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How Do We Make Match
Forecasts?
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It Starts with Player Ratings

Assume the the zth player has some true ability 8;. Models of player abilities assume game
outcomes are a function of the difference in abilities

P?"Ob(Wij — ].) — F(Gz — 9])
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Paired Comparison Models

Bradley-Terry models are a general class of paired comparison models of latent abilities with a
logistic function for win probabilities.

F(6; —0;) = !
Y 1 4 o 6i)

With BT, player abilities are treated as fixed in time which is unrealistic in most cases.
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Bobby Fischer
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Fischer's Meteoric Rise

2650 ”
2600- ,ﬁ
2550 - ::

u
2500- I
2450- ®

14 16 18 20 22 24 26 28 30
AGE

12/ 46



Arpad Elo
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Arpad E. Elo
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Ability is a Moving Target
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Standard Elo

Can be broken down into two steps:
1. Estimate (E-Step)
2. Update (U-Step)
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Standard Elo E-Step

For £th match of player 2 against player 7, the chance that player % wins is estimated as,

A 1
Wijt =

1+ 10 (Ba—Rj)/o
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Elo Derivation

Elo supposed that the ratings of any two competitors were independent and normal with shared
standard deviation . Given this, he likened the chance of a win to the chance of observing a
difference in ratings for ratings drawn from the same distribution,

Ri; — Ry ~ N(0,26%)

which leads to,
Ryt — Rj
/20

P(th — Rjt > O) — (I)(

and
~ 1/(1 + 10~ B~ Hir)/20)

Elo's formula was just a hack for the cumulative normal density function.
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Choice of o

Was based on the standard deviation of chessplayer ratings when Elo made the system, which
was SD = 200. Thus o = 400 in Elo's system.

Weak Intermediate Strong Intermediate

Dabbler Weak Advanced Player

Novice Strong Advanced Player

Weak Expert

Beginner
Strong Expert

1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000

Source; chess-site.com
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Standard Elo U-Step

For a binary result W 4, the update to the zth player rating is,

A

Ry = Ry + K(Wije — W)
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Standard Elo U-Step

For a binary result W 4, the update to the zth player rating is,

A

Ry = Ry + K(Wije — W)

This adjusts according to the win residual and maximum possible gain (loss) of /& .
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Choice of K

(RADIOICLIGKSION)

Elo would vary /X depending on the tournament type but 32 was one value he often used.
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Elo's Model-Based Connections

State-space representation
1

Abilities are assumed to follow a normal distribution over a rating period 7
t+7|t ,,2 t ,,2
070, vt ~ N(0,,v°t)

Glicko (1999) is a Bayesian version, Fahrmeir and Tutz (1994) used Empirical Bayes
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Elo's Model-Based Connections

Glickman showed that the Elo model is a special case of a state-space paired comparison model
that assumes

1. The same prior knowledge about a player's strength throughout time

2. The strengths of opponents are known constants
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Elo's Model-Based Connections

Glickman showed that the Elo model is a special case of a state-space paired comparison model
that assumes

1. The same prior knowledge about a player's strength throughout time
2. The strengths of opponents are known constants

Thus, we can consider Elo as a pared down version of Glicko.
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Simplicity Works

The Complete History Of The NBA

Every franchise’s relative strength after every game. How this works »
More NBA: Predictions for the 2017-18 season
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Can Elo be Simple But Better?

Men's 2019 French Open Final
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Can Elo be Simple But Better?

@® Dominic Thiem @ Rafael Nadal

Break Point Total Points Won
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R128 R64 R32 Ri6 QF SF R128 R64 R32 Ri6 QF SF
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Margin Of Victory Modelling
Principles
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Margin Of Victory Modelling
Principles

e Consider two-step 'estimate then update' algorithms
o Targets of estimation must be functions of relative ratings
e Ratings updates are functions of residuals

e The MOV is incorporated into estimation, updating, or both
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MOV Models

e Linear
e Joint Additive
e Multiplicative

e Logistic
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Linear

E-Step
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Linear

E-Step

U-Step

Rit11) = Ryt + K(M;j — Mz’jt)
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Joint Additive

E-Step

M;je = , Wijt = .
01 1+ 10_( it—Rjt) /o2
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Joint Additive

E-Step

M = , Wijt = P
01 1+ 10_( it—Rjt) /o2

U-Step

Rz’(t—l—l) = Ry + Ky (Mijt - Mz’jt) -+ K2(Wz'jt — Wz'jt)
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Multiplicative

E-Step
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Multiplicative

E-Step

. 1
Wi =

1 + 10_(Rz’t_Rjt)/0'2
U-Step
Rii1) = Rig + K(1 + | My /o1|)*(Wij — Wijt)

a >0

When oy = 1 this is the same Elo goal-based model of Hvattum and Arntzen (2010)
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Logistic

E-Step
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Logistic

E-Step
A th - R t
Wije = L( =
o))
U-Step
M; Ryt — Rj
Rit41) = Ryt + K[L( o ) — L( o )]

where L(x) = 1/(1 4+ a~7) is a generalized logistic function.
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Kinetic Model for Elo Asymptotics

Jahin and Junca (2015) propose a continuous kinetic model based on density f(t, T, 9), for
players with rating 7, true ability @ at time ¢,

0

E(a[f] f)=0

0
ot
where a| f] is a scalar vector field,

ol f] = /% (e — )66 — 8) ~ blr — 1) f(t,, 6l

o ’w(. ) describes the probability of interactions between players of different ratings
o b(. ) is the update function, describing how ratings change after a new result
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Validity Conditions

Condition 1: Stationarity

When players have reached their true rating, the expected change in ratings should be zero.
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Validity Conditions

Condition 1: Stationarity

When players have reached their true rating, the expected change in ratings should be zero.

Condition 2: Convergence

The rating system should converge to player true strengths. Under the kinetic model, Jabin and
Junca showed that any Elo system with update function b(. ) that meets the stationarity property
and is Lipschitz continuous and strictly increasing satisfies this condition.
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Validity
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Validity

e The linear model update, (Mijt — M,L-jt) meets the stationarity and convergence

conditions when E/| M ;4] = Mz-jt. That is, when we have correctly specified the
expectation for the margin.

35/ 46



Validity

e The linear model update, (Mijt — M,L-jt) meets the stationarity and convergence

conditions when E/| M ;4] = Mz-jt. That is, when we have correctly specified the
expectation for the margin.

e The joint additive is the sum of the linear and standard Elo updates, so it's validity depends
on the same conditions as the linear model.

35/ 46



Validity

e The linear model update, (Mijt — M,L-jt) meets the stationarity and convergence

conditions when E/| M ;4] = Mz-jt. That is, when we have correctly specified the
expectation for the margin.

e The joint additive is the sum of the linear and standard Elo updates, so it's validity depends
on the same conditions as the linear model.

o The multiplicative model's validity is established by showing that its update function can be
reparameterized as standard Elo with a modified .

35/ 46



Validity

e The linear model update, (Mijt — M,L-jt) meets the stationarity and convergence

conditions when E/| M ;4] = Mz-jt. That is, when we have correctly specified the
expectation for the margin.

e The joint additive is the sum of the linear and standard Elo updates, so it's validity depends
on the same conditions as the linear model.

o The multiplicative model's validity is established by showing that its update function can be
reparameterized as standard Elo with a modified .

e The logistic model needs the strongest set of conditions as it's update,

L(M;j:/o1) — L((Rit — Rjt)/02),is not a standard residual.
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Simulation Study

For N = 1000,
Rin — Rjn ~ N(0,50)

Wiin| MOV, ~ Bernoulli(1/(1 + 10~ M0Vin/2))
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Joint Additive
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Application Study

ATP Dataset, Tuning 2000-2015, Testing 2016-2018

Margin Of Victory Median IQR % Positive for Winner

SETS WON 2 1 100
GAMES WON 5 4 95
BREAK POINTS WON 2 2 90
TOTAL POINTS WON 14 10 94
SERVE PERCENTAGEWON 10 12 93
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Model Tuning

Optimization with loss function that combines RMSE of MOV and log-loss of win predictions,

\/Zi,j’t(Mijt(e) — Mijt)?
3SD

> “log(Pij1(6))

1,5t

£(6) =1/N

Initial values:

e Scaling rating difference to MOV 200 /S D y;0v

e Scaling learning rate to MOV residual 32 /35D oy
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Joint Additive Multiplicative Logistic
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Joint Additive Multiplicative Logistic

Linear
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Joint Additive Multiplicative Logistic

Linear
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Takeaways
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Takeaways

e Modellers have several valid options for incorporating MOV into their player ratings whether
wins or the MOV are the target of interest

e When applied to men's tennis, MOV models improve predictive performance over standard
Elo, the differences in gains depending more on the choice of MOV than model type

o State-space analogs to these models would allow for inference but aren't expected to
improve predictive performance
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The Rise of Tsitsipas

= MOV === STANDARD

First Tour Title Best Grand Slam Result
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Wimbledon Prospects

Player Grass Adjusted MOV Elo
Novak Djokovic 2562
Rafael Nadal 2539
Roger Federer 2478
Dominic Thiem 2279
David Goffin 2250
Kei Nishikori 2248
Gael Monfils 2244
John Isner 2238
Marin Cilic 2211
Roberto Bautista Agut 2207
Matteo Berrettini 2205
Alexander Zverev 2182
Milos Raonic 2178
Daniil Medvedev 2169
Stefanos Tsitsipas 2168
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