Finding optimal strategies for substitutions in soccer using a two-scale Markov Decision Process approach

Jörg Rambau Rónán Richter (speaker)

MathSport International Conference

Athens, July 2019

- Risk: Increasing chances for reaching the own objective vs. giving possibilities to the opponent
- Skills: Actions in sports games might not be executed as expected
- Goal: Choose best risk-level depending on skills, opponent, score, time, ...
- Previous work: Beach volleyball
- Today: Soccer

- Risk: Increasing chances for reaching the own objective vs. giving possibilities to the opponent
- Skills: Actions in sports games might not be executed as expected
- Goal: Choose best risk-level depending on skills, opponent, score, time, ...
- Previous work: Beach volleyball
- Today: Soccer

- Risk: Increasing chances for reaching the own objective vs. giving possibilities to the opponent
- Skills: Actions in sports games might not be executed as expected
- Goal: Choose best risk-level depending on skills, opponent, score, time, ...
- Previous work: Beach volleyball
- Today: Soccer

- Risk: Increasing chances for reaching the own objective vs. giving possibilities to the opponent
- Skills: Actions in sports games might not be executed as expected
- Goal: Choose best risk-level depending on skills, opponent, score, time, ...
- Previous work: Beach volleyball
- Today: Soccer

- Risk: Increasing chances for reaching the own objective vs. giving possibilities to the opponent
- Skills: Actions in sports games might not be executed as expected
- Goal: Choose best risk-level depending on skills, opponent, score, time, ...
- Previous work: Beach volleyball
- Today: Soccer

- Risk: Increasing chances for reaching the own objective vs. giving possibilities to the opponent
- Skills: Actions in sports games might not be executed as expected
- Goal: Choose best risk-level depending on skills, opponent, score, time, ...
- Previous work: Beach volleyball
- Today: Soccer

- offensive: Increases chances to score, but higher probability of receiving a goal
- defensive: Increases chances to keep the score, but lower probability of scoring
- Idea: Choose/Change risk-level during the game by substitutions
- Problem: Skills are hard to determine at that level

- offensive: Increases chances to score, but higher probability of receiving a goal
- defensive: Increases chances to keep the score, but lower probability of scoring
- Idea: Choose/Change risk-level during the game by substitutions
- Problem: Skills are hard to determine at that level

- offensive: Increases chances to score, but higher probability of receiving a goal
- defensive: Increases chances to keep the score, but lower probability of scoring
- Idea: Choose/Change risk-level during the game by substitutions
- Problem: Skills are hard to determine at that level

• Risk-level: Given by tactical formations

- offensive: Increases chances to score, but higher probability of receiving a goal
- defensive: Increases chances to keep the score, but lower probability of scoring

• Idea: Choose/Change risk-level during the game by substitutions

• Problem: Skills are hard to determine at that level

- offensive: Increases chances to score, but higher probability of receiving a goal
- defensive: Increases chances to keep the score, but lower probability of scoring
- Idea: Choose/Change risk-level during the game by substitutions
- Problem: Skills are hard to determine at that level

Related work

Related work

- Myers (2012): Statistical analysis over a large set of games (about 500) → "58-.73-.79-minute rule"
- Silva and Swartz (2016): Incorporate strength factors for teams
- Hirotsu and Wright (2002): Modeling soccer as an MDP with 4

Related work

- Myers (2012): Statistical analysis over a large set of games (about 500)
 - \rightsquigarrow "58-,73-,79-minute rule"
- Silva and Swartz (2016): Incorporate strength factors for teams \rightsquigarrow no general rule
- Hirotsu and Wright (2002): Modeling soccer as an MDP with 4 states
 - → optimal strategy depending on historic transition data

Related work

- Myers (2012): Statistical analysis over a large set of games (about 500)
 - → "58-,73-,79-minute rule"
- Silva and Swartz (2016): Incorporate strength factors for teams \rightsquigarrow no general rule
- Hirotsu and Wright (2002): Modeling soccer as an MDP with 4 states
 - \rightsquigarrow optimal strategy depending on historic transition data

• strategic MDP: modeling risk and actions

- observable states and actions
- answering the main question
- gameplay MDP: modeling skills
 - refinement of the strategic MDP
 - translates strategic actions to gameplay actions
 - simulation gives strategic skills
- First application: Beach volleyball

- strategic MDP: modeling risk and actions
 - observable states and actions
 - answering the main question
- gameplay MDP: modeling skills
 - refinement of the strategic MDP
 - translates strategic actions to gameplay actions
 - simulation gives strategic skills
- First application: Beach volleyball

- strategic MDP: modeling risk and actions
 - observable states and actions
 - answering the main question
- gameplay MDP: modeling skills
 - refinement of the strategic MDP
 - translates strategic actions to gameplay actions
 - simulation gives strategic skills
- First application: Beach volleyball

- strategic MDP: modeling risk and actions
 - observable states and actions
 - answering the main question
- gameplay MDP: modeling skills
 - refinement of the strategic MDP
 - translates strategic actions to gameplay actions
 - simulation gives strategic skills
- First application: Beach volleyball

- strategic MDP: modeling risk and actions
 - observable states and actions
 - answering the main question
- gameplay MDP: modeling skills
 - refinement of the strategic MDP
 - translates strategic actions to gameplay actions
 - simulation gives strategic skills
- First application: Beach volleyball

- strategic MDP: modeling risk and actions
 - observable states and actions
 - answering the main question
- gameplay MDP: modeling skills
 - refinement of the strategic MDP
 - translates strategic actions to gameplay actions
 - simulation gives strategic skills
- First application: Beach volleyball

- strategic MDP: modeling risk and actions
 - observable states and actions
 - answering the main question
- gameplay MDP: modeling skills
 - refinement of the strategic MDP
 - translates strategic actions to gameplay actions
 - simulation gives strategic skills
- First application: Beach volleyball

- strategic MDP: modeling risk and actions
 - observable states and actions
 - answering the main question
- gameplay MDP: modeling skills
 - refinement of the strategic MDP
 - translates strategic actions to gameplay actions
 - simulation gives strategic skills
- First application: Beach volleyball

Beach volleyball vs. soccer

beach volleyball	soccer
discretization by hits	no obvious discretization
one hit (action) per player	multiple actions by one player
objective: reach 21 points	objective: score more goals within 90 minutes
teams are separated by the net	no separation between teams

- 3 possible formations
 - neutral (formation at start of the game)
 - offensiv
 - defensiv
- Just one substitution
- Game ends if one team leads by more than 5 goals
- No unintended changes in formations (injuries, red cards, etc.)
- No home advantages

- 3 possible formations
 - neutral (formation at start of the game)
 - offensiv
 - defensiv
- Just one substitution
- Game ends if one team leads by more than 5 goals
- No unintended changes in formations (injuries, red cards, etc.)
- No home advantages

- 3 possible formations
 - neutral (formation at start of the game)
 - offensiv
 - defensiv
- Just one substitution
- Game ends if one team leads by more than 5 goals
- No unintended changes in formations (injuries, red cards, etc.)
- No home advantages

- 3 possible formations
 - neutral (formation at start of the game)
 - offensiv
 - defensiv
- Just one substitution
- Game ends if one team leads by more than 5 goals
- No unintended changes in formations (injuries, red cards, etc.)
- No home advantages

- 3 possible formations
 - neutral (formation at start of the game)
 - offensiv
 - defensiv
- Just one substitution
- Game ends if one team leads by more than 5 goals
- No unintended changes in formations (injuries, red cards, etc.)
- No home advantages

Bounding state and action spaces:

- 3 possible formations
 - neutral (formation at start of the game)
 - offensiv
 - defensiv
- Just one substitution
- $\bullet\,$ Game ends if one team leads by more than 5 goals

Limiting other influences:

- No unintended changes in formations (injuries, red cards, etc.)
- No home advantages

Bounding state and action spaces:

- 3 possible formations
 - neutral (formation at start of the game)
 - offensiv
 - defensiv
- Just one substitution
- Game ends if one team leads by more than 5 goals

Limiting other influences:

• No unintended changes in formations (injuries, red cards, etc.)

No home advantages

Bounding state and action spaces:

- 3 possible formations
 - neutral (formation at start of the game)
 - offensiv
 - defensiv
- Just one substitution
- Game ends if one team leads by more than 5 goals

Limiting other influences:

- No unintended changes in formations (injuries, red cards, etc.)
- No home advantages

• State space

$S := (\{0, 1, \dots, 8\} \times \mathbb{Z} \times \{P_n, P_o, P_d\}) \cup \{Pen, End\}$

- $(t, r, m) \in S$: time $t \cdot 15$ minutes, score r, formation m
- Pen: penalty shoot-out
- End: end of the game
- $S^{win} := \{(t, r, m) \in S | r \ge 6 \lor (t = 6 \land r > 0) \lor (t = 8 \land r > 0)\}$
- $S^{lose} := \{(t, r, m) \in S | r \le -6 \lor (t = 6 \land r < 0) \lor (t = 8 \land r < 0)\}$

• State space

- $S := (\{0, 1, \dots, 8\} \times \mathbb{Z} \times \{P_n, P_o, P_d\}) \cup \{Pen, End\}$
 - $(t, r, m) \in S$: time $t \cdot 15$ minutes, score r, formation m
 - Pen: penalty shoot-out
 - End: end of the game
 - $S^{win} := \{(t, r, m) \in S | r \ge 6 \lor (t = 6 \land r > 0) \lor (t = 8 \land r > 0)\}$
 - $S^{lose} := \{(t, r, m) \in S | r \le -6 \lor (t = 6 \land r < 0) \lor (t = 8 \land r < 0)\}$

• State space

- $S := (\{0, 1, \dots, 8\} \times \mathbb{Z} \times \{P_n, P_o, P_d\}) \cup \{Pen, End\}$
 - $(t, r, m) \in S$: time $t \cdot 15$ minutes, score r, formation m
 - Pen: penalty shoot-out
 - End: end of the game
 - $S^{win} := \{(t, r, m) \in S | r \ge 6 \lor (t = 6 \land r > 0) \lor (t = 8 \land r > 0)\}$
 - $S^{lose} := \{(t, r, m) \in S | r \le -6 \lor (t = 6 \land r < 0) \lor (t = 8 \land r < 0)\}$

• State space

- $S := (\{0, 1, \dots, 8\} \times \mathbb{Z} \times \{P_n, P_o, P_d\}) \cup \{Pen, End\}$
 - $(t, r, m) \in S$: time $t \cdot 15$ minutes, score r, formation m
 - Pen: penalty shoot-out
 - End: end of the game
 - $S^{win} := \{(t, r, m) \in S | r \ge 6 \lor (t = 6 \land r > 0) \lor (t = 8 \land r > 0)\}$
 - $S^{lose} := \{(t, r, m) \in S | r \le -6 \lor (t = 6 \land r < 0) \lor (t = 8 \land r < 0)\}$
• State space

- $S := (\{0, 1, \dots, 8\} \times \mathbb{Z} \times \{P_n, P_o, P_d\}) \cup \{Pen, End\}$
 - $(t, r, m) \in S$: time t·15 minutes, score r, formation m
 - Pen: penalty shoot-out
 - End: end of the game
 - $S^{win} := \{(t, r, m) \in S | r \ge 6 \lor (t = 6 \land r > 0) \lor (t = 8 \land r > 0)\}$
 - $S^{lose} := \{(t, r, m) \in S | r \le -6 \lor (t = 6 \land r < 0) \lor (t = 8 \land r < 0)\}$

• State space

$$S := (\{0, 1, \dots, 8\} \times \mathbb{Z} \times \{P_n, P_o, P_d\}) \cup \{Pen, End\}$$

- $(t, r, m) \in S$: time t·15 minutes, score r, formation m
- Pen: penalty shoot-out
- End: end of the game

•
$$S^{win} := \{(t, r, m) \in S | r \ge 6 \lor (t = 6 \land r > 0) \lor (t = 8 \land r > 0)\}$$

•
$$S^{lose} := \{(t, r, m) \in S | r \le -6 \lor (t = 6 \land r < 0) \lor (t = 8 \land r < 0)\}$$

Restrictions

$$A_{s} := U(s) := \begin{cases} \{o\} & , \text{ if } m = P_{o} \\ \{n, o, d\} & , \text{ if } m = P_{n} \\ \{d\} & , \text{ if } m = P_{d} \end{cases}$$

• Set of actions *C* := {*n*, *o*, *d*}

• Restrictions

$$A_{s} := U(s) := \begin{cases} \{o\} & , \text{ if } m = P_{o} \\ \{n, o, d\} & , \text{ if } m = P_{n} \\ \{d\} & , \text{ if } m = P_{d} \end{cases}$$

• Transition probabilities

• For
$$s = (t, r, m) \in S \setminus (S^{win} \cup S^{lose} \cup \{Pen, End\})$$
 with $s \neq (8, 0, m)$: $\mathbb{P}((t + 1, r + n, P_a)|s, a) = p_a^n$
• For $s = (8, 0, m) \in S$: $\mathbb{P}(Pen|s, a) = 1$

• For
$$s \in (S^{win} \cup S^{lose} \cup \{Pen, End\})$$
: $\mathbb{P}(End|s, a) = 1$

$$c(s, a, s') = \begin{cases} -1 & \text{, if } s' \in S^{win} \\ -\frac{1}{2} & \text{, if } s' = Pen \\ 0 & \text{, else} \end{cases}$$

• Transition probabilities

- For $s = (t, r, m) \in S \setminus (S^{win} \cup S^{lose} \cup \{Pen, End\})$ with $s \neq (8, 0, m)$: $\mathbb{P}((t+1, r+n, P_a)|s, a) = p_a^n$
- For $s = (8, 0, m) \in S$: $\mathbb{P}(Pen|s, a) = 1$
- For $s \in (S^{win} \cup S^{lose} \cup \{Pen, End\})$: $\mathbb{P}(End|s, a) = 1$

$$c(s, a, s') = \begin{cases} -1 & \text{, if } s' \in S^{win} \\ -\frac{1}{2} & \text{, if } s' = Pen \\ 0 & \text{, else} \end{cases}$$

• Transition probabilities

- For $s = (t, r, m) \in S \setminus (S^{win} \cup S^{lose} \cup \{Pen, End\})$ with $s \neq (8, 0, m)$: $\mathbb{P}((t + 1, r + n, P_a)|s, a) = p_a^n$ • For $s = (8, 0, m) \in S$: $\mathbb{P}(Pen|s, a) = 1$
- For $s \in (S^{win} \cup S^{lose} \cup \{Pen, End\})$: $\mathbb{P}(End|s, a) = 1$

$$c(s, a, s') = \begin{cases} -1 & \text{, if } s' \in S^{win} \\ -\frac{1}{2} & \text{, if } s' = Pen \\ 0 & \text{, else} \end{cases}$$

• Transition probabilities

• For
$$s = (t, r, m) \in S \setminus (S^{win} \cup S^{lose} \cup \{Pen, End\})$$
 with $s \neq (8, 0, m)$: $\mathbb{P}((t + 1, r + n, P_a)|s, a) = p_a^n$
• For $s = (8, 0, m) \in S$: $\mathbb{P}(Pen|s, a) = 1$
• For $s \in (S^{win} \cup S^{lose} \cup \{Pen, End\})$: $\mathbb{P}(End|s, a) = 1$

$$c(s, a, s') = \begin{cases} -1 & \text{, if } s' \in S^{win} \\ -\frac{1}{2} & \text{, if } s' = Pen \\ 0 & \text{, else} \end{cases}$$

• Transition probabilities

• For
$$s = (t, r, m) \in S \setminus (S^{win} \cup S^{lose} \cup \{Pen, End\})$$
 with $s \neq (8, 0, m)$: $\mathbb{P}((t + 1, r + n, P_a)|s, a) = p_a^n$
• For $s = (8, 0, m) \in S$: $\mathbb{P}(Pen|s, a) = 1$
• For $s \in (S^{win} \cup S^{lose} \cup \{Pen, End\})$: $\mathbb{P}(End|s, a) = 1$

$$c(s,a,s') = egin{cases} -1 & ext{, if } s' \in S^{\textit{win}} \ -rac{1}{2} & ext{, if } s' = Pen \ 0 & ext{, else} \end{cases}$$

Finding optimal strategies

Lemma

Let $J^*(s)$ denote the optimal cost function. Then:

$$J^*(t,r,m) \geq J^*(t,r',m) \quad \forall r' \geq r.$$

Lemma

Let $s = (t, r, m) \in S \setminus (S^{win} \cup S^{lose} \cup \{Pen, End\})$ with $n \in A_s$ und $s \neq (8, 0, m)$. Then:

$$J^*(s) = \min\left\{\sum_{k\in\mathbb{N}} p_n^k J^*(s), J_o(s), J_d(s)
ight\}$$

Finding optimal strategies

Lemma

Let $J^*(s)$ denote the optimal cost function. Then:

$$J^*(t,r,m) \geq J^*(t,r',m) \quad \forall r' \geq r.$$

Lemma

Let $s = (t, r, m) \in S \setminus (S^{win} \cup S^{lose} \cup \{Pen, End\})$ with $n \in A_s$ und $s \neq (8, 0, m)$. Then:

$$J^*(s) = \min\left\{\sum_{k\in\mathbb{N}} p_n^k J^*(s), J_o(s), J_d(s)
ight\}$$

Example (artificial)

Example (artificial)

• How to get p_a^n ? \rightsquigarrow gameplay MDP

• Model soccer game in detail and incorporate strategic decisions

• Ideas:

- States: Player, who is in possession of the ball + goal states
- Actions: Soccer actions that change ball possession, e.g. passing crossing shooting saving
- Restrictions: Only one step towards the goal; Actions depending on position
- Transition probabilities: Depend on players' skills and team formations

- How to get p_a^n ? \rightsquigarrow gameplay MDP
- Model soccer game in detail and incorporate strategic decisions

Ideas:

- States: Player, who is in possession of the ball + goal states
 Actions: Soccer actions that change ball possession,
 - e.g. passing, crossing, shooting, saving
- Restrictions: Only one step towards the goal; Actions depending on position
- Transition probabilities: Depend on players' skills and team formations

- How to get p_a^n ? \rightsquigarrow gameplay MDP
- Model soccer game in detail and incorporate strategic decisions

• Ideas:

- States: Player, who is in possession of the ball + goal states
- Actions: Soccer actions that change ball possession, e.g. passing, crossing, shooting, saving
- *Restrictions:* Only one step towards the goal; Actions depending on position
- *Transition probabilities:* Depend on players' skills and team formations

- How to get p_a^n ? \rightsquigarrow gameplay MDP
- Model soccer game in detail and incorporate strategic decisions

Ideas:

- $\bullet~\ensuremath{\textit{States:}}$ Player, who is in possession of the ball + goal states
- Actions: Soccer actions that change ball possession, e.g. passing, crossing, shooting, saving
- *Restrictions:* Only one step towards the goal; Actions depending on position
- *Transition probabilities:* Depend on players' skills and team formations

- How to get p_a^n ? \rightsquigarrow gameplay MDP
- Model soccer game in detail and incorporate strategic decisions
- Ideas:
 - States: Player, who is in possession of the ball + goal states
 - Actions: Soccer actions that change ball possession, e.g. passing, crossing, shooting, saving
 - *Restrictions:* Only one step towards the goal; Actions depending on position
 - *Transition probabilities:* Depend on players' skills and team formations

- How to get p_a^n ? \rightsquigarrow gameplay MDP
- Model soccer game in detail and incorporate strategic decisions
- Ideas:
 - States: Player, who is in possession of the ball + goal states
 - Actions: Soccer actions that change ball possession, e.g. passing, crossing, shooting, saving
 - *Restrictions:* Only one step towards the goal; Actions depending on position
 - *Transition probabilities:* Depend on players' skills and team formations

- How to get p_a^n ? \rightsquigarrow gameplay MDP
- Model soccer game in detail and incorporate strategic decisions
- Ideas:
 - States: Player, who is in possession of the ball + goal states
 - Actions: Soccer actions that change ball possession, e.g. passing, crossing, shooting, saving
 - *Restrictions:* Only one step towards the goal; Actions depending on position
 - *Transition probabilities:* Depend on players' skills and team formations

• Players' abilities given by

- p^{squarepass}, p^{throughpass}, p^{cross}
- p^{shot}
- p^{save}
- p^{height}
- Example for transition probabilities:
 For s ∈ Def_P ∪ Mid_P ∪ Att_P and a = (squarepass, sp) ∈ A_s:

$$\mathbb{P}(sp|s, a) = p_s^{squarepass} \text{ and}$$
$$\mathbb{P}(\bar{sp}|s, a) = \frac{1 - p_s^{squarepass}}{|Opp(sp)|} \quad \forall \ \bar{sp} \in Opp(sp)$$

• Players' abilities given by

- p^{squarepass}, p^{throughpass}, p^{cross}
- p^{shot}
- p^{save}
- p^{height}
- Example for transition probabilities:
 For s ∈ Def_P ∪ Mid_P ∪ Att_P and a = (squarepass, sp) ∈ A_s:

$$\mathbb{P}(sp|s, a) = p_s^{squarepass} \text{ and}$$
$$\mathbb{P}(\bar{sp}|s, a) = \frac{1 - p_s^{squarepass}}{|Opp(sp)|} \quad \forall \ \bar{sp} \in Opp(sp)$$

• Players' abilities given by

- p^{squarepass}, p^{throughpass}, p^{cross}
- p^{shot}
- p^{save}
- o p^{height}

Example for transition probabilities:
 For s ∈ Def_P ∪ Mid_P ∪ Att_P and a = (squarepass, sp) ∈ A_s:

$$\mathbb{P}(sp|s, a) = p_s^{squarepass} \text{ and}$$
$$\mathbb{P}(\bar{sp}|s, a) = \frac{1 - p_s^{squarepass}}{|Opp(sp)|} \quad \forall \ \bar{sp} \in Opp(sp)$$

• Players' abilities given by

- p^{squarepass}, p^{throughpass}, p^{cross}
- p^{shot}
- p^{save}
- p^{height}

Example for transition probabilities:
 For s ∈ Def_P ∪ Mid_P ∪ Att_P and a = (squarepass, sp) ∈ A_s:

$$\mathbb{P}(sp|s, a) = p_s^{squarepass}$$
 and
 $\mathbb{P}(\bar{sp}|s, a) = rac{1 - p_s^{squarepass}}{|Opp(sp)|} \ \forall \ \bar{sp} \in Opp(sp)$

• Players' abilities given by

- p^{squarepass}, p^{throughpass}, p^{cross}
- p^{shot}
- p^{save}
- p^{height}

Example for transition probabilities:
 For s ∈ Def_P ∪ Mid_P ∪ Att_P and a = (squarepass, sp) ∈ A_s:

$$\mathbb{P}(sp|s, a) = p_s^{squarepass} \text{ and}$$
$$\mathbb{P}(\bar{sp}|s, a) = \frac{1 - p_s^{squarepass}}{|Opp(sp)|} \quad \forall \ \bar{sp} \in Opp(sp)$$

- Players' abilities given by
 - p^{squarepass}, p^{throughpass}, p^{cross}
 - p^{shot}
 - p^{save}
 - p^{height}
- Example for transition probabilities:

For $s \in Def_P \cup Mid_P \cup Att_P$ and $a = (squarepass, sp) \in A_s$:

$$\mathbb{P}(sp|s, a) = p_s^{squarepass}$$
 and
 $\mathbb{P}(\bar{sp}|s, a) = rac{1 - p_s^{squarepass}}{|Opp(sp)|} \ orall \ ar{sp} \in Opp(sp)$
No.	Position	p ^{squarepass}	$p^{throughpass}$	p ^{cross}	p ^{shot}	p ^{save}	height
1	GK	0.919170	0.624955	0.724972	0.615675	0.815179	1.668144
2	Def	0.969440	0.628735	0.407385	0.409849	0.804164	1.711843
3	Def	0.865168	0.610413	0.517610	0.421495	0.569627	1.902436
4	Def	0.884845	0.736387	0.778947	0.564421	0.694788	1.860544
5	Def	0.860315	0.726746	0.614380	0.441174	0.726783	1.732182
6	Mid	0.975816	0.753700	0.675745	0.653772	0.641041	1.702318
7	Mid	0.867531	0.674613	0.776500	0.285493	0.798201	1.770497
8	Mid	0.910666	0.789258	0.786211	0.289292	0.755130	1.605349
9	Mid	0.840645	0.645869	0.604986	0.293282	0.849243	1.766503
10	Att	0.902109	0.729633	0.575996	0.454477	0.562089	1.771343
11	Att	0.873020	0.893718	0.440173	0.459758	0.640865	1.950173

No.	Position	p ^{squarepass}	$p^{throughpass}$	p ^{cross}	p ^{shot}	<i>p</i> ^{save}	height
1	GK	0.919170	0.624955	0.724972	0.615675	0.815179	1.668144
2	Def	0.969440	0.628735	0.407385	0.409849	0.804164	1.711843
3	Def	0.865168	0.610413	0.517610	0.421495	0.569627	1.902436
4	Def	0.884845	0.736387	0.778947	0.564421	0.694788	1.860544
5	Def	0.860315	0.726746	0.614380	0.441174	0.726783	1.732182
6	Mid	0.975816	0.753700	0.675745	0.653772	0.641041	1.702318
7	Mid	0.867531	0.674613	0.776500	0.285493	0.798201	1.770497
8	Mid	0.910666	0.789258	0.786211	0.289292	0.755130	1.605349
9	Mid	0.840645	0.645869	0.604986	0.293282	0.849243	1.766503
10	Att	0.902109	0.729633	0.575996	0.454477	0.562089	1.771343
13	Def	0.976878	0.836403	0.844309	0.486213	0.743726	1.608671

No.	Position	p ^{squarepass}	$p^{throughpass}$	p ^{cross}	p ^{shot}	p ^{save}	height
1	GK	0.919170	0.624955	0.724972	0.615675	0.815179	1.668144
2	Def	0.969440	0.628735	0.407385	0.409849	0.804164	1.711843
3	Def	0.865168	0.610413	0.517610	0.421495	0.569627	1.902436
4	Def	0.884845	0.736387	0.778947	0.564421	0.694788	1.860544
5	Def	0.860315	0.726746	0.614380	0.441174	0.726783	1.732182
6	Mid	0.975816	0.753700	0.675745	0.653772	0.641041	1.702318
7	Mid	0.867531	0.674613	0.776500	0.285493	0.798201	1.770497
8	Mid	0.910666	0.789258	0.786211	0.289292	0.755130	1.605349
9	Mid	0.840645	0.645869	0.604986	0.293282	0.849243	1.766503
10	Att	0.902109	0.729633	0.575996	0.454477	0.562089	1.771343
11	Att	0.873020	0.893718	0.440173	0.459758	0.640865	1.950173

No.	Position	p ^{squarepass}	$p^{throughpass}$	p ^{cross}	p ^{shot}	p ^{save}	height
1	GK	0.919170	0.624955	0.724972	0.615675	0.815179	1.668144
2	Def	0.969440	0.628735	0.407385	0.409849	0.804164	1.711843
3	Def	0.865168	0.610413	0.517610	0.421495	0.569627	1.902436
4	Def	0.884845	0.736387	0.778947	0.564421	0.694788	1.860544
5	Def	0.860315	0.726746	0.614380	0.441174	0.726783	1.732182
6	Mid	0.975816	0.753700	0.675745	0.653772	0.641041	1.702318
12	Att	0.888307	0.874790	0.487746	0.637177	0.596350	1.981765
8	Mid	0.910666	0.789258	0.786211	0.289292	0.755130	1.605349
9	Mid	0.840645	0.645869	0.604986	0.293282	0.849243	1.766503
10	Att	0.902109	0.729633	0.575996	0.454477	0.562089	1.771343
11	Att	0.873020	0.893718	0.440173	0.459758	0.640865	1.950173

Gameplay MDP – example

Gameplay MDP – example

Ronan Richter (UBT, LS WiMa)

Results:

- Simple s-MDP for strategic substitution in soccer
- First detailed g-MDP for simulating s-MDP probabilities
- Working example on artificial data

- Expand s-MDP
- Enhance g-MDP with more data and more game dynamics
- Calibrate g-MDP and test again real-world data

• Results:

• Simple s-MDP for strategic substitution in soccer

- First detailed g-MDP for simulating s-MDP probabilities
- Working example on artificial data

- Expand s-MDP
- Enhance g-MDP with more data and more game dynamics
- Calibrate g-MDP and test again real-world data

Results:

- Simple s-MDP for strategic substitution in soccer
- First detailed g-MDP for simulating s-MDP probabilities
- Working example on artificial data

- Expand s-MDP
- Enhance g-MDP with more data and more game dynamics
- Calibrate g-MDP and test again real-world data

Results:

- Simple s-MDP for strategic substitution in soccer
- First detailed g-MDP for simulating s-MDP probabilities
- Working example on artificial data

- Expand s-MDP
- Enhance g-MDP with more data and more game dynamics
- Calibrate g-MDP and test again real-world data

Results:

- Simple s-MDP for strategic substitution in soccer
- First detailed g-MDP for simulating s-MDP probabilities
- Working example on artificial data

- Expand s-MDP
- Enhance g-MDP with more data and more game dynamics
- Calibrate g-MDP and test again real-world data

Results:

- Simple s-MDP for strategic substitution in soccer
- First detailed g-MDP for simulating s-MDP probabilities
- Working example on artificial data

- Expand s-MDP
- Enhance g-MDP with more data and more game dynamics
- Calibrate g-MDP and test again real-world data

Results:

- Simple s-MDP for strategic substitution in soccer
- First detailed g-MDP for simulating s-MDP probabilities
- Working example on artificial data

- Expand s-MDP
- Enhance g-MDP with more data and more game dynamics
- Calibrate g-MDP and test again real-world data

• Results:

- Simple s-MDP for strategic substitution in soccer
- First detailed g-MDP for simulating s-MDP probabilities
- Working example on artificial data

- Expand s-MDP
- Enhance g-MDP with more data and more game dynamics
- Calibrate g-MDP and test again real-world data

Finding optimal strategies for substitutions in soccer using a two-scale Markov Decision Process approach

Jörg Rambau Rónán Richter (speaker)

MathSport International Conference

Athens, July 2019

Ronan Richter (UBT, LS WiMa)

References I

- Hirotsu, N. and Wright, M. (2002). Using a markov process model of an association football match to determine the optimal timing of substitution and tactical decisions. *The Journal of the Operational Research Society*, 53(1):88–96.
- Hoffmeister, S. and Rambau, J. (2015). Strategy optimization in sports : A two-scale approach via markov decision problems. Preprint, Universität Bayreuth.
- Myers, B. R. (2012). A proposed decision rule for the timing of soccer substitutions. *Journal of Quantitative Analysis in Sports*, 8(1).

Silva, R. M. and Swartz, T. B. (2016). Analysis of substitution times in soccer. *Journal of Quantitative Analysis in Sports*, 12(3):113–122.