criterion (AIC) statistic to
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Fig.5. Plotof pf for the saturated model of Section 8.1 demonstrating its dependence on the prior variance

for the random effects: , pp-statistic with an N(0, 1000) hyperprior for p: - - - - - , corresponding value
whenwe fix y=0; -+ , humber of parameters in the likelihood

the Bayesian context is to calculate its posterior expectation, EAIC = D(f) 4 2p (rather than evaluating it
at the posterior mode under a flat prior), or to take the deviance calculated at the posterior mean, i.e.
taking D(0) + 2p. Of course, as with the DIC, posterior medians, modes etc. could also be taken and
similar extensions could be applied to the corrected AIC statistic and the Bayesian information criterion
for example. Further, the number of parameters in each of these expressions might be replaced by pp to
gain even more potential criteria. Table 4 gives the posterior model probabilities and posterior-averaged
information criteria (based on p, rather than pp), including DIC, for autoregressive models of various
orders fitted to the well-known lynx data (Priestley (1981), section 5.5). We note the broad agreement
between the DIC, EAIC and EAIC; (as is common in my own experience and, I think, expected by the
authors), but that EBIC locates an entirely different model. We note also that the posterior model prob-
abilities correctly identify the fact that two models appear to describe the data well and it is the only
criterion to identify correctly the existence of two distinct modes in the posterior.

Given the number of approximations and assumptions that are required to obtain the DIC it can only
really be used as a broad brush technique for discriminating between obviously disparate models, in much
the same way as any of the alternative information criteria suggested above might be used. However, in
many realistic applications there may be two or more models with sufficiently similar DIC that it is im-
possible to choose between the two. The only sensible choice in this circumstance is to model-average (see
Section 9.1.3). Burnham and Anderson (1998), section 4.2, suggested the use of AIC weights and these
are also given in Table 4 together with the corresponding weights for the other criteria. Essentially, these
are obtained by subtracting from each AIC the value associated with the ‘best’ model and then setting

w o exp{—AAIC(k)/2}

where AAIC(k) denotes the transformed AIC-value for model k. These weights are then normalized to
sum to 1 over the models under consideration.

Note the distinct differences between the weights and the posterior model probabilities given in
Table 4, suggesting that only one or the other can really make any sense. We note here that similar
comparisons have been made in the context of other examples. In the context of a log-linear contingency
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Table 4. Effective number of parameters, values of DIC and the posterior expectation of various information
criteria for fitting an autoregressive model of order k (with k + 1 parameters including the error variance) to
the lynx datat

k D DIC EAIC  EBIC EAIC. w(K=k) wPIC WEAIC EBIC FAIC

1.88 206.66 206.78  209.51  206.81 0.000 0.000  0.000 0.000 0.000
2.85 126.58 127.72 133.19 12783 0.243 0.000  0.003 0.858 0.011
3.78 127.06 129.27  137.48  129.50 0.016 0.000  0.001 0.101 0.005
4.76 125.52 128.75  139.70  129.12 0.007 0.000  0.002 0.033 0.006
. 125.23 129.52  143.20  130.08 0.002 0.000  0.001 0.006 0.004

6.62 126.30 131.68  148.09  132.46 0.001 0.000  0.004 0.000 0.001

7.60 122.34 128.72  147.88  129.78 0.002 0.000  0.002 0.001 0.004

8.61 121.81 129.19  151.08  130.56 0.002 0.000  0.001 0.000 0.003

9.58 122.75 131.16  155.79  132.89 0.001 0.000  0.001 0.000 0.001
10 10.54 118.94 12840  155.76  130.53 0.002 0.001 0.002 0.000 0.003
11 11.33 106.51 117.16  147.26  119.75 0.154 0.431 0.566 0.001 0.624
12 12.61 106.89 118.27  151.10  121.36 0.268 0.356  0.325 0.000 0.280
13 13.56 108.74 121.17  156.74  124.81 0.135 0.142  0.076 0.000 0.050
14 1446 110.77 12430  162.61 128.54 0.067 0.051 0.016 0.000 0.008
15 15.37 112.8906 12742  168.47  132.32 0.000 0.019  0.003 0.000 0.001

el e N N N
w
=
(=}

tCriterion entries in bold indicate the model minimizing the relevant criterion, whereas those in italics denote
alternative plausible models under the rules of thumb discussed in Section 9.2.4. Probabilities = or weights w in
bold denote the top two models in each case. Here, EAIC. denotes the posterior mean of the corrected EAIC
(Burnham and Anderson, 1998), 7 (K = k) the corresponding posterior model probability under a flat prior across
models and the wX the corresponding Akaike weights (or equivalent). The posterior model probabilities were
kindly provided by Ricardo Ehlers.

table analysis, King (2001), Table 2.5, found that two models have posterior probability 0.557 and 0.057
but corresponding DIC weights of 0.062 and 0.682 respectively. Similar examples in which the DIC and
posterior model probabilities give wildly different results are provided by King and Brooks (2001). Do
the authors have any feel for why these two approaches might give such different results? Which would
they recommend be used and do they have any suggestions for alternative DIC-based weights for model
averaging which might lead to more sensible results? Surely, the only sensible approach is to calculate
posterior model probabilities via transdimensional Markov chain Monte Carlo methods. When, then, do
the authors suggest that the DIC might be used? What, in practical terms is the question that the DIC is
answering as opposed to the posterior model probabilities?

The incorporation of the DIC-statistic into WinBUGS 1.4 ensures its ultimate success, but I have grave
misgivings concerning the blind application of a ‘default’ DIC-statistic for model determination prob-
lems particularly given its heuristic derivation and the series of essentially arbitrary assumptions and
approximations on which it is based. The authors ‘recommend calculation of DIC on the basis of several
different estimators’. The option to choose different parameterizations is not available in the beta version
of WinBUGS 1.4; will it be added to later versions? What about options for the all-important choice of
focus? What do the authors suggest we do when the same parameterization is not calculable for all models
being compared? Could not the choice of parameterization for each model adversely influence the results,
particularly for models with large numbers of parameters (where a small percentage change in pp might
mean a large absolute change in the corresponding DIC)?

The paper, like any good discussion paper, leaves various other open questions. For example: why take
Egy[do] in equation (9) and not the mode or median; how should we decide when to take 6 to be the mean,
median, mode etc. as this will surely lead to different comparative results for the DIC; when is pp negative
and why; in an entirely practical sense, how does model comparison with the DIC compare with that via
posterior model probabilities and why do they differ—can both be ‘correct’ in any meaningful way? On
page 613, the authors write ‘pp and DIC deserve further investigation as tools for model assessment and
comparison’ and I would certainly agree that they do. I have very much enjoyed thinking about some
of these ideas over the past few weeks and I am very grateful to the authors for the opportunity and
motivation to do so. It therefore gives me great pleasure to propose the vote of thanks.
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Jim Smith (University of Warwick, Coventry)
I shall not address technical inaccuracies but just present four foundational problems that I have with the
model selection in this paper.

(a) Bayesian models are designed to make plausible predictive statements about future observables.
The predictive implications of all the prior settings on variances in the worked examples in Section
8 are unbelievable. They do not represent carefully elicited expert judgments but the views of a vac-
uous software user. Early in Section 1 the authors state that they want to identify succinct models
‘which appear to describe the information [about wrong “true” parameter values (see Section 2.2)?]
in the data accurately’. But in a Bayesian analysis a separation between information in the data
and in the prior is artificial and inappropriate. For example where do I input extraneous data used
as the basis of my prior? When do I stop calling this data (and so include it in D(-)) and instead
call it prior information? This forces the authors to use default priors.

A Bayesian analysis on behalf of a remote auditing expert (Smith, 1996) might require the selec-
tion of a prior that is robust within a class of belief of different experts (e.g. Pericchi and Walley
(1991)). Default priors can sometimes be justified for simple models. Even then, models within a
selection class need to have compatible parameterizations: see Moreno et al. (1998). However, in
examples where ‘the number of parameters outnumbers observations’—they claim their approach
addresses—default priors are unlikely to exhibit any robustness. In particular, outside the domain
of vague location estimation or separating variance estimation (discussed in Section 4), apparently
default priors can have strong influence on model implications and hence selection.

(b) Suppose that we need to select models whose predictive implications we do not believe. Surely we
should try to ensure that prior information in each model corresponds to predictive statements
that are comparable. Such issues, not addressed here, are considered by Madigan and Raftery
(1991) for simple discrete Bayesian models. But outside linear models with known variances this is
a difficult problem. Furthermore it is well known that calibration is a fast function (Cooke, 1991).
In particular apparently inconsequential deviations from the features of a model ‘not in focus’
tend to dominate D() and D(f). A trivial example of this occurs when we plan to forecast X,
having observed an independent identically distributed X; = 0.01 which under models M1 and
M2 have respective Gaussian distributions N(100, 10000) and N(0, 0.001). Then, for most priors,
model M1 is strongly preferred although its predictions about X, are less ‘useful’ (Section 2.2).
The authors’ premise that all the models they entertain are ‘wrong’ allows these calibration issues
to bite theoretically even in the limit, unlike their asymptotically consistent rivals. The authors,
however, do no more than to acknowledge the existence of this core difficulty after the example in
Section 8.3.

(c) Suppose that problems (a) and (b) do not bite. Then the ‘vector of parameters of focus’ (POF)
will have a critical influence on any ensuing inference. How in practice do we specify this? The
authors state without elaboration that this ‘should depend on the purpose of the investigation’
(Section 9.2.2). But it appears that in practice the POF is calculated on ‘computational grounds’,
their software capability driving their inference.

The high influence of the choice of the POF is illustrated in the example in Section 8.2. Here
models 4 and 5 are predictively identical but model 5 has a significantly smaller deviance infor-
mation criterion DIC than model 4. The authors conclude that ‘the extra mixing parameters are
worthwhile’: why? In what practical sense is this helpful? This example illustrates that the unguided
choice of the POF will often be inferentially critical. Incidentally in this example the order of DIC
is not (as stated) consistent with the thickness of tails of the sample distribution, the thickest-tailed
distribution being model 4.

(d) Butignoring all these difficulties there still remains the acknowledged choice of (re)parameteriza-
tion governing the choice of § which initially we shall assume to be the mean. Consider the case
when the POF @ is one dimensional with strictly increasing posterior distribution function F(6|y),
and G, is a distribution function of a random variable with mean 4. Then the reparameterization
offto ¢, = G;l{F(O\y)} has E(¢,) = p. Thus D(6) (or D(¢)) is arbitrary within the range of
D(-). Thus, contrary to Section (5.1.4), the choice of parameterization of § with non-degenerate
posterior will always be critical. But no general selection guidance is given here. In observation (c)
of Section 2.6 the authors suggest the use of the posterior median instead of the mean if this can
be calculated easily from their output: not a solution when the POF is more than one dimensional.
Even familiar transforms of marginal medians to contrasts and means or means and variances to
means and coefficients of variation will not exhibit the required sorts of invariance.
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There may be theoretical reasons to use DIC but I do not believe that this paper gives them. So my
suggestion to a practitioner would be: if you must use a formal selection criterion do not use DIC. I second
the vote of thanks.

The vote of thanks was passed by acclamation.

AKki Vehtari (Helsinki University of Technology)

The authors mention that the deviance information criterion DIC estimates the expected loss, with de-
viance as the loss function. This connection should be emphasized more. It should be remembered that
the estimation of the expected deviance was Akaike’s motivation for deriving the very first information
criterion AIC (Akaike, 1973). In prediction and decision problems, it is natural to assess the predictive
ability of the model by estimating the expected utilities, as the principle of rational decisions is based on
maximizing the expected utility (Good, 1952) and the maximization of expected likelihood maximizes the
information gained (Bernardo, 1979). It is often useful to use other than likelihood-based utilities. For
example, in classification problems it is much more meaningful for the application expert to know the
expected classification accuracy than just the expected deviance value (Vehtari, 2001). Given an arbitrary
utility function u, it is possible to use Monte Carlo samples to estimate Ey[u(0)] and i(E,[0]), and then to
compute an expected utility estimate as

iipic = i (Eg[0]) + 2{ Eo[it(0)] — u(Eq[0])},

which is a generalization of DIC (Vehtari, 2001).

The authors also mention the known asymptotic relationship of AIC to cross-validation (CV). Equally
important is to note that the same asymptotic relationship holds also for NIC (Stone (1977), equation
(4.5)). The asymptotic relationship is not surprising, as it is known that CV can also be used to estimate
expected utilities with Bayesian justification (Bernardo and Smith (1994), chapter 6, Vehtari (2001) and
Vehtari and Lampinen (2002a)). Below some main differences between CV and DIC are listed. See Vehtari
(2001) and Vehtari and Lampinen (2002b) for full discussion and empirical comparisons. CV can use full
predictive distributions. In the CV approach, there are no parameterization problems, as it deals directly
with predictive distributions. CV estimates the expected utility directly, but it can also be used to estimate
the effective number of parameters if desired. In the CV approach, it is easy to estimate the distributions
of the expected utility estimates, which can for example be used to determine automatically whether the
difference between two models is ‘important’. Importance sampling leave-one-out CV (Gelfand et al.,
1992; Gelfand, 1996) is computationally as light as DIC, but it seems to be numerically more unstable.
k-fold CV is very stable and reliable, but it requires k times more computation time to use. k-fold CV can
also handle finite range dependences in the data. For example, in the six-cities study, the wheezing statuses
of a single child at different ages are not independent. DIC, which assumes independence, underestimates
the expected deviance. In k-fold CV it is possible to group the dependent data and to handle independent
groups and thus to obtain better estimates (Vehtari, 2001; Vehtari and Lampinen, 2002b).

Martyn Plummer (International Agency for Research on Cancer, Lyon)
I congratulate the authors on their thought-provoking paper. I would like to offer one constructive sug-
gestion and one criticism.

Firstly, I have a proposal for a modified definition of the effective number of parameters pp. Starting
from the Kullback-Leibler information divergence between the predictive distributions at two different
values of 6

p(Yrepleo) }:|
PTeepl®) 17

I suggest that pj, be defined as the expected value of 7(6°, §') when 6° and ' are independent samples from
the posterior distribution of #. This modified definition yields exactly the same expression for pp in the
normal linear model with known variance. In general, it should give a similar estimate of pp when 6 has
an asymptotic normal distribution. This version of pp can also be decomposed into influence diagnostics
when the likelihood factorizes as in Section 6.3. It has the theoretical advantages of being non-negative
and co-ordinate free. A practical advantage is that pp can be estimated via Markov chain Monte Carlo
sampling using two parallel chains by taking the sample average of

p(Y,16%
log — T
p(YR,10h)

16°,0") = Ey, 0 [log {
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where the superscript denotes the chain to which each quantity belongs. The Monte Carlo error of this

estimate is easily calculated and the difficulties discussed by Zhu and Carlin (2000) can thus be avoided.
For exponential family models, 7(°, 6') can be expressed in closed form and there is no need to simulate

replicate observations Yy.,. When the scale parameter ¢ is known, the expression for pp, simplifies to

Pp; = niw; COV{ei’ ;1,(91)|Y} /9.

This gives a surprising resolution to the problem of whether to use the canonical or mean parameterization
to estimate pp.

On a more negative note, I am not convinced by the heuristic derivation of the deviance information
criterion DIC in Section 7.3. I followed this derivation for the linear model of Section 4.1, for which it is
not necessary to make any approximations. The term with expectation 0, neglected in the final expression,
is p — pp — D(6). Adding this to DIC gives an expected loss of p + pp which is not useful as a model
choice criterion. I am not suggesting that the use of DIC is wrong, but a formal derivation is lacking.

Mervyn Stone (University College London)

The paper is rather economical with the ‘truth’. The truth of p'(Y) corresponds fixedly to the conditions
of the experimental or observational set-up that ensures independent future replication Y, or internal
independence of y =y = (yy, ..., y,) (not excluding an implicit concomitant x). For p'(Y) ~ p(Y|6"), 6
must parameterize a scientifically plausible family of alternative distributions of Y under those conditions
and is therefore a necessary “focus’ if the ‘good [true] model’ idea is to be invoked: think of tossing a bent
coin. Changing focus is not an option.

Any connection of pp with cross-validatory assessment would need truth as p'(y) = p'(y1)- .. p'()-
If I = log(p)_is an acceptable measure of predictive success, A = X;I(y;|f_;) is a one-out estimate of
E v [2: {Y:|6(y)}]. Multiplied by —2, this connects with equation (33) only when the #-model is true
with Y;, ..., Y, independent.

Extending Stone (1977) to the posterior mode for prior p(#), with n large, A ~ L;(y) — II(y) where

T(y) = —te{L) + '@} S BoLG)"

and [(0) = log {p(0)}. If I”(0) is negative definite, the typically non-negative penalty II(y) is smaller for
the posterior mode than for the maximum likelihood estimate. For the maximum likelihood estimate,
I"(6) = O gives I1(y) estimating p*, but the general form probably gives Ripley’s p*.

If Section 7.3 could be rigorously developed (the use of Ey does look suspicious!), another connection
(via equation (33)) might be that DIC ~ —2A. But, since Section 7.3 invokes the ‘good model” assumption
and small |# — 6| for the Taylor series expansion (i.e. large n), such a connection would be as contrived
as that of 4 with the Akaike information criterion: why not stick with the pristine (nowadays calculable)
form of A—which does not need large n or truth, and which accommodates estimation of 6 at the inde-
pendence level of a hierarchical Bayesian model? If sensitivity of the logarithm to negligible probabilities
is objectionable, Bayesians should be happy to substitute a subjectively preferable measure of predictive
success.

Christian P. Robert (Université Paris Dauphine) and D. M. Titterington (University of Glasgow)

A question that arises regarding this thought challenging paper was actually raised in the discussion of
Aitkin (1991), namely that the data seem to be used twice in the construction of pp. Indeed, y is used the
first time to produce the posterior distribution 7(f|y) and the associated estimate 6(y). The (Bayesian)
deviance criterion then computes the posterior expectation of the observed likelihood p(y|6),

/ log {p(y10)} 7(dA]y) o / log {p(¥10)} p(y16) w(d9),

and thus uses y again, similarly to Aitkin’s posterior Bayes factor

/p(ylﬂ) m(doly).

This repeated use of y would appear to be a potential factor for overfitting.
It thus seems more pertinent (within the Bayesian paradigm) to follow an integrated approach along the
lines of the posterior expected deviance of Section 6.2,
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/ Eyul—2log{p(Y10)} + 2 log{ (1) }Ir(do]y)

because this quantity would be strongly related to the posterior expected loss defined by the logarithmic
deviance,

d(8,8) = Eygllog{p(¥10)} — log{p(Y|®)}],

advocated in Robert (1996) and Dupuis and Robert (2002) as an intrinsic loss adequate for model fitting.
In fact, the connection between p), the deviance information criterion and the logarithmic deviance would
suggest the use of this loss d(, 0) to compute the estimate plugged in pp as the intrinsic Bayes estimator

07(») = arg min{ Eq, (Eyollog{p(Y10)} - log{p(Y10)}D}

= arg max[Ey‘_v{p(YIé)}]

where the last expectation is computed under the predictive distribution. Not only does this make sense
because of the aforementioned connection, but it also provides an estimator that is completely invariant
to reparameterization and thus avoids the possibly difficult choice of the parameterization of the problem.
(See Celeux et al. (2000) for an illustration in the set-up of mixtures.)

J. A. Nelder (Imperial College of Science, Technology and Medicine, London)

My colleague Professor Lee has made some general points connecting the subject of this paper to our
work on likelihood-based hierarchical generalized linear models. I want to make one specific point and
two general ones.

(a) Professor Dodge has shown that, of the 21 observations in the stack loss data set, only five have
not been declared to be outliers by someone! Yet there is a simple model in which no observation
appears as an outlier. It is a generalized linear model with gamma distribution, log-link and linear
predictor x; + log(x;)#* log(x3). This gives the following entries for Table 2 in the paper

98.3 92.1 6.2 104.5

(I am indebted to Dr Best for calculating these). It is clearly better than the existing models used
in Table 2.

(b) This example illustrates my first general point. I believe that the time has passed when it was enough
to assume an identity link for models while allowing the distribution only to change. We should
take as our base-line set of models at least the generalized linear model class defined by distribution,
link and linear predictor, with choice of scales for the covariates in the last named.

(¢) My second general point is that there is, for me, not nearly enough model checking in the paper
(I am assuming that the use of such techniques is not against the Bayesian rules). For example, if a
set of random effects is sufficiently large in number and the model postulates that they are normally
distributed, their estimates should be graphed to see whether they look like a sample from such a
distribution. If they look, for example, strongly bimodal, then the model must be revised.

Anthony Atkinson (London School of Economics and Political Science)
This is an interesting paper which tackles important problems. In my comments I concentrate on regression
models: the points extend to the more complicated models at the centre of the authors’ presentation.

It is stressed in Section 7.1 that information criteria assume a replication of the observations; in regres-
sion this would be with the same X-matrix. But, the simulations of Atkinson (1980) showed that, to predict
over a different region, higher values of the penalty coefficient than two in equation (36) are needed. Do
the authors know of any analytical results in this area?

Information criteria for model selection are based on aggregate statistics. Fig. 4 shows an alternative
and more informative breakdown of one criterion into the contributions of individual observations than
that given by Weisberg (1981). However, it does not show the effect of the deletion of observations on
model choice. Atkinson and Riani (2000) used the forward search to analyse the stack loss data, for which
symmetrical error distributions were considered in Section 8.2. Their Fig. 4.28 shows that the square-root
transformation is the only one supported by all the data. The forward plot of residuals, Fig. 3.27, is stable,
with observations 4 and 21 outlying. This diagnostic technique complements the choice of a model using
information criteria calculated over a set of models that is too narrow.
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Fig. 6. Transformed surgical unit data: forward plot of the four added variable t-statistics: three variables
are needed in the model—x, is not significant

An example of model choice potentially confounded by the presence of several outliers is provided by
108 observations on the survival of patients following liver surgery from Neter et al. (1996), pages 334 and
438. There are four explanatory variables. Fig. 6 shows the evolution of the added variable z-tests for the
variables during the forward search with log(survival time) as the response: the evidence for the impor-
tance of all variables except x4 increases steadily during the search. Atkinson and Riani (2002) modify
the data to produce two different effects. The forward plots of the ¢-tests in Fig. 7(a) show that now x;
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Fig. 7. Modified transformed surgical unit data: (a) outliers render x, non-significant; (b) now the outliers
make x, significant (both (a) and (b) show forward plots of added variable t-statistics)
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is non-significant at the end of the search. The plot identifies the group of modified observations which
have this effect on the 7-test for x;. Fig. 7(b) shows the effect of a different contamination, which makes
x4 significant at the end of the search.

The use of information criteria in the selection of models is a first step, which needs to be complemented
by diagnostic tests and plots. These examples show that the forward search is an extremely powerful tool
for this purpose. It also requires many fits of the model to subsets of the data. Can it be combined with
the appreciable computations of the authors’ Markov chain Monte Carlo methods?

A. P. Dawid (University College London)

This paper should have been titled ‘Measures of Bayesian model complexity and fit’, for it is the models,
not the measures, that are Bayesian. Once the ingredients of a problem have been specified, any relevant
question has a unique Bayesian answer. Bayesian methodology should focus on specification issues or on
ways of calculating or approximating the answer. Nothing else is required.

Classical criteria overfit complex models, necessitating some form of penalization, and this paper lies
firmly in that tradition. But with Bayesian techniques (Kass and Raftery, 1995) overfitting is not a problem:
the marginal likelihood automatically penalizes model complexity without any need for further adjust-
ment. In particular, Bayesian model choice is consistent in the ‘good model’ case (Dawid, 1992a). In
Section 9.2.5 the authors brush aside the failure of their deviance information criterion procedure to
share this consistency property; but should we not seek reassurance that a procedure performs well in
those simple cases for which its performance can be readily assessed, before trusting it on more complex
problems?

I contest the view (Section 9.1.3) that likelihood is relevant only under the good model assumption: from
a decision theoretic perspective, we can always regard the ‘log-loss’ scoring rule S(p, y) := —log{p(y)}
as a measure of the inadequacy of an assessed density p(-) in the light of empirical data y (Dawid, 1986).
Moreover, when y is a sequence y" = (yy, ..., y,) of not necessarily independent or identically distributed
variables, we have

—log{p(y"} = 3=~ log{p(yly )}, @1
i=1

the ith term measuring the performance of the Bayesian probability forecast for y; on the basis of analysis
of earlier data only (Cowell ez al. (1999), chapters 10 and 11). This representation clearly demonstrates
why unadjusted marginal likelihood offers a valid measure of model fit: each ‘test” observation y; is always
entirely disjoint from the associated ‘training’ data y*~'. If desired, we can generalize this prequential
formulation of marginal likelihood by inserting other loss functions (Dawid, 1992b) or using other model
fitting methods (Skouras and Dawid, 1999). Such procedures exhibit a natural consistency property even
under model misspecification (Dawid, 1991; Skouras and Dawid, 2000).

One place where a Bayesian might want a measure of model complexity is as a substitute for p in the
Bayes information criterion approximation to marginal likelihood, e.g. for hierarchical models. But in
such cases the definition of the sample size n can be just as problematic as that of the model dimension p.
What we need is a better substitute for the whole term p log(n).

Andrew Lawson and Allan Clark (University of Aberdeen)
We would like to make several comments on this excellent paper.

Our prime concern here is the fact that the deviance information criterion DIC is not designed to pro-
vide a sensible measure of model complexity when the parameters in the model take the form of locations
in some R-dimensional space. In the spatial context, this could mean the locations of cluster centres or,
more generally, the components of a mixture. Clearly the averaging of parameters in these contexts is
nonsensical but is a fundamental ingredient of DIC’s penalty term D(6). Even if an alternative measure
of central tendency is used it remains inappropriate to average over configurations where locations in the
chosen space are parameters (e.g. cluster detection modelling in spatial epidemiology (McKeague and
Loiseaux, 2002; Gangnon and Clayton, 2002). In the case of the Bayes information criterion, however, it
might be possible to replace the penalty p In(n) by an average number of parameters (in a reversible jump
context) such as p In(n), where p is the number of parameters and n the sample size. This would at least
approximately accommodate the varying dimension but would not require the averaging of parameters
(as compared with DIC). This was suggested in Lawson (2000).

The second point of concern is the relationship of the goodness of fit to convergence of the Markov chain
Monte Carlo samplers for which DIC is designed. If posterior marginal distributions are multimodal then
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the conventional convergence diagnostic will fail (as they will usually find too much variability in individual
chains), and also DIC will average over the modes.

We are also somewhat concerned and puzzled by the results for the Scottish lip cancer data set. In
Table 1, excepting the saturated model, the largest penalty terms are for the exchangeable model and
not those with either spatial or spatial and exchangeable components. We also note that it is not strictly
appropriate to fit a spatial-only model without the exchangeable component.

Finally we note that alternative approaches have recently been proposed (Plummer, 2002).

José M. Bernardo (Universitat de Valéncia)
This interesting paper discusses rather polemic issues and offers some reasonable suggestions. I shall limit
my comments to some points which could benefit from further analysis.

(a) The authors point out that their proposal is not invariant under reparameterization and show that
differences may be large. The use of the median would make the result invariant in one dimension,
but it is not trivial to extend this to many dimensions. An attractive, general invariant estimator is
the intrinsic estimator obtained by minimizing the reference posterior expectation of the intrinsic
loss (0, 0) (Bernardo and Suarez, 2002) defined as the minimum logarithmic divergence between
p(x|0) and p(x|0). Under regularity conditions and moderate or large samples, this is well approx-
imated by (E[0|x]+ M[0|x])/2, the average between the reference posterior mean and mode. Other
invariant estimators may be obtained by minimizing the posterior expectation of §(6, #) obtained
from either a proper subjective prior or an improper prior which, as the reference prior, is obtained
from an algorithm which is invariant under reparameterization.

(b) The authors use ‘essentially flat” or ‘weakly informative’ priors, i.e. conjugate-like priors with very
small parameter values. This is dangerous and is not recommended. There is no reason to believe
that those priors are weakly informative on the parameters of interest. Indeed, these limiting proper
priors can have hidden undesirable features such as strong biases (cf. the Stein paradox). Moreover,
they may approximate a prior function which would result in an improper posterior and using a
‘vague’ proper prior in that case does not solve the problem; the answer will then typically be ex-
tremely sensitive to the hyperparameters chosen for the vague proper prior and, since the Markov
chain Monte Carlo algorithm will converge because the posteriors are guaranteed to be proper,
one might not notice anything wrong. If full, credible, subjective elicitation is not possible then one
should use formal methods to derive an appropriate reference prior.

(¢) The authors’ brief comment (in Section 9.2.4) on the calibration of the deviance information crite-
rion DIC is too short to offer guidance. With Bayes factors, we have a direct interpretation of the
numbers obtained. The Bayesian reference criterion (Bernardo, 1999) is defined in terms of natural
information units (and may also be described in terms of log-odds). Is there a natural interpretation
for DIC?

(d) The important particular case of nested models is not discussed in the paper. Would the authors
comment on the behaviour on DIC in that case (and hence on their implication on precise hy-
pothesis testing)? For instance, what is DIC’s recommendation for the simple canonical problem
of testing a value for a normal mean? It seems to me that, like Akaike’s information criterion or
the Bayesian reference criterion (but not the Bayes information criterion or Bayes factors), DIC
would avoid Lindley’s paradox. Is this so?

Sujit K. Sahu (University of Southampton)

This impressive paper shows how the very complicated business of model complexity can be assessed easily
by using Markov chain Monte Carlo methods. My comments mostly concern the foundational aspects
of the methods proposed and the interrelationship of the deviance information criterion DIC and other
Bayesian model selection criteria.

The paper provides a long list of models and the associated pp, the effective number of parameters. In
each of these cases pp is interpreted nicely in terms of model quantities. However, there is an unappealing
feature of pp that I would like to point out in the discussion below.

Consider the set-up leading to equation (23). Assume further that A; = 1, C; = 1 and C, = 72. Thus

the likelihood is N(6, 1) and the prior is N(0, 72). Then equation (23) yields that
_ 1
pp= 1+ 1/n72"

Assuming 77 to be finite it is seen that p;, increases to 1 as n — oo. The unappealing point is that the
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effective number of parameters is larger for larger sample sizes; conventional intuition suggests other-
wise. The number of unknowns (i.e. the effective number of parameters) should decrease as more data are
obtained under this very simple static model. In spite of the authors’ views on asymptotics or consistency,
this point deserves further explanation as it is valid even when small sample sizes are considered.

In Section 9.1 the relationship between DIC and other well-known Bayesian model selection criteria
including the Bayes factor is discussed. Although DIC is not to be viewed as a formal model choice crite-
rion (according to the authors), it is often (and it will be) used to perform model selection; see for example
the references cited by the authors. In this regard a more precise statement about the relationship between
the Bayes factor and DIC can be made. I illustrate this with the above simple example taken from the
paper.

Assume that the observation model is N(6, 1) and the prior for 6 is N(0, 7%). Suppose that model 0
specifies that Hy : @ = 0 and model 1 says that H, : § # 0. I assume that both 1 and 72 are finite and thus
avoid the problems with interpretation of the Bayes factor and Lindley’s paradox. Using the Bayes factor,
model 0 will be selected if

2)log(l +n7?)
—

ny? < (1 4nr 5

=
In contrast, DIC selects model 0 if

ny* < (14n1?)

2
2+n7?’
Clearly, if DIC selects model 0 then the Bayes factor will also select model 0. It is also observed that the
Bayes factor allows for higher |y|-values without rejecting the simpler model. In effect DIC is seen to have
the much discussed poor behaviour of a conventional significance test which criticizes the simpler null
hypothesis too much and often rejects it when it should not.

Sylvia Richardson (Imperial College School of Medicine, London)
I restrict my comments on this far-reaching paper to the use of the deviance information criterion DIC
for choosing within a family of models and the behaviour of pp as a penalization.

My first remark concerns the spatial example of Section 8. The DIC-values for the ‘spatial’ and the
‘spatial plus exchangeable’ models are nearly identical. Thus, the authors resort to external pragmatic
considerations for preferring the simpler model, while the more complex one is not penalized.

Table 5. Performance of DIC for mixture models with different
numbers of components

Results for the following values of k:

Bimod (n=200)

DIC(k) 566.7 567.7 568.5 569.2 570.0
E(D|y, k) 563.4  563.7 564.1 5645 565.0
PD 33 4 4.4 4.7 5
Skew (n=200)

DIC(k) 545.5 5359 5355 5357 5358
E(Dl|y, k) 540.3 530.1 530.0 530.2 5304
PD 5.2 5.8 5.5 5.5 5.4
North-south (n=94)

DIC(k) 110.5 1109 1109 110.5 110.8
E(D|y, k) 94.2 91.9 89.6 87.7 86.2
PD 16.3 19.0 21.3 22.8 24.6
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Turning to mixture models and the comparison between models with different numbers of components,
I discuss two situations. The first concerns simple Gaussian mixtures with an unknown number of com-
ponents; y; ~ Eﬁzlef(-\é‘,),i = 1,...,n, where f(:|f;) is Gaussian. To calculate DIC in this setting,
let us focus on mixtures as flexible distributions and use the conditional density for a new observation
y* 1 g®) = p(y*ly, w, 0, k) to calculate the deviance D(g) = —2 X7, log{g(y))} and take its expec-
tation over the Markov chain Monte Carlo run, conditional on k. We have pp(k) = E{D(¢)} — D({),
where g = p(y*|y, k).

Two cases of Gaussian mixtures were simulated (one replication): a well-separated bimodal mix-
ture (bimod), 0.5 N(—1.5,0.5) 4+ 0.5 N(1.5,0.5), and an overlapping skewed bimodal mixture (skew):
0.75 N(0, 1) + 0.25 N(1.5, 0.33), each with 200 data points.

In the clear-cut bimod case, DIC(k) is lower for k = 2, with a small incremental increase in both
E(Dly, k) and pp as extra components are being fitted (Table 5). In the more challenging skew case, the
pattern of DIC-values shows that this data set requires more than two components to be adequately fitted,
but the values of DIC and p), stay surprisingly flat between three and six components. Note that the pre-
dictive density plots conditional on k = 3, 4, 5 are completely superimposed (Fig. 8), indicating that more
than three components can be considered as overfitting the data, in the sense that they give alternative
explanations that are no better but involve increasing numbers of parameters.

The second situation is that of spatial mixture models proposed in Green and Richardson (2002) in the
context of disease mapping. DIC was calculated by focusing on area-specific risk. Referring, for exam-
ple, to the simple north-south (two-component) contrast defined in that paper, we find that DIC stays
stable as k increases, decreasing E(D|y, k) values being compensated by increasing pp. On the basis of a
mean-square error criterion between the estimated and the underlying risk surface, a deterioration of the
fit would be seen with values of 0.14, 0.15 and 0.16 for k = 2, 3, 4 respectively.

Thus pp acts as a sufficient penalization only in the simplest case. In other cases, DIC does not distin-
guish between alternative fits with increasing number of parameters.

Peter Green (University of Bristol)
I have two rather simple comments on this interesting, important and long-awaited paper.

The first concerns using basic distribution theory to give a surprising new perspective on pp in the
normal case, perhaps identifying a missed opportunity in exposition.

Consider first a decomposition of data as focus plus noise:

Y=X+Z

where X and Z are independent n-vectors, normally distributed with fixed means and variances, and var(Z)
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is non-singular. The deviance is
D(X) =¥ —X) " var(2) ' (Y — X)
and so
pp = E[DX)|Y] — D(E[X|Y]) = tr{var(Z)”'var(Z|D)}, “42)

using the standard expression for the expectation of a quadratic form. Several results in the paper have
this form, possibly in disguise. However,

var(Z|Y) = var(Z) —cov(Z,Y) var(Y)’lcov(Y, Z)
var(Z) — var(Z) var(Y)"'var(Z)
var(Z) var(Y)~{var(Y) — var(2)},

yielding the much more easily interpretable
pp = tr{var(¥)"' var(X)}. 43)

This allows a very clean derivation of examples in Sections 2.5 and 4.1-4.3. For example, in the Lindley
and Smith model we have var(Z) = C, and var(X) = A;C,AT, and so

pp = tr{(A1CA] + C) ' A1 GATY = te{ATCT Av(ATCT A+ D71,

as in equation (21) of the paper.
Turning now to hierarchical models, consider a decomposition into k independent terms

Y=2Z1+2Z:+... + Z,

where all Z; are normal, and var(Z;) is non-singular. These represent all the various terms of the model:
fixed effects with priors, random effects with different structures, errors at various levels; again all means
and variances are fixed. Then for any level = 1,2, ..., k — 1 we may take the sum of the first / terms as
the focus and the rest as noise.

Version (42) of pp above is then not very promising:

-1
pp() = tr{var( i Z,) var ( i Z,‘Y) }
i=l+1 i=l+1

but expression (43) gives the more compelling
1
pp() =tr {Var()@’l var (E Z,) } . (44)
i=1

Thus pp has generated a decomposition of the overall degrees of freedom n = % tr{var(¥)"'var(Z,)} into
non-negative terms attributable to the levels/ = 1, 2, ..., k, just as in frequentist nested model analysis of
variance. (We must take care with improper priors in using expression (44), and terms should be treated as
limits as precisions go to 0.) Of course, expressions (43) and (44) fail to hold with unknown variances or
with non-normal models, but the observations above do provide further motivation for accepting pp as a
measure of complexity, and suggest exploring more thoroughly its role in hierarchical models.

My second point notes that the paper has no examples with discrete ‘parameters’. Conditional distri-
butions in hierarchical models with purely categorical variables can be computed by using probability
propagation methods (Lauritzen and Spiegelhalter, 1988), avoiding Markov chain Monte Carlo methods,
so that pp is again a cheap local computation. Presumably marginal posterior modes would be used for
6. Certainly this is a context where pp can be negative. Can connections be drawn with existing model
criticism criteria in probabilistic expert systems?

The following contributions were received in writing after the meeting.
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Kenneth P. Burnham (US Geological Survey and Colorado State University, Fort Collins)

This paper is an impressive contribution to the literature and I congratulate the authors on their achieve-
ments therein. My comments focus on the model selection aspect of the deviance information criterion
DIC. My perspectives on model selection are given in Burnham and Anderson (2002), which has a focus
on the Akaike information criterion AIC as derived from Kullback—Leibler information theory. A lesson
that we learned was that, if the sample size n is small or the number of estimated parameters p is large
relative to n, a modified AIC should be used, such as AIC, = AIC + 2p(p + 1)/(n — p — 1). I wonder
whether DIC needs such a modification or if it really automatically adjusts for a small sample size or large
p, relative to n. This would be a useful issue for the authors to explore in detail.

At a deeper level I maintain that model selection should be multimodel inference rather than just infer-
ence based on a single best model. Thus, model selection to me has become the computation of a set of
model weights (probabilities in a Bayesian approach), based on the data and the set of models, that sum to
1. Given these weights and the fitted models (or posterior distributions), model selection uncertainty can
be assessed and model-averaged inferences made. The authors clearly have this issue in mind as demon-
strated by the last sentence of Section 9.1.3. I urge them to pursue this much more general implementation
of model selection and to seek a theoretical or empirical basis for it with DIC.

There is a matter that I am confused about. The authors say ‘... we essentially reduce all models
to non-hierarchical structures’ (third page), and ‘Strictly speaking, nuisance parameters should first be
integrated out ...’ (Section 9.2.3). Does this mean that we cannot make full inferences about models with
random effects? Can DIC be applied to random-effects models? It seems so on the basis of their lip cancer
example (Section 8.1). Can I have a model with fixed effects 7, random effects ¢y, . . ., ¢, with postulated
distribution g(¢|0), 6 as fixed effects (plus priors on all fixed effects) and have my focus be all of 7, ¢
and 6? Thus, I obtain shrinkage-type inferences about the ¢;; I do not integrate out the ¢ (AIC has been
adapted to this usage).

The authors make a point (page 612) that I wish to make more strongly. It will usually not be appropriate
to ‘choose’ a single model. Unfortunately, standard statistical model selection has been to select a single
model and to ignore any selection uncertainty in the subsequent inferences.

Maria Delorio (University of Oxford) and Christian P. Robert (Université Paris Dauphine)
Amidst the wide scope of possible extensions of their paper, the authors mention the case of mixtures

k
> Pi f(x10),

J

which is quite interesting, as it illustrates the versatility of the deviance information criterion DIC under
different representations of the same model.
In this set-up, if the p;s are known, the associated completed likelihood is

" k
L{O|(x1, 21), -+ s (ps z) } o< [T flxil6:) = [T fxil6)). (45)
il 1izi=j

j=1 izi=j

Therefore, conditional on the latent variables z = (zi, ..., z,), and setting the saturated deviance f(x)
to 1, define

k R
[DIC|z] = Y~ > (—4E[log{ f(xil60,)}Ix,z} + 2 log{ f(x;6,)}])

j=lizi=j

where 0 ; = E(0)|x, z) (under proper identifiability constraints; see Celeux et al. (2000)). The integrated
DIC is then
DIC, = 3" [DIC|z] Pr(z|x),
zeZ

where Pr(z|x) can be approximated (Casella ez al., 1999).

A second possibility is the observed DIC, DIC,, based on the observed likelihood, which does not use
the latent variables z. (We note the strong dependence of DIC on the choice of the saturated function f
and the corresponding lack of clear guidance outside exponential families. For instance, if f(x;) goes from
the marginal density to the extreme alternative where both ¢, and 6, are set equal to x;, DIC, goes from
—31.71 to 166.6 in the following example.)
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Table 6. Comparison of the three different criteria DIC, DIC, and
DICj3 for a simulated sample of 100 observations from 0.5A/(5, 1.5)
+ 0.5N(7.5, 8) with a conjugate prior 6, ~N(4, 5) and 6, ~N(8, 5),
and of DIC based on the true complete sample (x, z) and DIC for the
single-component normal model (with an A/(6, 5) prior and a variance
set of 6.07)

Results for the following models:

Normal Complete,  Integrated, Observed, Full,

(k=1) [DIC|z] DIC, DIC, DIC;
DIC 465.1 4135 462.6 457.6 4474
ADIC — —51.6 —25 -75 —17.6
D 0.99 1.96 227 1.98 28.06

0.25

02} >

0.15 i
0.1t
M N
0.05F ,
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Fig. 9. Histogram of the simulated data set and true density

A third possibility is the full DIC, DIC;, based on the completed likelihood (45) when it incorporates z
as an additional parameter, in which case the saturated deviance could be the normal standardized devi-
ance, although we still use f(x) = 1 for comparison.

The three possibilities above lead to rather different figures, as shown by Table 6 for the simulated data
set in Fig. 9; Table 6 exhibits in addition a lack of clear domination of the mixture (k = 2) versus the
normal distribution (k = 1) (second column), except when z is set to its true value (third column) or
estimated (last column). Note that, for the full DIC, pp is far from 102; this may be because, for some
combinations of z, the likelihood is the same. (This also relates to the fact that z is not a parameter in the
classical sense.)

David Draper (University of California, Santa Cruz)

The authors of this interesting paper talk about Bayesian model assessment, comparison and fit, but—if
their work is to be put seriously to practical use—the real point of the paper is Bayesian model choice: we
are encouraged to pick the model with the smallest deviance information criterion DIC among the class
of ‘good’ models (those which are ‘adequate candidates for explaining the observations’). (It is implicit
that somehow this class has been previously specified by means that are not addressed here—would the
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authors comment on how this set of models is to be identified in general?) However, in the case of model
selection it would seem self-evident that fo choose a model you have to say to what purpose the model will
be put, for how else will you know whether your model is sufficiently good? We can, perhaps, use DIC
to say that model 2 is better than model 1, and we can, perhaps, compare D with ‘the number of free
parameters in 6’ to ‘check the overall goodness of fit’ of model 2, but we cannot use the authors’ methods
to say whether model 2 is sufficiently good, because the real world definition of this concept has not been
incorporated into their methods. It seems hard to escape the fact that specifying the purpose to which a
model will be put demands a decision theoretic basis for model choice; thus (Draper, 1999) I am firmly in
the camp of Key ez al. (1999).

See Draper and Fouskakis (2000) and Fouskakis and Draper (2002) for an example from health policy
that puts this approach into practice, as follows. Most attempts at variable selection in generalized
linear models conduct what might be termed a benefit-only analysis, in which a subset of the available
predictors is chosen solely on the basis of predictive accuracy. However, if the purpose of the modelling is
to create a scale that will be used—in an environment of constrained costs, which is frequently the case—to
make predictions of outcome values for future observations, then the model selection process must seek
a subset of predictors which trades off predictive accuracy against data collection cost. We use stochastic
optimization methods to maximize the expected utility in a decision theoretic framework in the space of
all 27 possible subsets (for p of the order of 100), and because our predictors vary widely in how much
they cost to collect (which will also often be true in practice) we obtain subsets which are sharply different
from (and much better than) those identified by benefit-only methods for performing ‘optimal’ variable
selection in regression, including DIC.

Alan E. Gelfand (Duke University, Durham) and Matilde Trevisani (University of Trieste)
The authors’ generally informal approach motivates several remarks which we can only briefly develop
here. First, in Section 2.1, we think that better terminology would be ‘focused on p(y|#)’ with ‘interest in
the models for #”, as in, for example, the example in Section 8.1 where there is no 6 in the likelihood for any
of the given models. Even the example in Section 8.2, where 6 does not change across models, emphasizes
the focus on p(y|6) since f(y) depends on the choice of p. So, here, a relative comparison of the models
depends on the choices made for the f's. Without a clear prescription for f (once we leave the exponential
family), the opportunity exists to fiddle the support for a model.

Though the functional form of the Bayesian deviance does not depend on p(#), DIC and p, will. With
the authors’ hierarchical specification,

p(,0,¢) = p(y0) p(O1Y) p¥),

the effective degrees of freedom will depend on p(1)). But, also, under this specification, rather than p(y|6),
we can put a different distribution, p(y[t)), in focus. Again, it seems preferable not to speak in terms of
‘parameters in focus’.

Moreover, since p(y|f) and p(y|y) have the same marginal distribution p(y), a coherent model choice
criterion must provide the same value under either focus. Otherwise, a particular hierarchical specification
could be given more or less support according to which distribution we focus on. But let DIC,, pp, and
f1(y) be associated with p(y|f) and DIC,, pp, and f>(y) with p(y|¢)). To have DIC, = DIC, requires,
after some algebra, that

In{ (M} = In{ fi(M} = pp, — pp, + E[n{p(y[4)|y}] — E[In{p(y10)|y}].

Just as the functional form of f(y) depends only on the form of p(y|f), the form for f,(y) should
depend only on p(y|¢). Evidently this is not so. For instance, under the authors’ example in expression
(2), fi(y) = 0. The above expression yields the non-intuitive choice

1 A
{200} =X wi+ 5 Sl —w) = Avar@ly) Twf = 5 Swi{y - E@In}
where w; = 7;/(; + ). This issue is discussed further in Gelfand and Trevisani (2002).

Jim Hodges (University of Minnesota, Minneapolis)

This is a most interesting paper, presenting a method of tremendous generality and, as a bonus, a fine
survey of related methods. I can think of a dozen models for which I would like to see pp, but I shall ask
for just one: a balanced one-way random-effects model with unknown between-group precision, in which
each group has its own unknown error precision, these latter precisions being modelled as draws from,
say, a common gamma distribution with unknown parameters. Thus the precisions will be shrunk as well
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as the means, and presumably the two kinds of shrinkage will affect each other. The focus could be either
the means or the precisions, or preferably both at once.

One thing is troubling: the possibility of a negative measure of complexity (Section 2.6, comment (d)).
Hodges and Sargent (2001) is linked (shackled?) to linear model theory, in which complexity is defined
as the dimension of the subspace of %" in which the fitted values lie. In our generalization, the fitted
values may be restricted to ‘using’ only part of a basis vector’s dimension, because they are stochastically
constrained by higher levels of the model’s hierarchy. (Basing complexity on fitted values may remove the
need to specify a focus, although, if true, this is not obvious.) In this context, zero complexity makes sense:
the fitted values lie in a space of dimension 0 specified entirely by a degenerate prior. Negative complexity,
however, is uninterpretable in these terms. The authors attribute negative complexity to a poor model fit,
which suggests that p, describes something more than the fitted values’ complexity per se. Perhaps the
authors could comment further on this.

Youngjo Lee (Seoul National University)

It is very interesting to see the Bayesian view of Section 4.2 of Lee and Nelder (1996), which used extended
or h-likelihood and in which we introduced various test statistics. For a lack of fit of the model we proposed
using the scaled deviance

D, = —2(log{p(y10)} — log[p{y|1(0) = y}])

with degrees of freedom E(D,), estimated by n — tr(—L7V) where —Lg = V* asin Sections 4.3 and 5.4 of
this paper. We considered a wider class of models, which we called hicrarchical generalized linear models
(HGLMs) (see also Lee and Nelder (2001a, b)), but some of our proofs hold more widely than this, so
that, for example, Section 3.1 of this paper is summarized in our Appendix D, etc. For model complexity
the authors define in equation (9) the scaled deviance

D, = —2[log{p(y10)} — log{ p(y8") }].

D, and D,, are the scaled deviances for the residual and model respectively, whose degrees of freedom
add up to the sample size n. We are very glad that the authors have pointed out the importance of the
parameterization of 6 in forming deviances. We extended the canonical parameters of Section 5 to arbi-
trary links by defining the h-likelihood on a particular scale of the random parameters, namely one in
which they occur linearly in the linear predictor. In HGLMs the degrees of freedom for fixed effects are
integers whereas those for random effects are fractions. Thus, a GLM has integer degrees of freedom
pm = rank(X) because C;'§ is 0 in Section 5, whereas the estimated degrees of freedom of D,, in HGLMs
are fractions. Lee and Nelder (1996) introduced the adjusted profile i-likelihood eliminating 6, and this
can be used to test various structures of the dispersion parameters A discussed in the examples of Section
8: see the model checking plots for the lip cancer data in Lee and Nelder (2001b). Lee and Nelder (2001a)
justified the simultaneous elimination of fixed and random nuisance parameters. It will be interesting to
have the Bayesian view of the adjusted profile A-likelihood.

Xavier de Luna (Umed University)
This interesting paper presents Bayesian measures of model complexity and fit which are useful at different
stages of a data analysis. My comments will focus on their use for model selection. In this respect, one
of the noticeable contributions of the paper is to propose a Bayesian analogue, the deviance information
criterion DIC, to the Akaike information criterion AIC and TIC. Both DIC and TIC are generalizations
of AIC. The former may be useful in a Bayesian data analysis, whereas the frequentist criterion TIC has
the advantage of not requiring the ‘good model’ assumption discussed by the authors.

Such ‘information-based’ criteria use measures of model complexity (denoted p* or pp in the paper).
It should, however, be emphasized that models can be compared without having to define and compute
their complexity. Instead, out-of-sample validation methods, such as cross-validation (Stone, 1974) or
prequential tests (Dawid, 1984) can be used in wide generality. Moreover, to use an estimate of p* in a
model selection criterion, some characteristics of the data-generating mechanism (DGM)—‘true model” in
the paper—must be known. For instance, depending on the DGM either AIC-type or Bayes information
type criteria are asymptotically optimal (see Shao (1997) for a formal treatment of linear models). Thus,
when little is known about the DGM, out-of-sample validation provides a formal and general framework
to perform model selection as was presented in de Luna and Skouras (2003), in which accumulated pre-
diction errors (defined with a loss function chosen in accordance with the purpose of the data analysis)
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were advocated to compare and choose between different model selection strategies. When many models
are under scrutiny, out-of-sample validation may be computationally prohibitive and generally yields high
variability in the selection of a model. In such cases, different model selection strategies based on p*
(making—implicitly or explicitly—diverse DGM assumptions) can be applied to reduce the dimension of
the selection problem. Accumulated prediction errors can then be used to identify the best strategy while
making very few assumptions on the DGM.

Xiao-Li Meng (Harvard University, Cambridge, and University of Chicago)

The summary made me smile, for the ‘mean of the deviance — deviance of the mean’ theme once injected
a small dose of excitement into my student life. I was rather intrigued by the ‘cuteness’ of expressions
(3.4) and (3.8) of Meng and Rubin (1992), and seeing a Bayesian analogue of our likelihood ratio version
certainly brought back fond memories. My excitement back then was short lived as I quickly realized that
all I was deriving was just a masked version of a well-known variance formula. Let D(x, ) = (x — u)? be
the deviance, a case of realized discrepancy of Gelman et al. (1996); then

12 [
~ i - %)’ = D(x;, 1) — DX, p). (46)
i=1

Although equation (46) is typically mentioned (with p set to 0) for computational convenience, it is the
back-bone of the theme under quadratic or normal approximations, or more generally with log-concave
likelihoods, beyond which assumptions become much harder to justify or derive. (Obviously, equation
(46) is applicable for posterior or likelihood averaging by switching x and p.)

Section 1 contained a small puzzle. I wondered why Ye (1998) was omitted from the list of ‘the most
ambitious attempts’, because Ye’s ‘data derivative’ perspective goes far beyond the independent normal
model cited in Section 4.2 (for example, it addresses data mining). It also provides a more original and in-
sightful justification than normal approximations, especially considering that Markov chain Monte Carlo
sampling is most needed in cases where such approximations are deemed unacceptable.

Section 2.1 presented a bigger puzzle. The authors undoubtedly would agree that a statement like ‘In
hierarchical modelling we cannot uniquely define a “posterior” or “model complexity” without specifying
the level of the hierarchy that is the focus of the modelling exercise’ is tautological. Surely the ‘posterior’
and thus the corresponding ‘model complexity’ depend on the level or parameter(s) of interest. So why
does the statement become a meaningful motivation when the word posterior is replaced by ‘likelihood’?
There is even some irony here, because hierarchical models are models where there are unambiguous
and uncontroversial marginal likelihoods—both L(6|y) = p(y|f) and L(¢|y) = p(y|$) in Section 2.1 are
likelihoods in the original sense.

Although limitations on space prevent me from describing my reactions when reading the rest, I do wish
that DIC would stick out in the dazzling AIC—TIC alphabet contest, so we would all be less compelled
to look for UIC (unified or useful information criterion?) . . ..

The authors replied later, in writing, as follows.

We thank all the contributors for their wide-ranging and provocative discussion. Our reply is organized
according to a number of recurring themes, but constraints on space mean that it is impossible to address
all the points raised. Echoing Brooks’s opening remarks, our hope is that discussants and readers will
be sufficiently inspired to pursue the ideas proposed in this paper and to address some of the unresolved
issues highlighted in the discussion.

Model focus and definition of deviance

Our notion of the ‘focus’ of a model and its relationship to the prediction problem of interest provoked some
controversy. The crucial role of the model focus is to define the (parameterization of the) likelihood, and we
appreciate Gelfand and Trevisani’s suggestion of the term ‘focus on p(y|#)’, with interest in the structure of
0, rather than models “focused on ¢’. In all our examples the likelihood has been taken to be p(y|0) (using
the notation of Section 2.1) leading to models with a closed form likelihood but an unknown number of
effective parameters that we propose to estimate by pp. However, as Brooks points out, if the focus is on
p(y|®) (i.e. integrating over the random effects ), then in general the likelihood will no longer be available
in closed form, and other methods must be sought to evaluate p(y[¢)): in this circumstance the number of
parameters will be the dimension of ¢ or less, depending on the strength of the prior information on .
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Smith and others ask how the model focus should be chosen in practice. We argue that the focus is
operationalized by the prediction problem of interest. For example, if the random effects 6 in a hierarchi-
cal model relate to observation units such as schools or hospitals or geographical areas, where we might
reasonably want to make future predictions for those same units, then taking p(y|0) as the focus is sensi-
ble. The prediction problem is then to predict a new Y; ., conditional on the posterior estimate of 6; for
that unit. However, if the random effects relate to individual people, say, then we are often interested in
population-average inference rather than subject-specific inference, so we may want to predict responses
for a new or ‘typical’ individual rather than an individual who is already in the data set. In this case, it is
appropriate to integrate over the s and to predict Y, for a new individual conditional on 1), leading to
a model focused on p(y|v). A crucial insight is that a predictive probability statement such as p(Yieply) is
not uniquely defined without specifying the level of the hierarchy that is kept fixed in the prediction—this
defines the focus of the model. In summary, we feel that the issue of focus with respect to predictive model
assessment and selection is an issue in hierarchical modelling and not specifically Bayesian.

When the forms of the likelihoods differ between models being compared, it is clearly vital to be careful
that any standardizing terms that are used in the deviance are common. As observed by Smith, a compar-
ison of models with focus at different levels of the hierarchy may not be meaningful as they correspond to
different prediction problems.

Features of pp

Several discussants questioned the definition or performance of pp. As to the definition we maintain our
claim (in spite of Dawid’s comment) that it is in our models that there is a genuine Bayesian interest in
quantifying the interaction between Y and © in probabilistic terms. One can indeed often think of pp in
terms of dimensionality as Hodges suggests, but in general we prefer to think of it as a feature of the joint
distribution of ¥ and ©. This frees it from the shackles imposed by normal linear model theory. Such a
measure of interaction or model complexity may, for example, be used to reparameterize hyperparameters
1 to facilitate an intuitively interpretable specification of model priors on ¢ (Holmes and Denison, 1999).
Still, as suggested by Brooks, pp may turn out to be only a step towards a (better) definition of model
complexity such as that suggested by Plummer: we feel that the quantity that he proposes is intuitively
intriguing and that it may be particularly appropriate in exponential families, but we wonder about its
general validation and justification.

Our uncertainty about whether to recommend pp as a definition or as an estimate of a quantity still
to be defined makes it difficult to judge proposals for an ‘improvement’. For example, using an invariant
estimator such as that proposed by Robert and Titterington or Bernardo instead of 6 is tempting as part
of a definition, but it takes into account only one feature of p,, while destroying others such as the trace
approximation. Similarly the occurrence of a negative value of pp, typically observed if the model fits
poorly, might resemble a negative estimate for a positive parameter. We take a pragmatic point of view
and look forward to theoretical progress that provides insight into why pp generally appears to work well.
Green provides a valuable insight into the interpretation of pp in the normal case, using an attractive
decomposition of the total predictive variance of the observables.

Replying to those discussants who were concerned about observing pp < n under ‘flat’ priors, we re-
emphasize that pp = n was obtained theoretically only in the normal case or under normal approxima-
tions. There is no proof that p, = n for general distributions. In the case of Brooks’s illustration using the
Scottish lip cancer data, in which he shows that p, appears to ‘lose’ two or three (modulo Monte Carlo
error) parameters under such priors, we point out that two of the 56 observations in this data set are 0
with small expected values and so contribute negligibly to the Poisson deviance. We have replicated his
analysis replacing these two observations by non-zero counts, and we found that pj increases by about 2
to around 55.5.

We certainly do not recommend the unthinking use of default priors, a concern of Smith and Bernardo:
on the contrary, one of our main aims is to demonstrate how an informative prior reduces model com-
plexity. Typically a large number of parameters p relative to a small sample size n is compensated by using
an informative prior, and the deviance information criterion DIC and pp adjust accordingly without any
need for additional adjustment for small sample size (see Burnham, and Lawson and Clark’s comment on
the example in Section 8.1).

There is evidence (Daniels and Kass, 1999, 2001) that, in the absence of missing data, the use of default
priors for variance components typically has little effect on the posteriors for the main effects in a model.
Still, Smith and Bernardo observe that the flat priors that may maximize pj are not necessarily weakly in-
formative, and we agree. Reference priors that are least informative in an information theoretical sense can
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be easily studied in some of our examples. For example, Fig. 1 displays the performance of the beta( % %)
reference prior (corresponding to a prior sample size of n; = a + b = 1) for the binomial likelihood,
and the approximation (31) indicates that p$ based on the reference prior is greater than pf based on
the uniform beta(1, 1) prior (which has prior sample size n; = 2). Similarly for a Poisson likelihood the
reference prior m(u;) o +/p; yields a I'(y; + % n;) posterior distribution corresponding to a = % b — 0.

Hence pj, = yi/(yi + %) and pg ~ n;/n; = 1 might be compared with the values shown in Fig. 2.

Properties of DIC

Another main part of the discussion focused on the properties and performance of DIC. Plummer doubted
the usefulness of the expected loss that DIC approximates, but he has included a standardizing constant in
the loss function which should not be present (we have made this clearer in the paper). The expected loss in
the (independent) normal linear case is then p 4 pp +n log(2mo?): this says that when comparing ‘good’
models with the same s the expected loss is minimized with a degenerate prior in which no parameters
are estimated. This seems entirely reasonable, as all the models have equivalent fit, and so distinction is
based on complexity alone. Of course in practice either o2 will be estimated or o will vary between models,
and hence the appropriate trade-off between fit and complexity will naturally arise. A practical aspect,
related to the need for ‘good’ models in the derivation of DIC, is that the term £, ignored by DIC will tend
to be negative with poorly fitting models and hence to inflate DIC: the approximation of DIC to expected
loss will thus tend automatically to penalize models that are not ‘good’.

Though we agree with Brooks that owing to its heuristic derivation DIC may be considered as a ‘broad
brush technique’, we do not regard it to be as arbitrary as the alternatives that he suggests. In particular
we do not feel that terms of “fit” and ‘complexity’ can be arbitrarily combined, but we re-emphasize that
a measure of model complexity results from correcting overfit due to an approximation of the expected
loss that ‘uses the observations twice’. Similarly we would like to see a justification of Vehtari’s estimates
of expected utilities as valid approximations generalizing DIC.

Bernardo asks for the application of DIC to nested models and hypothesis testing, in particular the
occurrence of Lindley’s paradox. This is an interesting question partially answered by the example dis-
cussed in Section 8.1 where some of the competing models are nested. The key point is that DIC is
designed to take into account priors that are concentrated on parameters which are specified in a model,
thus effectively assigning prior probability 0 to hypothetically omitted parameters (if there are remaining
parameters). Let us consider Lindley’s paradox in the following version: when comparing using the Bayes
factor X ~ N(ug, 0%/n) with X ~ N(u, 0/n) where p1 ~ N(u;, 7%), evidence in favour of Hy : pn = pp
becomes overwhelming as 7> — oo even if X would cause the rejection of H, at any arbitrary signifi-
cance level. If o? is known p is the only parameter in the model. To apply DIC we compare the model
X ~ N(u, o%/n) with prior . ~ N(uo, 72), 7> — 0, corresponding to Hy with the model with the same like-
lihood but prior y ~ N(uy, 72), 72 — o0o. Then D(p) = n(x — p)?/o?, D(u) = (n/o>){D(j1) + var(u|x)}
and pp = n/o? var(u|x). For 72 — 0, pp — 0,1 — po and DIC — D(pup). Similarly, for 72 — oo,
pp — 1,1 — x and DIC — D(X) + 2 = 2. Hence the model with the flat prior—the ‘alternative
hypothesis—is favoured if D(p0) > 2 or |\/n(X — p10) /0| > 1.414 which corresponds to a rejection of Hy at
a significance level o ~ 0.16—exactly the behaviour of the Akaike information criterion. Thus Lindley’s
paradox is not observed. Similarly Sahu contrasts the prior concentrated on py = 0 with an informative
prior N(0, 72) which is centered at i, also. Thus it is reasonable to reject Hy using DIC if the data are
suitably compatible with the ‘alternative’ prior. However, we do not accept an assessment of DIC that uses
Bayes factors as a ‘gold standard’, since they are dealing with different prediction problems (see below).

Several discussants (Brooks, Bernardo, Burnham and Smith) were concerned with the lack of calibration
of DIC. However, unlike the Bayesian reference criterion (Bernardo, 1999), which is based on a Kullback—
Leibler distance and therefore a relative measure, DIC is an approximation to an absolute expected loss,
and we cannot calibrate it (externally). Correspondingly, ‘coherence’ of model choice cannot be required
in terms of equal DIC-values as Gelfand and Trevisani or Smith claim but can only be discussed in terms
of model ranking by DIC. Note, by the way, that Plummer’s alternative measure of model complexity, as
well as our pp, are defined relatively, indicating that these measures might be calibrated.

Finally, we certainly do not claim that applying DIC is an exhaustive tool for model assessment.
Although we feel that our Fig. 4 is a step in the right direction, additional techniques such as those
discussed by Nelder and Atkinson are certainly needed for refined analyses.

Applications
There were various comments on the interpretation of pj, in the Scottish lip cancer analysis (Lawson and
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Clark, and Richardson) and in mixture models (Richardson, and Delorio and Robert). Here we tend to
think of pp as the estimable dimension of the parameter space or, alternatively, as the size of the parameter
space that is identifiable by the data. We repeat that the spatial model 3 in the lip cancer example (Section
8.1) provides stronger prior information than the exchangeable model 2 leading to a smaller pp. Only the
sum of the spatial and exchangeable random effects is uniquely identifiable in model 4 and so p, remains
virtually unchanged compared with the spatial-only model 3, thus justifying the lack of an additional
‘penalty’ for the apparently more complex model. The same is true for mixture models, where increasing
the number of components does not necessarily increase the identifiable parameter space. We do appreciate
the discussion of DIC in mixture models introduced by Delorio and Robert, and by Richardson (though
Richardson does not appear to have calculated DIC as we have defined it, but a different criterion based on
predictive deviances). Delorio and Robert’s example nicely illustrates a range of possibilities for defining
DIC in this case, although we re-emphasize that a comparison of models with different focus (e.g. their
DIC; versus DIC;) may not be meaningful, and we further note that their integrated DIC (DIC,) does
not correspond to our definition of DIC.

In response to Lawson and Clark’s query about averaging ‘location’ parameters, we point to Green’s
comment concerning the calculation of p, and DIC for models with discrete parameters, and his sugges-
tion that marginal posterior modes could be used for 6 in this case.

We thank Nelder and Atkinson for their refinements to the analysis of the stack loss data (Section
8.2). We disagree with Smith that our models 4 and 5 for these data are predictively identical since, as
already discussed, the prediction problem addressed by model 4 integrates over the random effects and
corresponds to predicting stack loss for a new chimney, whereas model 5 conditions on the random effects
and corresponds to predicting future stack loss for the 21 chimneys in the data set.

Alternatives to DIC

Several discussants (Brooks, Dawid and Sahu) feel that DIC suffers in comparison with more tradi-
tional Bayesian model selection criteria based on posterior model probabilities and Bayes factors. Here
we can only repeat that our deliberate intention was to offer an alternative to Bayes factors, which are
most suitable when the entire collection of candidate models can be specified ahead of time (the ‘M
closed’ case of Bernardo and Smith (1994)). In our practical experience, the model-building, criticism
and rebuilding process is typically an iterative ‘M open’ one in which the ultimate model collection
is rarely known ahead of time, and here DIC may emerge as more appropriate. Moreover, Bayes fac-
tors address how well the prior has predicted the observed data; this prior predictive emphasis ultimately
leads to the Lindley paradox. DIC instead addresses how well the posterior might predict future
data generated by the same mechanism that gave rise to the observed data; this posterior predictive
outlook might be considered intuitively more appealing in many practical contexts. We emphasize that
these techniques are intended to answer different questions and cannot be expected to give the same
conclusions: in any case, posterior model probabilities may be highly dependent on within- and between-
model priors, so their comparison with DIC is not straightforward. On a related point, several discussants
(Brooks, Burnham and Draper) mention the possible alternative of model averaging. We do not, however,
see any justification for transforming DIC-values to relative probabilities, and in any case the prior
on the model space may be difficult to develop, and might even reasonably be related to model com-
plexity!

Dawid wishes for a better definition of p log(n) (instead of just p) for use in the Bayesian information
criterion (BIC) but previous work has shown that many such definitions are justifiable asymptotically (e.g.
Volinsky and Raftery (2000)), so this line of research does not appear promising. Regarding the suggestion
by Lawson and Clark of using p log(n) as a penalty for the BIC, this of course assumes that the number
of parameters p is a suitable measure of model complexity. But most spatial models of the type that they
refer to will involve random effects, where such use of the raw parameter count p would be inappropriate;
indeed, this is precisely the situation that pp was designed to address.

Vehtari and de Luna argue persuasively on behalf of cross-validation as an alternative to our pos-
terior predictive approach that avoids a definition of complexity. Whereas no knowledge of the data-
generating mechanism is required for cross-validation, the data-generating mechanism is necessary in a
fully Bayesian analysis. Still, cross-validation as an alternative estimation method was also used to estimate
model complexity by Efron (1986). We certainly acknowledge the potential of this approach, particularly in
comparisons of different model selection strategies. We agree with Stone concerning further investigation
of model assessment procedures in which the model is not assumed to be correct, and we refer to Konishi
and Kitagawa (1996) (whose GIC adds yet further to the alphabet).
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In conclusion, it is clear that several of the discussants feel that our pragmatic aims are muddying
otherwise pure Bayesian waters. We feel, however, that the huge increase in the use of Bayesian methods
in complex practical problems means that full elicitation of informative priors and utilities is simply not
feasible in most situations, and that reasonably simple and robust methods for prior specification, model
criticism and model comparison are necessary. We hope that we have made a positive contribution to the
final concern.
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