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Data description

Data from the English Premier League for two consecutive seasons
recording all touch-ball events, i.e., events where a player has acted
on the ball by touching it with some part of their body. In total, we
have approximately 1.1 million events recorded over the 760 games.

second minute team id player id type outcome x y end x end y
0 0 665 68312 Pass Successful 49.1 51.0 52.5 44.8
2 0 665 14036 Pass Successful 52.2 44.5 36.7 60.6
3 0 665 79050 Pass Successful 36.7 60.6 24.9 39.1
5 0 665 14107 Pass Unsuccessful 25.0 37.9 97.0 22.9
9 0 660 73379 Tackle Successful 1.9 73.7 1.9 73.7

15 0 660 73379 Pass Successful 5.5 65.3 20.9 21.5
17 0 660 6292 Pass Successful 20.9 21.5 29.0 38.5
19 0 660 26820 Foul Successful 25.8 37.4 25.8 37.4

Table: A snapshot of the dataset.

Data source: Stratagem Technologies, London.



Football as a spatio-temporal point process

Figure: Goal of the season 2013-14, Jack Wilshere vs Norwich City.



Heat maps: Home advantage

Figure: Ball touches for Arsenal, Home (left) and Away (right).



Heat maps: Shots vs Goals

Figure: All shots on goal (left) and goals (right).



Research goal

Simulation
The primary goal is to develop machinery to simulate the process
in (T ,T + ∆) where T is the current time and ∆ is the time
resolution of prediction, properly accounting for the dependence
between events, dependence on past processes, and
process-specific characteristics.

I Predict match outcome probabilities in real-time.

I Predict team-specific probabilities of any event, e.g. goal, in
the next t minutes



Poisson processes

Homogeneous Poisson process

Let λ ∈ R+. A Poisson process with constant rate λ is a point
process defined by

P[N(t + ε)− N(t) = 1|Ft ] = λε+ o(ε),

P[N(t + ε)− N(t) > 1|Ft ] = o(ε).

I The intensity of the process N(t) is time-invariant, and the
probability of occurrence of an event in (t, t + ε] is
independent of the history of the process at time t given by
Ft .



Self-exciting processes

Linear self-exciting process

λ∗(t) = µ(t) + α
∑
ti<t

g(t − ti ),

where µ : R 7→ R+ is a deterministic base intensity, α is the
excitation from a past event and g : R+ 7→ R+ expresses how
quickly this excitation dies over time.

Hawkes process

Hawkes (1971) proposed an exponential kernel g(t) = βe−βt , so
that the intensity of the model becomes

λ∗(t) = µ(t) + α
∑
ti<t

βe−β(t−ti ).



Conditional intensity

Figure: Conditional intensity function of a Hawkes process.



Marked Hawkes processes

A marked Hawkes process X , consists of event times
t = {ti : ti ∈ R and ti > ti−1} and marks
m = {mi : mi ∈ 1, . . . ,M} ∀ i = 1, . . . , n.

λ(t,m | Ft) = µδm +
∑
tj<t

αβe−β(t−tj )γmj→m,

where δm ∈ [0, 1] is the base mark probability for mark m and
γmj→m ∈ [0, 1] is the probability a event with mark mj produces an
offspring of mark m.

Constraints

M∑
m=1

δm = 1,
M∑

m=1

γmj ,m = 1 ∀ mj = 1, . . . ,M.



Clustering of times is a problem!
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Figure: Simulations from a Poisson process (top) of unit rate and a
Hawkes process (bottom) with (µ = 0.2, α = 0.8, β = 1).



Splitting times and marks

To restrict the self-exciting property of the process to the mark
dimension, we use the decomposition that motivated partial
likelihood Cox (1975). We can factorize the full likelihood of a
marked point process as follows,

n∏
i=1

g(ti | Fti−1 ; ζ)
n∏

i=1

f (mi | ti ,Fti−1 ;η).

where g and f are the probability density functions for times and
marks respectively and ζ,η are the unknown parameter vectors.
The second product above is called the partial likelihood based on
the mark sequence m = {mi}ni=1.



Partial likelihood

The log-likelihood for a marked point process, Daley et al.(2003),

n∑
i=1

log
(
λ(ti ,mi | Fti−1)

)
−

T∫
0

∫
X

λ(u, v | Fu)du dv .

We can calculate the contribution of the i-th event to the partial
likelihood from the log-likelihood, Diggle (2013),

f (mi | ti ,Fti−1 ;η) =
λ(ti ,mi | Fti−1)∑
Xi
λ(ti ,mi | Fti−1)

.

where Xi is the sample space for marks of the i-th event or also
referred to as the risk set.



Model specification

Marks

f (mi | ti ,Fti−1 ;η) =

∑
tj<ti

e−βmj
(ti−tj )γmj→mi∑

tj<ti
e−βmj

(ti−tj )
,

where mi is the mark of the i-th event in the match, β the decay
rate and γ the mark probability or conversion rate.

Times

g(ti | Fti−1 ; ζ) ∼ Gamma[a(mi−1), b(mi−1)] ,

The shape and rate parameters of the gamma distribution depend
on the mark of the last observed event.



Model specification

Team dependent conversion rates

log

(
γmj→m

γmj→M

)
= θmj→m + µt,m ∀ m ∈ 1, . . . ,M − 1,

where θ is the baseline conversion parameter and t is the team in
possession of the ball attempting the event conversion. The
parameter µ is the relative ability of a team to complete a
conversion to an event of mark m.

Priors

β, a,b ∼ Exp(0.01)

θ,µ ∼ N(0, σγ)

σγ ∼ half-Cauchy(0, 1)



Model training

I First 20 games of the 2013/14 season used as training data,
with all teams playing 1 game each at home and away.

I Each game half is modelled as a single process, i.e., history is
reset at the beginning of the second period.

I Tracking a total of 15 event types for both the home and
away teams separately, i.e, total marks M = 30.

I Bayesian posterior sampling via HMC using Stan.

I Samples obtained from 3 chains run in parallel with 1000
iterations each after burn-in.



Prediction Framework

I Collect R samples of the posterior parameter vector,
pk = {ζk ,Θk} for k = 1, . . . ,R.

I For each game period, for each pk , generate S simulations of
the game in the interval (T ,T + d).

I Iteratively simulate the occurrence time of next event given
history and then its mark given time and history.

I Add the generated pair of (time, mark) to the history as the
most recent event.

I Stop simulation when the time exceeds T + d .

I Finally, for each game period in the test set, calculate event
counts from the R × S simulations and validate against the
observed counts.



Prediction Framework



Gamma distribution parameters a(mi−1), b(mi−1)

Mark shape rate mean

Win 2.85 1.56 1.83
Dribble 2.82 1.58 1.78
Pass S 3.30 1.18 2.79
Pass U 2.60 1.03 2.51
Shot 9.68 8.74 1.11
Keeper 1.34 0.16 8.55
Save 3.06 0.91 3.37
Clear 2.60 1.18 2.21
Lose 3.55 2.44 1.45

Goal 74.19 1.44 51.58
Foul 3.10 0.11 27.67
Out Throw 2.82 0.19 14.85
Out GK 9.95 0.34 29.35
Out Corner 8.97 0.38 23.92
Pass O 6.77 0.24 28.36

Table: Posterior parameter means of g(ti | mti−1 ; ζ).



Decay rates βmi

Mark beta

Win 2.96
Dribble 4.03
Pass S 3.06
Pass U 2.93
Shot 3.88
Keeper 2.66
Save 2.59
Clear 3.10
Lose 3.52

Mark beta

Goal 1.37
Foul 2.04
Out Throw 2.13
Out GK 1.68
Out Corner 1.90
Pass O 1.57

Table: Posterior parameter means for in-play events (left) and out-of-play
events (right).



Conversion rates γmj→mi

Home Pass S Home Pass U Home Shot

Home Win 0.35 0.16 0.03
Home Dribble 0.17 0.10 0.07
Home Pass S 0.58 0.25 0.02

Home Foul 0.41 0.44 0.07
Away Save 0.08 0.03 0.09
Away Clear 0.09 0.11 0.05

Away Pass S Away Pass U Away Shot

Away Win 0.25 0.16 0.02
Away Dribble 0.12 0.14 0.01
Away Pass S 0.75 0.10 0.02

Away Foul 0.56 0.34 0.06
Home Save 0.10 0.01 0.03
Home Clear 0.09 0.11 0.03

Table: Posterior means of conversion rates for selected events.



Team parameters

Figure: (Left) µt,3 + µt,18 cumulative (home + away) team ability
relative to West Ham (baseline) to retain possession by converting to a
successful pass. (Right) Final league table for the 2013/14 season.



Validation
For 20 game periods in the test set, events are simulated in each
prediction interval 500 times each for 1000 samples from the
posterior. Model evaluated by using scoring rules, validating event
counts in the interval, aggregated over all event types.

I Baseline: Homogeneous Poisson process for each event type.

hhhhhhhhhhhhhhhhhScoring Rule
Game minutes

(10, 12) (20, 22) (30, 32) (40, 42)

Logarithmic 12 17 15 18
Brier 8 12 12 13
Spherical 10 14 12 16
Ranked Probability 10 13 13 15
Squared Error 9 14 13 14
Dawid Sebastiani 6 14 13 18

Table: Counts of experiments (out of 20) where the model outperforms
the baseline in each prediction interval.



Future work

I Location dependent conversion rates.

I Game states as covariates, e.g., score.

I Latent auto-regressive structure for parameters over games.

I Matrix parameterisation for decay rates.

I Alternative applications, e.g. cyber security.
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