Penalty shoot-outs The quest for fairness

Roel Lambers Joint work with Frits Spieksma

TU Eindhoven

03-07-2019

20th of June, 2007. Heerenveen, Abe Lenstra Stadion. After a last-minute equalizer in the semi-finals of the U21-European Championship between England and The Netherlands, the extra time provides no goals and a penalty shoot-out needs to decide who wins...

Extreme shoot-outing

Figure 1: As it happened

Extreme shoot-outing

Figure 1: As it happened

At the end, the Dutch prevailed, which was a great show of character by the team as they had the added pressure of baying to level after past of Reel Lambers Joint work with Frits Spieksm: Penalty shoot-outs: the quest for fairness These were the results of the penalties round by round.

Round	1	. 2	3	4	5	6	7	8
England	0	0	0	Х	0	0	0	0
Netherlands	0	Х	0	0	0	0	0	0
Score	1-1	2-1	3-2	3-3	4-4	5-5	6-6	7-7
Round	9) 10	11	12	13	14	15	16
England	Х	0	0	0	0	0	Х	Х
Netherlands	Х	0	0	0	0	0	Х	0
								_

Figure 2: Penalty shoot-out result.

These were the results of the penalties round by round.

Round		1	2	3		4	5	6	7	8
England	0	0		0	Х	0		0	0	0
Netherlands	0	Х		0	0	0		0	0	0
Score	1-1	2-1		3-2	3-3	4-4		5-5	6-6	7-7
Round		9	10	11	1	2	13	14	15	16
England	Х	0		0	0	0		0	Х	Х
Netherlands	Х	0		0	0	0		0	Х	0

Figure 2: Penalty shoot-out result.

The Dutch team had to level a total of 9 times during this shoot-out, whereas the English team never faced the pressure of immediate loss.

These were the results of the penalties round by round.

Round		1	2	3		4	5	6	7	8
England	0	0		0	Х	0		0	0	0
Netherlands	0	Х		0	0	0		0	0	0
Score	1-1	2-1		3-2	3-3	4-4		5-5	6-6	7-7
Round		9	10	11	1	2	13	14	15	16
England	Х	0		0	0	0		0	Х	Х
Netherlands	Х	0		0	0	0		0	Х	0

Figure 2: Penalty shoot-out result.

The Dutch team had to level a total of 9 times during this shoot-out, whereas the English team never faced the pressure of immediate loss.

The shoot-out

• Two teams, Team A and Team B, played a match.

- Two teams, Team A and Team B, played a match.
- To determine a winner, a shoot-out takes place (usually over 5 rounds).

- Two teams, Team A and Team B, played a match.
- To determine a winner, a shoot-out takes place (usually over 5 rounds).
- In every round, every team takes one penalty.

- Two teams, Team A and Team B, played a match.
- To determine a winner, a shoot-out takes place (usually over 5 rounds).
- In every round, every team takes one penalty.
- If, after 5 rounds, the scores are equal, the sudden death phase starts.

- Two teams, Team A and Team B, played a match.
- To determine a winner, a shoot-out takes place (usually over 5 rounds).
- In every round, every team takes one penalty.
- If, after 5 rounds, the scores are equal, the sudden death phase starts.
- The sudden death ends if and only if a team scores in a round, while the other team does not.

- The best known and abundantly present penalty shoot-out has one team starting all the rounds, and one team shooting second -A(B)A(B)A(B)....
- Palacios-Huerta and Apesteguia (2010) showed in an empirical study that there is an advantage for the team that shoots first.

- The best known and abundantly present penalty shoot-out has one team starting all the rounds, and one team shooting second -A(B)A(B)A(B)....
- Palacios-Huerta and Apesteguia (2010) showed in an empirical study that there is an advantage for the team that shoots first.
- This is usually explained by the extra pressure of having to catch up every round; known as **First Mover Advantage.** (Brams and Ismail 2017; Vandebroek et al., 2018)

• The FMA can be modelled by a probability *p* of scoring for the first shooting team, and *q* < *p* for the second.

Problem case

- The FMA can be modelled by a probability *p* of scoring for the first shooting team, and *q* < *p* for the second.
- We, however, have a different approach, as we assume added pressure from trailing or not.

- The FMA can be modelled by a probability *p* of scoring for the first shooting team, and *q* < *p* for the second.
- We, however, have a different approach, as we assume added pressure from trailing or not.

We say there is a probability p of scoring if a team is at least equal in score, and a probability q if a team is trailing in score, with p > q.

- The FMA can be modelled by a probability *p* of scoring for the first shooting team, and *q* < *p* for the second.
- We, however, have a different approach, as we assume added pressure from trailing or not.

We say there is a probability p of scoring if a team is at least equal in score, and a probability q if a team is trailing in score, with p > q. If the score is equal at the beginning of a round started by A, this results in probabilities:

 $\mathbb{P}(\text{Team A wins round}) = p \cdot (1 - q) =: P_+$ $\mathbb{P}(\text{Team B wins round}) = (1 - p) \cdot p =: P_ \mathbb{P}(\text{The round is drawn}) = (1 - p)^2 + pq =: P_{\pm}$

Difference $P_+ - P_- = \lambda$ is referred to as the FMA.

• The values of *p*, *q* are not known, but can be estimated from real world results.

• The values of *p*, *q* are not known, but can be estimated from real world results.

• For football,
$$p = \frac{3}{4}$$
, $q = \frac{2}{3}$ is common in the literature.

- The values of *p*, *q* are not known, but can be estimated from real world results.
- For football, $p = \frac{3}{4}$, $q = \frac{2}{3}$ is common in the literature.
- Alternatives have been suggested and experimented with, such as the one called ABBA with football, that has A(B)B(A) as sequence.

- The values of *p*, *q* are not known, but can be estimated from real world results.
- For football, $p = \frac{3}{4}$, $q = \frac{2}{3}$ is common in the literature.
- Alternatives have been suggested and experimented with, such as the one called ABBA with football, that has A(B)B(A) as sequence.
- Also, field hockey has shoot-outs in which the eventual sudden death is started by the team that did not start the shoot-out.

It is undesirable to have an unfair shoot-out to decide the outcome of a game. What do we consider a fair shoot-out?

We want the order of the penalties to be fixed before the first penalty. Then:

Definition

We say a penalty shoot-out S between A and B is fair, if:

 $\mathbb{P}(\text{Team A wins}) = \mathbb{P}(\text{Team B wins})$

It is undesirable to have an unfair shoot-out to decide the outcome of a game. What do we consider a fair shoot-out?

We want the order of the penalties to be fixed before the first penalty. Then:

Definition

We say a penalty shoot-out S between A and B is fair, if:

 $\mathbb{P}(\text{Team A wins}) = \mathbb{P}(\text{Team B wins})$

We assume both teams are as good as the other.

What are the requirements for a shoot-out to be fair?

The probability that team A wins the sudden death is equal to:

$$\mathbb{P}(\mathsf{Team} \; \mathsf{A} \; \mathsf{wins}) = \sum_{r=1}^{\infty} \mathbb{P}(\mathsf{r-1} \; \mathsf{rounds} \; \mathsf{drawn}) \mathbb{P}(\mathsf{Team} \; \mathsf{A} \; \mathsf{wins} \; \mathsf{round} \; \mathsf{r})$$

The probability that team A wins the sudden death is equal to:

$$\mathbb{P}(\text{Team A wins}) = \sum_{r=1}^{\infty} \mathbb{P}(r-1 \text{ rounds drawn}) \mathbb{P}(\text{Team A wins round r})$$

An analogue expression can be derived for Team B.

Calculations

Let I be the index set of all the rounds in which Team A is allowed to shoot first.

Calculations

Let *I* be the index set of all the rounds in which Team *A* is allowed to shoot first. The most common penalty shoot-out has $I = \mathbb{N}$, and for instance ABBA has $I = \{1, 3, ...\}$. Team B shoots first in the remaining rounds $\overline{I} = \mathbb{N} \setminus I$.

Calculations

Let *I* be the index set of all the rounds in which Team *A* is allowed to shoot first. The most common penalty shoot-out has $I = \mathbb{N}$, and for instance ABBA has $I = \{1, 3, ...\}$. Team B shoots first in the remaining rounds $\overline{I} = \mathbb{N} \setminus I$.

We have P_+ , P_- as probabilities of the first and second shooting team winning a round, and P_{\pm} for a drawn round. Then:

$$\mathbb{P}(\mathsf{Team} \; \mathsf{A} \; \mathsf{wins}) = rac{P_-}{1-P_\pm} + \lambda \sum_{r \in I} \mathbb{P}_\pm^{r-1}$$

Similarly, we derive for Team B:

$$\mathbb{P}(\text{Team B wins}) = rac{P_-}{1-P_\pm} + \lambda \sum_{r \in \overline{I}} P_\pm^{r-1}$$

A sequence S where Team A shoots first in rounds I is fair with respect to P_+, P_-, P_\pm if:

$$\sum_{r\in I} P_{\pm}^{r-1} = \sum_{r\in \mathbb{N}\setminus I} P_{\pm}^{r-1} \tag{1}$$

A sequence S where Team A shoots first in rounds I is fair with respect to P_+, P_-, P_\pm if:

$$\sum_{r\in I} P_{\pm}^{r-1} = \sum_{r\in \mathbb{N}\setminus I} P_{\pm}^{r-1}$$
(1)

Notice that the fairness of I only depends on I and the value of P_{\pm} - not on P_+, P_- or the FMA λ .

Theorem of unfairness

Theorem

If we assume that $p, q \in \mathbb{Q}$, every finite repeated sequence S_n is unfair.

Theorem of unfairness

Theorem

If we assume that $p, q \in \mathbb{Q}$, every finite repeated sequence S_n is unfair.

This means that if we assume $p, q \in \mathbb{Q}$, and we try to find a fair shoot-out policy with a finite repeated sequence, we will fail.

Sudden-death stage Proof

Proof.

Let $f_I(x)$ be the polynomial $f_I(x) = \sum_{i \in I} x^{i-1}$, then the corresponding sequence S is fair if P_{\pm} is a solutions of the polynomial:

$$f_{S}(x) = f_{I}(x) - f_{\overline{I}}(x) = \sum_{i \in I} x^{i-1} - \sum_{j \in \overline{I}} x^{j-1} = 0$$

Sudden-death stage Proof

Proof.

Let $f_I(x)$ be the polynomial $f_I(x) = \sum_{i \in I} x^{i-1}$, then the corresponding sequence S is fair if P_{\pm} is a solutions of the polynomial:

$$f_{S}(x) = f_{I}(x) - f_{\overline{I}}(x) = \sum_{i \in I} x^{i-1} - \sum_{j \in \overline{I}} x^{j-1} = 0$$

If we have any finite sequence S_n of n rounds, that is repeated, the characteristic polynomial of the resulting sequence S will be:

$$f_{\mathcal{S}}=f_{\mathcal{S}_n}\cdot\left(1+x^n+\dots\right)$$

Sudden-death stage Proof

Proof.

Let $f_l(x)$ be the polynomial $f_l(x) = \sum_{i \in I} x^{i-1}$, then the corresponding sequence S is fair if P_{\pm} is a solutions of the polynomial:

$$f_{S}(x) = f_{I}(x) - f_{\overline{I}}(x) = \sum_{i \in I} x^{i-1} - \sum_{j \in \overline{I}} x^{j-1} = 0$$

If we have any finite sequence S_n of n rounds, that is repeated, the characteristic polynomial of the resulting sequence S will be:

$$f_{\mathcal{S}} = f_{\mathcal{S}_n} \cdot (1 + x^n + \dots)$$

Thus, all zeroes of $f_S(x)$ need to be zeroes of $f_{S_n}(x)$. However, since $f_{S_n}(x)$ is a polynomial of finite degree with coefficients ± 1 , there will be no rational zero $x \in (0, 1)$ (Gauss' Lemma).

Unfairness

Even worse:

• The common sequence A(B)A(B)... with polynomial $f_A = 1 + x + \cdots = 0$ has **no** solution with $x \in (0, 1)$.

Unfairness

Even worse:

- The common sequence A(B)A(B)... with polynomial $f_A = 1 + x + \cdots = 0$ has **no** solution with $x \in (0, 1)$.
- The popular alternative ABBA $f_{ABBA} = 1 - x + x^2 + \cdots = (1 - x)(1 + x^2 + \cdots) = 0$ has **no** solutions with $x \in (0, 1)$.

Unfairness

Even worse:

- The common sequence A(B)A(B)... with polynomial $f_A = 1 + x + \cdots = 0$ has **no** solution with $x \in (0, 1)$.
- The popular alternative ABBA $f_{ABBA} = 1 - x + x^2 + \cdots = (1 - x)(1 + x^2 + \cdots) = 0$ has **no** solutions with $x \in (0, 1)$.

A well known infinite penalty shoot-out is based on the Prouhet-Thue-Morse (PTM) sequence. Team A starts round 1, Team B round 2. From then, the following rounds will be an inverse copy of the first rounds.

$$AB BA BAAB BAABABBA...$$
(2)

This can be proven to be unfair for all values of $\mathbb{P}_{\pm} \in (0,1)$.

Fair algorithm

The following algorithm creates a fair shoot-out, for any given value of $P_{\pm} \geq \frac{1}{2}$.

Fair algorithm

The following algorithm creates a fair shoot-out, for any given value of $P_{\pm} \geq \frac{1}{2}$.

Algorithm

Let Team A shoot first in round 1 and set $I_1 = \{1\}$. Then, starting from

- n = 1, construct I_{n+1} from I_n in the following way:
 - If $f_{I_n}(P_{\pm}) < f_{\overline{I}_n}(P_{\pm})$: $I_{n+1} = I_n \cup \{n+1\}$.
 - Otherwise: $I_{n+1} = I_n$

Fair algorithm

The following algorithm creates a fair shoot-out, for any given value of $P_{\pm} \geq \frac{1}{2}$.

Algorithm

Let Team A shoot first in round 1 and set $I_1 = \{1\}$. Then, starting from

- n = 1, construct I_{n+1} from I_n in the following way:
 - If $f_{I_n}(P_{\pm}) < f_{\overline{I}_n}(P_{\pm})$: $I_{n+1} = I_n \cup \{n+1\}$.
 - Otherwise: $I_{n+1} = I_n$

By this construction, the resulting set $I = \lim_{n \to \infty} I_n$ will have:

$$f_I(P_{\pm}) = f_{\overline{I}}(P_{\pm})$$

And therefore be fair.

Fair algorithm

If we assume $p = \frac{3}{4}$, $q = \frac{2}{3}$, this would be the sequence generated by the algorithm:

Round	1	2	3	4	5	6	7	8
First shooter	?	?	?	?	?	А	В	В
Second shooter	?	?	?	?	?	В	А	А
Score								
Round	9	10	11	12	13	14	15	16
First shooter	В	А	В	А	В	В	А	А
Second shooter	Α	В	А	В	А	Α	В	В
Score								

Figure 3: Fair sudden death sequence

The sudden death in the match of the example should have had, as sequence: *ABBABABBAA*....

Fair algorithm

If we assume $p = \frac{3}{4}$, $q = \frac{2}{3}$, this would be the sequence generated by the algorithm:

Round	1	2	3	4	5	6	7	8
First shooter	?	?	?	?	?	А	В	В
Second shooter	?	?	?	?	?	В	А	А
Score								
Round	9	10	11	12	13	14	15	16
First shooter	В	А	В	Α	В	В	А	А
Second shooter	А	В	А	В	А	Α	В	В
Score								

Figure 3: Fair sudden death sequence

The sudden death in the match of the example should have had, as sequence: *ABBABABBAA*....

For any p, q, a fair sequence can be calculated using the algorithm.

• The Best-of-5 is not just 5 rounds of the sudden death.

- The Best-of-5 is not just 5 rounds of the sudden death.
- It is possible that, at the start of a round, one team has scored more goals than the other adding pressure to the team lagging behind, as they have to make up a goal.

- The Best-of-5 is not just 5 rounds of the sudden death.
- It is possible that, at the start of a round, one team has scored more goals than the other adding pressure to the team lagging behind, as they have to make up a goal.
- This also influences the advantage a team gets from starting a round.

Parameter results

The shoot-out with respect to p, q that is the least unfair:

Figure 4: Fairest Bo5 penalty sequence for given p, q

Parameter results

The shoot-out with respect to p, q that is the least unfair:

Figure 4: Fairest Bo5 penalty sequence for given p, q

Note that both AAAAA or ABABA (common and ABBA series) are never suggested.

We can compare the unfairness of the preferred penalty sequence, to the one currently used.

Best of 5

p/q	0.60	0.61	0.62	0.63	0.64	0.65	0.66	0.67	0.68	0.69	0.70	0.71	0.72	0.73	0.74	0.75	0.76	0.77	0.78	0.79	0.80
0.60																					
0.61	0.0094																				
0.62	0.0192	0.0096																			
0.63	0.0294	0.0196	0.0098																		
0.64	0.0400	0.0301	0.0201	0.0101																	
0.65	0.0511	0.0410	0.0309	0.0206	0.0104																
0.66	0.0627	0.0524	0.0421	0.0317	0.0212	0.0106															
0.67	0.0747	0.0643	0.0538	0.0432	0.0325	0.0218	0.0109														
0.68	0.0873	0.0767	0.0660	0.0552	0.0444	0.0334	0.0224	0.0112													
0.69	0.1003	0.0896	0.0788	0.0678	0.0567	0.0456	0.0343	0.0230	0.0115												
0.70	0.1139	0.1030	0.0920	0.0809	0.0697	0.0583	0.0469	0.0353	0.0237	0.0119											
0.71	0.1281	0.1170	0.1059	0.0946	0.0832	0.0717	0.0600	0.0483	0.0364	0.0244	0.0122										
0.72	0.1428	0.1316	0.1203	0.1089	0.0973	0.0856	0.0738	0.0618	0.0497	0.0375	0.0251	0.0126									
0.73	0.1581	0.1468	0.1354	0.1238	0.1121	0.1002	0.0882	0.0760	0.0637	0.0512	0.0386	0.0259	0.0130								
0.74	0.1740	0.1626	0.1511	0.1394	0.1275	0.1154	0.1032	0.0909	0.0784	0.0657	0.0529	0.0399	0.0267	0.0135							
0.75	0.1906	0.1791	0.1674	0.1556	0.1435	0.1314	0.1190	0.1065	0.0938	0.0809	0.0678	0.0546	0.0412	0.0276	0.0139						
0.76	0.2078	0.1962	0.1844	0.1725	0.1603	0.1480	0.1355	0.1228	0.1099	0.0968	0.0835	0.0701	0.0564	0.0426	0.0286	0.0144					
0.77	0.2257	0.2140	0.2022	0.1901	0.1778	0.1654	0.1527	0.1398	0.1268	0.1135	0.1000	0.0864	0.0725	0.0584	0.0441	0.0296	0.0149				
0.78	0.2443	0.2326	0.2206	0.2085	0.1961	0.1835	0.1707	0.1577	0.1445	0.1310	0.1174	0.1035	0.0894	0.0750	0.0605	0.0457	0.0307	0.0155			
0.79	0.2637	0.2519	0.2399	0.2277	0.2152	0.2025	0.1896	0.1764	0.1631	0.1494	0.1356	0.1215	0.1072	0.0926	0.0778	0.0627	0.0474	0.0318	0.0160		
0.80	0.2839	0.2720	0.2600	0.2477	0.2351	0.2223	0.2093	0.1960	0.1825	0.1687	0.1547	0.1404	0.1259	0.1111	0.0960	0.0807	0.0651	0.0492	0.0331	0.0167	

Figure 5: Compared fairness

Best of 5

p/q	0.60	0.61	0.62	0.63	0.64	0.65	0.66	0.67	0.68	0.69	0.70	0.71	0.72	0.73	0.74	0.75	0.76	0.77	0.78	0.79	0.80
0.60																					
0.61	0.0094																				
0.62	0.0192	0.0096																			
0.63	0.0294	0.0196	0.0098																		
0.64	0.0400	0.0301	0.0201	0.0101																	
0.65	0.0511	0.0410	0.0309	0.0206	0.0104																
0.66	0.0627	0.0524	0.0421	0.0317	0.0212	0.0106															
0.67	0.0747	0.0643	0.0538	0.0432	0.0325	0.0218	0.0109														
0.68	0.0873	0.0767	0.0660	0.0552	0.0444	0.0334	0.0224	0.0112													
0.69	0.1003	0.0896	0.0788	0.0678	0.0567	0.0456	0.0343	0.0230	0.0115												
0.70	0.1139	0.1030	0.0920	0.0809	0.0697	0.0583	0.0469	0.0353	0.0237	0.0119											
0.71	0.1281	0.1170	0.1059	0.0946	0.0832	0.0717	0.0600	0.0483	0.0364	0.0244	0.0122										
0.72	0.1428	0.1316	0.1203	0.1089	0.0973	0.0856	0.0738	0.0618	0.0497	0.0375	0.0251	0.0126									
0.73	0.1581	0.1468	0.1354	0.1238	0.1121	0.1002	0.0882	0.0760	0.0637	0.0512	0.0386	0.0259	0.0130								
0.74	0.1740	0.1626	0.1511	0.1394	0.1275	0.1154	0.1032	0.0909	0.0784	0.0657	0.0529	0.0399	0.0267	0.0135							
0.75	0.1906	0.1791	0.1674	0.1556	0.1435	0.1314	0.1190	0.1065	0.0938	0.0809	0.0678	0.0546	0.0412	0.0276	0.0139						
0.76	0.2078	0.1962	0.1844	0.1725	0.1603	0.1480	0.1355	0.1228	0.1099	0.0968	0.0835	0.0701	0.0564	0.0426	0.0286	0.0144					
0.77	0.2257	0.2140	0.2022	0.1901	0.1778	0.1654	0.1527	0.1398	0.1268	0.1135	0.1000	0.0864	0.0725	0.0584	0.0441	0.0296	0.0149				
0.78	0.2443	0.2326	0.2206	0.2085	0.1961	0.1835	0.1707	0.1577	0.1445	0.1310	0.1174	0.1035	0.0894	0.0750	0.0605	0.0457	0.0307	0.0155			
0.79	0.2637	0.2519	0.2399	0.2277	0.2152	0.2025	0.1896	0.1764	0.1631	0.1494	0.1356	0.1215	0.1072	0.0926	0.0778	0.0627	0.0474	0.0318	0.0160		
0.80	0.2839	0.2720	0.2600	0.2477	0.2351	0.2223	0.2093	0.1960	0.1825	0.1687	0.1547	0.1404	0.1259	0.1111	0.0960	0.0807	0.0651	0.0492	0.0331	0.0167	

Figure 5: Compared fairness

Even with very small FMA, there is still an improvement of 1% in fairness. The model suggest an improvement of 10% in fairness applying *ABBAB* instead of *AAAA* for $p = \frac{3}{4}$, $q = \frac{2}{3}$.

So, in summary, if it comes to a penalty shoot-out, this is how the first 16 rounds in the example should have been taken:

Round	1	2	3	4	5	6	7	8
First shooter	Α	В	В	Α	В	А	В	В
Second shooter	В	A	А	В	А	В	А	А
Round	9	10	11	12	13	14	15	16
First shooter	В	А	В	А	В	В	А	А
Second shooter	А	В	А	В	А	А	В	В

Figure 6: First 16 penalties

- The current penalty shoot-out is inherently unfair.
- It is possible to construct fair sudden death sequences.
- An improvement in fairness can also be made within the best of 5 shoot-out.
- ABBAB in the best-of-5 would be fair compared to the current AAAAA.

Questions?